
HAL Id: hal-03624309
https://hal.science/hal-03624309

Submitted on 30 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Beware of the Interactions of Variability Layers When
Reasoning about Evolution of MongoDB

Luc Lesoil, Mathieu Acher, Arnaud Blouin, Jean-Marc Jézéquel

To cite this version:
Luc Lesoil, Mathieu Acher, Arnaud Blouin, Jean-Marc Jézéquel. Beware of the Interac-
tions of Variability Layers When Reasoning about Evolution of MongoDB. ICPE 2022 - 13th
ACM/SPEC International Conference on Performance Engineering, Apr 2022, Beijing, China. pp.1-5,
�10.1145/3491204.3527489�. �hal-03624309�

https://hal.science/hal-03624309
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Beware of the Interactions of Variability Layers
When Reasoning about Evolution of MongoDB

Luc Lesoil, Mathieu Acher, Arnaud Blouin and Jean-Marc Jézéquel
Univ Rennes, INSA Rennes, Inria, IRISA, IUF

France
firstname.lastname@irisa.fr

ABSTRACT
With commits and releases, hundreds of tests are run on varying
conditions (e.g., over different hardware and workloads) that can
help to understand evolution and ensure non-regression of software
performance. We hypothesize that performance is not only sensi-
tive to evolution of software, but also to different variability layers
of its execution environment, spanning the hardware, the operat-
ing system, the build, or the workload processed by the software.
Leveraging the MongoDB dataset, our results show that changes in
hardware and workload can drastically impact performance evolu-
tion and thus should be taken into account when reasoning about
evolution. An open problem resulting from this study is how toman-
age the variability layers in order to efficiently test the performance
evolution of a software.

ACM Reference format:
Luc Lesoil, Mathieu Acher, Arnaud Blouin and Jean-Marc Jézéquel. 2022.
Beware of the Interactions of Variability Layers When Reasoning about
Evolution of MongoDB. In Proceedings of ACM Conference, Washington, DC,
USA, July 2017 (Conference’17), 5 pages.
https://doi.org/10.1145/3491204.3527489

1 INTRODUCTION
Non-regression testing is supposed to ensure that performance does
not decrease drastically when adding new features, but the reality
is more complex and needs to be seen from different perspectives;
the impact of a commit can change according to the executing
environment and the benchmark fed to the software system1. So,
in a situation where the performance changes brought by a code
modification are beneficial for half of users but decrease the quality
of service for the other half, should we push this code? Modify it?
Ask for more benchmarking2? Praise or blame?

Most of the time, a commit will optimize performance properties
for a vast majority of users. But software performance is sometimes
sensitive to different variability layers of its execution environ-
ment, such as the hardware, the operating system or the workload
processed by the software. We rely on the concept of deep variabil-
ity: existing interactions between different variability layers can
modify or disturb our understanding of software variability and
thus changing its underlying performance [16, 25]. Since the per-
formance decreases in a heterogeneous way across all tests, tasks
and projects3, it sometimes complexifies the developer life when
reviewing code or pull requests.

1See https://github.com/mongodb/mongo/pull/1068#discussion_r56706401 or https:
//github.com/mongodb/mongo/pull/1118#discussion_r88797998
2See https://github.com/mongodb/mongo/pull/472#issuecomment-22801074
3See also https://github.com/mongodb/mongo/pull/23

Figure 1: Joint evolution of mongoDB change points (top)
and performance values (bottom) - Different thread levels
change the evolution of performance values

In this short paper, we consider MongoDB, a well-known Data
Base Management System4, and ask the following questions: How
do the different factors of the executing environment affect Mon-
goDB performance distribution? Do these interactions have an
impact on the performance of the software over time? Is it possi-
ble to reason about performance evolution independently of e.g.,
workloads and hardware variability used for measuring MongoDB?

