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aInstitut de Radioprotection et de Sûreté Nucléaire (IRSN) - PSN-RES/SAG/LEPC - Cadarache bât. 702 - 13115
St Paul-lez-Durance, FRANCE
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ABSTRACT Motivated to investigate debris bed coolability in a damaged nuclear reactor core
by bottom reflooding, this paper studies the physical situation involving injection of water into a
superheated particle bed leading to high velocity flow of steam. The particle bed is composed of two
cylindrical concentric parts and stratified vertically. One of the particular features of the studied
configuration is that quenching of the superheated particles generates a strong flow of steam
which may create a vertical pressure gradient leading the water in the lateral, more permeable
medium, to flow faster than the injection velocity and consequently reducing the efficiency of
cooling. The aim is to propose an analytical model to predict the behavior of water entrainment
in the lateral layer (bypass) of larger permeability and porosity. This model computes the quench
front velocity, water-to-steam conversion ratio, and the velocity of water in the bypass. It provides
good qualitative and quantitative results for the two-phase flow redistribution as compared to
experimental data. It also has several advantages as it allows: performing fast evaluations of the
efficiency of cooling, upscaling to reactor-scale straightforwardly, and performing sensitivity studies
on the physical properties of the particle beds and the fluid, and the variations of the momentum
equations. For instance, it showed that the Generalized Darcy law was not sufficient to obtain
acceptable evaluations whereas considering non-zero cross-terms in the Darcy Forchheimer equation
by including an interfacial friction law succeeds in obtaining better results.
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Nomenclature



symbol variables units
α void fraction
ε porosity
φ mass flow rate kg/s
κ absolute permeability m2

η absolute passability m
v absolute velocity m/s
U superficial velocity m/s
z elevation in the porous medium m
dp particles diameter m
Si cross section area m2

∆Tf = Tf − Tsat temperature difference K

subscripts
g gas
l liquid
s solid

superscripts
c bypass
b center
inj injection
qf quench front

Introduction

Debris Bed Formation Following a loss of coolant accident in a PWR (pressurized water re-
actor), the reactor core gets uncovered and starts to accumulate residual heat. As the accident
evolves, core heating and oxidation of the fuel cladding by the coolant vapor provoke core degra-
dation. In this case reflooding the core can cause a thermal shock and the embrittlement of the
cladding, hence forming a porous debris bed in the core. Severe accidents arising from the fusion of
the nuclear reactor core must be anticipated to enhance the efficiency of its mitigation. Such acci-
dents have occurred in Chernobyl-1984, at the Three Mile Island unit-2 (TMI-2) in the USA-1979,
and recently in Fukushima, Japan-2011 where 3 reactors were destroyed. The concept of debris
bed formation was introduced by Akers and McCardell (1989) and McCardell et al. (1990) upon
the post-accident examination of the Three Mile Island unit-2 (TMI-2) that occured in the USA-
1979. In the latter accident, the debris bed composed particle of sizes ranging over few millimeters
(Akers et al. (1986), Broughton et al. (1989)) due to the relocation of molten materials inside the
core upon quenching of the very hot rods being uncovered. In such situations different debris bed
configurations might exist such as the formation of a debris bed surrounded by an intact zone of
fuel rods or the existence of compact zones of very small particles limiting the coolant penetration.

Debris Bed Coolability The reflooding models used for Loss of Coolant Accident (LOCA) are
not applicable for debris bed cooling. And as severe accident management is crucial, the question
of debris coolability has to be resolved. Several experimental programs on debris coolability have
been performed over the last decades following the TMI accident, aiming at determining the max-
imum power that can be extracted from a heated debris bed by water reflooding. Top and bottom



reflooding experiments were performed (Hofmann (1984), Tutu et al. (1984), Reed et al. (1985),
and Hu and Theofanous (1991)). And more recently debris bed coolability is again under inves-
tigation with experimental programs such as DEBRIS (Schäfer et al. (2006)) at IKE in Germany,
PRELUDE and PEARL (Stenne et al. (2009), Repetto et al. (2011), Repetto et al. (2013), and
Chikhi et al. (2015)) which were launched by IRSN to investigate the thermal hydraulics of the
reflooding process and develop new reflooding models and to validate 2D/3D models. The aim
is to predict the consequences of the water reflooding of a severely damaged reactor core where a
large part of the core has collapsed and formed a debris bed.

