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Motivated to investigate debris bed coolability in a damaged nuclear reactor core by bottom reflooding, this paper studies the physical situation involving injection of water into a superheated particle bed leading to high velocity flow of steam. The particle bed is composed of two cylindrical concentric parts and stratified vertically. One of the particular features of the studied configuration is that quenching of the superheated particles generates a strong flow of steam which may create a vertical pressure gradient leading the water in the lateral, more permeable medium, to flow faster than the injection velocity and consequently reducing the efficiency of cooling. The aim is to propose an analytical model to predict the behavior of water entrainment in the lateral layer (bypass) of larger permeability and porosity. This model computes the quench front velocity, water-to-steam conversion ratio, and the velocity of water in the bypass. It provides good qualitative and quantitative results for the two-phase flow redistribution as compared to experimental data. It also has several advantages as it allows: performing fast evaluations of the efficiency of cooling, upscaling to reactor-scale straightforwardly, and performing sensitivity studies on the physical properties of the particle beds and the fluid, and the variations of the momentum equations. For instance, it showed that the Generalized Darcy law was not sufficient to obtain acceptable evaluations whereas considering non-zero cross-terms in the Darcy Forchheimer equation by including an interfacial friction law succeeds in obtaining better results.

Introduction

Debris Bed Formation Following a loss of coolant accident in a PWR (pressurized water reactor), the reactor core gets uncovered and starts to accumulate residual heat. As the accident evolves, core heating and oxidation of the fuel cladding by the coolant vapor provoke core degradation. In this case reflooding the core can cause a thermal shock and the embrittlement of the cladding, hence forming a porous debris bed in the core. Severe accidents arising from the fusion of the nuclear reactor core must be anticipated to enhance the efficiency of its mitigation. Such accidents have occurred in Chernobyl-1984, at the Three Mile Island unit-2 (TMI-2) in the USA-1979, and recently in Fukushima, Japan-2011 where 3 reactors were destroyed. The concept of debris bed formation was introduced by [START_REF] Akers | Core materials inventory and behavior[END_REF] and [START_REF] Mccardell | Summary of tmi-2 core sample examinations[END_REF] upon the post-accident examination of the Three Mile Island unit-2 (TMI-2) that occured in the USA-1979. In the latter accident, the debris bed composed particle of sizes ranging over few millimeters [START_REF] Akers | TMI-2 core debris grab samples examination and analysis[END_REF], [START_REF] Broughton | A scenario of the Three Mile Island unit 2 accident[END_REF]) due to the relocation of molten materials inside the core upon quenching of the very hot rods being uncovered. In such situations different debris bed configurations might exist such as the formation of a debris bed surrounded by an intact zone of fuel rods or the existence of compact zones of very small particles limiting the coolant penetration.

Debris Bed Coolability

The reflooding models used for Loss of Coolant Accident (LOCA) are not applicable for debris bed cooling. And as severe accident management is crucial, the question of debris coolability has to be resolved. Several experimental programs on debris coolability have been performed over the last decades following the TMI accident, aiming at determining the maximum power that can be extracted from a heated debris bed by water reflooding. Top and bottom reflooding experiments were performed [START_REF] Hofmann | On the location and mechanisms of dryout in top-fed and bottom fed particulate beds[END_REF], [START_REF] Tutu | Debris bed quenching under bottom flood conditions[END_REF], [START_REF] Reed | DCC-1/DCC-2 degraded core coolability analysis[END_REF], and [START_REF] Hu | On the measurement of dryout in volumetrically heated coarse particle beds[END_REF]). And more recently debris bed coolability is again under investigation with experimental programs such as DEBRIS [START_REF] Schäfer | Basic investigations on debris coolability[END_REF]) at IKE in Germany, PRELUDE and PEARL [START_REF] Stenne | Multidimensional reflooding experiments: the pearl program, in: OECD/NEAEC/SARNET2 Workshop[END_REF], [START_REF] Repetto | Experimental program on debris reflooding (pearl) -results on prelude facility[END_REF], [START_REF] Repetto | Main outcomes on debris bed cooling from prelude experiments[END_REF], and [START_REF] Chikhi | First experimental resutls of large scale debris bed reflood tests in the pearl facility[END_REF]) which were launched by IRSN to investigate the thermal hydraulics of the reflooding process and develop new reflooding models and to validate 2D/3D models. The aim is to predict the consequences of the water reflooding of a severely damaged reactor core where a large part of the core has collapsed and formed a debris bed.

