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Abstract11

We study in this paper the Doubly Partially Ordered Pattern Matching (or DPOP12

Matching) problem, a natural extension of the Permutation Pattern Matching problem.13

Permutation Pattern Matching takes as input two permutations σ and π, and asks whether14

there exists an occurrence of σ in π; whereas DPOP Matching takes two partial orders Pv and Pp15

defined on the same set X and a permutation π, and asks whether there exist |X| elements in π whose16

values (resp., positions) are in accordance with Pv (resp., Pp). Posets Pv and Pp aim at relaxing17

the conditions formerly imposed by the permutation σ, since σ yields a total order on both positions18

and values. Our problem being NP-hard in general (as Permutation Pattern Matching is), we19

consider restrictions on several parameters/properties of the input, e.g., bounding the size of the20

pattern, assuming symmetry of the posets (i.e., Pv and Pp are identical), assuming that one partial21

order is a total (resp., weak) order, bounding the length of the longest chain/anti-chain in the posets,22

or forbidding specific patterns in π. For each such restriction, we provide results which together give23

a(n almost) complete landscape for the algorithmic complexity of the problem.24
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Keywords and phrases Partial orders, Permutations, Pattern Matching, Algorithmic Complexity,26

Parameterized Complexity27

1 Preamble28

Let us play the following little puzzle game. Among the selection of fifteen cities of the Czech29

Republic depicted in Figure 1 together with their geographic coordinates, find (if they exist)30

five cities, say A, B, C, D and E, such that:31

A and C are west of D and north of B,32

E is east of B and south of A,33

D is west of B and north of A and C.34

It is assumed that no two cities have the same longitude or latitude. Notice that the game35

does not provide complete information as, for example, no information is provided about the36

relative positioning of A and C (and silence is tantamount to consent). We may assume that37

the information is minimal: requiring C is west of B is unnecessary since C is west of D38

and D is west of B. One solution is A = Praha, B = Brno, C = Plzeň, D = Liberec and39

E = Olomouc. Note that the solution is not unique, as A = Plzeň, B = Jindřichův Hradec,40

C = Cheb, D = Ústí nad Labem and E = Brno is another solution.41

We show that this puzzle game can be modeled as a permutation pattern matching42

problem for doubly partially ordered patterns. Let us first associate a permutation π ∈ S(15)43

with the problem (see Figure 2). We sort the fifteen cities of the Czech Republic depicted in44

Figure 1 both by increasing longitude (E) and by increasing latitude (N), so that π(i) = j if45
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Figure 1 A Czech Republic map showing 15 of its cities. Their names and GPS coordinates, in
increasing order of their longitudes, are: Cheb (50°4′N 12°22′E), Plzeň (49°44′N 13°22′E), Ústí nad
Labem (50°39′N 14°1′E), Praha (50°5′N 14°25′E), České Budějovice (48°58′N 14°28′E), Jindřichův
Hradec (49°9′N 15°0′E), Liberec (50°46′N 15°3′E), Pardubice (50°2′N 15°46′E), Hradec Králové
(50°12′N 15°49′E), Brno (49°11′N 16°36′E), Olomouc (49°35′N 17°15′E), Zlín (49°13′N 17°40′),
Opava (49°56′N 17°54′E), Ostrava (49°50′N 18°17′E) and Karviná (49°51′N 18°32′E).
© Creative Commons CC0 1.0 Universal Public Domain Dedication.

the i-th city going west to east is also the j-th city going south to north. In our example,46

the “Czech Republic permutation” is π = 11 6 14 12 1 2 15 10 13 3 5 4 9 7 8. For example,47

π(2) = 6 since Plzeň is the second city going west to east, and the sixth city going south to48

north. What is left is to define our pattern P : P is composed of two partially ordered sets on49

the variables {A, B, C, D, E} (see Figure 3): one partially ordered set (denoted Pv for value50

poset in the sequel) describes the south-to-north constraints and another partially ordered51

set (denoted Pp for position poset in the sequel) describes the west-to-east constraints.52

2 Introduction53

We say that a permutation σ occurs in another permutation π (or that π contains σ) if there54

exists a subsequence of elements of π that has the same relative order as σ. Otherwise, we55

say that π avoids σ. For example, π contains the permutation σ = 123 (resp., σ = 321) if56

it has an increasing (resp., a decreasing) subsequence of size 3. Similarly, σ = 4312 occurs57

in π = 6152347, as shown in 6 1 5 2 3 4 7, but the same π = 6152347 avoids σ′ = 2341.58

Deciding whether a permutation σ ∈ S(k) occurs in some permutation π ∈ S(n)59

is NP-complete [7], but is fixed-parameter tractable for the parameter k [15, 16]. Two60

exponential-time algorithms have been recently proposed [5], improving upon [1, 10]. A vast61

literature is devoted to the case where both the pattern σ and the target π are restricted to62

a proper permutation class, e.g., 321-avoiding permutations [17, 2, 20], (213, 231)-avoiding63

permutations [25], (2413, 3142)-avoiding (a.k.a. separable) permutations [18, 24], and (k . . . 1)-64

avoiding permutations [11]. For more background on permutation patterns and pattern65

avoidance, we refer to [6] and [23].66

In the last years, the notion of pattern has been generalized in several ways. A vincular67

pattern is a permutation in which some entries must occur consecutively [4]. Consecutive68

patterns are a special case of vincular patterns in which all entries need to be adjacent [13].69

Bivincular patterns generalize classical patterns even further than vincular patterns by70

requiring that not only positions but also values of elements involved in a matching may71



L. Bulteau, G. Fertin, V. Jugé and S. Vialette 3

Increasing longitudes

In
crea

sin
g
la
titu

d
es

1

C
heb

2

P
lzeň
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Figure 2 Permutation π = 11 6 14 12 1 2 15 10 13 3 5 4 9 7 8 corresponding to the map from
Figure 1. The solution of our puzzle, depicted Figure 1, is also represented.
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π = 11 6 14 12 1 2 15 10 13 3 5 4 9 7 8

. C . A . . D . . B E . . . .