Previous work has shown that thanks to testing infrastructures
like Evergreen [7], it is yet possible to identify change points [8]
i.e., changes made by developers that significantly alter software
performance and measure their impact on the daily usage of the
software. We are also interested in studying the impact of these
change points, but in relation to the executing environments of
MongoDB and the possible impact of variability layers. In short: is
MongoDB performance evolution sensitive to deep variability?

Figure 1 typifies the problem we are addressing5. On the top
graph, we display the change points detected by the test infrastruc-
ture over time, as well as their effect and impact on the performance
(y-axis, percentage change). Bubble sizes represent the Z-scores [1]
related to the change points. On the bottom, we show the evolution
of performances i.e., Time Series (TS) for six different executing
environments but considering the same project, task, variant of
hardware and test for each. Like that, we are able to observe the
effect of a change point on the different Time Series, each TS having
its own evolution.

4See https://www.mongodb.com/
5Dataset: Expanded Metrics, Project: sys-perf, Task: industry benchmark wmajority,
Hardware: Linux 3 node replSet, Test: csb 50 read 50 update w majority

https://doi.org/10.1145/3491204.3527489
https://github.com/mongodb/mongo/pull/1068#discussion_r56706401
https://github.com/mongodb/mongo/pull/1118#discussion_r88797998
https://github.com/mongodb/mongo/pull/1118#discussion_r88797998
https://github.com/mongodb/mongo/pull/472#issuecomment-22801074
https://github.com/mongodb/mongo/pull/23
https://www.mongodb.com/


(a) Heatmap of average DTW between times series related to different variants
of hardware

(b) DTW = 0.38

(c) DTW = 3.23

(d) DTW = 5.39

(e) DTW = 15.31

Figure 2: Performance evolution of MongoDB according to hardware platforms

The interesting part starts in the middle of May and ends in June
2021 ; around the 15𝑡ℎ of may, the performance property suddenly
drops for TS #1, TS #4 and TS #5 while it increases for TS #2, TS #3
and TS #6. This suggests that two groups of TS react differently to
the same commit. This result can be explained by looking at the
thread level set when executing MongoDB. With the thread level
fixed at 1, the performance property6 increases. With a thread level
of 512, the performance drops. Is it a performance bug though?
Based on their thread level value when configuring the software,
users will either agree or disagree. In this case, this is an example
showing how an external factor (like the thread level here) threatens
the work of MongoDB developers. This issue was fixed in the end
of May. After this addition -or deletion, the performance matches
its former value for all time series.

In this paper, we aim at identifying different variability layers
impacting the evolution of performance of MongoDB.We first study
the difference of performance evolution according to hardware in
Section 2 and then the impact of workloads in Section 3.

Technical details. This paper is part of the ICPE 2022 Data Chal-
lenge7. We rely on the dataset they provided for all our exper-
iments8. For Sections 2 and 3, we use the Legacy Performance
Dataset [8]. Code and results are publicly available9.

6Here, the performance property is the 99𝑡ℎ percentile of allocated memory in
Megabytes
7See https://icpe2022.spec.org/tracks-and-submissions/data-challenge-track/ and
https://www.daviddaly.me/2021/10/questions-on-icpe-2022-data-challenge.html for
additional explanations
8Download the dataset at https://zenodo.org/record/5138516
9Companion repository : https://github.com/llesoil/icpe2022

2 IMPACT OF HARDWARE
According to the hardware platform of the final user, the perfor-
mance of MongoDB may evolve differently. In this section, we
quantify and study these differences of evolution, by answering
the following research question: RQ1 - What is the impact of
hardware variability on the evolution of MongoDB?
2.1 Protocol
Metric.We first need a measure to quantify the similarities between
time series. We rely on Dynamic Time Warping [21] (DTW). Unlike
Euclidian distance - a point by point comparison, it is able to detect
a pattern common to two time series even if this pattern does not
appear at the same time for both series.

Time series pre-processing. We remove all the time series having
less than two measurements. Since two time series do not necessar-
ily have the same time stamps (e.g., TS #3 and TS #6 in Figure 1), we
only compare them during their common period of definition. For
instance, to compare TS #3 and TS #6, we would remove the values
of TS #3 before the starting time of TS #6 and after the last value of
TS #6. When there exists a point in one time series that does not
have a corresponding point in the other one, we interpolate the
value with a linear function based on the two values closest to the
missing one. To avoid biasing the results with different scales, we
standardise [10] the performance values.