The Scope and System Under Study Modeling two-phase flow in stratified heterogeneous porous media is a problem often investigated in several scientific fields such as petroleum engineering, hydrology, and soil science. Different mathematical models to describe the Darcean and inertia flow of two immiscible phases in a porous medium were proposed in the literature. While upscaling methods applied to the pore-scale equations leads to more general two-phase flow models, the model used in this investigation is based on a multiphase extension of Darcy-Forchheimer's equations [START_REF] Forchheimer | Wasserbewegung durch boden[END_REF]) with a friction term, as suggested by the theoretical results. One of the particular features of the studied configuration is that a strong flow of steam is generated by quenching of the superheated particles. Under certain conditions, this steam flow is able to create a vertical pressure gradient which can lead the water in the more permeable medium to flow faster than the injection velocity. As a consequence, some of the injected water does not participate to the cooling of the central porous medium and the efficiency of cooling is reduced. This paper deals with the study of particle bed coolability in a damaged nuclear reactor core upon a loss of coolant accident, by water injection from the bottom (reflooding). This physical situation involves a strong evaporation of water in the particle bed, leading to high velocity flow of steam. It has been investigated by several authors until recently [START_REF] Tutu | Debris bed quenching under bottom flood conditions[END_REF], [START_REF] Atkhen | Experimental and numerical investigations on debris bed coolability in a multidimensional and homogeneous configuration with volumetric heat source[END_REF], [START_REF] Chikhi | First experimental resutls of large scale debris bed reflood tests in the pearl facility[END_REF]).

The investigation is concerned in the two phase flow in a particle bed stratified vertically. It is a porous medium composed of two concentric cylindrical layers of contrasting thickness and permeability, the central one being less permeable and less porous. The analytical model is developed to predict the behavior of water in the lateral layer (bypass) of larger permeability and porosity representing the case of bottom reflooding of a hot debris bed surrounded by an intact zone in a degraded nuclear reactor core during an accidental scenario. The redistribution of water and steam into the bypass is investigated in several steps in order to evaluate the pressure gradient which can be generated downstream of the quench front. Considering a set of mass and energy balance equations, taken over frames of reference moving at the quench front velocity, allows estimating the water-to-steam conversion ratio and the quench front velocity. The velocity of water in the bypass, which is shown to be the unique solution of a system of two equations (mass conservation and momentum conservation) is then computed and consequently the flow rates of water and steam donwstream. The results are then compared to PEARL bottom reflooding experimental tests [START_REF] Chikhi | First experimental resutls of large scale debris bed reflood tests in the pearl facility[END_REF]).

The presence of intact zones (bypass) surrounding a hot debris bed formed upon a severe accident in a nuclear reactor core lead to the significant diversion of the injected coolant flow, in the aim of achieving the cooling of the heat-accumulating hot debris bed, into the periphery provided it is highly permeable compared to the debris bed. It can extend the time required to achieve a total quenching of the hot debris bed questioning its coolability which also depends on the initial thermal state of the bed. If for instance the formed debris bed resulting from a severe accident was being uncovered and heated up to high temperatures, the reflooding process in the presence of a highly permeable bypass could allow certain zones in the debris bed to continue further heating compromising its coolability as it could reach the melting point if the coolant didn't succeed to penetrate to that zone. It is therefore a major concern to investigate thoroughly the behavior of water entrainment in the bypass during the reflooding process in order to estimate the corresponding limitations and define the factors that describe the coolability of the debris bed.

Analytical model development -Two phase flow redistribution

Physical laws To investigate such a two-phase flow in a porous medium, an analytical model will be derived to describe the entrainment behavior of water into the bypass. The change of scale for Stokes flow equation and continuity has already been investigated leading to Darcy's law [START_REF] Whitaker | The forchheimer equation : a theoretical development[END_REF]). The equations used to develop this model are based on Darcy's law [START_REF] Darcy | Fontaines Publiques de la Ville de Dijon[END_REF]) with Forchheimer correction [START_REF] Forchheimer | Wasserbewegung durch boden[END_REF]) to include non-linear velocity terms. In a homogeneous medium, for a single phase θ, the Darcy-Forchheimer law relates the gradient of the intrinsic phase-averaged pressure ∇ p θ θ , where p θ is the pore-scale pressure field, to the average velocity (filtration velocity), v θ , where v θ is the pore-scale velocity field, as:

v θ = - K µ θ • (∇ p θ θ -ρ θ g) -F( v θ ). v θ (1)
where K is the intrinsic permeability tensor of the medium, g is the gravitational acceleration, (p θ , ρ θ , µ θ ) are the pressure, density, and dynamic viscosity of the θ-phase, and F is the Forchheimer correction tensor. Both tensors K and F are isotropic. A discussion on the estimation of the inertial contribution for particle debris beds can be found in [START_REF] Clavier | Étude expérimentale et modélisation des pertes de pression lors du renoyage d'un lit de débris[END_REF].

