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Abstract 

We propose a new non-iterative numerical algorithm allowing computation of all 
univolatility curves in homogeneous ternary mixtures independently of the presence of 
the azeotropes. The key point is the concept of generalized univolatility curves in the 
3D state space, which allows the main computational part to be reduced to a simple 
integration of a system of ordinary differential equations.  

Keywords: univolatility curves, differential continuation method, azeotropes 
bifurcation, double azeotropy 

1. Introduction

Accurate numerical computation is essential to synthesis and design of distillation
processes. The change of the volatility order between two components i and j in a 
ternary diagram can be detected by tracing the associated univolatility curve (or α-
curve) ��,�, i.e., the set of points of equality between the distribution coefficients �� and
�� (Kiva et al., 2003). Univolatility curves divide composition space into different K-
order regions, even for zeotropic mixtures. Their knowledge is essential to design 
extractive distillation process (Gerbaud and Rodriguez-Donis, 2014). 

Though the computation of univolatility curves starting at azeotropic points is 
straightforward, the detection of univolatility curves not associated with azeotropes is a 
more complicated and time-consuming process. A ternary diagram may contain up to 3 
families of α-curves defined by their respective index. Zhvanetskii et al. (1988), 
Reshetov et al., (1990) and Reshetov and Kravchenko (2010) formulated the main 
principles of classification of the univolatility curves. The proposed nomenclature 
distinguishes the univolatility curves of type ��,����� connecting two points on the same
binary side of the composition triangle from the curves of type ��,�				 connecting two
different binary sides of the composition triangle. Transitions between types ��,����� and ��,�				
can occur as univolatility curves depend on pressure and temperature of VLE. 

In this paper we present a new numerical algorithm for computing all univolatility 
curves in a ternary system independently of the presence of azeotropes. The method is 
based on the concept of a generalized univolatility curve in the 3D x – T state space, 
which can be computed by integrating a system of ordinary differential equations. The 
efficiency of the proposed algorithm is illustrated through the study of 
hexafluorobenzene - methyl propionate - benzene mixture exhibiting bi-binary and bi-
ternary azeotropy at 1 atm. We show the transformation of the ternary diagram with the 



variation of pressure, observing the formation of tangential azeotropy, bi-ternary 
azeotropy, saddle-node azeotropes, as well as singular configuration of univolatility 
curves not yet described in the literature. 

2. Geometry of univolatility curves

2.1 Definitions and notations 

Consider an open evaporation of a homogeneous ternary mixture kept at 
thermodynamic equilibrium at constant pressure. Let ��	, 
�	,		� = 1,2,3 and T denote the
mole fractions in the liquid and in the vapor phases and the temperature of the system. 
In the absence of chemical reactions a two-phase ternary mixture has three independent 
state variables. By selecting ��, �� and �, the complete state space of the system reads
� = {��, ��:			� ∈ �����	, ��� !, � ∈ Ω, � = 1,2}, where ���� 	, ��� 	 are the minimum
and maximum boiling temperatures of the mixture and Ω = {� = ���, ��� ∶ 	��	 ∈ �0,1!,
� = 1,2} is the composition space. The distribution coefficients Ki describe the vapor-
liquid equilibrium (VLE) in terms of molar concentrations of the components in the 
vapor and liquid phases: 
����, ��, �� = �����, ��, ����	, � = 1,2,3. The following
relation allows computing the temperature of the system: 

Φ���, ��, �� = ∑ 
��	��, ��, ��(
�)� − 1 = 0. (1)

The ratio ��� = ��/�� is the relative volatility of component i with respect to component
j. If ��� > 1, i is more volatile than j and vice versa. The sets of points in Ω satisfying
��� = 1 are called the univolatility curve ��,� (or �-curve).

A ternary diagram may contain more than one univolatility curve of index "�, .". Not
all these curves are related to azeotropes. However, every azeotrope belongs to at least 
one univolatility curve. An intersection of two univolatility curves at some point implies 
that this point is either a tangential binary azeotrope or a ternary azeotrope. In both 
cases the third univolatility curve of complementary type passes through this point. A 
detailed analysis of the relation between the topology of	�-curves and the structure of
the underlying residue curves maps (RCM) can be found in Kiva et al., 2003. 