Implementation. For each project, each test and each workload,
we compute the DTW between the time series related to different
hardware platforms. Then, we average the DTW values for each pair
of variants of hardware. We consider the resulting value as a mea-
sure of similarity between the time series of two different hardware
platforms. In Figure 2a, each column and each line represents a

2

https://github.com/mongodb/mongo/commit/72ed8227aa029afd554aa5809d36529ac145c3e8
https://icpe2022.spec.org/tracks-and-submissions/data-challenge-track/
https://www.daviddaly.me/2021/10/questions-on-icpe-2022-data-challenge.html
https://zenodo.org/record/5138516
https://github.com/llesoil/icpe2022


(a) DRPC distributions per workload

(b) DRPC = 1.61 %, "genny_canaries" workload

(c) DRPC = 25.07 %, "UserAcq-ActorFin" workload

Figure 3: Performance evolution of MongoDB according to different workloads.

variant of hardware, on which MongoDB is executed; the intersec-
tion of a line and a column shows this resulting DTW value between
the variant of the line and the variant of the column. If there is no
time series with common project, test and workload between two
variants, we leave it blank. Due to space issue, names of variants
are cut down to 20 characters10.

Interpretation. When two times series have exactly the same
evolution, their DTW is equal to zero. Then, the greater the differences
between time series, the greater the DTW value. We show four pairs
of time series with their measure of DTW values in Figures 2b to 2e
to help interpret Figure 2a11.

2.2 Results
The first result is a good news w.r.t. stability: 25% of couples of
hardware have a very low average DTW value i.e., inferior to 1.70
and half of them have a low DTW value i.e., inferior to 4.48. This
is represented by clusters of dark red cells in Figure 2a. Knowing
the evolution of MongoDB for one of these hardware platforms
is enough to predict or estimate the evolution for all the other
hardware platforms, as shown in Figure 2b or Figure 2c. In other
words, we can reduce the benchmarking cost for all these variants of
hardware, because they have similar performance evolutions. As a
MongoDB developer, it shows consistency between these hardware
platforms, which is reassuring; optimizations made to MongoDB
over time will generalize to most users’ executing environments.

Then, we highlight of set of hardware platforms for which the
evolution of performance differs over time. In Figure 2a, they are
mostly located on the top-left corner. A good example that shows
how their evolution differ is depicted in Figure 2d. It seems that
there is no common pattern of evolution between the different
variants of hardware. As a result, the hardware layer deserves to
be carefully benchmarked in such a way we understand how they
react to code changes.

Finally, we isolate few hardware platforms with higher DTW val-
ues. They are blue cells in Figure 2a and their differences of evo-
lution are typified by Figure 2e. High DTW values can be explained
by the presence of outliers in their performance distributions. We

10See https://github.com/llesoil/icpe2022/blob/main/results/fig2.png for Figure 2a with
full names
11Details about Figures 2b to 2e environments properties can be consulted at
https://github.com/llesoil/icpe2022/blob/main/Data%20Challenge.ipynb

suspect two potential factors at the origin of these outliers: i) either
we incidentally create outliers when standardising the performance
or ii) this is a problem related to the performance infrastructure.
Further experiments are needed to conclude about the root cause.

3 IMPACT OF WORKLOAD
We now study the stability of performance evolution for different
workloads fed to MongoDB. How many percents do we gain or lose
between each commit? Does this value vary with the workloads?
Do the workloads processed by MongoDB change its performance
evolution? To address this, we answer the following research ques-
tion: RQ2 - What is the impact of workload variability on the
evolution of MongoDB?