For a (liquid-gas) two-phase flow system, the equations obtained theoretically by [START_REF] Lasseux | Two-phase inertial flow in homogeneous porous media: A theoretical derivation of a macroscopic model[END_REF] have the following structure:

v l = - K ll µ l • (∇ p l l -ρ l g) -F ll • v l + K lg • v g -F lg • v g (2) v g = - K gg µ g • (∇ p g g -ρ g g) -F gg • v g + K gl • v l -F gl • v l (3) 
Tensors K ll and K gg represent the intrinsic viscous terms for each phase, whereas K lg and K gl are the viscous cross-terms. In quasi-static conditions, these tensors are independent of velocity of each phase but rather influenced and described by the void fraction, the geometry of the porous medium, and the structure of the flow at pore scale [START_REF] Clavier | Étude expérimentale et modélisation des pertes de pression lors du renoyage d'un lit de débris[END_REF]). Tensors F ll and F gg represent the intrinsic inertial effects whereas F lg and F gl are the inertial cross-terms. They generally depend on the void fraction, the porous medium geometry and the structure of the flow at pore scale but also on the liquid and gas velocities v l and v g .

To simplify the nomenclature, we introduce the notations:

v θ = U θ (4) p θ θ = P θ (5) 
In the z-direction, the 1-D system of equations can be rather written for each phase in the general form:

-∂P g /∂z = ρ g g + a g U g + b g U g 2 + c g U g U l + d g U l + e g U l 2 (6) -∂P l /∂z = ρ l g + a l U l + b l U l 2 + c l U l U g + d l U g + e l U g 2 (7)
In which the superficial velocity U θ of the phase θ is related to the intrinsic average velocity v θ θ in a porous medium of porosity ε by:

U θ = εS θ v θ θ (8)
with S θ the θ-phase saturation.

The benefit of writing it in this general form is that it allows to embed any form of the pressure drop equation or any interfacial friction law, quadratic in the phases velocities, which is the case for the interfacial friction laws present in the literature [START_REF] Tung | A hydrodynamic model for two-phase flow through porous media[END_REF], [START_REF] Schulenberg | An improved model for two-phase flow through beds of coarse particles[END_REF], [START_REF] Schmidt | Interfacial drag of two-phase flow in porous media[END_REF]).

If the tensors K and F are assumed diagonal (K ij =0, F ij =0 for i =j) by considering that the crossterms in both tensors are null, then only the intrinsic inertial terms are included and it renders Ergun's law [START_REF] Ergun | Fluid flow through packed columns[END_REF]) in the form:

- ∂P θ ∂z = ρ θ g + µ θ κ U θ + ρ θ η U θ 2 (9) 
where κ and η represent the intrinsic permeability and passability of the medium. The linear and quadratic velocity terms in the right hand side of Eq. 9 represents the viscous and kinetic energy losses per unit length respectively.

For spherical particles, combining this law with Kozeny-Carman equation [START_REF] Carman | The determination of the specific surface area of powder I[END_REF], the permeability and passability are obtained correlated to the particles diameter d p and the porosity ε of the bed as follows:

κ = ε 3 d p 2 180(1 -ε) 2 and η = ε 3 d p 1.75(1 -ε) (10) 
For the two-phase flow in a porous medium, the Darcy-Forchheimer equation for each phase θ is written in a similar form as Eq. 9. It is further generalized to include the relative permeability κ θ and the relative passability η θ which have been determined for spherical particles according to different correlations. A widely used and rather classical relations for a two-phase (liquid-gas) system was proposed by [START_REF] Brooks | Properties of porous media affecting fluid flow[END_REF] to define relative permeability and relative passability of each phase as follows:

κ l = (1 -α) nκ and η l = (1 -α) nη (11) κ g = α nκ and η g = α nη (12) 
where α = S g is the void fraction and the subscripts (l, g) refer to the phases (liquid, gas).

This classical formulation was cited many times in the literature by several authors [START_REF] Lipinski | A coolability model for post-accident nuclear reactor debris[END_REF], [START_REF] Reed | The effect of channeling on the dryout of heated particulate beds immersed in a liquid pool[END_REF] and [START_REF] Hu | On the measurement of dryout in volumetrically heated coarse particle beds[END_REF]) who proposed different sets of the exponents nκ and nη. A different formulation was later proposed by [START_REF] Fourar | Inertial effects in two-phase flow through fractures[END_REF] in which the relative permeability is equal to the relative passability for the same fluid phase and where the gas phase relative permeability and passability not only depended on the void fraction but also on the viscosities of liquid and gas.

