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Abstract

In computer vision, and particularly in 3D reconstruction from images, it is customary to be
faced with regression problems contaminated by outlying data. The standard and efficient
method to deal with them is the Random Sample Consensus (RANSAC) algorithm. The pro-
cedure is simple and versatile, drawing random minimal samples from the data to estimate
parameterized candidate models and ranking them based on the amount of compatible data.
Such evaluation involves some threshold that separates inliers from outliers. In presence of
unknown level of noise, as is usual in practice, it is desirable to remove the dependency on this
fixed threshold and to estimate it as an additional unknown. Among the numerous variants of
RANSAC, few, that we call “automatic”, propose this approach, which involves changing the
maximization criterion of consensus, as it is naturally increasing with the varying threshold.
An algorithm of Zach and Cohen (ICCV 2015) uses the likelihood statistics. We present the
details and the implementation of their method along with quantitative and qualitative tests
on standard stereovision tasks: estimation of homography, fundamental and essential matrix.

Source Code

The ANSI C++ 03 implementation of the code that we provide is the one which has been peer
reviewed and accepted by IPOL. The source code, the code documentation, and the online
demo are accessible at the IPOL web part of this article1. Compilation and usage instructions
are included in the README.txt file of the archive.

Keywords: random sample consensus (RANSAC); stereopsis
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1 Introduction

RANdom SAmpling Consensus (RANSAC) is a fundamental tool of computer vision systems that
fits data to a model while being robust to outliers. Since its introduction by Fischler and Bolles [8], it
has become an essential step in the computation of homographies, fundamental matrices, and many
other fitting algorithms. In its early forms, RANSAC was designed to process according to a user
defined data-to-model threshold in order to characterize a data point as an inlier or outlier. Then,
some automatic methods have emerged, that evaluate the data at runtime to no longer require such
predefined parameters. This paper focuses on one of the most efficient automatic RANSAC methods
based on the Likelihood Ratio Test [7] and its implementation.

By “automatic”, we mean that the inlier-outlier threshold does not need to be fixed, but is
estimated along with the model in the RANSAC framework [8]. Indeed, extensive work has been made
to improve RANSAC algorithms while keeping the need for a user specified inlier-outlier threshold.
Most of this work has been summarized and aggregated in USAC [14], a compilation of “best of
breed” RANSAC tricks (the “U” stands for Universal).

Efforts have been made to improve the sampling strategy of RANSAC and increase the probability
of drawing a good sample like in the N-Adjacent Point Sample Consensus (NAPSAC) [17], the
Progressive Sample Consensus (PROSAC) [5] or GroupSAC [10]. NAPSAC rests on the idea that
inliers tend to be closer together and as dimension of the data space increases, the probability of
drawing an inlier close to a given inlier decreases slower than the probability of drawing a uniformly
distributed outlier. Thus, a minimal sample for NAPSAC is built by uniformly drawing a point,
finding all points that lie within a given sphere around it and drawing uniformly points from that
sphere to build the minimal sample. This method performs well in high dimensional space where
the usual drawing method requires too many iterations to succeed, but is not universally accepted as
it is prone to degeneracy. PROSAC uses a quality measure of the input data points to draw inlier-
only samples in a more likely order than RANSAC. This measure of quality can be derived from
the similarity function used to compute the matches. This strategy usually greatly reduces runtime
but can also lead to degeneracy and relies on the quality of the similarity function. GroupSAC lies
in between both strategies, assuming that inliers are regrouped in regions, that can be computed
by optical flow for example, and ordering the samples according to this grouping to increase the
probability of drawing an all-inlier sample. This method improves the sampling efficiency but relies
on an efficient and reliable grouping strategy.

Some other improvements have been proposed to speed up the verification process and increase
the number of iterations: RANSAC can perform with prechecks like the Td,d test in [4] or a bailout
test like [3]. The Td,d test rejects a model before testing it against all data points if it is not consistent
with d random points. In [4] the optimal value of d is computed to be 1. This means this test refuses
a model that is not consistent with a single randomly drawn point. This greatly increases the number
of iterations required as good models are rejected by this method and needs a fast model estimation
compared to the testing time to actually improve the runtime. In [3] it is proposed a bailout test that
can end the consensus computation if not enough inliers have been observed so far. The stopping
criterion is evaluated at each datapoint and depends on the current best inlier ratio. It requires data
points to be evaluated in a random order to work efficiently. Although efficient in practice, there is
no safeguard concerning the rejection of good models by this test.

Lastly, it is possible to add degeneracy checks [6] to ensure the estimated models are not corrupted
by situations that can yield arbitrary good models—like points on a plane for a fundamental matrix
estimation—or that the model is realistic—like adding a chirality check to ensure all points are in
front of the cameras. However, such methods usually rely on some knowledge of the problem at
hand and still require the user to choose an inlier/outlier threshold, whose best value varies across
datasets.
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Automatic RANSAC by Likelihood Maximization

All these constraints motivated investigations on “automatic” RANSAC methods like a contrario
RANSAC (AC-RANSAC) [11, 12] or Likelihood Ratio Test (LRTSAC) [7]. These methods try to es-
timate this threshold during execution. Some other methods, like Residual Consensus (RECON) [15]
or Marginalised Sample Consensus (MAGSAC) [1], completely remove this threshold. As the fixed
inlier/outlier threshold is removed, the consensus cannot be used as a metric to compare estimated
models, the inlier ratio increasing with the estimated threshold or even being impossible to compute
at all if no threshold is used. The following methods all introduce a new metric to evaluate models.
AC-RANSAC relies on an statistical metric, the Number of False Alarms, to determine the quality
of a model for all possible inlier error cutoffs. It represents an estimate of the expected number of
false positives. When this value goes below a threshold, usually set to 1, the current set of inliers is
used to iterate and estimate the best model with only inliers. AC-RANSAC presents good results on
difficult datasets and has increased the quality of a multi-view stereo pipeline [13]. LRTSAC uses the
likelihood that a model is not issued from random data points to measure the quality of its models.
This algorithm and its pros and cons are detailed in the following sections of this paper. RECON
follows the hypothesis that inlier based models have a consensus on low residual points. Thus, during
execution, it compares the ordered set of residual of an estimated model to previous models and the
ones with the best consensus are considered inlier based. When enough good models are found—[15]
proposes 3 models—they are used to refine an estimated model following a PROSAC-like method.
This algorithm is slower than traditional RANSAC and shows similar results on synthetic datasets
when the inlier threshold is well estimated for RANSAC. MAGSAC measures the quality of a model
by measuring its likelihood given a hypothesis of uniform distribution of the inlier/outlier threshold
in some interval. It removes the need for a threshold by marginalizing it and weighing pseudo-inliers
to estimate a model. It shows good results on difficult datasets but does not provide an inlier set
which could be used for SFM pipelines.