The Scope and System Under Study Modeling two-phase flow in stratified heterogeneous
porous media is a problem often investigated in several scientific fields such as petroleum engi-
neering, hydrology, and soil science. Different mathematical models to describe the Darcean and
inertia flow of two immiscible phases in a porous medium were proposed in the literature. While
upscaling methods applied to the pore-scale equations leads to more general two-phase flow mod-
els, the model used in this investigation is based on a multiphase extension of Darcy-Forchheimer’s
equations (Forchheimer (1901)) with a friction term, as suggested by the theoretical results. One
of the particular features of the studied configuration is that a strong flow of steam is generated
by quenching of the superheated particles. Under certain conditions, this steam flow is able to
create a vertical pressure gradient which can lead the water in the more permeable medium to
flow faster than the injection velocity. As a consequence, some of the injected water does not
participate to the cooling of the central porous medium and the efficiency of cooling is reduced.
This paper deals with the study of particle bed coolability in a damaged nuclear reactor core upon
a loss of coolant accident, by water injection from the bottom (reflooding). This physical situation
involves a strong evaporation of water in the particle bed, leading to high velocity flow of steam. It
has been investigated by several authors until recently (Tutu et al. (1984), Atkhen and Berthoud
(2003), Chikhi et al. (2015)).

The investigation is concerned in the two phase flow in a particle bed stratified vertically. It is a
porous medium composed of two concentric cylindrical layers of contrasting thickness and perme-
ability, the central one being less permeable and less porous. The analytical model is developed
to predict the behavior of water in the lateral layer (bypass) of larger permeability and porosity
representing the case of bottom reflooding of a hot debris bed surrounded by an intact zone in a
degraded nuclear reactor core during an accidental scenario. The redistribution of water and steam
into the bypass is investigated in several steps in order to evaluate the pressure gradient which
can be generated downstream of the quench front. Considering a set of mass and energy balance
equations, taken over frames of reference moving at the quench front velocity, allows estimating
the water-to-steam conversion ratio and the quench front velocity. The velocity of water in the
bypass, which is shown to be the unique solution of a system of two equations (mass conserva-
tion and momentum conservation) is then computed and consequently the flow rates of water and
steam donwstream. The results are then compared to PEARL bottom reflooding experimental
tests (Chikhi et al. (2015)).

The presence of intact zones (bypass) surrounding a hot debris bed formed upon a severe accident
in a nuclear reactor core lead to the significant diversion of the injected coolant flow, in the aim
of achieving the cooling of the heat-accumulating hot debris bed, into the periphery provided
it is highly permeable compared to the debris bed. It can extend the time required to achieve
a total quenching of the hot debris bed questioning its coolability which also depends on the



initial thermal state of the bed. If for instance the formed debris bed resulting from a severe
accident was being uncovered and heated up to high temperatures, the reflooding process in the
presence of a highly permeable bypass could allow certain zones in the debris bed to continue
further heating compromising its coolability as it could reach the melting point if the coolant
didn’t succeed to penetrate to that zone. It is therefore a major concern to investigate thoroughly
the behavior of water entrainment in the bypass during the reflooding process in order to estimate
the corresponding limitations and define the factors that describe the coolability of the debris bed.

Analytical model development - Two phase flow redistribution

Physical laws To investigate such a two-phase flow in a porous medium, an analytical model
will be derived to describe the entrainment behavior of water into the bypass. The change of
scale for Stokes flow equation and continuity has already been investigated leading to Darcy’s law
(Whitaker (1996)). The equations used to develop this model are based on Darcy’s law (Darcy
(1856)) with Forchheimer correction (Forchheimer (1901)) to include non-linear velocity terms. In
a homogeneous medium, for a single phase θ, the Darcy-Forchheimer law relates the gradient of the
intrinsic phase-averaged pressure ∇〈pθ〉θ, where pθ is the pore-scale pressure field, to the average
velocity (filtration velocity), 〈vθ〉, where vθ is the pore-scale velocity field, as:

〈vθ〉 = −K

µθ
· (∇〈pθ〉θ − ρθg)− F(〈vθ〉).〈vθ〉 (1)

where K is the intrinsic permeability tensor of the medium, g is the gravitational acceleration, (pθ,
ρθ, µθ) are the pressure, density, and dynamic viscosity of the θ-phase, and F is the Forchheimer
correction tensor. Both tensors K and F are isotropic. A discussion on the estimation of the
inertial contribution for particle debris beds can be found in Clavier (2015).

