
Beware of the Interactions of Variability Layers
When Reasoning about Evolution of MongoDB

Luc Lesoil, Mathieu Acher, Arnaud Blouin and Jean-Marc Jézéquel
Univ Rennes, INSA Rennes, Inria, IRISA, IUF

France
firstname.lastname@irisa.fr

ABSTRACT
With commits and releases, hundreds of tests are run on varying
conditions (e.g., over different hardware and workloads) that can
help to understand evolution and ensure non-regression of software
performance. We hypothesize that performance is not only sensi-
tive to evolution of software, but also to different variability layers
of its execution environment, spanning the hardware, the operat-
ing system, the build, or the workload processed by the software.
Leveraging the MongoDB dataset, our results show that changes in
hardware and workload can drastically impact performance evolu-
tion and thus should be taken into account when reasoning about
evolution. An open problem resulting from this study is how toman-
age the variability layers in order to efficiently test the performance
evolution of a software.

ACM Reference format:
Luc Lesoil, Mathieu Acher, Arnaud Blouin and Jean-Marc Jézéquel. 2022.
Beware of the Interactions of Variability Layers When Reasoning about
Evolution of MongoDB. In Proceedings of ACM Conference, Washington, DC,
USA, July 2017 (Conference’17), 5 pages.
https://doi.org/10.1145/3491204.3527489

1 INTRODUCTION
Non-regression testing is supposed to ensure that performance does
not decrease drastically when adding new features, but the reality
is more complex and needs to be seen from different perspectives;
the impact of a commit can change according to the executing
environment and the benchmark fed to the software system1. So,
in a situation where the performance changes brought by a code
modification are beneficial for half of users but decrease the quality
of service for the other half, should we push this code? Modify it?
Ask for more benchmarking2? Praise or blame?

Most of the time, a commit will optimize performance properties
for a vast majority of users. But software performance is sometimes
sensitive to different variability layers of its execution environ-
ment, such as the hardware, the operating system or the workload
processed by the software. We rely on the concept of deep variabil-
ity: existing interactions between different variability layers can
modify or disturb our understanding of software variability and
thus changing its underlying performance [16, 25]. Since the per-
formance decreases in a heterogeneous way across all tests, tasks
and projects3, it sometimes complexifies the developer life when
reviewing code or pull requests.

1See https://github.com/mongodb/mongo/pull/1068#discussion_r56706401 or https:
//github.com/mongodb/mongo/pull/1118#discussion_r88797998
2See https://github.com/mongodb/mongo/pull/472#issuecomment-22801074
3See also https://github.com/mongodb/mongo/pull/23

Figure 1: Joint evolution of mongoDB change points (top)
and performance values (bottom) - Different thread levels
change the evolution of performance values

In this short paper, we consider MongoDB, a well-known Data
Base Management System4, and ask the following questions: How
do the different factors of the executing environment affect Mon-
goDB performance distribution? Do these interactions have an
impact on the performance of the software over time? Is it possi-
ble to reason about performance evolution independently of e.g.,
workloads and hardware variability used for measuring MongoDB?

Previous work has shown that thanks to testing infrastructures
like Evergreen [7], it is yet possible to identify change points [8]
i.e., changes made by developers that significantly alter software
performance and measure their impact on the daily usage of the
software. We are also interested in studying the impact of these
change points, but in relation to the executing environments of
MongoDB and the possible impact of variability layers. In short: is
MongoDB performance evolution sensitive to deep variability?

Figure 1 typifies the problem we are addressing5. On the top
graph, we display the change points detected by the test infrastruc-
ture over time, as well as their effect and impact on the performance
(y-axis, percentage change). Bubble sizes represent the Z-scores [1]
related to the change points. On the bottom, we show the evolution
of performances i.e., Time Series (TS) for six different executing
environments but considering the same project, task, variant of
hardware and test for each. Like that, we are able to observe the
effect of a change point on the different Time Series, each TS having
its own evolution.

4See https://www.mongodb.com/
5Dataset: Expanded Metrics, Project: sys-perf, Task: industry benchmark wmajority,
Hardware: Linux 3 node replSet, Test: csb 50 read 50 update w majority

https://doi.org/10.1145/3491204.3527489
https://github.com/mongodb/mongo/pull/1068#discussion_r56706401
https://github.com/mongodb/mongo/pull/1118#discussion_r88797998
https://github.com/mongodb/mongo/pull/1118#discussion_r88797998
https://github.com/mongodb/mongo/pull/472#issuecomment-22801074
https://github.com/mongodb/mongo/pull/23
https://www.mongodb.com/


https://github.com/mongodb/mongo/commit/72ed8227aa029afd554aa5809d36529ac145c3e8
https://icpe2022.spec.org/tracks-and-submissions/data-challenge-track/
https://www.daviddaly.me/2021/10/questions-on-icpe-2022-data-challenge.html
https://zenodo.org/record/5138516
https://github.com/llesoil/icpe2022

	Abstract
	1 Introduction
	2 Impact of hardware
	2.1 Protocol
	2.2 Results

	3 Impact of Workload
	3.1 Protocol
	3.2 Results

	4 Discussion
	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