2 Background

2.1 Notations

The aim of the LRTSAC algorithm is to find as many inliers as possible of an unknown parameterized
model among n data points X = (Xi)i∈[n]. For a stereo geometry problem, data points Xi live in
a bounded part P of a D-dimensional space with D = 4, each data point encoding a keypoint
correspondence between left and right image, Xi = (xLi , y

L
i , x

R
i , y

R
i ). Point correspondences being

extracted from images, we have

P = [0, wL]× [0, hL]× [0, wR]× [0, hR], (1)

with w and h denoting the pixel dimensions of left and right images.
The parameters of the model to be estimated are gathered in a vector θ in a space Θ ⊂ Rd. In our

case d = 9 for homography or fundamental matrix. Typically, θ defines a manifold in RD through
one of the equations(

xL yL 1
)
F (θ)

(
xR yR 1

)>
= 0 or

(
H(θ)

(
xL yL 1

)>)× (xR yR 1
)>

= 0, (2)

where F (θ) is a fundamental and H(θ) a homography 3×3 matrix, the operator × denoting the cross
product of R3. The parameter θ gathers the nine coefficients of the matrix and Θ is the unit sphere
of R9. Such a constraint prevents the trivial solution F = 0 or H = 0. In the case of fundamental
matrix, which is of rank 2, Θ is actually the intersection of the unit sphere with the manifold of R3×3

defined by the cubic equation detF (θ) = 0.
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A threshold σ ∈ R discriminates inliers and outliers: a pointXi is considered an inlier if its residual
e(Xi, θ) does not exceed σ, where the real-valued function e measures the error of a point to the model
parameterized by θ. The residual can be measured by the absolute value of the left hand side of (2),
called the algebraic error, or a more geometrically meaningful error (usually, the distance of Xi to
the manifold defined by (2), called the gold standard error, is too difficult to compute). Ideally, σ is
linked to the noise level of correct data, but in practice it is unknown. For this algorithm it is chosen
from a discrete set Σ = {σmin, . . . , σmax}. We also define the inlier region as the set of points that
are inliers given model parameters θ and inlier noise level σ: I(θ, σ) = {X ∈ P, e(X, θ) ≤ σ}.

The classical RANSAC algorithm requires a reasonable σ and tests models based on consensus,
the count of inliers: the tested parameter vector θ with the maximum consensus is the output of
the algorithm. It is often beneficial to not consider σ a priori, but to estimate it along with the
parameters of the model. However, the inlier count for a fixed model θ is obviously an increasing
function of σ, and maximal consensus cannot be used anymore to evaluate the quality of a pair (θ, σ),
since it would always select the maximum σmax. AC-RANSAC replaces this criterion by the number
of false alarms, NFA, measured with a statistical model, that must be minimized [11]. The alternative
detailed in this paper is based on the likelihood, as presented in [7]. The criterion is the likelihood
of the hypothetic pair (θ, σ) as supported by the available data X, based on a background model for
its distribution.

2.2 Regular RANSAC

The usual RANSAC procedure follows Algorithm 1. A random subset of sΘ data points is drawn
from X at each iteration. This subset usually consists of the minimal number of points to fit a model.
We get sΘ = 4 for a plane homography, sΘ = 7 or 8 for a fundamental matrix, depending on whether
the 7-point or 8-point algorithm is used [9]. From such a sample, the function MΘ returns the set
of model parameters that fit the sample. In the simplest case, this is a single θ, but it may be a
higher number of parameter vectors, such as 3 for the 7-point algorithm for fundamental matrix. It is
also possible that MΘ returns no model parameters, such as when the sample produces a degenerate
system of equations.

Algorithm 1: Regular RANSAC procedure. Blue lines are optional.

parameter : maximum number of iterations T , error tolerance σ ≥ 0, Confidence w.r.t
type II error pII ∈ (0, 1)

input : Model class Θ ⊂ Rd, input data X ⊂ RD

output : Model parameters θ∗ ∈ Θ, inliers X∗ ⊂ X
1 θ∗ ← Null, X∗ ← ∅
2 for i = 1 . . . T do
3 Xs ← Rand(X, sΘ) // Draw random subset of sΘ data points

4 for θ ∈MΘ(Xs) do // Estimate models from sample

5 I ← {Xi ∈ X : e(Xi, θ) ≤ σ} // Inliers for model θ
6 if |I| > |X∗| then
7 θ∗ ← θ, X∗ ← I // Keep maximum consensus model

8 ε← |I|/|X| // Ratio of inliers

9 Compute T (ε) // Updated number of iterations (4)
10 if T > T (ε) then T ← T (ε)

11 return (θ∗, X∗)

For each candidate model θ, its set of inliers is determined using the error to model function e,
with a tolerance σ. If it results in a higher consensus than the current one, the latter is updated.