For a (liquid-gas) two-phase flow system, the equations obtained theoretically by Lasseux et al.
(2008) have the following structure:

〈vl〉 = −Kll

µl
· (∇〈pl〉l − ρlg)− Fll · 〈vl〉+ Klg · 〈vg〉 − Flg · 〈vg〉 (2)

〈vg〉 = −Kgg

µg
· (∇〈pg〉g − ρgg)− Fgg · 〈vg〉+ Kgl · 〈vl〉 − Fgl · 〈vl〉 (3)

Tensors Kll and Kgg represent the intrinsic viscous terms for each phase, whereas Klg and Kgl are
the viscous cross-terms. In quasi-static conditions, these tensors are independent of velocity of
each phase but rather influenced and described by the void fraction, the geometry of the porous
medium, and the structure of the flow at pore scale (Clavier (2015)). Tensors Fll and Fgg represent
the intrinsic inertial effects whereas Flg and Fgl are the inertial cross-terms. They generally depend
on the void fraction, the porous medium geometry and the structure of the flow at pore scale but
also on the liquid and gas velocities 〈vl〉 and 〈vg〉.

To simplify the nomenclature, we introduce the notations:

〈vθ〉 = Uθ (4)

〈pθ〉θ = Pθ (5)



In the z-direction, the 1-D system of equations can be rather written for each phase in the general
form:

−∂Pg/∂z = ρgg + agUg + bgUg
2 + cgUgUl + dgUl + egUl

2 (6)

−∂Pl/∂z = ρlg + alUl + blUl
2 + clUlUg + dlUg + elUg

2 (7)

In which the superficial velocity Uθ of the phase θ is related to the intrinsic average velocity 〈vθ〉θ
in a porous medium of porosity ε by:

Uθ = εSθ〈vθ〉θ (8)

with Sθ the θ-phase saturation.

The benefit of writing it in this general form is that it allows to embed any form of the pressure
drop equation or any interfacial friction law, quadratic in the phases velocities, which is the case
for the interfacial friction laws present in the literature (Tung and Dhir (1988), Schulenberg and
Müller (1987), Schmidt (2007)).
If the tensors K and F are assumed diagonal (Kij=0, Fij=0 for i6=j) by considering that the cross-
terms in both tensors are null, then only the intrinsic inertial terms are included and it renders
Ergun’s law (Ergun (1952)) in the form:

−∂Pθ
∂z

= ρθg +
µθ
κ
Uθ +

ρθ
η
Uθ

2 (9)

where κ and η represent the intrinsic permeability and passability of the medium. The linear and
quadratic velocity terms in the right hand side of Eq. 9 represents the viscous and kinetic energy
losses per unit length respectively.

For spherical particles, combining this law with Kozeny-Carman equation Carman (1937), the
permeability and passability are obtained correlated to the particles diameter dp and the porosity
ε of the bed as follows:

κ =
ε3dp

2

180(1− ε)2
and η =

ε3dp
1.75(1− ε)

(10)

For the two-phase flow in a porous medium, the Darcy-Forchheimer equation for each phase θ is
written in a similar form as Eq. 9. It is further generalized to include the relative permeability
κθ and the relative passability ηθ which have been determined for spherical particles according
to different correlations. A widely used and rather classical relations for a two-phase (liquid-gas)
system was proposed by Brooks and Corey (1966) to define relative permeability and relative
passability of each phase as follows:

κl = (1− α)nκ and ηl = (1− α)nη (11)

κg = αnκ and ηg = αnη (12)

where α = Sg is the void fraction and the subscripts (l, g) refer to the phases (liquid, gas).

This classical formulation was cited many times in the literature by several authors (Lipinski
(1984), Reed (1982) and Hu and Theofanous (1991)) who proposed different sets of the exponents
nκ and nη. A different formulation was later proposed by Fourar and Lenormand (2000) in which



the relative permeability is equal to the relative passability for the same fluid phase and where the
gas phase relative permeability and passability not only depended on the void fraction but also on
the viscosities of liquid and gas.

The generalized Darcy Forchheimer momentum equations (including Forchheimer correction fac-
tors but no cross-terms) for the two-phase (liquid, gas) system are written as:

−∂Pg
∂z

= ρgg +
µg
κκg

Ug +
ρg
ηηg

Ug
2 (13)

−∂Pl
∂z

= ρlg +
µl
κκl

Ul +
ρl
ηηl

Ul
2 (14)

However, adding an interfacial friction law to the momentum equations introduces some cross-
terms. A convenient law that is often used in thermal-hydraulics codes to study this type of flow
in porous media is the Schulenberg-Muller law (Schulenberg and Müller (1984)). The authors
correlated their data based on experimental results of debris bed bottom reflooding tests and
deduced an equation for the interfacial friction from the measured pressure drop in the bed. It
will be considered in this study to produce the results and it is defined as follows:

−∂Pg
∂z

= ρgg +
µg
κκg

Ug +
ρg
ηηg

Ug
2 +

Fi
α

(15)

−∂Pl
∂z

= ρlg +
µl
κκl

Ul +
ρl
ηηl

Ul
2 − Fi

1− α
(16)

where Fi represents the interfacial drag force defined by:

Fi = 350 (1− α)7 α
ρlK

ησ
(ρl − ρg) g (

Ug
α
− Ul

1− α
)2 (17)

with σ being the surface tension. They adopted Brooks and Correy relations (Brooks and Corey
(1966)) for the liquid phase relative permeability and passability with:

κl = (1− α)3 and ηl = (1− α)5 (18)

whereas for the gas phase, they assumed a relative permeability of κg = α3 and deduced the
corresponding relative passability ηg to be:

ηg = 0.1α4 : α 6 0.3 and α6 : α > 0.3 (19)

Inlet Velocity The development of the analytical model starts by writing the mass and energy
balance equation for the fluid and the solid particles, in a frame of reference moving with the
quench front velocity vqf , between the elevations (z0, z1) and (z1, z2). They correspond to the
quench front level, start of two-phase zone and the end of the two phase zone respectively as shown
in Figure 1.

First, water is injected into the system from bottom and moves upwards. Below the quench front



Figure 1: Two phase flow redistribution

level, the flow is assumed purely liquid and, for a given elevation, the pressure in the center is
approximately equal to that in the bypass, so we can write:

∂Pl
∂z

c

≈ ∂Pl
∂z

b

(20)

The Reynold’s number for this flow in the central porous layer is:

Recl =
ρlv

inj
l dcp

µl(1− εc)
(21)

For an injection velocity vinjl =1.388x10−3 m/s, Rec=24.3, and for the bypass zone Reb=48.6.
Hence, the inertial terms should be included. Eq. 20 is thus expanded using the single-phase
Darcy-Forchheimer equation as defined by Eq. 9:

−ρlg −
µl
κc
U c in
l − ρl

ηc
(U c in

l )2 = −ρlg −
µl
κb
U b in
l − ρl

ηb
(U b in

l )2 (22)

thus arriving at a quadratic equation relating U c in
l and U b in

l .



On the other hand, writing the mass balance equation between the injection level and this level,
we obtain:

εcScρlv
c in
l + εbSbρlv

b in
l = ε0(Sb + Sc)ρlv

inj
l (23)

with
U c in
l = εcvc inl and U b in

l = εbvb inl (24)

Substituting Eq. 23 into the quadratic Eq. 22, we can then explicitly relate each of vb inl and vc inl

to the injection velocity vinjl .

Quench Front Velocity The quasi static propagation of the quench front is assumed upon the
observations made in the PEARL experiments where the quench front velocity was quasi-constant
as well as the steam production rate (Chikhi et al. (2015)). However, some other dynamic processes
occur fastly in the beds and they are regarded as transient effects corresponding to: (1) the arrival
of the quench front at the bottom superheated debris bed and (2) its exit at the top of the debris
bed at the last phase of the quenching process. The quasi-constant steam production rate during
reflooding a superheated debris bed was also observed by Tutu et al. (1984) and Tung and Dhir
(1983).

We Proceed by writing the mass balance equation for the fluid between elevations z1 and z2 in a
relative frame of reference moving at the quench front velocity vqf :

αc1ε
cScρg(v

c
g1 − vqf ) + (1− αc1)εcScρl(vcl1 − vqf ) + (1− αb1)εbSbρl(vbl1 − vqf )

= αc2ε
cScρg(v

c
g2 − vqf ) + αb2ε

bSbρg(v
b
g2 − vqf )

(25)

in which the subscripts 1 and 2 refer to the elevations z1 and z2 respectively, with αc2=α
b
2=1 (exiting

as pure steam), and αb1=0 (only liquid enters into the bypass at the quench front level).

Then writing the energy balance equation between elevations z1 and z2 in a frame of reference
moving at the quench front velocity vqf , with the saturation temperature Tsat = 273K as a
reference temperature:

αc1ε
cScρg(v

c
g1 − vqf )hsatg + (1− αc1)εcScρl(vcl1 − vqf )hsatl + εbSbρl(v

b
l1 − vqf )cpl∆T bl

= (1− εc)Scρs(vcs2 − vqf )cps∆T cs + (1− εb)Sbρs(vbs2 − vqf )cps∆T bs

αc2ε
cScρg(v

c
g2 − vqf )(hsatg + cpg∆T

c
g ) + αb2ε

bSbρg(v
b
g2 − vqf )(hsatg + cpg∆T

b
g )

(26)

with vbs2 = vcs2=0 (fixed solid), and assuming that the superheated steam exits at the same temper-
ature from the center and the bypass (∆T cg = ∆T bg = ∆Tg). Eq. 26 can be reformed and written
as:

[εcScρg(v
c
g2 − vqf ) + εbSbρg(v

b
g2 − vqf )](hsatg + cpg∆Tg)

= αc1ε
cScρg(v

c
g1 − vqf )hsatg + (1− αc1)εcScρl(vcl1 − vqf )hsatl

+εbSbρl(v
b
l1 − vqf )cpl∆T bl + (1− εc)Scρsvqfcps∆T cs + (1− εb)Sbρsvqfcps∆T bs

(27)



Substituting Eq. 25 into Eq. 27 to eliminate the terms refering to elevation z2 and regrouping the
terms associated to vqf , we get:

vqf{αc1εcScρgcpg∆Tg + (1− αc1)εcScρl(∆hsat + cpg∆Tg)

+ρscps[(1− εc)Sc∆T cs + (1− εb)Sb∆T bs ] + εbSbρl(h
sat
g + cpg∆Tg − cpl∆T bl )}

= εbSbρlv
b
l1(h

sat
g + cpg∆Tg − cpl∆T bl ) + αc1ε

cScρgv
c
g1cpg∆Tg

+(1− αc1)εcScρlvcl1(∆hsat + cpg∆Tg)

(28)

Now, for the fluid at the bottom (between z0 and z1), writing the mass balance equation, we get:

αc1ε
cScρgv

c
g1 + (1− αc1)εcScρlvcl1 + εbSbρlv

b
l1 = ε0ρl(S

b + Sc)vinjl (29)

In quench front velocity formulation (Eq. 28), knowing that the first term of the right-hand-side
can be written in the form:

εbSbρlv
b
l1(h

sat
g + cpg∆Tg) = εbSbρlv

b
l1(∆h

sat + cpg∆Tg) + εbSbρlv
b
l1h

sat
l (30)

Then Eq. 28 can be written as:

vqf =
F

E
=

F1 + F2 + F3

E1 + E2 + E3 + E4

(31)

F [j/s] and E [j/m] terms are listed in the Appendix A.1.

The ratio of the quench front velocity vqf to the injection velocity vinj is defined by γu:

γu =
vqf

vinjl

=
F

vinjl E
(32)

Water-to-Steam Conversion During reflooding the superheated debris bed with a constant
injection rate, the injected water evaporates and steam is produced and collected downstream the
beds. In the analysis of reflooding a homogeneous superheated debris bed, (Tutu et al. (1984)) and
(Tung and Dhir (1983)) had proposed a formulation of the water-to-steam conversion rate. Chikhi
et al. (2015) have later proposed an updated formulation taking into account two specific features
of the PEARL experiment which are relevant to the formed debris bed in a damaged reactor core.
Following a similar approach, this model is developed to take into account the presence of a lateral
(layer bypass) of larger permeability surrounding the central debris bed.

The ratio of the steam production rate to the water injection rate is called the water-to-steam
conversion rate γcr. It is regarded as a measure of the efficiency of reflooding and defined by:

γcr =
φoutg

φinjl
(33)



Having estimated the quench front velocity vqf obtained upon computing γu, we attempt to derive
a formulation for the water-to-steam conversion ratio which relates the mass flow rate of steam
produced at the outlet to the injected water flow rate by Eq. 33 where:

φoutg = εcScρgvg2 + εbSbρgv
b
g2 (34)

is determined by Eq. 25 by:

εcScρgv
c
g2 + εbSbρgv

b
g2 = αc1ε

cScρg(v
c
g1 − vqf ) + (1− αc1)εcScρl(vcl1 − vqf )

+εbSbρl(v
b
l1 − vqf ) + (εcScρg + εbSbρg)v

qf

(35)

Regrouping the terms associated to vqf and substituting the other velocity terms using Eq. 29, we
obtain:

φoutg = ε0ρl(S
b + Sc)vinjl − vqf [αc1εcScρg + (1− αc1)εcScρl

+εbSbρl − (εcScρg + εbSbρg)]
(36)

or more simply

φoutg = ε0ρl(S
b + Sc)vinjl − v

qf (ρl − ρg)(εbSb + εcSc − αc1εcSc) (37)

by definition the conversion rate is given by:

γcr =
φoutg

φinjl
=

φoutg

ε0ρl(Sb + Sc)vinjl

(38)

Therefore, the derived water-to-steam conversion rate γcr is given by:

γcr = 1− γu[(1−
ρg
ρl

)(
εbSb + εcSc

ε0S
− εcScαc1

ε0S
)] (39)

Defining the relative cross-sectional surface ratio of the central bed to the total surface by ψ:

ψ =
Sc

S
=

Sc

Sc + Sb
(40)

We can then simply write:

γcr = 1− γu
ε0

[(1− ρg
ρl

)(εb(1− ψ) + εcψ(1− αc1))] (41)

where

γu =
vqf

vinjl

(42)

S is the total crossectional surface, vinjl is the water injection velocity and vqf is the velocity of
the quench front which is assumed quasi-static.