A C D . . B . . . E . . . . .

C . . A . . . . D . B E . . .

Figure 3 A dpop P = (Pv, Pp) representing the pattern for our puzzle, together with three
distinct occurrences. Note that partial orders are represented by Hasse diagrams, i.e., a bottom-up
path in Pv (resp., Pp) implies a bottom-up (resp., left-right) relation in the occurrence of P in π.

be forced to be adjacent [8]. Mesh patterns (a further generalization of bivincular patterns)72

impose further restrictions on the relative positions of the entries in an occurrence of a73

pattern [9] and boxed mesh patterns are special cases of mesh patterns [3]. Strongly related74

to our approach are partially ordered patterns that are vincular patterns in which the relative75

order of some elements is not fixed [22]. The best general reference is [23].76

In this paper, we consider a new generalization of classical patterns in which both the77
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relative order and the relative positioning of some elements are not fixed. The idea is to78

allow the possibility for some elements to be incomparable in value (i.e., their relative order79

is unknown) and to go one step further by allowing the possibility for some elements to be80

incomparable in position (i.e., their relative positioning in the occurrence is unknown). Since81

the problem is clearly NP-hard (as it contains Permutation Pattern Matching as a82

sub-problem), our goal is to identify tractable cases when restrictions apply to the pattern83

and/or to the permutation.84

The restrictions we consider here apply to the following parameters of the problem: size85

of the pattern; symmetry (i.e., same partial order in positions and values); one partial order86

is a total (resp., weak) order; size of the longest chain (resp., anti-chain) in the partial orders87

(height and width); forbidden patterns in π. On the positive side, we show that the FPT88

algorithm for Permutation Pattern Matching can be generalized to our setting (with89

the pattern size as parameter). We further give polynomial-time algorithms when the pattern90

is a symmetric disjoint union of a constant number of weak orders. Finally, we also provide91

polynomial-time algorithms when the pattern is symmetric and the permutation belongs92

to some restricted classes, such as (123, 132)-avoiding permutations. We complement these93

positive results with NP- or W[1]-hardness proofs in most of the remaining cases.94

3 Definitions95

Permutations and Patterns96

A permutation σ is said to be contained in (or is a sub-permutation of) another permutation π,97

which we denote by σ ⪯ π, if π has a (not necessarily contiguous) subsequence whose terms98

are order-isomorphic to σ. We also say that π admits an occurrence of the pattern σ. If no99

such subsequence exists, we say that π avoids σ (or is σ-avoiding). A permutation is separable100

if it avoids both 2413 and 3142. Permutation Pattern Matching is the problem of101

deciding whether a permutation is contained into another permutation.102

For any non-negative integer n, we denote by [n] the set {1, 2, . . . , n}. When n ⩾ 1, we also103

note ip(n) = 1 2 . . . n the increasing permutation of length n and dp(n) = n (n − 1) . . . 1 the104

decreasing permutation of length n. Let π ∈ S(n). The reverse (resp., complement) of π is the105

permutation πr = π(n)π(n−1) . . . π(1) (resp., πc = (n−π(1)+1)(n−π(2)+1) . . . (n−π(n)+1)).106

The inverse of π is the permutation π-1 ∈ S(n) defined by π-1(j) = i if and only if π(i) = j.107

Given a permutation π of size m and a permutation σ of size n, the skew sum of π and σ is108

the permutation of size m + n defined by109

(π ⊖ σ)(i) =
{

π(i) + n for 1 ⩽ i ⩽ m,

σ(i − m) for m + 1 ⩽ i ⩽ m + n,
110

and the direct sum of π and σ is the permutation of size m + n defined by111

(π ⊕ σ)(i) =
{

π(i) for 1 ⩽ i ⩽ m,

σ(i − m) + m for m + 1 ⩽ i ⩽ m + n.
112

Orders113

A relation ⩽ is a partial order on a set X if it has:114

reflexivity: for all x ∈ X, x ⩽ x (i.e., every element is related to itself);115

transitivity: for all x, x′, x′′ ∈ X, if x ⩽ x′ and x′ ⩽ x′′, then x ⩽ x′′;116
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antisymmetry: for all x, x′ ∈ X, if x ⩽ x′ and x′ ⩽ x, then x = x′ (i.e., no two distinct117

elements precede each other).118

If ⩽ has the following additional property, we say that it is a weak order on X:119

transitivity of incomparability: for all x, x′, x′′ ∈ X, if x is incomparable with x′ (i.e.,120

neither x ⩽ x′ nor x′ ⩽ x is true) and if x′ is incomparable with x′′, then x is incomparable121

with x′′.122

Two subsets X1, X2 are independent if there is no x1 ∈ X1, x2 ∈ X2 such that x1 ⩽ x2123

or x2 ⩽ x1. We say that a partial order is k-weak if there exists a partition of X into k124

pairwise independent sets X1, . . . , Xk such that, for each i, the restriction of ⩽ to Xi is a125

weak order (in other words, ⩽ is the disjoint union of k weak partial orders).126

Let P = (X,⩽) be a finite partially ordered set. A chain in P is a set of pairwise127

comparable elements (i.e., a totally ordered subset) and an antichain in P is a set of pairwise128

incomparable elements. The partial order height of P, denoted by height(P), is defined as129

the maximum cardinality of a chain in P, and the partial order width of P, denoted by130

width(P), is defined as the maximum cardinality of an antichain in P . By Dilworth Theorem,131

width(P) is also the minimum number of chains in any partition of P into chains. The dual132

of P is the partial order P∂ = (X,⩽∂) defined by letting ⩽∂ be the converse relation of ⩽,133

i.e., x ⩽∂ x′ if and only if x′ ⩽ x. The dual of a partial order is a partial order and the dual134

of the dual of a relation is the original relation. A total order is a partial order in which any135

two elements are comparable, and a set equipped with a total order is a totally ordered set.136

A linear extension of a partial order is a total order that is compatible with the partial order.137

It will be convenient to represent a linear extension of a poset P = (X,⩽) as the mapping138