The generalized Darcy Forchheimer momentum equations (including Forchheimer correction factors but no cross-terms) for the two-phase (liquid, gas) system are written as:

- ∂P g ∂z = ρ g g + µ g κκ g U g + ρ g ηη g U g 2 (13) - ∂P l ∂z = ρ l g + µ l κκ l U l + ρ l ηη l U l 2 (14)
However, adding an interfacial friction law to the momentum equations introduces some crossterms. A convenient law that is often used in thermal-hydraulics codes to study this type of flow in porous media is the Schulenberg-Muller law [START_REF] Schulenberg | A Refined Model for the Coolability of Core Debris with Flow Entry from the Bottom. 6th Information Exchange Meanding on Debris Coolability[END_REF]). The authors correlated their data based on experimental results of debris bed bottom reflooding tests and deduced an equation for the interfacial friction from the measured pressure drop in the bed. It will be considered in this study to produce the results and it is defined as follows:

- ∂P g ∂z = ρ g g + µ g κκ g U g + ρ g ηη g U g 2 + F i α (15) - ∂P l ∂z = ρ l g + µ l κκ l U l + ρ l ηη l U l 2 - F i 1 -α (16) 
where F i represents the interfacial drag force defined by:

F i = 350 (1 -α) 7 α ρ l K ησ (ρ l -ρ g ) g ( U g α - U l 1 -α ) 2 (17)
with σ being the surface tension. They adopted Brooks and Correy relations [START_REF] Brooks | Properties of porous media affecting fluid flow[END_REF]) for the liquid phase relative permeability and passability with:

κ l = (1 -α) 3 and η l = (1 -α) 5 (18) 
whereas for the gas phase, they assumed a relative permeability of κ g = α 3 and deduced the corresponding relative passability η g to be:

η g = 0.1 α 4 : α 0.3 and α 6 : α > 0.3 (19)
Inlet Velocity The development of the analytical model starts by writing the mass and energy balance equation for the fluid and the solid particles, in a frame of reference moving with the quench front velocity v qf , between the elevations (z 0 , z 1 ) and (z 1 , z 2 ). They correspond to the quench front level, start of two-phase zone and the end of the two phase zone respectively as shown in Figure 1.

First, water is injected into the system from bottom and moves upwards. Below the quench front level, the flow is assumed purely liquid and, for a given elevation, the pressure in the center is approximately equal to that in the bypass, so we can write:

∂P l ∂z c ≈ ∂P l ∂z b ( 20 
)
The Reynold's number for this flow in the central porous layer is:

Re c l = ρ l v inj l d c p µ l (1 -ε c ) (21)
For an injection velocity v inj l =1.388x10 -3 m/s, Re c =24.3, and for the bypass zone Re b =48.6. Hence, the inertial terms should be included. Eq. 20 is thus expanded using the single-phase Darcy-Forchheimer equation as defined by Eq. 9: On the other hand, writing the mass balance equation between the injection level and this level, we obtain:

-ρ l g - µ l κ c U c in l - ρ l η c (U c in l ) 2 = -ρ l g - µ l κ b U b in l - ρ l η b (U b in l ) 2 ( 
ε c S c ρ l v c in l + ε b S b ρ l v b in l = ε 0 (S b + S c )ρ l v inj l (23) with U c in l = ε c v c in l and U b in l = ε b v b in l (24)
Substituting Eq. 23 into the quadratic Eq. 22, we can then explicitly relate each of v b in l and v c in l to the injection velocity v inj l .

Quench Front Velocity The quasi static propagation of the quench front is assumed upon the observations made in the PEARL experiments where the quench front velocity was quasi-constant as well as the steam production rate [START_REF] Chikhi | First experimental resutls of large scale debris bed reflood tests in the pearl facility[END_REF]). However, some other dynamic processes occur fastly in the beds and they are regarded as transient effects corresponding to: (1) the arrival of the quench front at the bottom superheated debris bed and ( 2) its exit at the top of the debris bed at the last phase of the quenching process. The quasi-constant steam production rate during reflooding a superheated debris bed was also observed by [START_REF] Tutu | Debris bed quenching under bottom flood conditions[END_REF] and [START_REF] Tung | Quenching of a hot particulate bed by bottom quenching[END_REF].

We Proceed by writing the mass balance equation for the fluid between elevations z 1 and z 2 in a relative frame of reference moving at the quench front velocity v qf :

α c 1 ε c S c ρ g (v c g1 -v qf ) + (1 -α c 1 )ε c S c ρ l (v c l1 -v qf ) + (1 -α b 1 )ε b S b ρ l (v b l1 -v qf ) = α c 2 ε c S c ρ g (v c g2 -v qf ) + α b 2 ε b S b ρ g (v b g2 -v qf ) (25) 
in which the subscripts 1 and 2 refer to the elevations z 1 and z 2 respectively, with α c 2 =α b 2 =1 (exiting as pure steam), and α b 1 =0 (only liquid enters into the bypass at the quench front level).