4
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At the end of the procedure, a refined model is usually computed taking into account all inliers X∗.
Typically, a least squares minimization is performed

θ̃ = arg min
θ

∑
X∈X∗

e(X, θ)2. (3)

An optional feature of the procedure consists in an update of its maximum number of iterations T
when a better model is found. Initially, T is proportional to the time budget allocated to the
algorithm. This can be lowered during the procedure: the procedure stops when it is confident that
at least one uncontaminated sample has been drawn. With ε the ratio of inliers, the probability
of drawing a sample contaminated by outliers is 1 − εs. This event happening for T samples has a
probability (1−εs)T . Given a confidence level pII (such as 95% or 99%), at least one uncontaminated
sample among T was drawn if T is at least

T (ε) =

⌈
log(1− pII)
log(1− εs)

⌉
. (4)

The probability 1−pII represents a type II error: missing a good model because the number of tested
samples is not sufficient. The function T (ε) is decreasing, hence a higher inlier ratio means fewer
iterations are needed. The value pII = 1 (100% confidence) requires an infinite number of iterations
in (4), in which case dynamic adaptation of T is disabled.

2.3 Automatic RANSAC

We call a RANSAC variant “automatic” if the inlier threshold σ is not fixed in advance but is
estimated along with the model parameters. In essence, it changes lines 5 to 10 of Algorithm 1. In
particular, line 5 is modified to compute an inlier set depending on σ, Iσ. The quality criterion is not
anymore the consensus |Iσ|, since it is always increasing with σ, but is based on statistical grounds.
The one presented here is based on the likelihood and proposes two optional features to make the
algorithm faster:

1. A bailout test at line 5, which may avoid computing the whole inlier set Iσ, when the probability
of beating the current best model is low.

2. An adapted formula to replace (4): since the inlier ratio ε depends on σ, the minimal number
of iterations must be evaluated with the worst case, that is the lowest σ, which corresponds to
the lowest ε.

3 Likelihood of Point Correspondences

3.1 Likelihood Computation

For this algorithm, the data is supposed to be drawn from a mix of the inlier distribution f in, in ratio
ρ ∈ [0, 1], and from the outlier distribution f out, in ratio 1− ρ. With parameters θ and σ, the inlier
distribution is assumed uniform in I(θ, σ). The relative volume of I(θ, σ) w.r.t. the one of P will be
called pσ, omitting the θ-dependency. The value of pσ is the probability that a background point is
in the inlier region. The outlier distribution is assumed uniform on P . We can write the probability
density function of Xi as

Xi ∼ ρf in + (1− ρ)f out

∼ (ρf in + (1− ρ)f out)1I + (ρf in + (1− ρ)f out)1P\I(θ,σ)

∼ (ρ 1
|I| + (1− ρ) 1

|P |)1I + (ρ · 0 + (1− ρ) 1
|P |)1P\I(θ,σ)

∼ 1
|P |

(
1− ρ+ ρ

pσ

)
1I(θ,σ) + 1−ρ

|P | 1P\I(θ,σ)

(5)
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with |P | the volume of P and |I| the volume of I. The right hand side of the sum is due to the fact
that outside I only the background distribution applies.

Given these hypotheses the likelihood of X with k observed inliers is

L(X; θ, σ, ρ) =
1

|P |n

(
1− ρ+

ρ

pσ

)k
(1− ρ)n−k. (6)

Notice that k = k(θ, σ), since an inlier is defined by its position in the region I(θ, σ).
Given the observations, the goal is to maximize L with respect to θ, σ and ρ. The maximisation

of the likelihood is done by exhaustive evaluation of σ ∈ Σ and the usual RANSAC sampling for θ by
drawing minimal sample sets of size s. By contrast, the maximum likelihood estimate with respect
to ρ, at fixed σ and θ, can be computed in closed form

ρ̂ = max

{
0,
ε− pσ
1− pσ

}
, (7)

with ε = k/n, the proportion of inliers (details in Appendix A). The lower bound 0 comes from the
constraint that ρ ∈ [0, 1]. Its interpretation is that if ε < pσ, we have not even observed the expected
number of inliers predicted by the pure uniform distribution on P .

Using this, the usual RANSAC quality function of the model parameters θ, its number k of
inliers, is replaced by L(ε, σ) = logL(X; θ, σ, ρ̂), or equivalently, discarding constant terms in the
optimization

L(ε, σ) =

{
ε log

(
ε
pσ

)
+ (1− ε) log

(
1−ε

1−pσ

)
if ε ≥ pσ;

0 otherwise.
(8)

The behavior of this function is studied in Appendix B.

3.2 Significance Test of the Likelihood

Given the maximal likelihood, we can check its statistical significance in the following manner. Let
us consider two competing hypotheses:

1. H0: the observed data is fully explained by the uniform distribution over the whole P , i.e.,
ρ = 0.

2. H1: the observed data present some concentration in a volume I(θ, σ), the inliers, hence ρ > 0.

We can then define the two types of errors. The type I error (false positive) is accepting H1 while the
model may be explained by H0. The type II error (false negative) is rejecting H1, while a significant
model under H1 was present.

To compare the likelihood to the null hypothesis, we can use the likelihood ratio test

Λ(k, θ, σ, ρ) =
supθ,σ,ρ L(X; θ, σ, ρ)

L(X; 0, 0, 0)
= sup

θ,σ,ρ

(
1− ρ+

ρ

pσ

)k
(1− ρ)n−k. (9)

According to Wilks’s theorem, under H0, 2 log Λ(k, θ, σ, ρ) is asymptotically of law χ2 with dΘ + 2
degrees of freedom, where dΘ is the intrinsic dimension of Θ, that is dΘ = 9− 1 = 8 for homography
(sphere of R9) and dΘ = 9 − 2 = 7 for fundamental matrix (sphere intersection with manifold of
matrices with null determinant). The other two degrees of freedom (+2 in the equation) come from σ
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and ρ. Given this information, the confidence pI of avoiding a type I error can be reached by setting
a minimal value Λ0 computed as follows∫ c

0

χ2
dΘ+2(t) dt = pI . (10)

If 2 log Λ < c = 2 log Λ0, the method may choose to ignore the best model as its significance is not
high enough, and the H0 hypothesis may not be rejected. An analogous significance test is present
in the competing automatic AC-RANSAC, where the NFA must be lower than 1.