τP : X → [ |X| ] such that τP(i) < τP(j) if i < j in the linear extension.139

A doubly partially ordered pattern (dpop) P is a pair, denoted by P = (Pv, Pp), of posets140

Pv = (X,⩽v) and Pp = (X,⩽p) defined over the same set X. We call Pv and Pp the value141

poset and the position poset, respectively. A dpop P = (Pv, Pp) is symmetric if Pv = Pp,142

dual if Pv = Pp∂ , and semi-total if one of Pp or Pv is a total order. We let height(P ) and143

width(P ) stand for max{height(Pv), height(Pp)} and max{width(Pv), width(Pp)}, respect-144

ively. Finally, the size of P is defined as the cardinality |X| and is denoted by |P |.145

▶ Definition 1 (DPOP Matching). Given a permutation π ∈ S(n) and a dpop P = (Pv, Pp),146

an occurrence (or mapping) of P in π is an injective function φ : X → [n] such that:147

π ◦ φ is ⩽v-non-decreasing, i.e., for all x, y ∈ X, if x ⩽v y then π(φ(x)) ⩽ π(φ(y)), and148

φ is ⩽p-non-decreasing, i.e., for all x, y ∈ X, if x ⩽p y then φ(x) ⩽ φ(y).149

The DPOP Matching problem consists in deciding whether P occurs in π.150

First Observations151

▶ Observation 2. Permutation Pattern Matching is the special case of DPOP Match-152

ing where both ⩽v and ⩽p are total orders.153

We note that applying a vertical and/or horizontal symmetry on both pattern and154

permutation does not alter the existence of an occurrence.155

▶ Observation 3. Let P = (Pv, Pp) be a dpop and π be a permutation. The following156

statements are equivalent:157

1. (Pv, Pp) occurs in π;158

2. (Pv, (Pp)∂) occurs in πr;159

3. ((Pv)∂ , Pp) occurs in πc;160

4. ((Pv)∂ , (Pp)∂) occurs in πc r;
5. (Pp, Pv) occurs in π-1.
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The following reformulation will prove useful.161

▶ Observation 4. Let P = (Pv, Pp) be a dpop with Pv = (X,⩽v), Pp = (X,⩽p) and k = |X|,162

and let π ∈ S(n) be a permutation. The following statements are equivalent:163

P occurs in π.164

There exists a linear extension τv : X → [k] of Pv and a linear extension τp : X → [k]165

of Pp such that the permutation σ ∈ S(k) defined by σ(i) = τv(τ−1
p (i)) for 1 ⩽ i ⩽ k is166

contained in π.167

The rationale for the reformulation introduced in Observation 4 stems from the following168

corollary that sets the general context.169

▶ Corollary 5 ([16]). DPOP Matching is FPT for the parameter |P |.170

Indeed, it is enough to guess two linear extensions τv : X → [k] of Pv and τp : X → [k]171

of Pp, and to check if the permutation σ ∈ S(k) defined by σ(i) = τv(τ−1
p (i)) for 1 ⩽ i ⩽ k172

is contained in π. There are O(k!2) pairs of such extensions and, for each of them, one can173

check whether σ occurs in π in n 2O(k2 log k) time [16].174

4 Semi-Total Patterns175

In this section we focus on semi-total patterns, i.e., without loss of generality, on the case176

where Pp is a total order (up to symmetry by Observation 3). This case still contains177

Permutation Pattern Matching as a special case, and is thus NP-hard. We focus on178

small-height value partial orders, i.e., on dpops with constant height(Pv), and give an XP179

algorithm for weak orders (Proposition 6) and paraNP-hardness in general (Proposition 7).180

▶ Proposition 6. DPOP Matching is solvable in O
(
nheight(Pv)) time if Pv is a weak order181

and Pp is a total order.182

Proof. Let π ∈ S(n) be a permutation and P = (Pv, Pp) be a dpop on some ground set X,183

where Pv is a weak order and Pp is a total order. Without loss of generality, we assume184

that X is the set [k] and that Pp is the usual order on integers. For every x ∈ X, we abusively185

denote by height(x) the maximum cardinality of a chain with maximum element x in Pv.186

Finally, set ℓ = height(Pv).187

For any two distinct variables x, y ∈ X, we have x <v y if and only if height(x) < height(y).188

Thus, P occurs in π if and only there exists a sequence 0 = a0 < a1 < a2 < . . . < aℓ = n such189

that wσ is a subsequence of wπ, where wπ ∈ [ℓ]n and wσ ∈ [ℓ]k are the two words defined190

by wπ[i] = min{j : aj−1 < π(i) ⩽ aj} and wσ[i] = height(i).191

As for the running time, there exist
(

n−1
ℓ−1

)
distinct sequences (ai)0⩽i⩽ℓ and deciding192

whether wσ occurs in wπ as a subsequence is a linear-time procedure. ◀193

▶ Proposition 7. DPOP Matching is NP-complete even if height(Pv) = 2, Pp is a total194

order and π avoids 1234.195

Proof. We perform a reduction from Vertex Cover, which is known to be NP-complete [21].196

Let G = (V, E) be a graph and let k be a positive integer. We identify V with the set [n].197

We construct a dpop P = (Pv, Pp), where Pv = (X,⩽v) is a height-2 partial order and198

Pp = (X,⩽p) a total order, as follows. We set X = {a1, b1, c1, a2, b2, c2, . . . , an, bn, cn}, so199

that |X| = 3n. Then, we set a1 ⩽p b1 ⩽p c1 ⩽p a2 ⩽p b2 ⩽p c2 ⩽p . . . ⩽p an ⩽p bn ⩽p cn,200

which defines the total order ⩽p. Finally, for each edge {i, j} in E with i < j, we set ai ⩽v bj ;201
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Figure 4 Top left: vertex cover (in red) in a 5-vertex graph G. Bottom left: partially ordered
set Pv constructed from G. Right: an occurrence of P in π obtained from our size-3 vertex cover.

