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Calabi–Yau structures on (quasi-)bisymplectic algebras

Tristan Bozec∗, Damien Calaque†, Sarah Scherotzke‡

Abstract

We show that relative Calabi–Yau structures on noncommutative moment maps
give rise to (quasi-)bisymplectic structures, as introduced by Crawley-Boevey–Etingof–
Ginzburg (in the additive case) and Van den Bergh (in the multiplicative case). We
prove along the way that the fusion process (a) corresponds to the composition of
Calabi–Yau cospans with “pair-of-pants” ones, and (b) preserves the duality between
non-degenerate double quasi-Poisson structures and quasi-bisymplectic structures.

As an application we obtain that Van den Bergh’s Poisson structures on the moduli
spaces of representations of deformed multiplicative preprojective algebras coincide with
the ones induced by the 2-Calabi–Yau structures on (dg-versions of) these algebras.
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1 Introduction

Throughout this paper k is a field of characteristic zero.

Noncommutative algebraic geometry

The Kontsevich–Rosenberg principle of noncommutative algebraic geometry says that a
structure on an associative algebra A has a (noncommutative) geometric meaning whenever it
induces a genuine corresponding geometric structure on representation spaces. This principle
led to the discovery of bisymplectic structures [99], double Poisson and double quasi-Poisson
structures [3030], and quasi-bisympletic structures [3131] on smooth algebras such that the
associated representation spaces are respectively hamiltonian GLn-varieties, Poisson and
quasi-Poisson GLn-varieties, and quasi-hamiltonian GLn-varieties.

It turns out that the fusion procedure for (quasi-)hamiltonian spaces from [11, 22] has
a noncommutative counterpart [3030, 3131] (also called fusion). This in particular allows to
construct quasi-bisymplectic structures on (localisations of) path algebras of quivers by
starting from several copies of A2 and repeatedly applying the fusion procedure. Ultimately,
this provides a construction of symplectic structures [3232] on multiplicative quiver varieties [1010].

Noncommutative algebra Algebraic geometry

Smooth algebra A Representation variety Rep(A)
Bisymplectic algebras Hamiltonian GL-spaces

Quasi-bisymplectic algebras Quasi-hamiltonian GL-spaces
Fusion Fusion

Derived symplectic geometry

Hamiltonian and quasi-hamiltonian spaces actually find a nice interpretation (see [77, 2323]) in
the realm of shifted symplectic and lagrangian structures from [2121]: moment maps as well as
their multiplicative analogs naturally lead to lagrangian morphisms, and both the reduction
and the fusion procedures can be understood in terms of derived intersections of these.

Algebraic geometry Derived geometry

G

⟳

X Quotient stack [X/G]
Hamiltonian G-space X Lagrangian morphism [X/G]→ [g∗/G]

Quasi-hamiltonian G-space X Lagrangian morphism [X/G]→ [G/G]
Reduction Lagrangian intersection
Fusion Composing Lagrangian correspondences
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Calabi–Yau structures

More recently, absolute and relative Calabi–Yau structures [55] have turned out to be accurate
noncommutative analogs of shifted symplectic and lagrangian structures [66, 2626], via the
moduli of object functor Perf from [2727].

Higher algebra Derived geometry

Finite type dg-category C Derived Artin stack Perf(C)
Shifted Calabi–Yau structure Shifted symplectic structure
Relative Calabi–Yau structure Lagrangian structure

Calabi–Yau pushout Lagrangian intersection
Composing Calabi–Yau cospans Composing Lagrangian correspondences

It is therefore natural to wonder whether Calabi–Yau structures are hidden behind the
(quasi-)bisymplectic ones aforementioned. More specifically, in our previous work [33, 44], we
constructed relative Calabi–Yau structures on (multiplicative) noncommutative moment
maps k[x(±1)] → A for (multiplicative) preprojective algebras associated with quivers,
leading in particular to an alternative construction of symplectic structures on multiplicative
quiver varities. Exhibiting a direct connection between Calabi–Yau and (quasi-)bisymplectic
structures will then help identifying the induced symplectic structures on multiplicative
quiver varities from both approaches.

Results

In a very satisfactory manner, relative Calabi–Yau structures on noncommutative moment
maps do induce (quasi-)bisymplectic ones: the additive version is proved by our first main
result theorem 4.104.10, the multiplicative one is given by theorem 5.65.6. The rough idea in each
case is that the Calabi–Yau structure on k[x(±1)]→ A is given by a family of noncommutative
forms ωn ∈ Ω2nA, n ≥ 1, satisfying conditions implying the required ones for the 2-form
ω1 to define a (quasi-)bisymplectic structure on A. In particular, non-degeneracy on the
Calabi–Yau side implies non-degeneracy on the (quasi-)bisymplectic side.

We moreover prove that we retrieve for quivers the very same structures exhibited
in [99, 3030], in example 4.114.11 in the additive case, and in a way more involved way in section 5.45.4
in the multiplicative case. This requires to work on the elementary A2 quiver as well as on
the correct realization of fusion in the framework of Calabi–Yau cospans. We need for the
latter to prove in section 33 (along with theorem 4.134.13 and theorem 5.85.8) that fusion actually
corresponds to composition of relative Calabi–Yau structures with a particular Calabi–Yau
cospan studied in [44], the “pair-of-pants” one, that is

k[x(±1)]⨿ k[y(±1)] −→ k⟨x(±1), y(±1)⟩ ←− k[z(±1)]

where z is mapped to x+ y in the additive version, xy in the multiplicative one.

Higher algebra Noncommutative algebra

Finite linear category C Path algebra AC

Object i Primitive idempotent ei

Calabi–Yau functor
∐

i k[xi]→ C
Bisymplectic structure,

with moment map k[x]→ AC

Calabi–Yau functor
∐

i k[x
±1
i ]→ C

Quasi-bisymplectic structure,
with moment map k[x±1]→ AC

Pushing-out along the “pair-of-pants” Fusion

We want to emphasize that section 55 contains what can be understood as the quasi-
bisymplectic side of the fusion calculus for double quasi-Poisson algebra [3030, §5.3]. Indeed,

3



we know thanks to [3131] that quasi-bisymplectic structures correspond to non-degenerate
double quasi-Poisson ones, and we produce in proposition 5.45.4 the formula for fusion of
quasi-bisymplectic structures, a noncommutative analog of [11, Proposition 10.7]. Because of
this compatibility we do not use in this paper double quasi-Poisson structures, but prove
that in the quiver case the structures we get give back Van den Bergh’s double quasi-Poisson
structures from [3030].

The last essential step for completeness is to check that when considering representation
spaces, all these constructions yield the same symplectic structures, which is proved by our
last main result, theorem 6.26.2. We prove specifically that the lagrangian structures induced
by quasi-Hamiltonian ones thanks to [3030] on the one hand, and by relative Calabi–Yau
ones [66] on the other hand are indeed the same. This achieves to prove the conjectural
program established in the open questions concluding [44] - except the last part which is
rather independent.

Outline of the paper

In section 22, we recall the mixed structure on the graded vector space of noncommutative
differential forms on an associative k-algebra, which yields a convenient construction of
Hochschild and negative cyclic homology as shown by Ginzburg–Schedler [1515]. We consider
the example of A = k[x±] and identify the noncommutative differential form that yields the
1-Calabi–Yau structure from [44].

In section 33, we compare the fusion process introduced by Van den Bergh [3030] with certain
pushouts of categories involving the pair-of-pants cospan studied in [44]. Fusion has been
introduced in order to glue idempotents in double (quasi-)Poisson algebras but in this section
we only focus on the algebra structure and not on double brackets. Along the way, we show
that the fusion of a 1-smooth (or formally smooth, see definition 3.103.10) algebra is 1-smooth.

The fourth section can be considered as an additive warm up for the next one. We
show that relative Calabi–Yau structures on additive noncommutative moment maps induce
bisymplectic structures. Bisymplectic structures where first defined in [99] and are dual to
non-degenerate double Poisson structures from [3030]. We introduce, in analogy with Van
den Bergh’s fusion of double Poisson structures, the fusion of bisymplectic structures and
show that it corresponds to composition with the additive pair-of-pants cospan from [44].
Furthermore, we show that the fusion process respects the duality between bisymplectic and
double Poisson structure in the sense that a compatible pair of bisymplectic and double
Poisson structures is sent by fusion to another compatible pair

In section 55 we prove that relative Calabi–Yau structures on multiplicative noncommuta-
tive moment maps induce quasi-bisymplectic structures in the sense of [3131]. Then we prove
that the fusion of quasi-bisymplectic structures is induced by the composition of Calabi–Yau
cospans with the multiplicative pair-of-pants, and that it is compatible with the duality
between quasi-bisymplectic and double quasi-Poisson structures. We also show that in the
case of multiplicative quiver varieties, the Calabi–Yau structure exhibited in [44] is compatible
with the non-degenerate double quasi-Poisson structure defined in [3131].