This significance test is considered important in the original article of Cohen and Zach [7], giving
its name LRT to their modified RANSAC: pI is an input to the algorithm, hence c is computed
according to (10); as 2 log Λ = 2nL, a lower bound

Lmin = c/2n (11)

is required for L. This bound Lmin is then used to estimate the number of required iterations T
(detailed in Algorithm 5). We rather consider that the maximum value of T is fixed based on time
allocated to the algorithm. By default, we choose pI = 0, hence c = 0, meaning we accept any
likelihood ratio.

4 Algorithm Description

The LRTSAC algorithm works in the same way as the RANSAC algorithm, with a different quality
function and a variable σ. It also introduces an optional bailout strategy when evaluating a model θ
in order to accelerate the algorithm. We first present the core algorithm, then the two optional
speedup propositions: the early bailout strategy when counting the inliers and the adjustment of the
number of sampling iterations.

4.1 Base Algorithm

The procedure of LRTSAC is described in Algorithm 2. Notice that essentially LRTSAC replaces
the quality criterion of RANSAC, maximal consensus, by maximal likelihood. The optional early
bailout strategy is detailed in Algorithm 4. As in RANSAC, the maximum number of iterations may
be dynamically adjusted, see Algorithm 5.

4.2 Minimal Equivalent Inlier Ratios

Applying any of both options of LRTSAC, early bailout when counting inliers and adjustment of the
number of iterations, requires computing a minimal equivalent inlier ratio for the current likelihood.
This represents, for a given σ, the minimum inlier ratio to reach the likelihood L∗

L(εmin(σ), σ) = L∗. (12)

Since L is an increasing function of its first variable, computing εmin(σ) can be done by bisection of
the equation above. It may happen that L(1, σ) < L∗. As L is only defined when ε ≤ 1, it means
that the target likelihood cannot be reached for this value of σ. When the current best likelihood is
L∗, we can then discard σ from the list Σ. Actually, we can even discard all σ′ > σ since

σ ≤ σ′ ⇒ L(1, σ) ≥ L(1, σ′). (13)

7
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Algorithm 2: LRTSAC. Blue lines are optional.

hyperparameter: Σ, set of possible values for threshold σ
parameter : T , allocated number of iterations; confidence probability pI of avoiding

type I error
Input: Θ, the model type; X, the input data
Output: model θ∗, threshold σ∗

1 L∗ ← 0, θ∗ ← Null, σ∗ ← 0
2 Compute εmin(σ), ∀σ ∈ Σ from Lmin // Algorithm 3, Lmin computed from (10) and (11)
3 while number of iterations is below T and Σ is not empty do
4 Xs ← Rand(X, sΘ) // Get random minimal sample

5 for θ ∈MΘ(Xs) do
6 Compute ratio of inliers ε̂(σ), ∀σ ∈ Σ with early bailout // Algorithm 4

7 σ̂ ← arg maxσ L(ε̂(σ), σ), L̂← L(ε̂(σ̂), σ̂)

8 if L∗ < L̂ then

9 L∗ ← L̂, θ∗ ← θ, σ∗ ← σ̂
10 Compute εmin(σ), ∀σ ∈ Σ from L∗ // Algorithm 3

11 Update T from εmin(σ) // Algorithm 5

12 return (θ∗, σ∗) // Model parameters and threshold

This has the effect of possibly reducing σmax when an improved likelihood is found. The procedure
follows Algorithm 3, which may be called whenever L∗ is improved in Algorithm 2. Notice that

L(1, σ) = − log pσ (14)

can be tabulated.

Algorithm 3: Compute equivalent inlier ratios and reduce Σ

Input: L∗, target likelihood; Σ, set of possible values for threshold σ
Output: Minimal equivalent inlier ratios εmin(σ), ∀σ ∈ Σ; reduced set Σ

1 for σ ∈ Σ do
2 if L(1, σ) < L∗ then
3 Discard σ from Σ
4 else
5 Compute εmin(σ), from a bisection of (12)

4.3 Counting Inliers With Early Bailout

When counting inliers, LRTSAC proposes an early bailout strategy while evaluating a model. If
according to this strategy the given model would not give enough inliers to improve the likelihood
when the count is finished, it is discarded immediately.

Let (Zi)i∈[m] be i.i.d. random variables that represent whether data point i is an inlier with Zi = 1,
or an outlier with Zi = 0, at given noise level σ and model θ. Let m be the number of data points
counted so far. The Hoeffding inequality evaluates the probability of deviation of the mean Z of the
Zi from their expectation

P(Z ≤ E(Z)− t) ≤ e−2t2m. (15)

8
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In this formula, we can take Z as ε̂m(σ) the observed inlier ratio after m data points. This means
that the probability of the event ε̂m(σ) ≤ E(ε̂m(σ))− t decreases to 0 exponentially fast. If we want
E(ε̂m(σ)) ≥ εmin(σ), the probability of ε̂m(σ) ≤ εmin(σ)− t decreases to 0 just as fast.

Thus, when we observe ∀σ, ε̂m(σ) ≤ εmin(σ) − t (t > 0) and we discard the model, estimating
that the chances of reaching εmin(σ) for any σ are low, we bailout too early with a probability lower

than β = e−2t2m. The probability β may be specified; we can then introduce τm =
√
− log β

2m
and we

have a bound of the probability of premature bailout

P(∀σ, ε̂m(σ) ≤ εmin(σ)− τm|E(ε̂m(σ)) ≥ εmin(σ)) ≤ β. (16)

This test entails a computational cost so it is checked every B data point only, where B is chosen
to balance the cost of the test and the cost of the model evaluation. Thus we perform bn/Bc bailout
tests. The user may specify a confidence probability p′II of avoiding a premature bailout. If we
replace β in (16) by (1− p′II)/bn/Bc, the probability of a type II error due to premature bailout is
bounded by 1− p′II . This gives the new expression of τm

τm =

√
−

log(1− p′II)− log
⌊
n
B

⌋
2m

. (17)

Algorithm 4 sums up the process. Notice that to disable the early bailout and not risk increasing the
type II error, it is enough to take B > n. Equivalently, we consider that the user-defined parameter
value p′II = 1 means that no bailout is applied.