Then writing the energy balance equation between elevations z 1 and z 2 in a frame of reference moving at the quench front velocity v qf , with the saturation temperature T sat = 273K as a reference temperature:

α c 1 ε c S c ρ g (v c g1 -v qf )h sat g + (1 -α c 1 )ε c S c ρ l (v c l1 -v qf )h sat l + ε b S b ρ l (v b l1 -v qf )c pl ∆T b l = (1 -ε c )S c ρ s (v c s2 -v qf )c ps ∆T c s + (1 -ε b )S b ρ s (v b s2 -v qf )c ps ∆T b s α c 2 ε c S c ρ g (v c g2 -v qf )(h sat g + c pg ∆T c g ) + α b 2 ε b S b ρ g (v b g2 -v qf )(h sat g + c pg ∆T b g ) (26) 
with v b s2 = v c s2 =0 (fixed solid), and assuming that the superheated steam exits at the same temperature from the center and the bypass (∆T c g = ∆T b g = ∆T g ). Eq. 26 can be reformed and written as:

[ε c S c ρ g (v c g2 -v qf ) + ε b S b ρ g (v b g2 -v qf )](h sat g + c pg ∆T g ) = α c 1 ε c S c ρ g (v c g1 -v qf )h sat g + (1 -α c 1 )ε c S c ρ l (v c l1 -v qf )h sat l +ε b S b ρ l (v b l1 -v qf )c pl ∆T b l + (1 -ε c )S c ρ s v qf c ps ∆T c s + (1 -ε b )S b ρ s v qf c ps ∆T b s ( 27 
)
Substituting Eq. 25 into Eq. 27 to eliminate the terms refering to elevation z 2 and regrouping the terms associated to v qf , we get:

v qf {α c 1 ε c S c ρ g c pg ∆T g + (1 -α c 1 )ε c S c ρ l (∆h sat + c pg ∆T g ) +ρ s c ps [(1 -ε c )S c ∆T c s + (1 -ε b )S b ∆T b s ] + ε b S b ρ l (h sat g + c pg ∆T g -c pl ∆T b l )} = ε b S b ρ l v b l1 (h sat g + c pg ∆T g -c pl ∆T b l ) + α c 1 ε c S c ρ g v c g1 c pg ∆T g +(1 -α c 1 )ε c S c ρ l v c l1 (∆h sat + c pg ∆T g ) (28) 
Now, for the fluid at the bottom (between z 0 and z 1 ), writing the mass balance equation, we get:

α c 1 ε c S c ρ g v c g1 + (1 -α c 1 )ε c S c ρ l v c l1 + ε b S b ρ l v b l1 = ε 0 ρ l (S b + S c )v inj l ( 29 
)
In quench front velocity formulation (Eq. 28), knowing that the first term of the right-hand-side can be written in the form:

ε b S b ρ l v b l1 (h sat g + c pg ∆T g ) = ε b S b ρ l v b l1 (∆h sat + c pg ∆T g ) + ε b S b ρ l v b l1 h sat l ( 30 
)
Then Eq. 28 can be written as:

v qf = F E = F 1 + F 2 + F 3 E 1 + E 2 + E 3 + E 4 (31) 
F [j/s] and E [j/m] terms are listed in the Appendix A.1.

The ratio of the quench front velocity v qf to the injection velocity v inj is defined by γ u :

γ u = v qf v inj l = F v inj l E (32) 
Water-to-Steam Conversion During reflooding the superheated debris bed with a constant injection rate, the injected water evaporates and steam is produced and collected downstream the beds. In the analysis of reflooding a homogeneous superheated debris bed, [START_REF] Tutu | Debris bed quenching under bottom flood conditions[END_REF]) and [START_REF] Tung | Quenching of a hot particulate bed by bottom quenching[END_REF]) had proposed a formulation of the water-to-steam conversion rate. [START_REF] Chikhi | First experimental resutls of large scale debris bed reflood tests in the pearl facility[END_REF] have later proposed an updated formulation taking into account two specific features of the PEARL experiment which are relevant to the formed debris bed in a damaged reactor core. Following a similar approach, this model is developed to take into account the presence of a lateral (layer bypass) of larger permeability surrounding the central debris bed.

The ratio of the steam production rate to the water injection rate is called the water-to-steam conversion rate γ cr . It is regarded as a measure of the efficiency of reflooding and defined by:

γ cr = φ out g φ inj l (33)
Having estimated the quench front velocity v qf obtained upon computing γ u , we attempt to derive a formulation for the water-to-steam conversion ratio which relates the mass flow rate of steam produced at the outlet to the injected water flow rate by Eq. 33 where:

φ out g = ε c S c ρ g v g2 + ε b S b ρ g v b g2 (34)
is determined by Eq. 25 by:

ε c S c ρ g v c g2 + ε b S b ρ g v b g2 = α c 1 ε c S c ρ g (v c g1 -v qf ) + (1 -α c 1 )ε c S c ρ l (v c l1 -v qf ) +ε b S b ρ l (v b l1 -v qf ) + (ε c S c ρ g + ε b S b ρ g )v qf (35) 
Regrouping the terms associated to v qf and substituting the other velocity terms using Eq. 29, we obtain:

φ out g = ε 0 ρ l (S b + S c )v inj l -v qf [α c 1 ε c S c ρ g + (1 -α c 1 )ε c S c ρ l +ε b S b ρ l -(ε c S c ρ g + ε b S b ρ g )] (36) 
or more simply