Finally in the last section, we study the geometries induced by the aforementioned
structures on representation spaces XV = Rep(A, V ) of algebras A in vector spaces V .
Namely, assuming that we have a Calabi–Yau structure on

∐
i∈I k[x

±1]→ C, with AC = A,
we know thanks to [66] that it induces a lagrangian structure on [XV /GLV ]→ [GLV /GLV ].
We also know that the double quasi-Poisson structure induced by our previous section yields a
quasi-Hamiltonian structure on XV (in the sense of [22]), and therefore a lagrangian structure
on the very same morphism. We prove that these two lagrangian structures match.
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Related works

A systematic comparison of noncommutative differential forms with Hochschild and cyclic
complexes have been achieved by Yeung in [3333]. There the author uses [1414], while we rely
on [1515]. We should also mention Pridham’s [2222], where a systematic way of producing shifted
bisymplectic (resp. bilagrangian) structures out of absolute (resp. relative) Calabi–Yau
structures (see Proposition 1.24 and Theorem 1.56 in [2222]). One may be able to recover some
of the results of the present paper using Pridham’s general theory (but it would probably
require as much work as here to derive these results from [2222]).
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2 Cyclic and noncommutative de Rham mixed complex

In this section we first briefly recall some facts about Hochschild and negative cyclic homology,
and then some constructions and results from [1515]. In particular, in [1515] Ginzburg and Schedler
directly relate the negative cyclic homology of a unital algebra with the cohomology of a
complex that is obtained from the mixed complex of noncommutative differential forms [1717]
on this algebra. We finally exhibit a closed noncommutative form representing the class in
negative cyclic homology which defines the 1-Calabi-Yau structure on k[x±1] in [44].

2.1 Hochschild and negative cyclic homology

We denote by Modk the category of chain complexes over k. We warn the reader that
we use the homological grading instead of the cohomological grading used in our previous
papers [33, 44]. In particular, differentials have degree −1 while mixed differential have degree
+1. Apart from this change, all along this paper we borrow the convention and notation from
op. cit., to which we refer for more details. For instance, whenever M is a model category we
write M for the corresponding ∞-category obtained by localizing along weak equivalences.

A dg-category is a Modk-enriched category and the category of dg-categories with dg-
functors is denoted by Catk. We refer to [1818, 2424] for a detailed introduction to dg-categories
and their homotopy theory. The Hochschild chains ∞-functor is then defined as

HH : Catk −→Modk ; C 7−→ C
L
⊗
Ce

Cop ,

where Ce := C⊗ Cop. We write HHi(C) for the i-th homology of HH(C).

There is an explicit description of the derived tensor product C
L
⊗
Ce

Cop, which uses the

normalized bar resolution of C as a C-bimodule, and that leads to standard normalized
Hochschild chains, that we denote

(
C∗(C), b

)
:

C∗(C) =
⊕
n≥0

a0,...,an∈Ob(C)

C(an, a0)⊗ C̄(an−1, an)⊗ · · · ⊗ C̄(a1, a2)⊗ C̄(a0, a1)[−n],

with C̄(a, a′) = C(a, a′) if a ̸= a′ and C̄(a, a) = C(a, a)/k · ida.
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Hochschild chains carry a mixed structure, that is given on the standard normalized
model by Connes’s B-operator. We refer to [33, 44] and references therein, for the homotopy
theory of mixed complexes, and explicit formulas11. The negative cyclic complex of C, denoted
by HC−(C), is defined as the homotopy fixed points of HH(C) with respect to the mixed
structure; it comes with a natural transformation (−)♮ : HC− ⇒ HH. In concrete terms,
HC−(C) is given by

(
C∗(C)[[u]], b− uB

)
, where u is a degree −2 variable.

We can view every dg-algebra with a finite set (ei)i∈I of orthogonal nonzero idempotents
such that 1 =

∑
i∈I ei as a dg-category with object set I. Conversely, we can associate to

every dg-category C with finitely many objects its path algebra given by the complex

AC :=
⊕

(a,b)∈Ob(C)×Ob(C)

C(a, b)

with product given by composition of morphisms. The dg-algebra AC is an R-algebra, where
R = ⊕c∈Obj(c)kec Note that the construction is in general not functorial, meaning that a
functor does not necessary give a morphism between the corresponding dg-algebras (unless
the functor is injective on objects). This can be seen very easily on the following example,
which will play an important role in the next section.

Example 2.1. The dg-category coproduct k
∐

k is the dg-category given by two objects 1
and 2 and endomorphism ring k = End(1) respectively k = End(2) at each object but zero
Hom-spaces between the two objects. Hence its path algebra Ak

∐
k is isomorphic to k ⊕ k.

There is a dg-functor

k
∐

k → k

sending 1 and 2 to pt, which denotes the only object of k, but there is no map of k-linear
dg-algebras k ⊕ k → k.

Nevertheless, C and AC are Morita equivalent, so that their Hochschild (resp. negative
cyclic) homology are isomorphic. More precisely, we have an inclusion of mixed complexes(
C∗(C), b, B

)
↪→
(
C∗(AC), b, B

)
, which is a weak equivalence (here we view AC as a dg-

category with one object).

2.2 Noncommutative forms

Consider a unital associative k-algebra A, along with a subalgebra R. We fix a complementary
subspace Ā ≃ A/R of R. Denote by d : A → Ā the associated quotient map. We will
systematically use the ¯ notation for the quotient by R. The graded algebra Ω∗

RA of
noncommutative differential forms is defined as the quotient of TR(A ⊕ Ā[−1]) by the
relations

a⊗ b = ab and d(ab) = a⊗ d(b) + d(a)⊗ b

for every a, b ∈ A. It comes equipped with a mixed differential, that is the derivation induced
by d, and that we denote by the same symbol. The mixed differential d, descends to the
Karoubi–de Rham graded vector space DR∗

RA := Ω∗
RA/[Ω∗

RA,Ω∗
RA], first introduced in [1717].

In order to define a differential on Ω∗
RA, turning it into a mixed complex, we consider

the distinguished double derivation E : a 7→ a⊗ 1− 1⊗ a, denoted by ∆ in [99]. Recall that
the A-bimodule of (R-linear) double derivations is defined as

DA/R := DerR(A,A⊗A) ≃ Ω1
RA

∨,

1Beware of the change of (co)homological grading convention, though.
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where the derivations are taken with respect to the outer A-bimodule structure on A⊗A, and
the remaining A-bimodule structure on DA/R comes from the inner one on A⊗A. Here Ω1

RA
is the kernel of the multiplication A⊗R A→ A, and inherits its A-bimodule structure from
the outer one on A⊗A; it is isomorphic to A⊗R Ā as a left A-module (1⊗da ∈ A⊗R Ā being
identified with E(a) ∈ Ω1

RA. As a matter of notation, we will often write ΩA/R := Ω1
RA.

There is an obvious graded algebra isomorphism Ω∗
RA ≃ TA(Ω

1
RA[−1]), as well as a left

A-module isomorphisms Ωn
RA ≃ A⊗R Ā⊗Rn (see [1111]). For later purposes, we also introduce

the graded algebra of polyvector fields D∗
RA = TA(DA/R[−1]) from [3030].

Following [99] we define, for any R-linear double derivation δ ∈ DA/R of A, a graded
double derivation

iδ : Ω∗
RA→ Ω∗

RA⊗ Ω∗
RA

of Ω∗
RA by setting

iδ(a) := 0 and iδ(da) := δ(a)

for any a ∈ A. On Ω2
RA we thus have for instance

iδ(pdqdr) = pδ(q)′ ⊗ δ(q)′′dr − pdqδ(r)′ ⊗ δ(r)′′ ∈ A⊗ Ω1
RA+Ω1

RA⊗A,

where we use Sweedler’s sumless notation δ(a) = δ(a)′⊗ δ(a)′′. The graded double derivation
iδ induces a linear contraction operator

ιδ := ◦iδ : Ω∗
RA→ Ω∗−1

R A,

where ◦(α⊗ β) = (−1)klβ ⊗α for α⊗ β ∈ Ωk
RA⊗Ωl

RA. Our differential will be given by the
contraction operator ιE : Ω∗

RA→ Ω∗−1
R A, which has the following properties thanks to [99,

Lemma 3.1.1]: it is explicitely given by the formula

ιE(a0da1 . . . dan) =

n∑
l=1

(−1)(l−1)(n−1)+1[al, dal+1 . . . dana0da1 . . . dal−1],

it vanishes on [Ω∗
RA,Ω∗

RA] (and thus factors though DR∗
RA) it takes vales in [Ω∗

RA,Ω∗
RA]R

(in particular, ι2E = 0), and [ιE , d] = 0. As a consequence, we obtain that
(
Ω∗

RA, ιE , d) is a
mixed complex.

2.3 Hochschild chains versus noncommutative forms

Below we rephrase some constructions and results of [1515] in terms of mixed complexes.
Beware that the notation used here is not exactly the same than in op. cit.. For the moment
we only assume that A is a k-algebra.

Through the identification C∗(A) ≃ Ω∗
kA, the Hochschild differential b reads as

b(αda) = (−1)|α|[α, a].

The Karoubi operator on Ω∗
kA, given by

κ(αda) = (−1)|α|daα,

allows one to define a harmonic decomposition Ω̄∗
kA = P Ω̄∗

kA⊕ P⊥Ω̄∗
kA where

P Ω̄∗
kA = ker(1− κ)2 and P⊥Ω̄∗

kA = ima(1− κ)2.