3.1 Protocol
Metric.We define the Daily Relative Percentage Change (DRPC), a
metric designed to measure the relative difference of performance
(in percentage) per day :

𝐷𝑅𝑃𝐶 (𝑡) = 100
𝑑 (𝑡,𝑡+1) ∗

𝑝 (𝑡+1)−𝑝 (𝑡 )
𝑝 (𝑡 ) where 𝑝 (𝑡) is the performance

value at the time 𝑡 and𝑑 (𝑡, 𝑡+1) is the number of days between 𝑡 and
𝑡 + 1. We divide by the number of days between 𝑡 and 𝑡 + 1 to avoid
artificially increasing the results when there are few measurements
separated by long time periods. We then average the results in
absolute value for each date of measurement 𝑡 , which provides the
average DRPC related to a time series.

Time series pre-processing. We remove all the time series having
less than two measurements, because the metric is impossible to
compute in this case.

Implementation.We consider the 22 workloads of the dataset; for
each, we gather the time series including performancemeasurement
on this workload and compute the average DRPC. In Figure 3a, we
display the boxplots of DRPC distributions per workload. We also
display some examples of evolution for two workloads with the
detail of percentage change values in Figures 3b and 3c12.

Interpretation. The DRPC measures the stability of the evolution
of MongoDB performance and quantifies the daily average percent
change between two measurements. For a constant performance
distribution, the DRPC is equal to zero. The greater the DRPC, the
greater (and the more unstable) the evolution.
12Details about the environments used in Figures 3b and 3c can be consulted at
https://github.com/llesoil/icpe2022/blob/main/Data%20Challenge.ipynb

3

https://github.com/llesoil/icpe2022/blob/main/results/fig2.png
https://github.com/llesoil/icpe2022/blob/main/Data%20Challenge.ipynb
https://github.com/llesoil/icpe2022/blob/main/Data%20Challenge.ipynb


3.2 Results
Figure 3a illustrates how the variability of workloads affects the evo-
lution of MongoDB. The daily percentage change of performance
fluctuates with workloads; it can be very low or really high e.g.,
median at 0.15 % for the "genny_canary" workload or at 26.9 % for
the "UserAcq-ActorFin" workload. In Figures 3b and 3c, we plot the
detail of percentage changes for these two workloads to show the
difference of scale between their evolution of performance - up to
a factor of 10 between their percentage changes.

Beyond the median values of the percentage changes, the results
also show a difference in stability in the evolution of workload
performance; while few stable workloads have a low InterQuartile
Range e.g., "Genny-Setup" (IQR = 0.14 %), others can have various
ranges of percentage changes e.g., "shell/benchurn" (IQR = 4.97 %)
or "UserAcq-ActorFin" (IQR = 8.87%). These stable workloads are
reliable. For them, it is quite easy to detect an outlier, since their
performance value rarely exceeds a given threshold. We guess they
can be used as reference to detect a regression in the code. If such
workloads observe a big decrease of performance, it is the sign that
an error occurred in one of the last code modifications.

4 DISCUSSION
In this paper, we have considered two variability layers, namely
hardware and workload, and studied their impacts on software
evolution. Other variability layers can well be considered in the
future, for example i) operating system: the Linux kernel is highly
configurable and may have an impact on performance evolution
of MongoDB; ii) compile-time options and flags: the way Mon-
goDB has been built13 can change the performance distributions.
For instance, Lesoil et al. [18] report on preliminary evidence of
complex interactions between run-time options (e.g., command line
parameters) and compile-time options (e.g., using ./configure)
with different effects of non-functional properties of software. In
the case of MongoDB we can wonder whether and to what extent
these layers impact software evolution, e.g., does using a different
Linux variant (distribution and kernel) change the conclusions and
insights about evolution? Answering these questions requires vary-
ing different layers and gather specific measurements’ data. It is
left as future work.

Another limitation of our work is that we have not studied the
interactions between variability layers. That is, we have focused on
individual effects of each variability layer on evolution. As future
work, we could investigate whether hardware together with work-
load changes the performance of a software system. A hypothesis
is that specific combinations of hardware and workload cause a
shift in performance. The identifying of such interactions typically
requires controlled measurements of pairs of workload–hardware
and is arguably costly to instrument at scale.