Figure 2: Single phase flow simulation - Steam redistribution into the bypass for different injection velocities

Entrainment Velocity of Water Upon water injection and evaporation, steam produced at the
quench front level is redistributed radially into the bypass. Single phase steam flow simulations
showed that for different injection flow rates, there exists a length Hd over which this redistribution
occurs (Figure 2). This length Hd is approximately the same for different flow rates, it correponds
to the elevation z2 above the quench front level and above which no more steam or water is
redirected radially into the bypass.

φr c→bg (z = Hd) ≈ 0 (43)

where φr c→bg (z) represent the integral steam flux redistributed radially, from the central layer to
the bypass, up to an elevation z.

At this level, the pressure in the center is approximately equal to that in the bypass. This allows
writing an equality of the vertical pressure gradients for the gas phase in the center and the bypass:

∂Pg
∂z

c

≈ ∂Pg
∂z

b

(44)

Expanding this equality using the Darcy-Forchheimer equation (Eq. 9) renders a quadratic equa-
tions relating the gas phase velocities in the center and the bypass by:

ρgg +
µg
κc
U c
g +

ρg
ηc

(U c
g )

2 = ρgg +
µg
κb
U b
g +

ρg
ηb

(U b
g)

2 (45)



Then relating the flow rate of steam produced to the water injection flow rate, as defined earlier
by the conversion rate equation (Eq. 33):

γcr ρl S v
inj
l = ρg S v

out
g (46)

γcr ρl S v
inj
l = αbρgε

bSbvbg + αcρgε
cScvcg (47)

At this level, it is pure steam exiting the center (αc=1) at the top of the two-phase zone. Eq. 47
is then reformed to relate vcg, v

b
g, and vinjl by the following equation:

vcg =
ψαbεb

εc(ψ − 1)
vbg +

γcrρl
ρgεc(1− ψ)

(vinjl ) (48)

Combining Eq. 48 and Eq. 45 reduces to a quadratic equation in vbg of the form:

(vbg)
2 + r1 v

b
g + s1 = 0 (49)

This allows determining the steam velocities vbg and vcg in terms of the injection velocity vinjl and
the system parameters.

Neglecting the capillary effects in the bypass (see Appendix A.2), the pressure of the gas phase can
be assumed equal to that of the liquid phase and thus the following equation holds in the bypass:

∂Pg
∂z

b

≈ ∂Pl
∂z

b

(50)

Expanding it using Darcy-Forchheimer equations for two-phase flow written in the general form:

ρgg + agUg + bgUg
2 + cgUgUl + dgUl + egUl

2 = ρlg + alUl + blUl
2 + clUlUg + dlUg + elUg

2 (51)

arrives a quadratic equation in vbl (velocity of water in the bypass), it has the form:

(vbl )
2 −ml v

b
l + nl = 0 (52)

in which

ml =
(cg − cl)vg + dg − al

bl − eg
nl =

(ρl − ρg)g + vg(dl − ag) + vg
2(el − bg)

bl − eg
(53)

The solution vbl (α) for Eq. 52 is the first solution relating the velocity of the entrained water into
the bypass vbl to the steam velocity and physical properties of the medium and the flow, it is given
by:

vbl (α) = +
1

2
ml [1±

√
1− 4

nl
ml

2
] (54)

Written in this general form, Eq. 51 enables testing of any proposed variation in the momentum
equations and assessing the sensitivity of the solutions to its terms.



The PEARL tests experimental results obtained at IRSN (Chikhi et al. (2015)) were considered
for comparison. The main characteristics of those tests are listed in Table 1. Adopting the same
configuration, the total height of the debris bed is H=0.5 m, the radius of the central bed is
Rc=0.225 m whereas the more permeable bypass had a radial thickness of 0.045 m making the
total radius of the system Rext=0.27 m. The diameter of the particles in the center is dcp=4 mm
whereas the more permeable bypass was composed of particles of larger diameter dbp=8 mm.