The following identites hold:

ιE = bN |P and B = Nd|P ,

7



where N is the grading operator and B the Connes mixed differential.
Hence we have the following chain of morphisms of mixed complexes

(Ω̄∗
kA, ιE , d)

P // (P Ω̄∗
kA, ιE , d)

N ! // (P Ω̄∗
kA, b,B) �

�
// (Ω̄∗

kA, b,B) (2.2)

such that, according to [1515]: [dΩ∗
kA, dΩ∗

kA] ↪→ (ker(P )[[u]], ιE − ud) is a quasi-isomorphism,
where u is a degree −2 formal variable, N ! is an isomorphism, and the rightmost inclusion is
a quasi-isomorphism. We thus get a quasi-isomorphism(

Ω̄∗
kA[[u]]

[dΩ∗
kA, dΩ∗

kA]
, ιE − ud

)
−→ (Ω̄RA[[u]], b− uB)

and the homology of both complexes yields the reduced negative cyclic homology HC
−
(A).

Hence, when A = AC, for C a genuine k-linear category with a finite set I of objects, and
R = ⊕i∈Ikei, we have a zig-zag(

C̄∗(C)[[u]], b− uB

)
� � ∼ //

(
C̄∗(A)[[u]], b− uB

)

(
Ω̄∗

kA[[u]]

[dΩ∗
kA, dΩ∗

kA]
, ιE − ud

) ∼
44

//

(
Ω̄∗

RA[[u]]

[dΩ∗
RA, dΩ∗

RA]
, ιE − ud

)

where only the last bottom arrow may not be a quasi-isomorphism.

2.4 Computations for A = k[x±1]

As a matter of convention, we always mean (dx)y if no brackets appear in dxy. We want to
find a harmonic cyclic lift for α1 := x−1dx ∈ Ω̄1A which is closed for the mixed structure
(P Ω̄, ιE , d). That means that A is 1-pre-Calabi–Yau according to the terminology of [33].
This was already proved in [44] using the standard normalized Hochschild complex, but we
reprove it here on the “de Rham side” and check consistency afterwards to illustrate (2.22.2).

Set αn = (x−1dx)2n−1, βn = κ(αn) = (dxx−1)2n−1 ∈ Ω̄2n−1A. Then

κ(βn) = κ(−βn−1dxdx
−1) = −dx−1βn−1dx = αn.

Hence αn + βn ∈ P Ω̄A and αn − βn = 1
2 (1− κ)2(αn) ∈ P⊥Ω̄A. Then,

ιEαn =
1

2
(2n− 1)b(αn + βn)

=
1

2
(2n− 1)([αn−1x

−1dxx−1, x]− [βn−1dx, x
−1])

=
1

2
(2n− 1)(x−1βn−1dx+ αn−1x

−1dx− βn−1dxx
−1 − xαn−1x

−1dxx−1)

= (2n− 1)((x−1dx)2n−2 − (dxx−1)2n−2).

On the other hand, dα1 = −(x−1dx)2, and if we assume dαn−1 = −(x−1dx)2n−2, we get

dαn = d(x−1dx(x−1dx)2n−2)

= d(x−1dx)(x−1dx)2n−2 − x−1dxd((x−1dx)2n−2)

= −x−1dxx−1dx(x−1dx)2n−2 − x−1dxd2αn−1

= −(x−1dx)2n.
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Similarly dβn = (dxx−1)2n for all n. Thus, as ιEαn = ιEβn,

ιE(αn + βn) = 2ιEαn = −2(2n− 1)d(βn−1 + αn−1).

As a consequence (ιE − ud)(γ) = 0, where γk = 1
2 (αk + βk) ∈ P Ω̄2k−1k[x±1] and

γ =
∑
k≥0

k!

(2k + 1)!
(−u)kγk+1

where u is a formal degree −2 variable.
Let us check now that it is coherent with [44]. Through (2.22.2) and the isomorphism

ΩnA ≃ A⊗ Ā⊗n, γ is mapped to∑
k≥0

k!uk (x
−1 ⊗ x)⊗(k+1) − (x⊗ x−1)⊗(k+1)

2

as

αk+1 = (x−1dx)2k+1 = (−1)kx−1(dxdx−1)kdx,

βk+1 = (dxx−1)2k+1 = (−1)k+1x(dx−1dx)kdx−1,

and γk+1 ∈ P Ω̄2k+1,

all of which being consistent with [44, 3.1.1].

3 Fusion

In this section, we compare certain pushouts of k-linear dg-categories with the fusion
formalism introduced by Van den Bergh [3030] for algebras. Fusion is a process which glues two
pairwise orthogonal idempotents into one. Given an algebra with a double (quasi-)Poisson
structure, the new algebra obtained by fusion inherits a double (quasi-)Poisson structure
from the original one as shown in [3030, 1212].

This will be relevant in the next sections, where we will compare fusion of bisymplectic
and quasi-bisymplectic structures with compositions of Calabi–Yau cospans.

3.1 Fusion as a pushout

Recall that Van den Bergh defines in [3030] the fusion algebra which identifies two pairwise
orthogonal idempotents. We use the notation (−)+ instead of (−) as in [3030] since it is already
used.

Definition 3.1. Let R = ke1 ⊕ · · · ⊕ ken be a semi-simple algebra with pairwise orthogonal
idempotents ei, and A an R-algebra. Set µ = 1− e1 − e2 and ϵ = 1− e2. Then the fusion
algebra Af is defined as ϵA+ϵ, where A+ := A

∐
ke1⊕ke2⊕kµ(M2(k) ⊕ kµ). Here M2(k)

denotes the (ke1 ⊕ ke2)-algebra of 2× 2 matrices, and the idempotent ei is sent to eii, where
eij ’s are matrix units.

One can see that A+ is isomorphic to A
∐

R R+, and that R+ = M2(k) ⊕ R≥3 and
Rf = ke1 ⊕R≥3, where R≥3 := ke3 ⊕ · · · ⊕ ken.

Let now C be a dg-category with a finite set of objects I = {1, . . . , n}, n ≥ 2. We define

Cf := C
∐
k
∐

k

k,

where the functor k
∐

k → C is given by the units of the first two objects 1 and 2. Note that
the strict pushout is (categorically equivalent to) a homotopy pushout.
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Examples 3.2. (1) The category (k[x] ⨿ k[y])f (when defined using the strict pushout)
is isomorphic to k⟨x, y⟩. Similarly, (k[x±1] ⨿ k[y±1])f is isomorphic k⟨x±, y±1⟩. As a
consequence, we get that

Cf ≃ C
∐

k[x□
1 ]

∐
k[x□

2 ]

k⟨x□
1 , x

□
2 ⟩,

where □ ∈ {∅,±1} and k[x□
i ]→ EndC(i).

(2) If R =
∐

i∈I k, then Rf = k ⨿ R≥3, where R≥3 :=
∐

i≥3 k. As a consequence, we get
that

Cf := C
∐
R

(
k ⨿ R≥3

)
,

where the functor R→ C is uniquely determined by mapping the object of the i-th copy of k
to i, and the functor R→ k ⨿R≥3 maps sends the first two objects of R to the object of the
first copy of k.

Proposition 3.3. Let C be a k-linear dg-category with set of objects I. Then ACf is
isomorphic to (AC)

f .

Proof. We can assume without loss of generality that C has only two objects 1 and 2. We
denote e1 and e2 their respective identity map. The dg-category C

∐
k
∐

k k has exactly

one object which we denote pt. Let us show that the endomorphism ring B := End(pt) is
isomorphic to the fusion algebra Af of A := AC. By the pushout property, there are algebra
homomorphisms

f : EndC(1) ≃ e1Ae1 → B

g : EndC(2) ≃ e2Ae2 → B,

and bimodule morphisms e1Ae2 ≃ C(2, 1) → B, e1ae2 7→ e1ae21 and e2Ae1 ≃ C(1, 2) →
B, e2ae1 7→ e12ae1 such that

C(2, 1)⊗ C(1, 2)

m

��

// B ⊗B

m

��

EndC(1)
g

// B

commutes. The algebra homomorphism k → B is then uniquely determined.
We have injective algebra morphisms EndC(1) ≃ e1Ae1 → Af , a 7→ a, EndC(2) ≃

e2Ae2 → Af , a 7→ e12ae21. Similarly, we have injective morphisms of bimodules C(2, 1) ≃
e1Ae2 → Af , a 7→ ae21 and C(1, 2) ≃ e2Ae1 → Af , a 7→ e12a compatible with the composition
of morphisms. Hence we obtain a unique injective algebra homomorphism B → Af . As
the image of the above maps generate Af , this morphism is also surjective and hence
B = ACf ≃ Af .

3.2 Trace maps

Acccording to Van den Bergh [3030] we consider the following situation: an R-algebra A, and
an idempotent e in R such that ReR = R. One writes 1 =

∑
i pieqi with pi, qi ∈ R, and

define a trace map

Tr : A→ eAe ; a 7→
∑
i

eqiapie.

We recall a series of standard results, for which we provide full proofs for the sake of
completeness; the main point is to be able to describe the trace map on ΩRA and DRRA.
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Lemma 3.4. The trace map Tr descends to an isomorphism A/[A,A] → eAe/[eAe, eAe]
that does not depend on the choice of decomposition 1 =

∑
i pieqi.