all other elements of X are pairwise incomparable by ⩽v. This defines a partial order ⩽v202

such that height(⩽v) = 2.203

Write now N = 3n + 3 and m = (k + 1)N − 2, and define a permutation π ∈ S(m) as204

follows:205

π(iN + j) = (m + 1) − (iN + j + k) whenever 0 ⩽ i ⩽ k and 1 ⩽ j ⩽ N − 2;206

π(iN − 1) = (k + 1) − i and π(iN) = (m + 1) − i whenever 1 ⩽ i ⩽ k.207

It is straightforward to check that π is 1234-avoiding. It is also easy to see how the208

construction, illustrated in Figure 4, can be accomplished in polynomial-time.209

Let us see under which conditions an injective ⩽p-non-decreasing function φ : X → [m]210

maps P into π. We say that a vertex i belongs to the j-th gadget if one of the integers φ(ai)211

or φ(bi) is equal to jN − 1 or to jN , i.e., if {φ(ai), φ(bi)} ∩ {jN − 1, jN} ≠ ∅. When two212

elements in the range of φ are consecutive, either they are integers φ(ai) and φ(bi) for a213

given i, or one of them is an integer φ(ci) for some i. Therefore, no two distinct vertices i214

and i′ can belong to the same j-th gadget. Consequently, and since there are k gadgets, the215

set V ′ of vertices i that belong to some gadget is of size at most k.216

Then, we define a notion of height as follows: for each element x of X, we set height(x) = 0217

if N divides φ(x) + 1, height(x) = 2 if N divides φ(x), and height(x) = 1 otherwise. By218

construction, for all x, y ∈ X such that x ⩽p y, we have π(φ(x)) ⩽ π(φ(y)) if and only if x219

is of smaller height than y. Therefore, if φ maps P into π, and for each relation ai ⩽v bj ,220

either ai has height 0 or bj has height 2. In particular, either i or j must belong to V ′, and221

therefore V ′ is a vertex cover of size at most k.222

Conversely, provided that there exist vertices v(1) < v(2) < . . . < v(k) that form a vertex223

cover V ′, we construct an occurrence of P in π as follows. First, we abusively set v(0) = 0.224

Then, for all i ∈ [k], we set f(i) = jN + 3(i − v(j)), where j is the largest integer such225
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that v(j) ⩽ i. We set φ(aj) = f(j) − 1, φ(bj) = f(j) and φ(cj) = f(j) + 1.226

By construction, we have f(i) + 3 ⩽ f(i + 1) for all i, and therefore φ is an injective227

⩽p-non-decreasing function. Moreover, for every i ∈ [n], the elements ai and bi have heights 0228

and 2 if i ∈ V ′, and they have height 1 if i /∈ V ′. It follows that π(φ(ai)) ⩽ π(φ(bj)) whenever229

ai ⩽v bj , i.e., that φ is an occurrence of P in π. ◀230

5 Symmetric Patterns231

This section is devoted to studying complexity issues of pattern matching for symmetric232

dpop (i.e., those dpops P = (P, P), whose value and position posets coincide). We further233

focus on two special cases, first when P has a bounded width, then when π is restricted to234

constrained pattern-avoiding classes of permutations.235

5.1 Symmetric Pattern with Bounded Width236

We first observe that the problem is polynomial for width 1 (Observation 8). We further prove237

W[1]-hardness for the parameter k when P is a disjoint union of k chains (Proposition 10).238

We complement this result with an XP algorithm for the slightly more general case where P is239

a disjoint union of weak orders (Proposition 11). Note that the existence of an XP algorithm240

for the width parameter remains open, and we conjecture that the problem is NP-hard even241

for constant width.242

▶ Observation 8. DPOP Matching is solvable in O(n log log |P |) time for a symmetric243

dpop P of width 1 (i.e., a total symmetric dpop P ).244

Proof. If P has width 1, then P = (P, P) for some total order P = (X,≼). In particular,245

we can write X = {x1, . . . , x|X|} with xi ≺ xj for i < j, and in any mapping ϕ : X → [n],246

the elements πϕ(x1), . . . , πϕ(x|X|) must form an increasing subsequence of π. Conversely, any247

size-|X| increasing subsequence of π can be used as an image for ϕ, so in this setting DPOP248

Matching corresponds to the longest increasing subsequence problem, which can be solved249

in O(n log log |X|) time [12]. ◀250

To simplify the exposition of our next result, we introduce a new problem that may be of251

independent interest. Given a positive integer k and a permutation π ∈ S(kn), Balanced252

k-Increasing Coloring is the problem of deciding whether there exists a balanced k-253

coloring of π (i.e., a partition of [kn] into k subsets of size exactly n) such that each color254

induces an increasing subsequence of π.255

▶ Proposition 9. Balanced k-Increasing Coloring for 312-avoiding permutations is256

W[1]-hard for the parameter k.257

Proof. We perform a reduction from Unary Bin Packing parameterized by the number of258

bins, which is known to be W[1]-hard [19]. In this version of Bin Packing, we are given259

a list of integers s1, s2, . . . , sn encoded in unary, and two integers B and k. These integers260

are interpreted as item sizes, and the task is to decide whether the items can be partitioned261

into k susbets, each of total size B. We show that there is a reduction from Unary Bin262

Packing, parameterized by the number of bins, to Balanced k-Increasing Coloring,263

parameterized by the number of colors.264
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s1 + 1

k − 1

s2 + 1

k − 1

s6 + 1

k − 1

s3 + 1

k − 1

s4 + 1

k − 1

s5 + 1

k − 1

s7 + 1

k − 1

s8 + 1

k − 1

π (avoids 312)

n+B

P

Figure 5 Reduction from Unary Bin Packing to Balanced k-Increasing Coloring for
the list 6, 4, 3, 3, 3, 2, 2, 1, which admits the partition ({6}, {4, 2}, {3, 3}, {3, 2, 1}), and the integers
B = 6, k = 4. Left: dpop P that consists of k chains, each of length n + B. Right: 312-avoiding
permutation π that consists of n blocks. Each color/shape induces an increasing subsequence of π.