φ out g = ε 0 ρ l (S b + S c )v inj l -v qf (ρ l -ρ g )(ε b S b + ε c S c -α c 1 ε c S c ) (37)
by definition the conversion rate is given by:

γ cr = φ out g φ inj l = φ out g ε 0 ρ l (S b + S c )v inj l (38) 
Therefore, the derived water-to-steam conversion rate γ cr is given by:

γ cr = 1 -γ u [(1 - ρ g ρ l )( ε b S b + ε c S c ε 0 S - ε c S c α c 1 ε 0 S )] (39) 
Defining the relative cross-sectional surface ratio of the central bed to the total surface by ψ:

ψ = S c S = S c S c + S b (40) 
We can then simply write:

γ cr = 1 - γ u ε 0 [(1 - ρ g ρ l )(ε b (1 -ψ) + ε c ψ(1 -α c 1 ))] (41) 
where

γ u = v qf v inj l (42)
S is the total crossectional surface, v inj l is the water injection velocity and v qf is the velocity of the quench front which is assumed quasi-static. Entrainment Velocity of Water Upon water injection and evaporation, steam produced at the quench front level is redistributed radially into the bypass. Single phase steam flow simulations showed that for different injection flow rates, there exists a length H d over which this redistribution occurs (Figure 2). This length H d is approximately the same for different flow rates, it correponds to the elevation z 2 above the quench front level and above which no more steam or water is redirected radially into the bypass.

φ r c→b g (z = H d ) ≈ 0 (43)
where φ r c→b g (z) represent the integral steam flux redistributed radially, from the central layer to the bypass, up to an elevation z.

At this level, the pressure in the center is approximately equal to that in the bypass. This allows writing an equality of the vertical pressure gradients for the gas phase in the center and the bypass:

∂P g ∂z c ≈ ∂P g ∂z b ( 44 
)
Expanding this equality using the Darcy-Forchheimer equation (Eq. 9) renders a quadratic equations relating the gas phase velocities in the center and the bypass by:

ρ g g + µ g κ c U c g + ρ g η c (U c g ) 2 = ρ g g + µ g κ b U b g + ρ g η b (U b g ) 2 (45)
Then relating the flow rate of steam produced to the water injection flow rate, as defined earlier by the conversion rate equation (Eq. 33):

γ cr ρ l S v inj l = ρ g S v out g (46) γ cr ρ l S v inj l = α b ρ g ε b S b v b g + α c ρ g ε c S c v c g (47)
At this level, it is pure steam exiting the center (α c =1) at the top of the two-phase zone. Eq. 47 is then reformed to relate v c g , v b g , and v inj l by the following equation:

v c g = ψα b ε b ε c (ψ -1) v b g + γ cr ρ l ρ g ε c (1 -ψ) (v inj l ) ( 48 
)
Combining Eq. 48 and Eq. 45 reduces to a quadratic equation in v b g of the form:

(v b g ) 2 + r 1 v b g + s 1 = 0 (49)
This allows determining the steam velocities v b g and v c g in terms of the injection velocity v inj l and the system parameters.

Neglecting the capillary effects in the bypass (see Appendix A.2), the pressure of the gas phase can be assumed equal to that of the liquid phase and thus the following equation holds in the bypass:

∂P g ∂z b ≈ ∂P l ∂z b (50) 
Expanding it using Darcy-Forchheimer equations for two-phase flow written in the general form:

ρ g g + a g U g + b g U g 2 + c g U g U l + d g U l + e g U l 2 = ρ l g + a l U l + b l U l 2 + c l U l U g + d l U g + e l U g 2 (51)
arrives a quadratic equation in v b l (velocity of water in the bypass), it has the form:

(v b l ) 2 -m l v b l + n l = 0 (52)
in which

m l = (c g -c l )v g + d g -a l b l -e g n l = (ρ l -ρ g )g + v g (d l -a g ) + v g 2 (e l -b g ) b l -e g ( 53 
)
The solution v b l (α) for Eq. 52 is the first solution relating the velocity of the entrained water into the bypass v b l to the steam velocity and physical properties of the medium and the flow, it is given by:

v b l (α) = + 1 2 m l [1 ± 1 -4 n l m l 2 ] ( 54 
)
Written in this general form, Eq. 51 enables testing of any proposed variation in the momentum equations and assessing the sensitivity of the solutions to its terms.