Proof. First of all, the trace map Tr sends commutators to commutators. Indeed:

Tr(ab− ba) =
∑
i

(eqiabpie− eqibapie)

=
∑
i,j

eqiapjeqjbpie− eqibpjeqjapie

=
∑
i,j

eqiapjeqjbpie− eqjbpieqiapje ∈ [eAe, eAe]

Then, one can check that it is a k-linear inverse modulo commutators, to the algebra
morphism eAe → A. Indeed: on the one hand, a =

∑
i pieqia = Tr(a) mod [A,A], and

on the other hand, eae =
∑

i epieqieae = Tr(eae) mod [eAe, eAe]. Since the morphism
eAe→ A does not depend on the decomposition of 1, its inverse (modulo commutators) does
not either.

Lemma 3.5. For any two A-bimodule M and N , the canonical morphism Me⊗eRe eN →
M ⊗R N of A-bimodules is inversible with inverse given by

ΨM,N : M ⊗R N →Me⊗eRe eN ; m⊗ n 7→
∑
i

mpie⊗ eqin.

Proof. Let us check that it is well defined. Consider r ∈ R and write r =
∑

j hjelj for some
hj , lj ∈ R. Then

ΨM,N (mr ⊗ n) =
∑
i

mrpie⊗ eqin =
∑
i,j

mhjeljpie⊗ eqin

=
∑
i,j

mhje⊗ eljpieqin =
∑
j

mhje⊗ eljn

=
∑
i,j

mpieqihje⊗ eljn =
∑
i,j

mpie⊗ eqihjeljn

=
∑
i

mpie⊗ eqirn = ΨM,N (m⊗ rn).

We finally observe that ΨM,N is an inverse to the canonical morphismMe⊗eReeN →M⊗RN .
Indeed, in M ⊗R N ,

∑
i mpie ⊗ eqin =

∑
i m ⊗ pieqin = m ⊗ n, and in Me ⊗eRe eN ,∑

i mepie⊗ eqien =
∑

i me⊗ pieqien = me⊗ en.

As a matter of notation, we introduce ΨM := ΨM,M .

Lemma 3.6. The isomorphism ΨΩA/R
induces an isomorphism e(ΩRA)e ≃ ΩeRe(eAe),

through which the trace map of ΩRA reads as follow:

Tr : ΩRA→ e(ΩRA)e ≃ ΩeRe(eAe)

a0da1 . . . dam 7−→
∑

i0,...,im

eqi0a0pi1ed(eqi1a1pi2e) . . . d(eqimampi0e).

Moreover, it induces a k-linear isomorphism

Tr : DRR(A)→ DReRe(eAe)

that does not depend on the decomposition 1 =
∑

i pieqi.
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Proof. Thanks to the previous lemma, the isomorphism ΨΩA/R
induces an isomorphism of

tensor algebras e(TAΩA/R)e ≃ TeAe(eΩA/Re). Using ΨA we also have

ΩeAe/eRe = ker(eAe⊗eRe eAe→ eAe)

≃ ker(eA⊗R Ae→ eAe)

= e ker(A⊗R A→ A)e

= eΩA/Re.

Combining these we get

e(ΩRA)e := e(TAΩA/R)e ≃ TeAe(eΩA/Re) ≃ TeAeΩeAe/eRe =: ΩeRe(eAe).

Through this identification, an element edae = ea ⊗ e − e ⊗ ae ∈ eΩA/Re becomes, in
ΩeAe/eRe,∑

i

eapie⊗ eqie− epie⊗ eqiae = eae⊗ e− e⊗ eae =: d(eae) ∈ ΩeAe/eRe.

Thus the trace map reads

ΩRA ∋ a0da1 . . . dam 7→
∑
i0

eqi0a0da1 . . . dampi0e ∈ e(ΩRA)e

7→
∑

i0,i1,...,im

eqi0a0pi1ed(eqi1a1pi2e) . . . d(eqimampi0e) ∈ ΩeRe(eAe).

The last part of the claim follows from lemma 3.43.4

3.3 Functoriality

We now apply the constructions from the previous section 3.23.2 to the idempotent ϵ = 1− e2
of R+ (see definition 3.13.1), where 1 = ϵϵϵ+ e21ϵe12. Precomposing with the algebra morphism
A → A+ we get maps ΩRA → ΩRfAf and DRR(A) → DRRfAf that we denote by (−)f .
Since ϵe12 = e12 and e21ϵ = e21, we have Tr(a) = ϵaϵ+ e12ae21 for all a ∈ A+. Actually the
trace map in this situation also has a simpler expression on forms.

Lemma 3.7. On ΩA+/R+ we have

Tr(adb) = ϵadbϵ+ e12adbe21

and dually we have a trace map on double derivations

Tr : DR+A+ → DRfAf , δ 7→ ϵδϵ+ e12δe21.

More generally, if ω ∈ ΩR+A+, we have Tr(ω) = ϵωϵ+ e12ωe21.

Proof. Thanks to lemma 3.63.6 we have on 1-forms

Tr(adb) = ϵaϵd(ϵbϵ) + e12aϵd(ϵbe21) + e12ae21d(e12be21) + ϵae21d(e12bϵ)

= ϵaϵdbϵ+ e12aϵdbe21 + e12ae2dbe21 + ϵae2dbϵ.

If a ∈ Ae2 and b ∈ e2A, as ϵe2 = e2ϵ = 0, we get

Tr(adb) = e12adbe21 + ϵadbϵ.

If a ∈ Aei and b ∈ eiA for some i ̸= 2, as ϵei = eiϵ = ei we again have

Tr(adb) = ϵadbϵ+ e12adbe21.

It generalizes to all forms.
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We go back to the context of a dg-category C with finite set of objects I, an set A := AC.
We define idempotents ei = idi and set R = ⊕i∈Ikei, a subalgebra of A. Recall that
Rf ≃ ⊕i ̸=2kei, and consider the k-linear map C∗(C)→ Ω∗

RA given by

a0 ⊗ a1 ⊗ · · · ⊗ am 7→ a0da1 . . . dam.

Since there is a functor C→ Cf , we have a natural map ν : C∗(C)→ C∗(C
f ).

Lemma 3.8. The following diagram commutes

C∗(C) //

ν

��

Ω∗
R(A)

(−)f

��

C∗(C
f ) // Ω∗

Rf (A
f ).

Proof. Thanks to lemma 3.63.6 the map Ω∗
R(A)→ Ω∗

Rf (A
f ) is given by

(a0da1 · · · am)f =
∑

i0,...,im

qi0a0pi1d(qi1a1pi2) . . . d(qimampi0).

Since pij ϵ = pij and ϵqij = qij in our situation, that is either pij = ϵ = qij or pij = e21, qij =
e12. Now, if a0 ⊗ · · · am belongs to the Hochschild complex of C, then these elements are
completely determined by the aj ’s: indeed, if aj ∈ C(xj+1, xj) then qij = ϵ whenever xj ̸= 2
and pij+1 = ϵ whenever xj+1 ̸= 2.

From the proof of proposition 3.33.3 we have that C(x, y)→ Af is given by a 7→ qap, with

• q = ϵ if y ̸= 2, and e12 otherwise.

• p = ϵ if x ̸= 2, and e21 otherwise.

Hence the composed map C∗(C)→ C∗(C
f )→ Ω∗

Rf (A
f ) is given by

a0 ⊗ · · · ⊗ am 7→ qi0a0pi1 ⊗ qi1a2pi2 ⊗ · · · ⊗ qimampi0 ,

with the same pij ’s and qij ’s as above, proving the commutativity.

Lemma 3.9. Le ω ∈ Ω2
R(A). Then ω induces a map ι(ω) : DA/R → ΩA/R. Under the

fusion process, the following diagram commutes

DA/R
//

ι(ω)

��

DA+/R+ //

ι(ω+)

��

DAf/Rf

ι(Tr(ω+))=ι(ωf )

��

ΩA/R
// ΩA+/R+ // ΩAf/Rf .

Proof. The commutativity of the left hand side square follows immediately from definitions
and the commutativity of the right hand side square means that

ιTr(δ)(Tr(ω)) = Tr(ιδ(ω))

for all ω ∈ Ω2
R+(A+) and δ ∈ DA+/R+ . We prove this now. Recall that the bimodule

structure on DA/R is induced by the inner one on A⊗R A. We know from the proof of [99,
Lemma 2.8.6] that ιaδb = aιδb. We thus have, thanks to lemma 3.73.7,

ιTr(δ)(Tr(ω)) = ιϵδϵ+e12δe21(Tr(ω))

= ϵιδ(Tr(ω))ϵ+ e12ιδ(Tr(ω))e21

= ϵιδ(ϵωϵ+ e12ωe21)ϵ+ e12ιδ(ϵωϵ+ e12ωe21)e21

= ϵιδ(ω)ϵ+ e12ιδ(ω)e21

= Tr(ιδ(ω))
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as wished.

3.4 Fusion and 1-smoothness

We start with the following notion simply called “smoothness” in [99] or [3030].

Definition 3.10. We call an R-algebra A 1-smooth if it is finitely generated over R and
formally smooth in the sense of [1313, §19], meaning that ΩA/R is a projective A-bimodule.

It implies that A has projective dimension at most 1 and that we may (and will) use
short resolutions. Note that it implies smoothness of associated representation schemes,
but we call it 1-smooth in order to emphasize that it is way more demanding than the
notion of (homological) smoothness we use in previous works [33, 44] for dg-categories (see
also section 4.14.1), following e.g. [1818].

In the sequel, assume that A = AC where C has a finite number of objects, and R =
⊕e∈Ob(C)ke.

Proposition 3.11. If A is 1-smooth over R, then so is Af over Rf .