Consider an arbitrary instance of Unary Bin Packing containing n items with item265

sizes S = {s1, s2, . . . , sn}, and two integers B and k. Define π ∈ S(kB + kn) by266

π =
n⊕

i=1
(ip(si + 1) ⊖ dp(k − 1)) .267

Each pattern ip(si +1)⊖dp(k −1) is called the i-th block of π. See Figure 5 for an illustration.268

It is straightforward to check that π is 312-avoiding.269

We claim that the n items s1, s2, . . . , sn can be partitioned into k susbets, each of total270

size B, if and only if there exists a k-coloring of π such that each color induces an increasing271

pattern of length B + n.272

Suppose first that the n items s1, s2, . . . , sn can be partitioned into k susbets, each of273

total size B. Write S = S1 ∪ S2 ∪ · · · ∪ Sk such a partition. Define a k-coloring of π as follows.274

Consider the i-th block ip(si + 1) ⊖ dp(k − 1) of π, and suppose that si ∈ Sj . Color the275

whole ascending pattern ip(si + 1) with color cj and arbitrarily color the elements of the276

descending pattern dp(k − 1) with the remaining k − 1 colors (each element of dp(k − 1) is277

assigned to a distinct color). We claim that every color cj induces an increasing pattern of278

length B + n in π. First, it is clear that the above k-coloring induces increasing patterns only.279

As for the length of each induced increasing pattern, focus on any color cj . We note that,280

in every block ip(si + 1) ⊖ dp(k − 1) of π, either the whole subpattern ip(si + 1) is colored281

with color cj (if si ∈ Sj) or exactly one element of the subpattern dp(k − 1) is colored with282
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color cj (if si /∈ Sj). It follows that the increasing pattern induced by color cj in π has length283 ∑
si∈Sj

(si + 1) + n − |Si| =
∑

si∈Sj
si + |Si| + n − |Si| = B + n.284

For the reverse direction, suppose now that there exists a k-coloring of π such that each285

color induces an increasing pattern of length B + n. Every block ip(si + 1) ⊖ dp(k − 1)286

requires at least k colors, as it contains a decreasing subpattern of length k. Therefore, the287

whole subpattern ip(si + 1) is colored with the same color. For every j ⩽ k, let Sj be the set288

of all si such that, in the i-th block ip(si + 1) ⊖ dp(k − 1), the subpattern ip(si + 1) is colored289

with color cj . We have B + n =
∑

si∈Sj
(si + 1) + n − |Sj | =

∑
si∈Sj

si + |Sj | + n − |Sj |, and290

hence
∑

si∈Sj
si = B. Therefore, the n items s1, s2, . . . , sn can be packed into k bins, each291

of capacity B. ◀292

Most of the interest in Proposition 9 stems from the following proposition.293

▶ Proposition 10. DPOP Matching for symmetric dpop and 312-avoiding permutations is294

W[1]-hard for the parameter width(P ).295

Proof. We perform a reduction from Balanced k-Increasing Coloring, which is W[1]-296

hard for the parameter k. Let π ∈ S(kn) for some positive integers k and n. We construct a297

symmetric dpop P = (P, P), where P = (X,≼), as follows: X = [k] × [n] and (i, j) ≼ (i′, j′)298

if and only if i = i′ and j ⩽ j′. We claim that P occurs in π if and only π admits a k-coloring299

for which every color induces an increasing pattern of length n.300

If π admits such a k-coloring into colors c1, c2, . . . , ck, the function φ : X → [kn] that301

maps each pair (i, j) to the j-th smallest position with color ci is an occurrence of P in π.302

Conversely, suppose that some injective function φ : X → [kn] is an occurrence of P in π.303

For each i ⩽ k, the set {i}× [n] forms a chain of ≼, and therefore it is mapped to an increasing304

pattern of size n. Coloring this pattern in color ci produces the desired k-coloring. ◀305

We show now that the problem where P consists of k independent chains is XP for the306

parameter k. In fact, we generalize this result to k-weak partial orders (i.e., if P consists307

of k independent weak orders).308

▶ Proposition 11. DPOP Matching for k-weak symmetric dpop is XP with parameter k.309

Proof. Let P be a disjoint union of k weak symmetric dpops P1, P2, . . . , Pk. For each dpop Pi,310

let ≼i be a linear extension of Pi, and let Pi,1, Pi,2, . . . , Pi,pi be the maximal antichains of Pi,311

ordered by ≼i. Finally, for each k-tuple a = (a1, a2, . . . , ak) of integers such that ai ⩽ |Pi|,312

we denote by Pa the dpop obtained from P by removing the ai ≼i-least elements of each313

dpop Pi, and by P min
i,a the antichain Pi,j that contains elements from Pa and for which j is314

minimal, or ∅ if no such antichain exists.315

Then, given a permutation π ∈ S(n), a k-tuple I = (I1, . . . , Ik) of intervals of [n], a316

k-tuple a and an integer ℓ, a function φ : Pa → {ℓ, ℓ + 1, . . . , n} is called a partial matching317

for (π, I, a, ℓ) if:318

φ and π ◦ φ are ≼i-non-decreasing for each i, and319

for each i, and each element x of Pa, π(x) ∈ Ii if and only if x ∈ P min
i,a .320

Before going further, we denote by 1i the k-tuple with one element 1 (in position i) and321

k − 1 elements 0. We also denote by <i the partial order on tuples I of intervals, where322

I <i I′ if Ij = I ′
j whenever j ̸= i and x < x′ whenever x ∈ Ii and x′ ∈ I ′

i.323

When ai = |Pi| for all i, such a partial matching exists for all permutations π, tuples324

of intervals I and integers ℓ. When ai = 0 for all i and ℓ = 1, and once π is fixed, such325

partial matchings coincide with (standard) matchings, and thus we are interested in checking326
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whether a partial matching exists. Finally, for all tuples I and a and for all ℓ ⩽ n, a partial327

matching φ for (π, I, a, ℓ) exists precisely when one of the following cases occur:328

1. φ is a partial matching for (π, I, a, ℓ + 1), i.e., ℓ /∈ φ(Pa);329

2. there exists an integer i ⩽ k for which the ≼i-least element of P min
i,a , say x, is such that330