Table 1: PEARL Tests

Test Initial temperature Injection velocity Pressure Flooding
number (degC) (m/h) (bar) mode

PA0 150 5 1 Bottom
PA1 400 5 1 Bottom
PA2 700 5 1 Bottom
P22 700 5 2 Bottom
PA4 400 2 1 Bottom
PA5 400 10 1 Bottom
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Figure 3: Non-dimensional vertical pressure gradient in bypass as function of void fraction αb



For water to get entrained and advance in the bypass (i.e. obtaining non-zero solutions for vbl ), the
vertical pressure gradient must be larger than the hydrostatic pressure. The necessary condition for
the entrainment of water in the bypass is defined by a threshold represented by the non-dimensional
vertical pressure gradient in the bypass ω (Figure 3):

ω = [
∂P b

g

∂z
]/[ρlg] (55)

The threshold is ω=1. Below this threshold the entrainment of water in the bypass is impossible
and the advance of water in the bypass is limited to the quench front velocity. The dashed lines
correspond to the Generalized Darcy form of the momentum equations (i.e. no cross-terms, Kij=0,
Fij=0 for i 6=j) whereas solid lines correpond to the Darcy-Forchheimer momentum equations (in-
cluding cross-terms Kij, Fij). Entrainment occurs when the velocity of water in the bypass is
significantly higher than the latter; with a least ratio U b

l /U
qf > 1.5 which corresponds to the

situations where the pressure gradient is sufficiently larger than the hydrostatic pressure.

For instance, considering three PEARL tests (PA1, PA2, and PA5) with different injection veloci-
ties. The quench front velocity and the conversion rate were obtained by the analytical model and
the results of the modeled water velocity in the bypass vbl (α) provided by Eq. 54 (1st solution)
are presented in Figure 4. It shows the occurence of water entrainment in the bypass in all cases
as demonstrated by the experiments with a 2-D shaped quench front propagation.
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Figure 4: Entrained water velocity as function of void fraction vb
l (α) for different PEARL tests - 1st solution



Figure 5: Mass balance in the bypass

Alternatively, the velocity of the entrained water is estimated by writing the mass balance equa-
tion over a control volume in the bypass between the quench front level z1 and the top of the
redistribution level z2 as demonstrated in Figure 5. The mass balance over the orange contour
writes: ∑

φin =
∑

φout (56)

φb inl + φcbg = φbl + φbg (57)

with
φcbg = φbg (58)

φbl = (1− αb) ρl εb Sb (vbl − vqf ) (59)

φb inl = ρl ε
b Sb (vb inl − vqf ) (60)

where vb inl is previously calculated by Eq. 23.

This provides another estimation of the water velocity in the bypass in terms of the void fraction
αb, injection velocity vinjl and the quench front velocity vqf , defined by:

vbl =
(vb inl − αbvqf )

1− αb
(61)
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Figure 6: Entrained water velocity as function of void fraction vb
l (α) for different PEARL tests - 2nd solution

This is a second solution for the velocity of entrained water in bypass vbl (α). It is presented in
Figure 6 as function of the void fraction. An overlay of the two modeled solutions of vbl (α) provided
by Eq. 54 and Eq. 61 presented in Figure 7 shows that the respective curves intersect at particular
solutions whose abscissa αi (Figure 8) are the void fractions in the bypass corresponding to each
case, depending on the system characteristics and flow conditions.

However, instead of following this methodology of finding the intersect of two solutions for vbl (α),
Newton-Raphson method could be applied to solve the same system of equations. In the latter
case, we will only obtain the particular solution as a scalar output instead of profiles function
of the void fraction, and problems while attempting convergence could also rise. The considered
methodology provides a more clear view and helps to identify the behavior of the solutions and its
sensitivity to the different input parameters.

Comparison against Experimental Results For the considered cases, the occurence of water
entrainment in the bypass was demonstrated by the condition U b

l /U
qf > 4. This is consistent

with the observations made upon the reflooding test where a 2-D shaped (U b
l > U qf ) quench front

propagation was obtained.

Table 2 compares the modeled results to the experimental results obtained for the considered
PEARL tests. vqfc and vqfb are the measured quench front velocities in the center and the bypass.
The modeled quench front velocity is comparable to that measured experimentally in the central
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Figure 7: Velocity of entrained water in the bypass vb
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(intersect of solutions)

Table 2: Comparison of the Analytical Model Against Experimental Results for Different PEARL Tests; velocities
unit=(mm/s)

Porous medium Experiment Analytical model

Test vinjl vqfb vqfc vbl vqf

PA1 3.472 7.3 2.17 13.10 2.20
PA2 3.472 14.2 1.00 16.10 1.62
P22 3.472 7.19 1.42 14.00 1.74
PA5 6.944 19.0 2.51 30.80 3.20
PA4 1.388 1.25 1.04 0.98 0.98

bed. In the bypass, the estimated velocity of the entrained water surpasses the quench front veloc-
ity for two main reasons; the analytical model estimates the water velocity which is generally faster
than the quench front and there is also some uncertainty over the measurement of quench front
velocity in the 4.5 cm thick bypass by a single thermocouple in the radial direction. Furthermore,
the model succeeded to predict the entrainment of water in the bypass in all the cases (PA1, PA2,
P22, and PA5) in which water advances in the bypass at velocities higher than the quench front
velocity. However, the results obtained without the interfacial friction terms (i.e. using General-
ized Darcy-Forchheimer law with all cross-terms Klg, Kgl, Flg, and Fgl set null) couldn’t predict