Algorithm 4: Compute inlier ratio ε̂(σ), ∀σ ∈ Σ with early bailout

hyperparameter: Set of possible thresholds Σ; bailout test periodicity B
parameter : Probability of avoiding premature bailout p′II
Input: data X; model to evaluate θ; {εmin(σ) : σ ∈ Σ}, minimal required inlier ratios
Output: {ε̂(σ) : σ ∈ Σ}

1 ε̂(σ)← 0, ∀σ ∈ Σ
2 for Xi ∈ X do
3 Compute e(Xi, θ)
4 for σ ∈ Σ do
5 if e(Xi, θ) ≤ σ then
6 ε̂(σ)← ε̂(σ) + 1

n

7 if i ≡ 0 (mod B) then // Early bailout

8 Compute τi // Apply (17)
9 for σ ∈ Σ do

10 if ε̂(σ)× n/i ≥ εmin(σ)− τi then
11 Go to next point // Back to line 2

12 Bailout // Back to Algorithm 2, line 5

13 return {ε̂(σ) : σ ∈ Σ}

4.4 Number of Sampling Iterations

Ignoring first the bailout strategy, the number of iterations of LRTSAC at a given σ, T (σ), follows
the classic RANSAC iteration formula (4), but using εmin(σ), the minimal inlier ratio to improve
the current likelihood L with the threshold σ, instead of ε̂(σ), the current observed inlier ratio at σ.

9
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Indeed, we have εmin(σ) ≥ ε̂(σ) with equality if σ is the current σ∗. Therefore, applying (4) and the
decreasing trend of T , we get T (εmin(σ)) ≤ T (ε̂(σ)) and we define

T (σ) =

⌈
log(1− pII)

log(1− εmin(σ)s)

⌉
, (18)

with pII the confidence after T (σ) iterations of not committing type II error at noise level σ.
We can now introduce T , the number of iterations of LRTSAC, that ensures that the probability

of drawing at least one good model is larger than pII . To ensure that, T just needs to be larger
than T (σmin) as T (σ) is monotonically decreasing with respect to σ, since εmin(σ) is monotonically
increasing with respect to σ.

When the bailout strategy is used, a model estimated from an uncontaminated sample still has
a probability 1 − p′II of being discarded. Therefore, the probability of drawing an uncontaminated
model and escaping the bailout filter becomes p′II εmin(σ)s, and this modifies the formula for T (σ)

T (σ) =

⌈
log(1− pII)

log(1− p′II εmin(σ)s)

⌉
. (19)

The update of T is simply applying (19) to σmin, see Algorithm 5.

Algorithm 5: Update number of iterations T while controlling type II error

parameters: Confidence probabilities against type II error: pII , confidence that no valid
model was missed because of lack of iterations; p′II , probability of a valid model
avoiding premature bailout

input : Σ, set of possible values for threshold σ
output : T , number of iterations

1 return T (σmin) // Apply (19)

4.5 Implementation and Hyperparameters Values

This section describes the implementation details and the choices made for the hyperparameters of
LRTSAC.

4.5.1 Hyperparameters

The threshold set Σ is defined as follows

Σ =

{
{σ = σmin ∗ σkstep; ∀k ∈ N, σ ≤ σmax} if σmin ≤ σmax;

{σmax} otherwise.
(20)

with σmin = 0.25 pixel, σstep =
√

2 and σmax is user defined (with a default value of 16). This
implementation gives a good spread of inlier/outlier thresholds with a moderate amount of thresholds
(at most 13).

The relative area of the inlier region pσ depends on the model space. For a 1D error (point
to line distance), like for fundamental or essential matrix estimation, pσ = 2σDiam

Area
where Diam is

the diameter and Area the area of the image. For a 2D error (point to point distance), like for
homography estimation, pσ = πσ2

Area
. Such upper bounds are the same as in the method AC-RANSAC.

The parameter B of the early bailout strategy is set to balance bailout evaluation time and error
computation time. We use the value proposed in [7], that is B = 100: for every new batch of 100
data points, the bailout test is performed when counting inliers.

10
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orsa::ModelEstimator

orsa::FundamentalModel orsa::HomographyModel orsa::LineModel

orsa::EssentialModel

orsa::RansacAlgorithm

orsa::LRTSac orsa::Orsa orsa::Ransac

Figure 1: Object inheritance in libOrsa. Two abstract base classes ModelEstimator and RansacAlgorithm allow to mix
and match at will.

When using a controlled type I error to verify the quality of the given model as presented in
section 3.2, the parameter c introduced in Equation (10) is extracted from a table given user defined
pI . Because of this procedure, the current implementation only allows pI = 0.90, 0.91 . . . 0.99 (and
default value pI = 0 disabling any control on type I error).

Default values for other parameters are: pII = 0.99 (confidence relatively to the number of itera-
tions) and p′II = 0.95 (confidence relatively to the bailout test). The bisection used in Algorithm 3
stops when the width of the search interval is below 1/n, the granularity of ε. This requires log2 n
iterations, 10 for a typical value of n = 1000 data points.

All RANSAC algorithms presented in the experiments Section 5 used the same data, same solvers
to estimate models from minimal samples and same refinement steps, only the RANSAC algorithm
varied.

The maximum iteration limit T can be tuned by an option maxIter when calling the code, but
fixed at the default 50 000 in the demonstration system.

4.5.2 Code

The C++ code of LRTSAC is integrated into the libOrsa library of [11] and [12]. A modular
inheritance structure is used to easily integrate different model classes and RANSAC type algorithms,
see Figure 1. On the one hand, the abstract class ModelEstimator keeps the data and has virtual
functions to fit points to subsets of the data and compute errors. On the other hand, the class
RansacAlgorithm has a virtual method run implemented in the subclasses LRTSac, Orsa (a.k.a. AC-
RANSAC) and regular Ransac. The function returns the estimated model parameters and selected
σ (the same as input for RANSAC), along with some run statistics. Such a decorrelation between
models and algorithms allows to mix at will and extend to different models or algorithms.