5 THREATS TO VALIDITY
Our results may vary with other choices of metrics. For instance,
the DRPC used in Section 3 may amplify the noise of measurements
by construction, thus slightly overestimating the real percentage
of performance change.

13See https://github.com/mongodb/mongo/blob/master/docs/building.md

When standardising the performance in Section 2, there exists
a risk to artificially create outliers if the standard deviation of the
performance is too low. It could partly explain Section 2.2 results.
Yet it appears to be the only solution to efficiently compare DTW
related to distributions having different scales.

6 RELATEDWORK
Software evolution and performance. There exist research works
studying the impact of software evolution on performance [2, 5,
8, 19, 20, 22, 24]. Martin et al. [19] presents a solution, based on
transfer learning, to deal with the evolution of the Linux kernel
when predicting kernel sizes of configurations. Mühlbauer et al.
[22] investigated the history of software performances to isolate
when a performance shift happens over time and variants (software
configurations). Our study pursues a similar objective, but pays
attention to the impact of hardware and workload on software
evolution. Our results show that hardware and workload variability
cannot be ignored when reasoning about performance history.

Hardware variability. Resarch work has been investigating the
effect of hardware on software performance [4, 9, 11, 14, 27, 28]. In
particular, Valov et al. [27, 28] suggest that changing the hardware
has reasonable impacts on software configurations since linear func-
tions are highly accurate when reusing prediction models. Unlike
our work, the evolution of software is not taken into account in
their studies and dataset, nor are changes in workloads.

Workload performance analysis. There are numerous works ad-
dressing the performance analysis of software systems [3, 6, 12,
13, 15, 17, 17, 23, 26] depending on different input data (also called
workloads or benchmarks). In this paper, we specifically study the
impact of workloads on software evolution.

Jamshidi et al. [14] conducted an empirical study on four config-
urable systems, varying software configurations and environmental
conditions, namely hardware, workload, and software versions. Re-
sults show transferring performance can be difficult depending on
environment changes. An important feature of the study, and there-
fore of their dataset, is that all three variability factors are modified
together, for example, both version, hardware and workload are
modified and compared to a baseline. Without isolating the individ-
ual effect of each variability layer, it is challenging to understand
whether a performance shift is due to the evolution of software
or other factors (hardware and workload). In contrast, our study
leverages the dataset to investigate i) the impact between hardware
and evolution ii) the impact between workload and evolution.

7 CONCLUSION
In this paper, we investigated to what extent two variability layers
impact performance of MongoDB evolution, namely the hardware
platforms on which MongoDB are executed and the workloads
fed to MongoDB. Our analysis over the MongoDB dataset showed
that these two variability layers cannot be ignored when reasoning
about the performance evolution of MongoDB. We also provided
some insights to efficiently benchmark executing environments of
users w.r.t. these two variability layers.

Acknowledgments. This research was funded by the ANR-17-
CE25-0010-01 VaryVary project.

4

https://github.com/mongodb/mongo/blob/master/docs/building.md


REFERENCES
[1] Hervé Abdi. 2007. Z-scores. Encyclopedia of measurement and statistics 3 (2007),

1055–1058.
[2] Juan Pablo Sandoval Alcocer and Alexandre Bergel. 2015. Tracking down Perfor-

mance Variation against Source Code Evolution. SIGPLAN Not. 51, 2 (oct 2015),
129–139. https://doi.org/10.1145/2936313.2816718

[3] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel.
2020. Sampling Effect on Performance Prediction of Configurable Systems: A
Case Study. In International Conference on Performance Engineering (ICPE 2020).
https://hal.inria.fr/hal-02356290

[4] Christopher Brink, Erik Kamsties, Martin Peters, and Sabine Sachweh. 2014.
On Hardware Variability and the Relation to Software Variability. In 2014 40th
EUROMICRO Conference on Software Engineering and Advanced Applications.
352–355. https://doi.org/10.1109/SEAA.2014.15