The PEARL tests experimental results obtained at IRSN [START_REF] Chikhi | First experimental resutls of large scale debris bed reflood tests in the pearl facility[END_REF]) were considered for comparison. The main characteristics of those tests are listed in Table 1. Adopting the same configuration, the total height of the debris bed is H=0.5 m, the radius of the central bed is R c =0.225 m whereas the more permeable bypass had a radial thickness of 0.045 m making the total radius of the system R ext =0.27 m. The diameter of the particles in the center is d c p =4 mm whereas the more permeable bypass was composed of particles of larger diameter d b p =8 mm. For water to get entrained and advance in the bypass (i.e. obtaining non-zero solutions for v b l ), the vertical pressure gradient must be larger than the hydrostatic pressure. The necessary condition for the entrainment of water in the bypass is defined by a threshold represented by the non-dimensional vertical pressure gradient in the bypass ω (Figure 3):

ω = [ ∂P b g ∂z ]/[ρ l g] (55) 
The threshold is ω=1. Below this threshold the entrainment of water in the bypass is impossible and the advance of water in the bypass is limited to the quench front velocity. The dashed lines correspond to the Generalized Darcy form of the momentum equations (i.e. no cross-terms, K ij =0, F ij =0 for i =j) whereas solid lines correpond to the Darcy-Forchheimer momentum equations (including cross-terms K ij , F ij ). Entrainment occurs when the velocity of water in the bypass is significantly higher than the latter; with a least ratio U b l /U qf > 1.5 which corresponds to the situations where the pressure gradient is sufficiently larger than the hydrostatic pressure.

For instance, considering three PEARL tests (PA1, PA2, and PA5) with different injection velocities. The quench front velocity and the conversion rate were obtained by the analytical model and the results of the modeled water velocity in the bypass v b l (α) provided by Eq. 54 (1st solution) are presented in Figure 4. It shows the occurence of water entrainment in the bypass in all cases as demonstrated by the experiments with a 2-D shaped quench front propagation. 

φ b l = (1 -α b ) ρ l ε b S b (v b l -v qf ) (59) φ b in l = ρ l ε b S b (v b in l -v qf ) ( 60 
)
where v b in l is previously calculated by Eq. 23.

This provides another estimation of the water velocity in the bypass in terms of the void fraction α b , injection velocity v inj l and the quench front velocity v qf , defined by: This is a second solution for the velocity of entrained water in bypass v b l (α). It is presented in Figure 6 as function of the void fraction. An overlay of the two modeled solutions of v b l (α) provided by Eq. 54 and Eq. 61 presented in Figure 7 shows that the respective curves intersect at particular solutions whose abscissa α i (Figure 8) are the void fractions in the bypass corresponding to each case, depending on the system characteristics and flow conditions. However, instead of following this methodology of finding the intersect of two solutions for v b l (α), Newton-Raphson method could be applied to solve the same system of equations. In the latter case, we will only obtain the particular solution as a scalar output instead of profiles function of the void fraction, and problems while attempting convergence could also rise. The considered methodology provides a more clear view and helps to identify the behavior of the solutions and its sensitivity to the different input parameters.

v b l = (v b in l -α b v qf ) 1 -α b (61)

Comparison against Experimental Results

For the considered cases, the occurence of water entrainment in the bypass was demonstrated by the condition U b l /U qf > 4. This is consistent with the observations made upon the reflooding test where a 2-D shaped (U b l > U qf ) quench front propagation was obtained.

Table 2 compares the modeled results to the experimental results obtained for the considered PEARL tests. v qf c and v qf b are the measured quench front velocities in the center and the bypass. The modeled quench front velocity is comparable to that measured experimentally in the central bed. In the bypass, the estimated velocity of the entrained water surpasses the quench front velocity for two main reasons; the analytical model estimates the water velocity which is generally faster than the quench front and there is also some uncertainty over the measurement of quench front velocity in the 4.5 cm thick bypass by a single thermocouple in the radial direction. Furthermore, the model succeeded to predict the entrainment of water in the bypass in all the cases (PA1, PA2, P22, and PA5) in which water advances in the bypass at velocities higher than the quench front velocity. However, the results obtained without the interfacial friction terms (i.e. using Generalized Darcy-Forchheimer law with all cross-terms K lg , K gl , F lg , and F gl set null) couldn't predict well the entrainment behavior. This is due to the fact that the considered cases correspond to the limiting geometric and flow conditions for which the predefined threshold for entrainment occurrence is compromised. Excluding the cross-terms from the momentum equations underestimated the vertical pressure gradient in the bypass in some cases (insufficient for entrainment, see Figure 3). For higher injection flow rates, the entrainment could be predicted. Yet, including non-zero cross-terms is necessary to obtain good estimations.

Conclusion

In this study, an investigation of two-phase (water and steam) flow in a heated porous medium composed of two cylindrical layers of contrasting porosity and permeability was conducted. An analytical two-phase model was derived to describe the entrainment behavior of water into the bypass. The criterion for which the entrained water progresses in the bypass faster than the quench front velocity has been examined for different cases. The velocity of the entrained water in bypass was estimated analytically as well as the void fraction in the bypass for the corresponding system configuration and flow conditions.