2.2. The three dimensional geometry of univolatility curves 

Geometrically, Eq. (1) defines a hypersurface in the state space M, referred to below 
as the boiling temperature surface W. Along with the boiling temperature surface, M 
contains three univolatility  hypersurfaces defined by 

Ψ�	���, �� = ����, �� − ����, �� = 0,			�, . = 1,2,3. (2) 

Their intersections with the surface W, are smooth curves in M called the generalized 
univolatility curves θ��. The �-curves are merely projections of the generalized
univolatility curves on the ���, ���-plane.

Fig.1 illustrates these geometrical concepts for the case of a zeotropic mixture 
acetone (��) – ethyl acetate (��) – benzene. Its ternary diagram is characterized by a
unique univolatility curve, ��,(, between ethyl acetate and benzene. This curve is a
projection on Ω of the generalized univolatility curve 1�( formed by the intersection of
the surface W with the hypersurface Ψ�(��, �� = 0.



Figure 1. The univolatility curve ��,(, the boiling temperature surface W and the
univolatility hypersurface Ψ�( = 0 for acetone (��) – ethyl acetate (��) – benzene

Consider a generalized univolatility curve 	1���2� = ���2�, ��2�� in M, solution to

the pair of algebraic equations: Φ��, �� = 0, Ψ����, �� = 0. Let 3�� = �3��� , 3��� , 3(���
denote a tangent vector to θ�� at some point. By construction, 3�� is orthogonal both to
the normal vector 45 = ∇Φ to the surface W and to the normal 4�� = ∇Ψ�� to the
univolatility hypersurface, as shown in Fig.1. Hence 3�� 	= 45 × 4��, and:

Theorem. The generalized univolatility curve 1���2� projecting on the univolatility
curve ��� = 1 is an integral curve of the vector field 3�� = ∇Φ × ∇Ψ��, i.e., it is a
solution to the following system of ordinary differential equations in M: 

��8 = 3������, ��, ��, ��8 = 3������, ��, ��,					�8 = 3(�����, ��, �� (3) 

Remark 1. The generalized univolatility curve 1�� has isolated singularities at the
points of common tangency between the surface W and the associated univolatility 
hyper-surface. In this case 3��� = 3��� = 3(��, i.e., the curve 1�� degenerates into a point.

 A more detailed analysis (Shcherbakova et al. 2017) shows that a point is singular 
for the univolatility curves if and only if it is singular for the corresponding �-curve in
Ω. Such isolated singular points can be of elliptic or hyperbolic type. In the latter the
resulting univolatility curve is formed by four branches meeting at the singular point. It 
is important to stress that singular points of univolatility curves are not necessarily 
related to the singular points of the underlying RCM. Section 3 and Figure 2 provide 
examples of these highly non-generic configurations. 

Remark 2. The same geometrical argument can be directly applied to the 
computation of the unidistribution curves by setting Ψ���, ��, �� = ����, ��, �� − 1,
where K is any of the distribution coefficients. 



2.3.3 Numerical computation of the univolatility curves 

Eqs. (3) provide an efficient tool for numerical computation of the univolatility 
curves using the standard Runge-Kutta schemes for the ODE integration. Initial points 
for such integration can be found following the idea of Kiva et al. (2003). They showed 
that the existence of the univolatility curves can be detected by analyzing the behavior 
of the binary distribution coefficients and distribution coefficient at infinite dilution 
along the binary sides of 9 (for more details see Shcherbakova et al., 2017).

For example, consider a curve ��,� starting from the 13 binary side, that is, from the
�� −axis. The starting point of this curve is a projection of a point ���,��: , 0, ��,��: � in state
space M. The whole curve ��,� can be computed as the projection on 9 of the solution of
the following initial value problem: 

;��
;< = ;�� 	3������, ��, ��

‖3�����, ��, ��‖
,					;��;< = ;�� 	3������, ��, ��

‖3�����, ��, ��‖
,				;�;< =

;��	3(�����, ��, ��
‖3�����, ��, ��‖

,
 (4) 

���0� = ��,��: 	, ���0� = 0,						��0� = ��,��: ,    ;�� = <�>? @3���A��,��: , 0, ���: 	BC.  (5) 

Here s is the arc-length of the curve. The normalization of the vector field 3��

avoids the possible stiffness of Eqs. (3). For the curves starting from other binary sides 
of Ω an appropriate modification of initial conditions and direction (eq. (5)) should be
made. The general algorithm can be sketched: 

1. Create a list of all possible starting points of the univolatility curves on each binary
side of Ω (Kiva et al., 2003).