Proof. Recall that A+ = A⊗R R+. By definition ΩA+/R+ is the kernel of the multiplication
map m+ : A+ ⊗R+ A+ → A+ which can be identified with

R+ ⊗R A⊗R A⊗R R+ id⊗m⊗id
// R+ ⊗R A⊗R R+.

Since R-modules are Ob(C)×Ob(C)-graded k-vector space, R+ is flat over R and

ΩA+/R+ ≃ (R+)e ⊗Re ΩA/R ≃ (R+)e ⊗Re Ae ⊗Ae ΩA/R ≃ (A+)e ⊗Ae ΩA/R.

Since ΩA/R is a projective A-bimodule, ΩA+/R+ is a projective A+-bimodule.
Then, we know that ΩAf/Rf = eΩA+/R+e from lemma 3.63.6. Since ΩA+/R+ is a projective

A+-bimodule, there exists r ∈ N such that ΩAf/Rf is a direct summand of e(A+ ⊗R+

A+)re = (eA+ ⊗R+ A+e)r ≃ (Af ⊗Rf Af )r by lemma 3.53.5. Hence ΩAf/Rf is a projective

Af -bimodule.

4 Calabi–Yau versus bisymplectic structures

In this section, we recall the notion of Calabi–Yau structures for dg-categories as in [55, 2525]
and bisymplectic structures on algebras as in [99]. We then introduce the fusion process for
bisymplectic structures in analogy with the fusion for double Poisson structures from [3030].
We show that a relative Calabi–Yau structure on

∐
c∈Ob(C) k[xc]→ C, C a k-linear category,

gives rise to a bisymplectic one on the path algebra AC associated to C. Finally, we prove
that the composition with the “additive pair-of-pants” Calabi–Yau cospan induces fusion for
the corresponding bisymplectic structures on AC.

4.1 Calabi–Yau structures, absolute and relative

Our notation follows [33, 44]. A dg-category A is called (homologically) smooth if A is a perfect
Ae-module. In this case, we have an following equivalence

(−)♭ : HH(A)
∼−→ RHomModAe (A

∨,A),

where A∨ is the dualizing bimodule.
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Definition 4.1. Let A be a smooth dg-category. An n-Calabi–Yau structure on A is a
negative cyclic class c = c0 +uc1 + · · · : k[n]→ HC−(A) such that the underlying Hochschild
class c♮ = c0 : k[n] → HH(A) is non-degenerate, in the sense that c♭0 : A∨[n] → A is an
equivalence.

Relative Calabi–Yau structures on morphisms and cospans of dg-categories where intro-
duced by Brav–Dyckerhoff [55] following Toën [2525, §5.3].

Definition 4.2. An n-Calabi–Yau structure on a cospan A
f−→ C

g←− B of smooth dg-
categories is a homotopy commuting diagram

k[n]
cB //

cA

��

HC−(B)

��

HC−(A) // HC−(C)

whose image under (−)♮ is non-degenerate in the following sense: c♮A and c♮B are non-
degenerate, and the homotopy commuting square

C∨[n]
g∨

//

f∨

��

(B∨[n])
L
⊗
Be

Ce
(c♮

B
)♭⊗id
≃ B

L
⊗
Be

Ce

g⊗id

��

(A∨[n])
L
⊗
Ae

Ce
(c♮

A
)♭⊗id
≃ A

L
⊗
Ae

Ce f⊗id
// C

is cartesian. We say that a morphism g : A −→ C is relative n-Calabi–Yau if the copsan

A
f−→ C←−∅ is n-Calabi–Yau.

We will also use the fact that by [55, Theorem 6.2] n-Calabi–Yau cospans compose. It is
immediate with the above definitions that an n-Calabi–Yau structure on ∅→ C← ∅ is the
same as an (n+ 1)-Calabi–Yau structure on C. Finally recall (see e.g. [44, Proposition 2.3])
that a non-degenerate Hochschild class on a smooth dg-category A concentrated in degree
zero admits a unique cyclic lift, making A an Calabi–Yau category.

Example 4.3. • The algebra k[x] carries a 1-Calabi–Yau structure. We call the Calabi–Yau
structure induced by 1⊗ x ∈ HH1(k[x]) the natural Calabi–Yau structure.

• Let Q = (I, E) be a finite quiver where I is the set of vertices and E the set of arrows.
Denote by Q the double quiver obtained by adding for every arrow a ∈ E an arrow a∗ in
the opposite direction. Consider the path algebra of the double quiver A := kQ. There
is a relative 1-Calabi–Yau structure on the moment map k[x] → kA, x 7→

∑
a∈E [a, a

∗],
which is compatible with the natural one on k[x], see [33, 5.3.2].

• The algebra k[x±1] carries a natural 1-Calabi–Yau structure induced by 1
2 (x

−1 ⊗ x− x⊗
x−1) ∈ HH1(k[x

±]). This has been shown in [44] Section 3.1. See also section 2.42.4 for the
cyclic lift.

The next example of a Calabi–Yau cospan was investigated thoroughly in Section 3.3 of
[44] and related to the pair-of-pants.
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Example 4.4 (Pair-of-pants). The cospan

k[x±1]⨿ k[y±1] −→ k⟨x±1, y±1⟩ ←− k[z±1] (4.5)

where the rightmost map is z 7→ xy, is a relative 1-Calabi–Yau cospan with the Calabi–Yau
structures α1(x) + α1(y) − α1(z) = b(β1) ∼ 0 and homotopy β1 := y−1 ⊗ x−1 ⊗ xy − y ⊗
y−1x−1 ⊗ x.

We prove here the additive version of the previous example which we refer to as the
additive pair-of-pants as opposed to the multiplicative pair-of-pants of the previous example.

Lemma 4.6. There exists a relative 1-Calabi–Yau structure on

k[x]
∐

k[y] −→ k⟨x, y⟩ ←− k[z] , (4.7)

where the rightmost map is z 7→ x + y, such that the underlying absolute 1-Calabi–Yau
structures on k[x], k[y] and k[z] are the natural ones.

Proof. The algebra B := k⟨x, y⟩ has a small resolution as a B-bimodule:

(Be)⊕2[1]⊕Be

with differential sending (1⊗ 1, 0) to x⊗ 1− 1⊗ x, and (0, 1⊗ 1) to y⊗ 1− 1⊗ y. Therefore

B∨ ≃ Be ⊕ (Be)⊕2[−1]

with differential sending 1⊗ 1 to (x⊗ 1− 1⊗ x, y ⊗ 1− 1⊗ y).
The canonical Calabi–Yau structures on A := k[x] are given by α1(x) = 1⊗ x ∈ HH1(A).

Note that α1 has a unique cyclic lift by Proposition 2.3 of [44] which we denote α. The
following diagram induced by the natural Calabi–Yau structures on A is strictly commutative

B∨[1]

��

// A∨ ⊗
Ae

Be[1]
α1(x+y)
≃ A ⊗

Ae
Be

��

(A⊕2)∨ ⊗
Ae

Be[1]
α1(x)+α1(y)≃ A⊕2 ⊗

Ae
Be // B

Using the small resolution of A we find A ⊗
Ae

Be ≃ Be[1]⊕Be, with differential sending 1⊗ 1

to x ⊗ 1 − 1 ⊗ x. Hence, we get that the diagram is cartesian. The zero homotopy is the
unique lift in cyclic homology between α(z) and α(x) + α(y). Therefore the cospan (4.74.7)
carries a relative 1-Calabi–Yau structure.

4.2 Bisymplectic structures and fusion

Let A be an R-algebra, where R = ke1⊕· · ·⊕ken is based on pairwise orthogonal idempotents
as usual. We define gauge elements Ei = (a 7→ aei⊗ ei− ei⊗ eia) ∈ DA/R and recall notions
introduced in [99].

Definition 4.8. We call ω ∈ Ω2
R(A) a bisymplectic structure on A, if

• ω is closed, that is dω = 0 ∈ DRR(A)

• ω is non-degenerate, that is ι(ω) : DA/R → ΩA/R, δ 7→ ιδ(ω) is an isomorphism.
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An element µ = (µi) ∈ ⊕ieiAei is a moment map for a bisymplectic algebra (A,ω) if

dµi = ιEi(ω)

for all i ∈ I.

A moment map always exists, see [3030, A.7]. Now we discuss fusion of bisymplectic
structures and aim to prove [3030, Proposition 2.6.6]. We use the notation of section 33.
Recall that we have trace maps A→ Af , a 7→ af = ϵaϵ+ e12ae21, Ω

∗
R(A)→ Ω∗

Rf (A
f ) and

D∗
R(A)→ D∗

Rf (A
f ). Let A be an algebra equipped with a bisymplectic structure ω, with

moment map µ. We define µff
i = µf

i = µi for i ≥ 3 and

µff
1 = µ1 + e12µ2e21 = µf

1 + µf
2 .

Lemma 4.9. The form ωf ∈ Ω2
Rf (A

f ) is a bisymplectic structure on Af , with moment map
µff .

Proof. By definition, ωf ∈ Ω2
RfA

f is a closed form. We need to show that ι(ωf ) : DAf/Rf →
ΩAf/Rf is an isomorphism. Recall from lemma 3.93.9, that we have the following commutative
diagram

DA/R
//

ι(ω)

��

DA+/R+ //

ι(ω+)

��

DAf/Rf

ι(ωf )

��

ΩA/R
// ΩA+/R+ // ΩAf/Rf .