This simplified analytical model forms a tool to perform fast calculations of two phase flow redistribution in such a porous layers system, with different thickness, porosity and permeability and assess the conditions for water entrainment. It also allows testing different correlations in the vari-ations of the momentum equations for porous media such as relative permeability and passability correlations, interfacial friction laws ...

The model provides good qualitative and quantitative results for two-phase flow redistribution downstream of the quench front as compared to the results obtained in PEARL reflooding tests where it predicts the occurrence of entrainment (advance of water in the bypass at a velocity v b l higher than the quench front velocity v qf ) and a comparable water velocity in all the cases.

The developed model has several advantages. It is written in a rather general form including the Forchheimer correction terms and non-zero cross-terms in the generalized Darcy-Forchheimer momentum equation. It allows to test easily and efficiently any proposed variation of the momentum equation including changes in correlations and friction laws up to quadratic terms. The model allows performing fast evaluations of the efficiency of cooling by computing the fraction of the injected flow rate that participates in cooling. Upscaling to the reactor scale is straightforward, provided the geometry and boundary conditions are respected. Thus the model is very useful to estimate the total quenching time and the maximum temperature that could be reached by the hot debris bed at large scales in accidental conditions. It can be also used to perform sensitivity studies on the physical properties of the particle beds and the fluid, as well as different variations of the momentum equations. For instance, it was shown that the Generalized Darcy law is not able to provide acceptable evaluations whereas considering non-zero cross-terms in the Darcy Forchheimer equation by including an interfacial friction law succeeds in obtaining better results.

Further investigation and parametric studies to precise the effect of the geometrical characteristics of the debris bed and flow conditions on the redistribution are foreseen in addition to sensitivity studies concerning interfacial friction laws and relative permeability and passability correlations.

Appendix

A.1 Quench Front Velocity Formula

v qf = F vqf E vqf = F 1 + F 2 + F 3 E 1 + E 2 + E 3 + E 4 (62) 
where

F 1 = [ε 0 ρ l (S b + S c )v inj l ]c pg ∆T g F 2 = (1 -α c 1 )ε c S c ρ l v c l1 ∆h sat F 3 = ε b S b ρ l v b l1 (h sat g -c pl ∆T b l ) (63) 
and

E 1 = ρ s c ps [(1 -ε c )S c ∆T c s + (1 -ε b )S b ∆T b s ] E 2 = α c 1 ε c S c ρ g c pg ∆T g E 3 = (1 -α c 1 )ε c S c ρ l (∆h sat + c pg ∆T g ) E 4 = ε b S b ρ l (h sat g + c pg ∆T g -c pl ∆T b l ) (64) 
A.2 Capillary Effects

The capillary pressure P c is defined the pressure difference between the liquid and gas phases:

P c = P g -P l (65) 
The capillary length for water is defined as:

l c = σ (ρ l -ρ g )g ( 66 
)
where σ is the surface tension. The capillary length for water is approximately 2 mm, and considering the bypass particles size (8 mm in diameter) are larger than l c , the capillary effects can be neglected in this case. Hence, the pressure of the gas phase can be set equal to that of the liquid phase and thus the following equation holds in the bypass: 
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 1 Figure 1: Two phase flow redistribution

  22) thus arriving at a quadratic equation relating U c in l and U b in l .
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 2 Figure 2: Single phase flow simulation -Steam redistribution into the bypass for different injection velocities
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 3 Figure 3: Non-dimensional vertical pressure gradient in bypass as function of void fraction α b
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 4 Figure 4: Entrained water velocity as function of void fraction v b l (α) for different PEARL tests -1 st solution
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 6 Figure 6: Entrained water velocity as function of void fraction v b l (α) for different PEARL tests -2 nd solution
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 7 Figure 7: Velocity of entrained water in the bypass v b l as function of void fraction α b for different PEARL tests -(intersect of solutions)
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 8 Figure 8: Intersection of bypass water velocity curves at the particular solution at abcissa α i -(Solutions intersect, Zoom-in)

  

Table 1 :

 1 PEARL Tests

	Test	Initial temperature Injection velocity Pressure Flooding
	number	(degC)	(m/h)	(bar)	mode
	PA0	150	5	1	Bottom
	PA1	400	5	1	Bottom
	PA2	700	5	1	Bottom
	P22	700	5	2	Bottom
	PA4	400	2	1	Bottom
	PA5	400	10	1	Bottom

Table 2 :

 2 Comparison of the Analytical Model Against Experimental Results for Different PEARL Tests; velocities unit=(mm/s)

		Porous medium	Experiment		Analytical model	
	Test	v inj l	v qf b	v qf c	v b l	v qf
	PA1	3.472	7.3	2.17	13.10	2.20
	PA2	3.472	14.2	1.00	16.10	1.62
	P22	3.472	7.19	1.42	14.00	1.74
	PA5	6.944	19.0	2.51	30.80	3.20
	PA4	1.388	1.25	1.04	0.98	0.98