2. Take a starting point from the list created in point 1 and solve the problem of type
(4), (5) using any standard ODE solver. Continue numerical integration until the
border of Ω is attained. Then both terminal points of the computed curve should be
excluded from the list of starting points.

3. Go back to point 2 until the list of starting points is exhausted.

This algorithm is implemented in Mathematica 9. It uses a standard solver for a pair
of non-linear algebraic equations in 2D to find the starting points of integration, and a 
standard ODE solver in 3D for the rest of the computation. In particular, no specific 
iterative procedure is needed to compute the whole curve once the starting point is 
detected. Any implementation using one of the standard algorithmic languages is 
possible, though the use of a compatible library of automatic differentiation is suggested 
to in order to facilitate the writing of Eqs.(4) in explicit form.  

3. Case study: hexafluorobenzene – methyl propionate – benzene.

We illustrate the efficiency of the proposed algorithm in Fig. 2, which shows the
transformation of the topology of �-curves under pressure variation for
hexafluorobenzene (��) – methyl propionate (��) – benzene. The VLE parameters are
computed according to Wilson model using the data from Myagkova (2007), the DIPPR 
equation and database were used for the vapor pressure computation. 

At 1 atm (Fig. 2c) the binary mixture benzene - hexafluorobenzene exhibits two 
azeotropes D�(� , D�(E . Each of these gives rise to a univolatility curve of ��,(					 type. The
binary azeotrope D�(	(benzene-methyl propionate) is the origin of a ��,(					 curve, the other
curve of the same index, of  ��,(����� type, links two non-azeotropic points on the 12-side.



Figure 2. RCM and univolatility curves of hexafluorobenzene (��) - methyl propionate
(��) – benzene

The binary azeotrope D�� (hexafluorobenzene – methyl propionate) gives rise to the
unique ��,�					 type curve. Such a complex structure of �-curves reflects a peculiar
topology of the underlying RCM characterized by two ternary azeotropes: a saddle 



(D��(� ) and a stable node (D��(E ). Lowering the pressure makes D��(E  and D�� to merge
into a tangential binary azeotrope D��∗  at P≈0.85 atm (Fig. 2b). Three different
univolatility curves meet at this point (the curve ��,(����� follows the 12 edge). The
tangential azeotrope D��∗  disappears, as well as the curve ��,(�����, at further pressure
reduction (Fig. 2a).  Other interesting phenomena occur at higher pressure. Indeed, 
raising the pressure forces the two curves ��,(					 get closer, and at P ≈ 1.55 atm (Fig. 2d)
they meet at a singular point, forming a cross-shape configuration as described in 
Remark 1. With the infinitesimal pressure increase, this singular configuration splits 
into a ��,(					 curve connected to D�( and a new ��,(����� curve linking two non-azeotropic
points on the 13-side. Meanwhile the two branches of the ��,( curve get closer as well
as two ternary azeotropes. At P ≈ 4.39 atm (Fig. 2f) we again observe a particular 
configuration, this time with the ��,( curve. This configuration splits into a ��,(					 and ��,(�����
branch, the latter connecting two binary azeotropes, D�(�  and D�(E . A small pressure
increase to P ≈ 4.40 atm (Fig. 2g) results in the fusion of two ternary azeotropes into a 
unique singular azeotrope D��(∗  of saddle-node type, which disappears with the further
pressure increase (Fig. 2h). 

4. Conclusions

The topology of RCMs and associated univolatility curves is non-trivial even in the
case of zeotropic ternary mixtures. Our analysis shows that 2D representation in the 
composition space is not always sufficient to describe the true nature of the univolatility 
curves. A new method for the detection of univolatility curves is proposed in this paper. 
It uses the concept of a generalized univolatility curve in the 3D state space. The 
computational efficiency of the algorithm is illustrated by tracing the bifurcation in the 
univolatility curves topology with pressure variation in the case of hexafluorobenzene – 
methyl propionate – benzene. The method allows computing detailed phenomena like 
the formation of tangential azeotrope, bi-ternary azeotropy, saddle-node azeotropes, as 
well as singular configuration of univolatility curves not yet described in the literature. 
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