Now ι(ω+) is an isomorphism as it is obtained from ι(ω) by an extension of rings −⊗R R+,
where R is semi-simple.

We observe that the map Tr : ΩA+/R+ → ΩAf/Rf is surjective. As ι(ω+) is surjective,

ι(ωf ) is also surjective by lemma 3.93.9. Furthermore, the kernel of Tr : ΩA+/R+ → ΩAf/Rf

is given by ϵΩA/Re2 + e2ΩA/Rϵ and the kernel of Tr : DA+/R+ → DAf/Rf is ϵDA+/R+e2 +
e2DA+/R+ϵ. The morphism ι(ω+) maps the two kernels bijectively to each other as it is an
A+ ⊗R+ A+-linear isomorphism. Furthermore, Tr : DA+/R+ → DAf/Rf is surjective. As a

consequence, ι(ωf ) is also an isomorphism proving that ωf is non-degenerate. This shows
that ωf is a bisymplectic structure o, Af . The moment map µ := (µi)i associated to ω is
determined by the condition dµi = ιEi

(ω). Denote by Fi for i ≠ 2 the gauge elements in Af .
By lemma 3.93.9

d(µf
i ) = (dµi)

f = (ιEi(ω))
f = ιEf

i
(ωf ) = ιFi(ω

f )

for i ̸= 1, 2. We know from [3030, Lemma 5.3.3] that F1 = Ef
1 + Ef

2 , so

d(µff
1 ) = d(µf

1 + µf
2 ) = ιEf

1
(ωf ) + ιEf

2
(ωf ) = ιF1

(ωf )

as expected.

4.3 From Calabi–Yau structures to bisymplectic structures

Let C be a klinear category with set of objects I = {1, . . . , n} (in particular, we assume

that C is concentrated in degree 0). Set ei = idi, R = ⊕i∈Ikei, R̂ =
∐

i∈I k[xi] and A = AC.

Note that R̂ := A
R̂
≃
⊕

i∈I k[xi]. We assume that we are given an endomorphism of each

object i. This amounts to having a k-linear functor µ : R̂→ C or, equivalently, an R-algebra
morphism R̂→ A. Let us set µi := µ(xi) ∈ eiAei.
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Theorem 4.10. Assume we have a relative 1-Calabi–Yau structure on µ : R̂→ C inducing
the natural Calabi–Yau structure on each k[xi] and assume that AC is 1-smooth. Then AC is
bisymplectic with moment map

∑n
i=1 µi.

Proof. The 1-Calabi–Yau structure gives a homotopy 0 ∼ µ(
∑n

i=1 1 ⊗ xi) =
∑n

i=1 1 ⊗ µi

which yields, thanks to section 2.32.3, an element ω1 ∈ Ω2
R(A) satisfying ιE(ω1) =

∑n
i=1 dµi.

Hence µ is a moment map for ω1.
It remains to show that ω1 is closed and non-degenerate. First note that γ :=

∑n
i=1 1⊗xi ∈

Ω1
RR̂ trivially lifts in negative cyclic homology as B(γ) = 0. Then the Calabi–Yau structure

is given by a family ωk ∈ Ω̄2k
R A satisfying

(ιE − ud)

∑
k≥0

ukωk+1

 = µ(γ),

which implies dω1 = ιE(ω2) = 0 ∈ DRRA. This proves the closedness of ω1.
The (Calabi–Yau) non-degeneration property yields the homotopy fiber sequence

A∨[1]→ R∨[1]⊗Re Ae γ1≃ R⊗Re Ae → A.

Using short resolutions (thanks to the 1-smoothness of A) we get the homotopy commuting
diagram

Ae id //

E

��

Ae id //

µ⊗id−id⊗µ

��

Ae dµ
//

µ⊗id−id⊗µ

��

ΩA/R
_�

��

DA/R evµ

// Ae

id
// Ae

id
// Ae

The homotopy is given by ι(ω1) : DA/R → ΩA/R

Now as the Calabi–Yau structure is non-degenerate we have

A∨[1] ≃ hofib
(
R∨[1]⊗Re Ae γ1≃ R⊗Re Ae → A

)
.

In short resolutions, this yields a quasi-isomorphism between the vertical complexes

Ae id //

E

��

Ae

dµ

��

DA/R
ι(ω1)

// ΩA/R

which in particular gives an isomorphism ι(ω1) : DA/R → ΩA/R.

Example 4.11. Let Q = (I, E) be a finite quiver where I is the set of vertices and E the
set of arrows. Denote by Q the double quiver obtained by adding for every arrow a ∈ E an
arrow a∗ in the opposite direction. Consider the path algebra of the double quiver A := kQ.
We have

• a relative 1-Calabi–Yau structure on µ : k[x]→ A, x 7→
∑

a∈E [a, a
∗] from example 4.34.3;

• a bisymplectic structure ω =
∑

a∈E dada∗ ∈ DR
2

RA on A given in [99, Proposition 8.1.1],
with moment map µ.

18



We claim that the first structure implies (twice) the second one under theorem 4.104.10. Indeed:
the homotopy between 0 and µ(1 ⊗ x) is given by

∑
a∈E(1 ⊗ a ⊗ a∗ − 1 ⊗ a∗ ⊗ a) which

corresponds to 2
∑

a∈E dada∗.

We next investigate the relationship between fusion of bisymplectic structures and relate
them to the compositions of Calabi–Yau cospans. Consider a dg-category C with objects
set I, along with a relative 1-Calabi–Yau structure µ : R̂→ C that induces natural absolute
Calabi–Yau structures on each k[xi]. Set R̂≥3 =

∐
i≥3 k[xi]. We can consider the composition

of cospans

Cf

k⟨x1, x2⟩ ⨿ R̂≥3

88

C

cc

k[z]⨿ R̂≥3

77

R̂

ee ;;

∅

ee

defining Cf , where z is mapped to x1 + x2. This yields a relative Calabi–Yau structure on

k[z]⨿ R̂≥3 → Cf . (4.12)

Theorem 4.13. Assume that AC is 1-smooth. Let (AC, ω) be the bisymplectic structure
induced by the relative 1-Calabi–Yau structure µ thanks to theorem 4.104.10. Then the fusion
bisymplectic structure (Af

C, ω
f ) obtained from fusing the two objects 1 and 2 is induced by

the relative 1-Calabi–Yau structure (4.124.12).

Proof. Set A = AC. We know thanks to proposition 3.33.3 that Af ≃ ACf . As the bisymplectic
structure is compatible with the relative 1-Calabi–Yau structure, we have that the image
of z under this isomorphism is µ(x1)

f + µ(x2)
f . Hence the moment map of the fusion

bisymplectic structure is induced from the Calabi–Yau cospan. Let ω ∈ Ω2
R(A) denote the

homotopy µ(1⊗ (
∑

i∈I xi)) ∼ 0 of the Calabi–Yau structure which induces by assumption
the bisymplectic structure on A. Since the homotopy between the 1-forms in the cospan

k[z]⨿ R̂≥3 −→ k⟨x1, x2⟩ ⨿ R̂≥3 ←− R̂

is trivial, the zero-homotopy of the composition of Calabi–Yau cospans is given by the image
of ω under the map ν from lemma 3.83.8. But it is proven there that this image is ωf , which is
precisely what we want.

To summarize, we have proven that the following diagram commutes, with Rf ≃
⊕i∈I\{2}kei and R̂f ≃ ⨿i∈I\{2}k[xi].

1-Calabi–Yau functors

R̂→ C, under R,
with AC 1-smooth

 Theorem 4.104.10 //

composition
with pair-of-pants

��

{
bisymplectic structures
on 1-smooth R-algebras

}

fusion

��
1-Calabi–Yau functors

R̂f → Cf , under Rf ,
with ACf 1-smooth

 Theorem 4.104.10 //

{
bisymplectic structures
on 1-smooth Rf -algebras

}

19



5 Calabi–Yau versus quasi-bisymplectic structures

We prove in this section that relative Calabi–Yau structures on k[x±1] → C, C a k-linear
dg-category, induces this time quasi-bisymplectic ones on AC, in the sense of [3131]. We prove
again that fusion of quasi-bisymplectic structures on AC is induced by the composition of
Calabi–Yau cospans with the multiplicative pair-of-pants.

5.1 Quasi-bisymplectic structures

Consider an R-algebra A.

Definition 5.1 ([3131]). A quasi-bisymplectic algebra is a triple (A,ω,Φ) where ω ∈ DR2
RA

and Φ ∈ A∗ satisfying the following conditions

(B1) dω = 1
6 (Φ

−1dΦ)3 mod [−,−].

(B2) ıEω = 1
2 (Φ

−1dΦ+ dΦΦ−1)

(B3) The map
DA/R ⊕AdΦA→ ΩA : (δ, η) 7→ ı(ω)(δ) + η

is surjective.

Recall from [3131, Theorem 7.1] the A⊗R A-linear map T : ΩA/R
e→ AE∗A

T 0

→ AdΦA
c→

ΩA/R, where c denotes the canonical embedding, e the adjoint of c and T 0 is uniquely
determined by T 0(E∗) = Φ−1dΦ− dΦΦ−1.

Definition 5.2. We say that a triple (ω, P,Φ) ∈ Ω2
R(A) × D2

R(A) × A∗ is compatible if
ι(ω)ι(P ) = 1− 1

4T .