φ(x) = ℓ and π(ℓ) ∈ Ii, and either331

x is not the only element of P min
i,a , and φ is a partial matching for (π, I, a + 1i, ℓ + 1), or332

x is the only element of P min
i,a and there exists a tuple I′ >i I such that φ is a partial333

matching for (π, I′, a + 1i, ℓ + 1).334

Consequently, we can compute by dynamic programming the list of triples (I, a, ℓ) such335

that there exists a partial matching for (π, I, a, ℓ): deciding whether adding a triple (I, a, ℓ) to336

the list simply requires to check which triples of the form (I′, a′, ℓ + 1) already belong to the337

list. Since there are less than n3k+1 triples, this provides us with a Õ(n6k+2) algorithm. ◀338

5.2 Symmetric Pattern and Pattern-Avoiding π339

In this final section, we consider restrictions on the shape of π, via pattern-avoiding restrictions.340

Our goal here is to identify tractable cases among classes of permutations avoiding one or341

more size-3 patterns. We give an almost complete dichotomy of polynomial/NP-hard cases,342

as shown in Table 1. Hardness results are proven in Proposition 12, and also apply to height-2343

dpops. Polynomial cases are proven in Proposition 13 and apply to dpops of any height.344

▶ Proposition 12. DPOP Matching for height-2 symmetric dpop P and permutation π is345

NP-hard even if π is separable (it avoids 2413 and 3142) and one of the following restrictions346

occurs:347

1. π is 123-avoiding;348

2. π is (132, 213)-avoiding;349

3. π is (132, 321)-avoiding;350

4. π is (231, 312)-avoiding;
5. π is (132, 312)-avoiding;
6. π is (213, 321)-avoiding;

7. π is (213, 312)-avoiding;
8. π is (132, 231)-avoiding;
9. π is (213, 231)-avoiding.

Proof. In each of the cases presented below, we define a symmetric dpop P = (P, P) for351

some partially ordered set P = (X,≼). Each time, we identify P with the partial order ≼.352

Case 1: π is 123-avoiding and separable. We use a reduction from 3-Partition, as illustrated353

in Figure 6 with permutation π1. Let (A, B) be an instance of 3-Partition, where A is a354

list of integers a1, a2, . . . , a3n with sum nB, all being larger than 1.355

123

123

132

132

213

213

231

231

312

312

321

321

12.2 bin

12.8 bic

12.5 bic

12.3 bis

12.9 bic

12.7 bic

12.6 bis

12.4 bic

13.2
13.5
13.1
13.4
13.3

12.1 3P

(open)

NP-hard cases

Po
yn

om
ia

lc
as

es

π avoids
. . . and . . .

Table 1 Polynomial (green/light) and NP-hard (red/dark) cases for DPOP Matching with
symmetric dpop and pattern-avoiding permutation π, for combinations of size-3 avoided patterns.
For each case, see the referenced proposition and case for more details. Diagonal cases follow from
any other hard case in the same row or column. For hard cases, the problem used for reduction is
indicated as follows: bic: Biclique, 3P: 3-Partition, bin: Unary Bin Packing, bis: Bisection.
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b1

b2

b3
π1

(avoids 123)

b1

b2

b3

π2
(avoids 132,213)

a1 = 6

a3 = 4

a5 = 4

a7 = 3

a9 = 3

a2 = 4

a4 = 3

a6 = 2

a8 = 4

P

Figure 6 Reductions from 3-Partition and Unary Bin Packing to DPOP Matching on 123-
avoiding and (132, 213)-avoiding permutations. Left: the height-2 dpop P used in both reductions.
Right: the 123-avoiding and (132, 213)-avoiding permutations used in each reduction. The mapping
of three subsets of P corresponding to a first bin gadget is highlighted in each figure.

For all p ⩽ n, we define a bin gadget bp as the permutation dp(3) ⊕ dp(B − 3): we see356

this gadget as consisting of two parts. Our permutation π is now defined by π = ⊖n
p=1bp.357

Then, our partial order ≼ is defined on a set X of nB elements, noted xi, yi,2, . . . , yi,ai
for358

each i ⩽ 3n, so that xi ≼ yi,j for all i and j.359

If P has an occurrence φ : X → [nB] in π, this occurrence is bijective. Moreover, each360

element xi is sent to the bottom-left of yi,2, and thus it must is mapped to the left part of361

some gadget, say bf(i). Each element yi,j must then be mapped to the right part of the same362

gadget. Now, for each p ⩽ n, the set Sp = {i : f(i) = p} is of size 3, and exactly B elements363

of X are mapped to the gadget bp, which means that
∑

i∈Sp
ai = B. Moreover, S1 ∪ . . . ∪ Sp364

forms a partition of [3n], hence it yields a 3-partition of A.365

Conversely, given a partition S1 ∪ . . . ∪ Sn of [3n] such that |Sp| = 3 and
∑

i∈Sp
ai = B366

for each p, we build an occurrence of P in π by mapping the three elements xi (for i ∈ Sp)367

to the left part of bp, and the B − 3 elements yi,j (for i ∈ Xp) to the right part of bp.368

Case 2: π is (132, 213)-avoiding. We use a reduction from Unary Bin Packing, as369

illustrated in Figure 6 with permutation π2. Given an instance (A, B, k) of Unary Bin370

Packing, where A is a list of integers a1, a2, . . . , an larger than 1, we use the same dpop as371

in Case 1: our partial order ≼ is defined on a set X of nB elements, noted xi, yi,2, . . . , yi,ai
372

for each i ⩽ n, so that xi ≼ yi,j for all i and j. However, this time, our gadget bp is the373

permutation ip(B), and our permutation π is again defined by π = ⊖n
p=1bp.374

If P has an occurrence φ : X → [nB] in π, this occurrence is bijective. Each element xi375

is sent to some gadget, say bf(i), and the elements yi,j must then be mapped to the same376

gadget. Now, for each p ⩽ k, let Sp = {i : f(i) = p}. Exactly B elements of X are mapped377

to the gadget bp, which means that
∑

i∈Sp
ai = B. This means that (S, B, k) is a positive378

instance of the Unary Bin Packing problem.379

Conversely, given a partition S1 ∪ . . . ∪ Sk of [n] such that
∑

i∈Sp
ai = B for each i, we380

build an occurrence of P in π by mapping the B elements xi and yi,j (for i ∈ Sp) to bp.381