4.5.3 Demo

The demo proposes only homography and fundamental matrix estimation, since essential matrix
requires the input of calibration matrices, which are not readily available for most image pairs.
The usual RANSAC, AC-RANSAC and LRTSAC are proposed. The latter proposes three tunable
confidence probabilities pI , pII and p′II . The result is the mosaic for homography and points and
parts of their epipolar line for fundamental matrix.

11
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5 Experimental Evaluation of LRTSAC

5.1 The Test Data

The LRTSAC algorithm is tested by evaluating the estimated threshold σ∗ compared to the true
noise level σnoise of semi-synthetic data and by qualitative observation of real images. All options
proposed in Algorithms 3, 4 and 5 are evaluated in runtime efficiency on the USAC dataset [14] to
ensure they do reduce runtime.

The early bailout strategy described in Algorithm 4 is also evaluated in terms of precision and
recall on semi-synthetic data to determine its impact on the classification power of LRTSAC.

The USAC dataset consists of:

1. 10 image pairs for homography registration, which we name H1 to H10;

2. 11 image pairs for fundamental matrix, we name them F1 to F11;

3. 6 images pairs for essential matrix (hence the camera calibration parameters are given), named
E1 to E6;

4. For each image pair, a set of pair correspondences, ranging from several hundred to a few
thousand, without any ground truth about their status of inlier or outlier.

The semi-synthetic data used to measure precision and recall is based on the images and the input
correspondences of the USAC [14] dataset. As no ground truth is associated, we build an artificial
but realistic one [16]: from the correspondences, a model is estimated with AC-RANSAC [11, 12] and
used to create realistic noisy ground truth inliers with a noise level σnoise. Before the noise addition,
perfect matches are produced by projection on the evaluated model. Finally, outliers are generated
to control the inlier ratio. They follow the background model of a uniform distribution, that is, each
point of a pair is drawn randomly in a uniform distribution in its respective image.

For all the experiments, the parameters and hyperparameters are set to their default value as
presented in Section 4.5.

5.2 LRTSAC Performance

RANSAC algorithms are used to filter outliers and estimate a model on inliers only. As Figure 2
illustrates, using the estimated model to compare quality of the algorithm is not pertinent: Figure 2
presents the mosaic reconstruction of a homography on a difficult semi-artificial dataset. Using the
protocol described in Section 5.1, from pair H1 of USAC [14], an artificial dataset is generated
with an inlier noise of σnoise = 3 pixels and an outlier ratio of 0.9. These parameters produce a
very complex dataset to handle but a model can still be estimated and so, it is difficult to visually
assess which algorithm did best to estimate an inlier set and a good model. This is why Figures 3
and 4 present the inliers matches on the images. As the inlier set is for some usage as useful as the
estimated model itself, this allows a better analysis of the classification power of the algorithm in
terms of inlier/outlier.

Figure 3 shows the results of LRTSAC and RANSAC with user-threshold σ = 3 on an artificial
dataset created from H3 with σnoise = 2 pixels and outlier ratio 0.7. On this dataset, RANSAC
performs relatively well, recovering 23% of the inliers and producing a satisfactory reconstruction
and LRTSAC recovers 54% of the inliers with a good reconstruction as well. Here both algorithms
perform well, in similar runtimes (around 0.55s each).

Figure 4 shows the results of LRTSAC and RANSAC with user-threshold σ = 3 on an artificial
dataset created from E4 with σnoise = 1 pixel and outlier ratio 0.5. On this dataset, RANSAC

12



Automatic RANSAC by Likelihood Maximization

Figure 2: Mosaic reconstruction of dataset H1 with σnoise = 3 and an outlier ratio of 0.9. This setting represents a difficult
dataset for RANSAC. From left to right, the results of LRTSAC, RANSAC with σ = 3 and RANSAC with σ = 9 are
presented.

Figure 3: Results on dataset H3 with σnoise = 2 and an outlier ratio of 0.7. Top line: Mosaic reconstruction, bottom line:
inliers matches representation. The left column is LRTSAC, the right one is RANSAC with σ = 3. In this setup LRTSAC
obtains a precision of 0.54 and a recall of 0.54 while RANSAC obtains a precision of 0.55 and a recall of 0.23. For this
dataset, the plane of the homography is the facade of the middle building, this is why the out of plane tower is mismatched.

performs badly, recovering only 2% of the inliers while LRTSAC recovers 47% of the inliers. This
example shows the adaptability of LRTSAC which, without any change in parameter settings, can
still recover a high percentage of inliers when RANSAC fails to do so.

Table 1 shows the evolution of the estimated parameters of LRTSAC over some datasets from
USAC dataset [14]: H1, H2, F7 and E1. Each line corresponds to a new set of best-so-far parameters
and at what iteration it was found. As the algorithm that estimates models from a minimal set of
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Figure 4: Results on dataset E4 with σnoise = 1 and an outlier ratio of 0.5. Top: distance to epipolar lines of inliers (yellow
lines with green dots) and outliers (red dots). Bottom: inlier matches representation. The left column is LRTSAC, the right
one is RANSAC with σ = 3. In this setup LRTSAC obtains a precision of 0.50 and a recall of 0.47 while RANSAC obtains
a precision of 0.34 and a recall of 0.02.

points can return multiple models, more than one best-so-far model can be found at the same
iteration. Note also that the first valid model found does not necessarily happen at the first iteration
as the early bailout strategy can refuse it before evaluating its likelihood. For all runs, the algorithm
was set with default parameters and was allowed at most 100 000 iterations, so that the iteration
cutoff happened because of the required number of sampling iterations T and not the allocated
resource limit. First, we can note that the algorithm can have different orders of magnitudes for T
and L∗—the likelihood of the best-so-far model—across different runs. However, the end values of
L∗ are always way higher than the values of the parameter Lmin introduced in Section 3.2 which is
around 0.001. That is why this implementation makes the type I error of the ratio test an optional
parameter, as it has rarely an impact over the end result. We can also notice that the number of
elements removed from Σ by Algorithm 3 is quite small: in this setting, the initial set Σ contains
13 different values for σ. This explains the results of Figures 7, 8 and 9 when comparing LRTSAC
without any option and LRTSAC with only Algorithm 3. Still, as this procedure is necessary to
compute the minimum inlier ratio to increase the likelihood, εmin(σ), we cannot remove it.