What is proved by [3131, Theorem 7.1] is that each quasi-bisymplectic structure of DR2
R(A)

corresponds to a unique non-degenerate double quasi-Poisson bracket in (DRA/[DRA,DRA])2.
We will not recall the definition of the latter here.

Lemma 5.3. Let (ω, P,Φ) be a compatible triple on A such that (ω,Φ) is quasi-bisymplectic.
Then (ω+,Φ+) is quasi-bisymplectic on A+ and (ω+, P+,Φ+) is also compatible.

Proof. The compatibility condition is given by ι(ω)ι(P ) = 1− 1
4T . Since R is semi-simple,

−⊗R R+ is exact. Recall also that ΩA+/R+ ≃ ΩA/R ⊗R R+ and DA+/R+ ≃ DA/R ⊗R R+.
From this it follows immediately that (ω+,Φ+) is a quasi-bisymplectic structure. Now by
functoriality of the extension of scalar functor − ⊗R R+, we obtain that ι(ω+)ι(P+) =
1− 1

4T
+.

Assume that R = ⊕i∈Ikei is based on pairwise orthogonal idempotents. Let (ω, P,Φ)
be a compatible triple on A such that (ω,Φ) is quasi-bisymplectic and assume that Φ =

(Φi)i∈I ∈ ⊕i∈IeiA
∗ei. Set Φff

1 = Φf
1Φ

f
2 and Φff

i = Φf
i = Φi if i > 2. The following rather

computational result is the noncommutative analog of [11, Proposition 10.7].

Proposition 5.4. Set ωcor =
1
2 (Φ

f
1 )

−1dΦf
1dΦ

f
2 (Φ

f
2 )

−1. Then ωff := ωf − ωcor is compatible

with P ff := P f + 1
2E

f
1E

f
2 .

Proof. We need to prove that ι(ωff )ι(P ff ) = 1− 1
4T

ff which is equivalent to

ι(ωf )ι(P f )︸ ︷︷ ︸
(I)

−1

2
ι(ωcor)ι(E

f
1E

f
2 )︸ ︷︷ ︸

(II)

− ι(ωcor)ι(P
f )︸ ︷︷ ︸

(III)

+
1

2
ι(ωf )ι(Ef

1E
f
2 )︸ ︷︷ ︸

(IV)

= 1− 1

4
T ff︸︷︷︸
(V)

. (5.5)
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Note that A+ → Af , a 7→ Tr(a) is surjective. Hence it is sufficient to show compatibility on
all images of da ∈ ΩA+/R+ . We will systematically use the notation (−)f = Tr(−) in the
rest of this proof.

We have Φff
1 = Φf

1Φ
f
2 = Φ+

1 e12Φ
+
2 e21 and Φff

i = Φf
i = Φi if i > 2. We abusively note

Φi = Φ+
i as they don’t involve eij ’s, so that Φf

i = Φi when i ̸= 2, Φf
2 = e12Φ2e21 and we set

Ψ = Φff
1 . Then for any a ∈ A+

(V)(V)(daf ) = T ff (daf )

= [af , (Φff )−1dΦff − dΦff (Φff )−1]

= [af ,Ψ−1dΦ1Φ
f
2 + (Φf

2 )
−1dΦf

2 − dΦ1Φ
−1
1 − Φ1dΦ

f
2Ψ

−1]

+
∑
i>2

[af ,Φ−1
i dΦi − dΦiΦ

−1
i ]

= [af ,Ψ−1dΦ1Φ
f
2 + (Φf

2 )
−1dΦf

2 − dΦ1Φ
−1
1 − Φ1dΦ

f
2Ψ

−1]

+
∑
i>2

ϵ[a,Φ−1
i dΦi − dΦiΦ

−1
i ]ϵ

whereas, thanks to lemma 3.93.9,

(I)(I)(daf ) = ι(ωf )ι(P f )(daf )

= ι(ωf )
(
ι(P )(da)

)f
=
(
ι(ω)ι(P )(da)

)f
=
(
a− 1

4
T (da)

)f
= af − 1

4
ϵ[a,Φ−1

1 dΦ1 − dΦ1Φ
−1
1 ]ϵ− 1

4
e12[a,Φ

−1
2 dΦ2 − dΦ2Φ

−1
2 ]e21

− 1

4

∑
i>2

ϵ[a,Φ−1
i dΦi − dΦiΦ

−1
i ]ϵ

= af − 1

4
[ϵaϵ,Φ−1

1 dΦ1 − dΦ1Φ
−1
1 ]ϵ− 1

4
[e12ae21, (Φ

f
2 )

−1dΦf
2 − dΦf

2 (Φ
f
2 )

−1]

− 1

4

∑
i>2

ϵ[a,Φ−1
i dΦi − dΦiΦ

−1
i ]ϵ.

Recall that for every δ ∈ DAf

2ι(ωcor)(δ) =
◦iδ(Φ

−1
1 dΦ1dΦ

f
2 (Φ

f
2 )

−1)

= ◦(Φ−1
1 δΦ1dΦ

f
2 (Φ

f
2 )

−1 − Φ−1
1 dΦ1δΦ

f
2 (Φ

f
2 )

−1)

= δ(Φ1)
′′dΦf

2Ψ
−1δ(Φ1)

′ − δ(Φf
2 )

′′Ψ−1dΦ1δ(Φ
f
2 )

′.

and that for every a ∈ A we have ι(P )(da) = Ha, the Hamiltonian vector field which satisfies

Ha(Φ) = −
1

2
(ΦE + EΦ)(a)◦.

It implies (recall that the bimodule structure on double derivations is induced by the inner
one on A⊗R A)

2Hf
a (Φ

f
1 ) = 2(ϵHaϵ+ e12Hae21)(Φ1)

= −(ϵΦ1E1ϵ+ ϵE1Φ1ϵ+ e12Φ1E1e21 + e12E1Φ1e21)(a)
◦
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= −(Φ1E1ϵ+ ϵE1Φ1)(a)
◦

= −(aϵ⊗ Φ1 − ϵ⊗ Φ1a+ aΦ1 ⊗ ϵ− Φ1 ⊗ ϵa)◦

= −Φ1 ⊗ aϵ+Φ1a⊗ ϵ− ϵ⊗ aΦ1 + ϵa⊗ Φ1

= −Φ1 ⊗ ϵaϵ+Φ1ϵaϵ⊗ e1 − e1 ⊗ ϵaϵΦ1 + ϵaϵ⊗ Φ1

and

2Hf
a (Φ

f
2 ) = 2e12(ϵHaϵ+ e12Hae21)(Φ2)e21

= −
(
e12(ϵΦ2E2ϵ+ ϵE2Φ2ϵ+ e12Φ2E2e21 + e12E2Φ2e21)(a)e21

)◦
= −

(
e12(e12Φ2E2e21 + e12E2Φ2e21)(a)e21

)◦
= −

(
e12ae21 ⊗ e12Φ2e21 − e12e21 ⊗ e12Φ2ae21

+ e12aΦ2e21 ⊗ e12e2e21 − e12Φ2e21 ⊗ e12e2ae21
)◦

= −
(
e12ae21 ⊗ Φf

2 − e1 ⊗ Φf
2e12ae21 + e12ae21Φ

f
2 ⊗ e1 − Φf

2 ⊗ e12ae21
)◦

= −Φf
2 ⊗ e12ae21 +Φf

2e12ae21 ⊗ e1 − e1 ⊗ e12ae21Φ
f
2 + e12ae21 ⊗ Φf

2 .

We thus obtain

4(III)(III)(daf ) = 4ι(ωcor)ι(P
f )(daf )

= 4ι(ωcor)(H
f
a )

= 2Hf
a (Φ1)

′′dΦf
2Ψ

−1Hf
a (Φ1)

′ − 2Hf
a (Φ

f
2 )

′′Ψ−1dΦ1H
f
a (Φ

f
2 )

′

= −e1adΦf
2Ψ

−1Φ1 + dΦf
2Ψ

−1Φ1ae1 − e1aΦ1dΦ
f
2Ψ

−1 +Φ1dΦ
f
2Ψ

−1ae1

+ e12ae21Ψ
−1dΦ1Φ

f
2 −Ψ−1dΦ1Φ

f
2e12ae21 + e12ae21Φ

f
2Ψ

−1dΦ1 − Φf
2Ψ

−1dΦ1e12ae21

= −ϵaϵdΦf
2 (Φ

f
2 )

−1 + dΦf
2 (Φ

f
2 )

−1ϵaϵ− ϵaϵΦ1dΦ
f
2Ψ

−1 +Φ1dΦ
f
2Ψ

−1ϵaϵ

+ e12ae21Ψ
−1dΦ1Φ

f
2 −Ψ−1dΦ1Φ

f
2e12ae21 + e12ae21Φ

−1
1 dΦ1 − Φ−1

1 dΦ1e12ae21

= −[ϵaϵ, dΦf
2 (Φ

f
2 )

−1 +Φ1dΦ
f
2Ψ

−1] + [e12ae21,Ψ
−1dΦ1Φ

f
2 +Φ−1

1 dΦ1].