Case 3: π is (132, 321)-avoiding. We use a reduction from Bisection, as illustrated in382

Figure 7. Given a graph G = (V, E) and an integer k, the Bisection problem consists in383

deciding whether V admits a partition V1 ∪ V2 such that |V1| = |V2| and that splits at most384

k edges (i.e., at most k edges have one endpoint in V1 and one endpoint in V2).385

Our reduction is as follows. Let n = |V |/2, m = |E|, W = m + k + 1, and L = nW + m.386

Our partition π is defined by π = (ip(L) ⊖ ip(L)) ⊕ ip(k). These three parts of π are noted A,387

B and C, from left to right. Then, our partial order ≼ is defined on a set X of 2nW + m388
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8

G

a b c

1 2 3 4 5

d e f

6 7 8

P

A

B

C

π (avoids 132,321)

a
b
c
1
2
3

d
e
f6

7
8

45

Figure 7 Simplified version (for W = 1 and L = 7) of the reduction from Bisection to
DPOP Matching on (132, 321)-avoiding permutations. Top left: a size-6 graph with a bisection
({a, b, c}, {d, e, f}) that splits k = 2 edges. Bottom left: height-2 dpop P (note that, in general, each
element from the bottom line should appear W times and not just once). Right: permutation π;
elements of P are mapped to A, B or C depending on whether they are colored in red, green or blue.

elements: 2nW elements, noted xv,i for each v ∈ V and i ⩽ W , and m elements, noted ye389

for each e ∈ E. This order contains the relations xv,i ≼ ye for which v is an endpoint of e.390

Assume that there exists a mapping of P into π. For each v ∈ V , and since C has391

size k < W , at least one of the elements xv,i is mapped to A, in which case we say that v392

has type A, or to B, in which case v has type B. Then, each vertex has at least one type,393

and possibly both. We partition V into three sets VA, VB , VAB containing the vertices of394

type A, B and both A and B, respectively. Moreover, for each v ∈ VA, each element xv,i395

must be mapped either to A or to C: these two parts together contain L + k elements,396

so |VA| ⩽ (L + k)/W = n + 1 − 1/W , and |VA| ⩽ n. Similarly, |VB | ⩽ n.397

We build a set V1 as the union of VA with n − |VA| vertices of VAB , and V2 as V \ V1, so398

that |V1| = |V2| = n. Moreover, for every v ∈ V1 (resp., v ∈ V2), some element xv,i, say xv,1,399

is mapped to A (resp., to B). Then, each edge e = (u, v) that is split by (V1, V2) must be400

mapped to a point above some point of A and to the right of some point of B. This means401

that ye is mapped to C, and that (V1, V2) splits at most k edges, i.e., is a valid bisection.402

Conversely, given a bisection (V1, V2) splitting at most k edges, we map P into π as403

follows: map elements xv,i for v ∈ V1 (resp., V2) to the first nW elements of A (resp., B),404

map elements ye for which e is induced by V1 (resp., V2) to the following elements of A405

(resp. B), and finally map all elements ye such that e is split by (V1, V2) into C. This mapping406

is an occurrence of P in π.407

Case 4: π is (231, 312)-avoiding. We use a reduction from Biclique, as illustrated in408

Figure 8 with permutation π1. Given a bipartite graph G = (V, E) and an integer k, the409

Biclique problem consists in deciding whether V admits a complete bipartite subgraph Kk,k.410

If V = A ∪ B is a partition of V into two independent sets, adding independent vertices if411

needed allows us to assume that A and B have the same size n, and that no vertex in either412

side is fully connected to the other side.413

Our permutation π is defined by π = dp(n − k) ⊕ dp(2k) ⊕ dp(n − k). These three parts414

of π are noted b1, b2 and b3. Our partial order ≼ is the order on V such that x ≼ y whenever415

x ∈ A, y ∈ B and {x, y} /∈ E.416

Consider a mapping of P into π. For each element x ∈ A, there exists y ∈ B such417

that x ≼ y, and therefore x cannot be mapped into b3. Symmetrically, no element y ∈ B418

may be mapped into b1. Overall, since |π| = |V | = 2n, b1 contains n − k elements from A, b3419



14 Permutation Pattern Matching for Doubly Partially Ordered Patterns
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Figure 8 Reduction from Biclique to DPOP Matching on (231, 312)-avoiding and (213, 231)-
avoiding permutations. Left: a bipartite graph G with a (2, 2) biclique and the corresponding
height-2 dpop P , built from the complement of G. Right: permutations π1 and π2 with a mapping
of the vertices 1 to 8, including the biclique vertices mapped into the central 2k positions.

contains n − k elements from B, and b2 contains a size-k subset A′ of A and a size-k subset420

B′ of B. No two elements x ∈ A′ and y ∈ B′ that are mapped into b2 are comparable for ≼,421

which means that {x, y} ∈ E for each such pair, i.e., that (A′, B′) is a biclique.422

Conversely, if G has a biclique (A′, B′), we map all elements of A \ A′ into b1, all elements423

of A′ ∪ B′ into b2, and all elements of B \ B′ into b3. This mapping satisfies all relations424

x ≼ y with x ∈ A and y ∈ B, except for x ∈ A′ and y ∈ B′, but indeed there is no such425

relation since (A′, B′) is a biclique.426

Case 5: π is (132, 312)-avoiding. We also use a reduction from Biclique, as illustrated427

in Figure 6 with permutation π2. Our partial order ≼ is the same as in Case 4, and our428

permutation π is defined by π = ((dp(n − k) ⊕ ip(k)) ⊖ dp(k))⊕ ip(n−k). These three parts429

of π are noted b1, b2, b3 and b4.430

Consider a mapping of P into π. For each element y ∈ B, there exists x ∈ A such431

that x ≼ y, and therefore y cannot be mapped into b1 or b3. Thus, and since |B| = n,432

the elements of B are mapped to b2 or b4, and the elements of A are mapped to b1 or b3.433