5.3 Estimated Threshold σ∗ Compared to True Noise Level σnoise

Figure 5 presents for different datasets and different settings the evolution of the ratio of the estimated
inlier/outlier threshold σ∗ over the true noise level σnoise, as a function of the latter. Results are
averaged for each noise level over 25 runs of LRTSAC.

For all tested configurations this ratio is high for small noise levels and stabilizes between 2 and 4 as
soon as the noise level reaches 1 pixel. This means the estimated noise level is between 2 and 4 times
higher than the true noise level. A numerical analysis of the behavior of the likelihood can show
that increasing σ will always increase L(ε̂(σ), σ) if at least about 100 new inliers are gained. Usually,
when a good model is found an increase of σ yields between 200 and 400 new inliers. Line 7 of
Algorithm 2 thus yields higher thresholds σ̂ than the true noise level.

It may be regarded as a disappointment that the estimated σ∗ is always higher than the true one.
This is still to be expected, since the model is evaluated from noisy inliers. However, as presented in
Section 5.2 this does not impact the quality of the result.
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Image pair H1 Image pair F7

Iteration T L∗ σ∗ |Σ| Iteration T L∗ σ∗ |Σ|
12 5032805 0.2998 11.3137 12 13 2108656 0.6433 11.3137 12
14 73941 0.9520 11.3137 12 57 262098 0.9318 4 12
19 346 4.1072 5.65685 12 14552 32520 1.3471 1.41421 12
40 236 4.5597 4 12

Image pair H2 Image pair E1

Iteration T L∗ σ∗ |Σ| Iteration T L∗ σ∗ |Σ|
4 362040781 0.0702 11.3137 12 0 2982 1.4892 11.3137 12
90 321678580 0.0725 11.3137 12 1 343 2.4975 4 12
123 6592569 0.2113 11.3137 12 1 56 3.8547 5.65685 11
128 1301458 0.3294 11.3137 12 2 43 4.0902 2.82843 11
232 9311 1.2660 1.41421 12 6 31 4.4084 2 10

16 31 4.4373 2 10

Table 1: Evolution of the number of iterations T , the best-so-far likelihood L∗ and threshold σ∗ and the size of the set of
thresholds Σ during a run of LRTSAC over different image pairs from the USAC dataset. The iteration column indicates
at which sampling iteration the best-so-far model was found. As the algorithm that estimates models from a sample can
return multiple models per sample, two good models can be found at the same iteration.
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Figure 5: Ratio between estimated inlier/outlier threshold σ∗ and true noise level σnoise with respect to σnoise. These results
are measured on semi-artificial data where noise level and outlier ratio is controlled. Images numbers follow the USAC
dataset [14] numbering and hom corresponds to homography estimation, fun to fundamental matrix estimation and ess to
essential matrix estimation.
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5.4 Runtime Impact of the Different Options

Figure 6 presents the runtime of LRTSAC with and without bailout and the number of verifications
per model (VPM) which is the mean number of times the residual function e(X, θ) is called. Both
metrics are presented as ratios: for the runtime it is the ratio of LRTSAC runtime with early bailout
and without bailout, and the VPM is divided by the total number of points of the dataset—which
corresponds to the ratio of the VPM with early bailout and without bailout. Results are averaged
over 100 runs for each dataset.

The runtime ratio is not always below 1 so the early bailout does not always improve the runtime
efficiency of LRTSAC. However, the increase in runtime stays contained below 50% and the early
bailout often reduces runtime. The VPM ratio is usually correlated to the runtime ratio but some
particular cases appear where VPM ratio is low whereas runtime ratio is high. They could mean that
the early bailout strategy often refuses good models for those datasets and thus increases runtime.
As the early bailout strategy can impact the number of iterations and the rest of the execution, even
in standard cases, it is expected that the relationship between runtime and VPM is not linear. We
can thus conclude that the early bailout strategy does not impact negatively the runtime in most
cases and when it does have a negative impact, it is small whereas it can cut runtime by 80%.

Figure 7, 8 and 9 present the runtime of LRTSAC with different options enabled as a ratio of
the runtime of LRTSAC without any options. In each case, LRTSAC was not allowed to go over
20000 iterations. This limit is set above the usual end value of the computed number of sampling
iterations T but some runs might have been stopped by this value. As can be expected, the biggest
runtime impact comes from Algorithm 5 which stops the computation when it has confidence that at
least one uncontaminated sample was drawn—see blue versus orange bars or green versus red bars.
As discussed previously, the early bailout strategy has an overall positive impact on runtime, rarely
increasing it and being able to reduce it down to 20%—see blue versus green bars or orange versus
red bars. Finally, the impact of the elimination of elements of the set of thresholds Σ is minimal
but as this is more a side benefit from the computation of the minimum inlier ratio to increase the
likelihood, εmin(σ) by Algorithm 3 it is to be expected.

Now that we have observed that the desired outcome of the early bailout strategy is happening,
that is, a general reduction in runtime, we need to make sure it does not impact too much the quality
of the results.

5.5 Quality Impact of the Early Bailout Strategy

Figure 10 presents the ratio of the precision of LRTSAC with early bailout and of LRTSAC without
bailout. Figure 11 presents the ratio of the recall of LRTSAC with early bailout and of LRTSAC
without bailout. Both graphs are presented as boxplots with first and third quartiles defining the
box and the median for the middle line. The whiskers are set at 1.5 times the interquartile range.
The results shown are averaged over different noise levels σnoise—from 0 to 3 pixels by 0.1 pixel
increments, different outlier ratios—from 0 to 90% by increments of 10%, and 25 different runs.

Both metrics present a median slightly lower than 1 with a spread on a very small area around this
value, sometimes above 1. This means the early bailout strategy is not consistently worsening the
quality of the result, and not by a lot when it does, thus it is a valid improvement of the algorithm.
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Figure 6: Ratios of LRTSAC Runtime and Verification Per Model (VPM) with the early bailout strategy and without the
bailout. Results are presented across all available USAC [14] datasets where H stands for homography estimation, F for
fundamental matrix estimation and E for essential matrix estimation with same numbering as USAC.
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Runtime divided by runtime without any options for USAC homography image pairs.