[5] Claudia Canali, Michele Colajanni, and Riccardo Lancellotti. 2009. Performance
Evolution of Mobile Web-Based Services. IEEE Internet Computing 13, 2 (2009),
60–68. https://doi.org/10.1109/MIC.2009.43

[6] Emilio Coppa, Camil Demetrescu, Irene Finocchi, and Romolo Marotta. 2014.
Estimating the Empirical Cost Function of Routines with Dynamic Workloads.
In Proc. of CGO’14. 230:239. https://doi.org/10.1145/2581122.2544143

[7] David Daly. 2021. Creating a Virtuous Cycle in Performance Testing at MongoDB.
Association for Computing Machinery, New York, NY, USA, 33–41. https:
//doi.org/10.1145/3427921.3450234

[8] David Daly, William Brown, Henrik Ingo, Jim O’Leary, and David Bradford.
2020. The Use of Change Point Detection to Identify Software Performance
Regressions in a Continuous Integration System. In Proceedings of the ACM/SPEC
International Conference on Performance Engineering (Edmonton AB, Canada)
(ICPE ’20). Association for Computing Machinery, New York, NY, USA, 67–75.
https://doi.org/10.1145/3358960.3375791

[9] Brian Dougherty, Jules White, Chris Thompson, and Douglas C. Schmidt. 2009.
Automating Hardware and Software Evolution Analysis. In 2009 16th Annual
IEEE International Conference andWorkshop on the Engineering of Computer Based
Systems. 265–274. https://doi.org/10.1109/ECBS.2009.22

[10] Shirley M Dowdy and Stanley Wearden. 1983. Statistics for research.
[11] Omar Elkeelany and Suman Nimmagadda. 2007. Performance Evaluation of

Different Hardware Models of RC5 Algorithm. In 2007 Thirty-Ninth Southeastern
Symposium on System Theory. 124–127. https://doi.org/10.1109/SSST.2007.352331

[12] Hany FathyAtlam, Gamal Attiya, and Nawal El-Fishawy. 2013. Comparative
Study on CBIR based on Color Feature. International Journal of Computer Appli-
cations 78, 16 (Sept. 2013), 9–15. https://doi.org/10.5120/13605-1387

[13] Simon F. Goldsmith, Alex S. Aiken, and Daniel S. Wilkerson. 2007. Measuring
Empirical Computational Complexity. In Proc. of ESEC-FSE’07. 395–404.

[14] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay
Patel, and Yuvraj Agarwal. 2017. Transfer Learning for Performance Modeling
of Configurable Systems: An Exploratory Analysis. In Proc. of ASE’17. 497–508.

[15] Philipp Leitner and Jürgen Cito. 2016. Patterns in the Chaos—A Study of Perfor-
mance Variation and Predictability in Public IaaS Clouds. ACM Trans. Internet
Technol. 16, 3, Article 15 (April 2016), 23 pages. https://doi.org/10.1145/2885497

[16] Luc Lesoil, Mathieu Acher, Arnaud Blouin, and Jean-Marc Jézéquel. 2021. Deep
Software Variability: Towards Handling Cross-Layer Configuration. In 15th
International Working Conference on Variability Modelling of Software-Intensive
Systems (Krems, Austria) (VaMoS’21). Association for Computing Machinery,
New York, NY, USA, Article 10, 8 pages. https://doi.org/10.1145/3442391.3442402

[17] Luc Lesoil, Mathieu Acher, Arnaud Blouin, and Jean-Marc Jézéquel. 2021. The
Interaction between Inputs and Configurations fed to Software Systems: an
Empirical Study. arXiv:2112.07279 [cs.SE]

[18] Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, and Jean-Marc
Jézéquel. 2021. The Interplay of Compile-time and Run-time Options for Perfor-
mance Prediction. In SPLC 2021 - 25th ACM International Systems and Software
Product Line Conference - Volume A. ACM, Leicester, United Kingdom, 1–12.
https://doi.org/10.1145/3461001.3471149