Hence, b2 contains a size-k subset B′ of B and b3 contains a size-k subset A′ of A. No434

element of b2 is comparable to any element of b3, and therefore (A′, B′) is a biclique.435

Conversely, if G has a biclique (A′, B′), we map all elements of A \ A′ into b1, all elements436

of A′ into b3, all elements of B′ into b2 and all elements of B \ B′ into b4. This mapping437

satisfies all relations x ≼ y with x ∈ A and y ∈ B, except for x ∈ A′ and y ∈ B′, but indeed438

there is no such relation since (A′, B′) is a biclique.439

Cases 6–9: These cases are symmetric to Cases 3, 5, 5 and 7, respectively. Indeed, if (P, π) is440

an instance of DPOP Matching with P a height-2 symmetric dpop, (P ∂ , πc r) and (P, π-1)441

are equivalent instances of DPOP Matching with height-2 symmetric dpops, and442

Case 6: if π avoids 132 and 321 (Case 3), πc r avoids 132c r = 213 and 321c r = 321;443

Case 7: if π avoids 132 and 312 (Case 5), πc r avoids 132c r = 213 and 312c r = 312;444

Case 8: if π avoids 132 and 312 (Case 5), π-1 avoids 132-1 = 132 and 312-1 = 231;445

Case 9: if π avoids 213 and 312 (Case 7), π-1 avoids 213-1 = 213 and 312-1 = 231. ◀446

▶ Proposition 13. DPOP Matching is in P for symmetric dpop P if one of the following447

restrictions on π occurs:448

1. π is (123, 231)-avoiding;449

2. π is (123, 132)-avoiding;450

3. π is (123, 321)-avoiding;
4. π is (123, 312)-avoiding; 5. π is (123, 213)-avoiding.



L. Bulteau, G. Fertin, V. Jugé and S. Vialette 15

Proof. In each of the cases presented below, we are given a permutation π and a symmetric451

dpop P = (P, P) for some partially ordered set P = (X,≼). Each time, we identify P with452

the partial order ≼.453

Case 1: π is (123, 231)-avoiding. There exist integers k, ℓ and m, with sum n, such that454

π = dp(k) ⊖ (dp(ℓ) ⊕ dp(m)). These three parts of π are noted b1, b2 and b3. Then, for every455

pair (u, v) such that u ≺ v, we must map u into b2 and v into b3. Such values can be mapped456

greedily, since elements in b2 are pairwise incompatible, as well as those in b3. Thus, P can457

be mapped into π if and only if it has height at most 2, there are at most a elements that458

are lower bounds, and at most b elements that are upper bounds.459

Note that, if P is not symmetric, the problem becomes NP-hard, since reversing the460

horizontal order of Pp and π transforms π into the (132, 321)-avoiding permutation of the461

NP-hard Case 3 in Proposition 12.462

Case 2: π is (123, 132)-avoiding. The permutation π is a skew sum π = ⊖k
p=1dp of patterns of463

the form dp = dp(ap) ⊕ dp(1) for some integer ap ⩾ 0. Then, no two elements in X can share464

a strict lower bound, i.e., if u ≺ v and u ≺ w then v = w. Thus, P is of height at most 2,465

and there exists a partition S1 ∪ . . . ∪ Sℓ of X in which each set Si contains a distinguished466

element si, such that x ≼ si if and only if x ∈ Si. Up to reordering the patterns dp and467

the sets Si, which are pairwise incomparable, we assume that a1 ⩾ a2 ⩾ . . . ⩾ ak and that468

|S1| ⩾ |S2| ⩾ . . . ⩾ |Sℓ|. Let also m be the number of sets Si with size at least 2.469

Each set Si must be mapped into a single pattern, say dp(i), and if i ⩽ m, i.e., if |Si| ⩾ 2,470

the element si must be mapped to the unique top-right element of dp(i). Such a mapping471

exists if and only if k ⩾ m and ai ⩾ |Si| − 1 for all i ⩽ m: we shall choose p(i) = i and472

map greedily the elements of Si \ {si} to the bottom-left part of di. Finally, the elements of473

singleton sets Si can be mapped to the remaining places in π.474

Case 3: π is (123, 321)-avoiding. Erdős-Szekeres theorem [14] proves that n ⩽ 4.475

Cases 4–5: These cases are symmetric to Cases 1 and 2, respectively. Indeed, if (P, π) is an476

instance of DPOP Matching with P a height-2 symmetric dpop, (P ∂ , πc r) and (P, π-1)477

are equivalent instances of DPOP Matching with height-2 symmetric dpops, and478

Case 4: if π avoids 123 and 231 (Case 1), π-1 avoids 123-1 = 123 and 231-1 = 312;479

Case 5: if π avoids 123 and 132 (Case 2), πc r avoids 123c r = 123 and 132c r = 213. ◀480

6 Concluding Remarks481

Some open complexity questions remain among the parameters we identified for DPOP482

Matching. For semi-total dpops, the complexity is open for constant width, and for most483

classes of pattern-avoiding permutations (although, according to Propositions 7 and 10, the484

problem is NP-hard when π avoids 1234 or 312, respectively). For symmetric dpops, it485

would be interesting to settle the complexity status of deciding whether a dpop occurs in486

a (231, 321)-avoiding or (312, 321)-avoiding permutation. In particular, for these cases, we487

conjecture that the problem becomes polynomial when height(P ) is constant.488

Regarding the original puzzle formulation of the problem, an interesting question is to489

generate instances that yield a unique solution, i.e., given a permutation π, find a dpop490

with a unique occurrence in π. This can be done by using a semi-total dpop (e.g., take X491

with |X| = |π|, let Pp be a total order and Pv be an empty order), but one could try to492

minimize |X| or the number of pairs of comparable elements in P (i.e., the number of clues)493

in order to have a unique solution.494
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