LRT with bailout, with update of T, with reduce Sigma
LRT with bailout, without update of T, with reduce Sigma
LRT without bailout, with update of T, with reduce Sigma
LRT without bailout, without update of T, with reduce Sigma
LRT without bailout, without update of T, without reduce Sigma

Figure 7: Ratios of LRTSAC Runtime with different options enabled over LRTSAC runtime without any options. Results
are presented across all available USAC [14] datasets for homography estimation. The ratio is presented in logscale.
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Runtime divided by runtime without any options for USAC fundamental matrix image pairs.

LRT with bailout, with update of T, with reduce Sigma
LRT with bailout, without update of T, with reduce Sigma
LRT without bailout, with update of T, with reduce Sigma
LRT without bailout, without update of T, with reduce Sigma
LRT without bailout, without update of T, without reduce Sigma

Figure 8: Ratios of LRTSAC Runtime with different options enabled over LRTSAC runtime without any options. Results
are presented across all available USAC [14] datasets for fundamental matrix estimation. The ratio is presented in logscale.
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Figure 9: Ratios of LRTSAC Runtime with different options enabled over LRTSAC runtime without any options. Results
are presented across all available USAC [14] datasets for essential matrix estimation. The ratio is presented in logscale.
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Figure 10: Boxplot of the ratio of the precision of LRTSAC with the early bailout strategy and without the bailout. Results
are presented across all available USAC [14] datasets and over a high range of semi-artificial dataset settings. H stands for
homography estimation, F for fundamental matrix estimation and E for essential matrix estimation with same numbering as
USAC.
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Figure 11: Boxplot of the ratio of the recall of LRTSAC with the early bailout strategy and without the bailout. Results
are presented across all available USAC [14] datasets and over a high range of semi-artificial dataset settings. H stands for
homography estimation, F for fundamental matrix estimation and E for essential matrix estimation with same numbering as
USAC. Dataset E4 and E4 are cut as they spread much more than others and made them hard to read. For E4 the quartiles
are [0.89, 1.15] and the whiskers are [0.51, 1.56]. For E5 the quartiles are [0.94, 1.07] and the whiskers are [0.78, 1.25].
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6 Conclusion

We presented a method using the likelihood as the criterion to select automatically the inlier thresh-
old with the parameters of the model. Modulo this change, the algorithm is almost identical to the
classical RANSAC. Two optional features accelerating the algorithm, early bailout in model verifi-
cation and dynamic adjustment of the number of iterations, require adaptations to face the presence
of multiple possible thresholds but are shown to be efficient. Compared to AC-RANSAC, the other
automatic RANSAC algorithm, LRTSAC is faster because of these options and the limited number
of tested thresholds. However, they may be adapted to the criterion of AC-RANSAC without too
much difficulty. Each algorithm has its own criterion to decide if an estimated model is statistically
significant. In the case of AC-RANSAC, the number of false alarms (expected number of type I
errors) must be below 1, whereas in LRTSAC the likelihood ratio must reach a user-defined confi-
dence probability. The normal behavior of AC-RANSAC is to reserve remaining iterations to models
estimated by samples among the inliers of the valid model, which allows refining it. LRTSAC could
adopt the same strategy and may present better results with such a modification.

It has been shown in a study [13] that replacing bona fide RANSAC by AC-RANSAC in a standard
multi-view stereo pipeline yields improved accuracy, whatever the (fixed) RANSAC threshold used.
It remains to be checked that such behavior is reproduced with LRTSAC. This requires appending
the case of pose estimation from 2D-3D correspondences, the Perspective from n Points (PnP)
problem, to the models estimated by LRTSAC. Finally, another RANSAC method without a fixed
threshold, the marginalized sample consensus, MAGSAC [1] and its extension MAGSAC++ [2],
could be considered as automatic as they do not require a fixed threshold. A comparison to this
algorithm is available in [16].

A Optimal Mixture Parameter

We give details about the computation of the optimal mixture parameter ρ̂. From (6), the case k = 0
can be easily treated as L is a decreasing function of ρ so the maximum is at ρ̂ = 0 and (7) stands,
since ε = 0 so that the right hand of the maximum is negative. If k = n, L is an increasing function
of ρ and the maximum is at ρ̂ = 1, which coincides with the right hand of the maximum in (7). If
0 < k < n, then

|P |n

n

∂L
∂ρ

= (1− ρ+
ρ

pσ
)k−1(1− ρ)n−k−1 (p′σε(1− ρ)− (1− ε)(1 + p′σρ)) , (21)

with p′ = 1/pσ − 1 ≥ 0. The sign is given by the rightmost factor, which can be simplified as the
affine function of ρ

−p′σρ+
ε− pσ
pσ

. (22)

This term is positive when ρ ≤ ε−pσ
1−pσ and negative after, hence (7). The maximum comes from the

fact that ρ ≥ 0.

B Behavior of the Log-Likelihood

We study the behavior of the bivariate function L of (8). Considering ε as a continuous variable, we
get

∂L

∂ε
= log

ε

pσ

1− pσ
1− ε

, (23)
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and both fractions inside the logarithm are greater than 1 when 1 > ε ≥ pσ. Function L is thus an
increasing function of ε: the likelihood increases with the number of inliers, as expected.

Since pσ is increasing with σ, let us study the function

f(x) = −ε log(x)− (1− ε) log(1− x). (24)

Its derivative is

f ′(x) = − ε
x

+
1− ε
1− x

= − ε− x
x(1− x)

≤ 0 (25)

when 0 < x ≤ ε < 1. Since

L(ε, σ) = f(pσ)− f(ε), (26)

we conclude that L is a decreasing function of σ. We see that L increases with ε but decreases with
σ. The maximum achieves a balance between a higher number of inliers (that increases with σ) and
a lower threshold σ.

Image Credits

Images from the USAC dataset [14]2:

(H1) (H3) (E4)
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