Figure 8: Intersection of bypass water velocity curves at the particular solution at abcissa αi - (Solutions intersect,
Zoom-in)

well the entrainment behavior. This is due to the fact that the considered cases correspond to the
limiting geometric and flow conditions for which the predefined threshold for entrainment occur-
rence is compromised. Excluding the cross-terms from the momentum equations underestimated
the vertical pressure gradient in the bypass in some cases (insufficient for entrainment, see Figure
3). For higher injection flow rates, the entrainment could be predicted. Yet, including non-zero
cross-terms is necessary to obtain good estimations.

Conclusion

In this study, an investigation of two-phase (water and steam) flow in a heated porous medium
composed of two cylindrical layers of contrasting porosity and permeability was conducted. An
analytical two-phase model was derived to describe the entrainment behavior of water into the
bypass. The criterion for which the entrained water progresses in the bypass faster than the
quench front velocity has been examined for different cases. The velocity of the entrained water in
bypass was estimated analytically as well as the void fraction in the bypass for the corresponding
system configuration and flow conditions.

This simplified analytical model forms a tool to perform fast calculations of two phase flow redis-
tribution in such a porous layers system, with different thickness, porosity and permeability and
assess the conditions for water entrainment. It also allows testing different correlations in the vari-



ations of the momentum equations for porous media such as relative permeability and passability
correlations, interfacial friction laws ...

The model provides good qualitative and quantitative results for two-phase flow redistribution
downstream of the quench front as compared to the results obtained in PEARL reflooding tests
where it predicts the occurrence of entrainment (advance of water in the bypass at a velocity vbl
higher than the quench front velocity vqf ) and a comparable water velocity in all the cases.

The developed model has several advantages. It is written in a rather general form including the
Forchheimer correction terms and non-zero cross-terms in the generalized Darcy-Forchheimer mo-
mentum equation. It allows to test easily and efficiently any proposed variation of the momentum
equation including changes in correlations and friction laws up to quadratic terms. The model
allows performing fast evaluations of the efficiency of cooling by computing the fraction of the
injected flow rate that participates in cooling. Upscaling to the reactor scale is straightforward,
provided the geometry and boundary conditions are respected. Thus the model is very useful to
estimate the total quenching time and the maximum temperature that could be reached by the hot
debris bed at large scales in accidental conditions. It can be also used to perform sensitivity studies
on the physical properties of the particle beds and the fluid, as well as different variations of the
momentum equations. For instance, it was shown that the Generalized Darcy law is not able to
provide acceptable evaluations whereas considering non-zero cross-terms in the Darcy Forchheimer
equation by including an interfacial friction law succeeds in obtaining better results.

Further investigation and parametric studies to precise the effect of the geometrical characteristics
of the debris bed and flow conditions on the redistribution are foreseen in addition to sensitivity
studies concerning interfacial friction laws and relative permeability and passability correlations.



Appendix

A.1 Quench Front Velocity Formula

vqf =
F vqf

Evqf
=

F1 + F2 + F3

E1 + E2 + E3 + E4

(62)

where

F1 = [ε0ρl(S
b + Sc)vinjl ]cpg∆Tg

F2 = (1− αc1)εcScρlvcl1∆hsat

F3 = εbSbρlv
b
l1(h

sat
g − cpl∆T bl )

(63)

and
E1 = ρscps[(1− εc)Sc∆T cs + (1− εb)Sb∆T bs ]

E2 = αc1ε
cScρgcpg∆Tg

E3 = (1− αc1)εcScρl(∆hsat + cpg∆Tg)

E4 = εbSbρl(h
sat
g + cpg∆Tg − cpl∆T bl )

(64)

A.2 Capillary Effects

The capillary pressure Pc is defined the pressure difference between the liquid and gas phases:

Pc = Pg − Pl (65)

The capillary length for water is defined as:

lc =

√
σ

(ρl − ρg)g
(66)

where σ is the surface tension. The capillary length for water is approximately 2 mm, and consid-
ering the bypass particles size (8 mm in diameter) are larger than lc, the capillary effects can be
neglected in this case. Hence, the pressure of the gas phase can be set equal to that of the liquid
phase and thus the following equation holds in the bypass:

∂Pg
∂z

b

≈ ∂Pl
∂z

b

(67)
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