[19] Hugo Martin, Mathieu Acher, Juliana Alves Pereira, Luc Lesoil, Jean-Marc
Jézéquel, and Djamel Eddine Khelladi. 2021. Transfer Learning Across Vari-
ants and Versions: The Case of Linux Kernel Size. IEEE Transactions on Software
Engineering (2021), 1–17. https://hal.inria.fr/hal-03358817

[20] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazayeri.
2005. Challenges in software evolution. In Eighth International Workshop on
Principles of Software Evolution (IWPSE’05). 13–22. https://doi.org/10.1109/
IWPSE.2005.7

[21] Meinard Müller. 2007. Dynamic time warping. Information retrieval for music
and motion (2007), 69–84.

[22] S. Mühlbauer, S. Apel, and N. Siegmund. 2020. Identifying Software Performance
Changes Across Variants and Versions. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 611–622.

[23] Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and Suttipong Tha-
jchayapong. 2017. Performance Analysis of Private Blockchain Platforms in
Varying Workloads. In Proc. of ICCCN’17. 1–7. https://doi.org/10.1109/icccn.

2017.8038517
[24] Juan Pablo Sandoval Alcocer, Alexandre Bergel, Stéphane Ducasse, and Marcus

Denker. 2013. Performance evolution blueprint: Understanding the impact of
software evolution on performance. In 2013 First IEEE Working Conference on
Software Visualization (VISSOFT). 1–9. https://doi.org/10.1109/VISSOFT.2013.
6650523

[25] Mohammed Sayagh, Noureddine Kerzazi, and Bram Adams. 2017. On Cross-
Stack Configuration Errors. In Proceedings of the 39th International Conference on
Software Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE Press, 255–265.
https://doi.org/10.1109/ICSE.2017.31

[26] Urjoshi Sinha, Mikaela Cashman, and Myra B. Cohen. 2020. Using a Genetic
Algorithm to Optimize Configurations in a Data-Driven Application. In Proc. of
SSBSE’20. 137–152. https://doi.org/10.1007/978-3-030-59762-7_10

[27] Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki. 2020. Transferring Pareto
Frontiers across Heterogeneous Hardware Environments. In Proc. of ICPE’20.
12–23. https://doi.org/10.1145/3358960.3379127

[28] Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo, Sebastian Fischmeister,
and Krzysztof Czarnecki. 2017. Transferring Performance Prediction Models
Across Different Hardware Platforms. In Proc. of ICPE’17. 39–50.

5

https://doi.org/10.1145/2936313.2816718
https://hal.inria.fr/hal-02356290
https://doi.org/10.1109/SEAA.2014.15
https://doi.org/10.1109/MIC.2009.43
https://doi.org/10.1145/2581122.2544143
https://doi.org/10.1145/3427921.3450234
https://doi.org/10.1145/3427921.3450234
https://doi.org/10.1145/3358960.3375791
https://doi.org/10.1109/ECBS.2009.22
https://doi.org/10.1109/SSST.2007.352331
https://doi.org/10.5120/13605-1387
https://doi.org/10.1145/2885497
https://doi.org/10.1145/3442391.3442402
http://arxiv.org/abs/2112.07279
https://doi.org/10.1145/3461001.3471149
https://hal.inria.fr/hal-03358817
https://doi.org/10.1109/IWPSE.2005.7
https://doi.org/10.1109/IWPSE.2005.7
https://doi.org/10.1109/icccn.2017.8038517
https://doi.org/10.1109/icccn.2017.8038517
https://doi.org/10.1109/VISSOFT.2013.6650523
https://doi.org/10.1109/VISSOFT.2013.6650523
https://doi.org/10.1109/ICSE.2017.31
https://doi.org/10.1007/978-3-030-59762-7_10
https://doi.org/10.1145/3358960.3379127

	Abstract
	1 Introduction
	2 Impact of hardware
	2.1 Protocol
	2.2 Results

	3 Impact of Workload
	3.1 Protocol
	3.2 Results

	4 Discussion
	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