Also

2ι(ωcor)ι(E
f
1E

f
2 )(da

f ) = 2ι(ωcor)
◦(idaf (Ef

1 )E
f
2 − Ef

1 idaf (Ef
2 ))

= 2ι(ωcor)
◦(Ef

1 (a
f )Ef

2 − Ef
1E

f
2 (a

f ))

= 2ι(ωcor)(e1E
f
2 ϵae1 − e1aϵE

f
2 e1 − e1E

f
1 e12ae21 + e12ae21E

f
1 e1)

= e1ι(2ωcor)(E
f
2 )ϵae1 − e1aϵι(2ωcor)(E

f
2 )e1

− e1ι(2ωcor)(E
f
1 )e12ae21 + e12ae21ι(2ωcor)(E

f
1 )e1.

But

Ef
1 (a

f ) = ϵE+
1 (a)ϵ+ e12E

+
1 (a)e21

= ϵae1 ⊗ e1ϵ− ϵe1 ⊗ e1aϵ+ e12ae1 ⊗ e1e21 − e12e1 ⊗ e1ae21

= ϵaϵ⊗ e1 − e1 ⊗ ϵaϵ

and

Ef
2 (a

f ) = ϵ(e12E
+
2 e21)(a)ϵ+ e12(e12E

+
2 e21)(a)e21

= ϵae21 ⊗ e12ϵ− ϵe21 ⊗ e12aϵ+ e12ae21 ⊗ e12e21 − e12e21 ⊗ e12ae21

= e12ae21 ⊗ e1 − e1 ⊗ e12ae21
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imply Ef
1 (Φ1) = E1(Φ1), E

f
1 (Φ

f
2 ) = 0, Ef

2 (Φ1) = 0, Ef
2 (Φ

f
2 ) = E1(Φ

f
2 ) and

ι(2ωcor)(E
f
1 ) = dΦf

2 (Φ
f
2 )

−1 − Φ1dΦ
f
2Ψ

−1

ι(2ωcor)(E
f
2 ) = −Ψ−1dΦ1Φ

f
2 +Φ−1

1 dΦ1.

Hence,

2(II)(II)(daf ) = 2ι(ωcor)ι(E
f
1E

f
2 )(da

f )

= e1(−Ψ−1dΦ1Φ
f
2 +Φ−1

1 dΦ1)ϵaϵ− ϵaϵ(−Ψ−1dΦ1Φ
f
2 +Φ−1

1 dΦ1)e1

− e1(dΦ
f
2 (Φ

f
2 )

−1 − Φ1dΦ
f
2Ψ

−1)e12ae21 + e12ae21(dΦ
f
2 (Φ

f
2 )

−1 − Φ1dΦ
f
2Ψ

−1)e1

= [e12ae21, dΦ
f
2 (Φ

f
2 )

−1 − Φ1dΦ
f
2Ψ

−1] + [ϵaϵ,Ψ−1dΦ1Φ
f
2 − Φ−1

1 dΦ1].

Similarly, using ι(2ωf )(Ef
i ) = (Φ−1

i dΦi + dΦiΦ
−1
i )f , one gets

2(IV)(IV)(daf ) = 2ι(ωf )ι(Ef
1E

f
2 )(da

f )

= e1ι(2ω
f )(Ef

2 )ϵaϵ− ϵaϵι(2ωf )(Ef
2 )e1

− e1ι(2ω
f )(Ef

1 )e12ae21 + e12ae21ι(2ω
f )(Ef

1 )e1

= e1(Φ
−1
2 dΦ2 + dΦ2Φ

−1
2 )f ϵaϵ− ϵaϵ(Φ−1

2 dΦ2 + dΦ2Φ
−1
2 )fe1

− e1(Φ
−1
1 dΦ1 + dΦ1Φ

−1
1 )fe12ae21 + e12ae21(Φ

−1
1 dΦ1 + dΦ1Φ

−1
1 )fe1

= e12(Φ
−1
2 dΦ2 + dΦ2Φ

−1
2 )e21ϵaϵ− ϵaϵe12(Φ

−1
2 dΦ2 + dΦ2Φ

−1
2 )e21

− (Φ−1
1 dΦ1 + dΦ1Φ

−1
1 )e12ae21 + e12ae21(Φ

−1
1 dΦ1 + dΦ1Φ

−1
1 )

= [e12ae21,Φ
−1
1 dΦ1 + dΦ1Φ

−1
1 ]− [ϵaϵ, (Φf

2 )
−1dΦf

2 + dΦf
2 (Φ

f
2 )

−1].

Putting everything together yields (5.55.5) as expected.

5.2 From Calabi–Yau structures to quasi-bisymplectic structures

Let again C be a k-linear category with objects set I = {1, . . . , n}. Set ei = idi, R = ⊕i∈Ikei
and T :=

∐
i∈I k[x

±1
i ].

Theorem 5.6. Assume that we have a relative 1-Calabi–Yau structure on a k-linear functor
µ : T → C which induces the natural 1-Calabi–Yau structure on each k[x±1

i ]. If A = AC is
1-smooth, then it is quasi-bisymplectic with multiplicative moment map

∑n
i=1 µ(xi).

Proof. Define Φ : k[x±1]→ A by Φ(x) =
∑n

i=1 µ(xi) ∈ ⊕i∈IeiA
∗ei. Since µ is 1-Calabi–Yau,

using the notation of section 2.42.4, we know that there exists ωk ∈ Ω̄2k
R A for all k such that

(ιE − ud)

(∑
k≥0

ukωk+1

)
= Φ(γ)

or equivalently

ιEω1 = Φ(γ1) =
1

2
(Φ−1dΦ+ dΦΦ−1) (B2)

ιEω2 − dω1 = −1

6
Φ(γ2)⇒ dω1 =

1

6
(Φ−1dΦ)3 mod [−,−] (B1)

ιEω3 − dω2 =
2!

5!
Φ(γ3)

...

ιEωk+1 − dωk = (−1)k k!

(2k + 1)!
Φ(γk+1) k ≥ 1.

23



For (B3), set T = k[x±1] and write the relative 1-pre-Calabi–Yau structure

A∨[1]→ T∨[1]⊗T e Ae γ
≃ T ⊗T e Ae → A

with short resolutions (thanks to our 1-smoothness assumption) to get the homotopy com-
muting diagram

Ae id //

E

��

Ae
(Φ−1⊗1+1⊗Φ−1)/2

//

��

Ae dΦ //

��

ΩA/R
_�

��

DA/R evΦ

// Ae

(Φ−1⊗1+1⊗Φ−1)/2

// Ae

id
// Ae

where the homotopy DA/R → ΩA/R gives ιEω1 = (Φ−1dΦ+ dΦΦ−1)/2.
Now assume that our Calabi–Yau structure is non-degenerate, that is

A∨[1] ≃ hofib
(
T∨[1]⊗T e Ae γ

≃ T ⊗T e Ae → A
)
.

In short resolutions, this yields a quasi-isomorphism (between vertical complexes)

Ae
(Φ−1⊗1+1⊗Φ−1)/2

//

E

��

Ae

dΦ

��

DA/R ιEω1

// ΩA/R

which in particular gives a surjection DA/R → ΩA/R/⟨dΦ⟩, that is (B3).

5.3 Fusion

Set T≥3 = ⨿i≥3k[x
±1
i ] and consider the following composition of 1-Calabi–Yau cospans

Cf

k⟨x±1, y±1⟩ ⨿ T≥3

77

C

dd

k[z±1]⨿ T≥3

66

T

ff ;;

∅

ee

(5.7)

where the leftmost one is induced by the pair-of-pants. We want to prove the following
multiplicative analog of theorem 4.134.13.

Theorem 5.8. Consider a 1-Calabi–Yau functor T → C inducing the natural 1-Calabi–Yau
structure on each k[x±1

i ], and assume that AC is 1-smooth. Then the quasi-bisymplectic
structure on Cf induced thanks to theorem 5.65.6 by the 1-Calabi–Yau functor

k[z±1]⨿ T≥3 → Cf

is the one obtained by fusion of 1 and 2 from the quasi-bisymplectic structure of AC induced
by theorem 5.65.6.
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Proof. Denote by Φf
1 ,Φ

f
2 the images of x = x1, y = x2 in the pushout Cf . The extra difficulty

here with respect to the proof of theorem 4.134.13 is that the homotopy β1 involved in the
pair-of-pants cospan is nontrivial, see example 4.44.4. This non-degenerate homotopy

β1 =
1

2

(
y−1 ⊗ x−1 ⊗ xy − y ⊗ y−1x−1 ⊗ x

)
∈ HH2k⟨x±1, y±1⟩

is mapped in DR
2
k⟨x±1, y±1⟩ to

ω =
1

4

(
y−1dx−1d(xy)− yd(y−1x−1)dx

)
=

1

4

(
− y−1x−1dxx−1(xdy + dxy) + dyy−1x−1dx+ x−1dxx−1dx

)
=

1

4

(
− y−1x−1dxdy − y−1x−1dxx−1dxy + dyy−1x−1dx+ x−1dxx−1dx

)
≡ −1

2
x−1dxdyy−1 mod [−,−]

which is mapped to

−1

2
(Φf

1 )
−1dΦf

1dΦ
f
2 (Φ

f
2 )

−1 ∈ DR
2

RfCf .

The proposition 5.45.4 allows us to conclude, thanks to the uniqueness [3131, Theorem 7.1] of
compatibility and [3131, Theorem 8.2.1].

To summarize, we have proven that the following diagram commutes, where Rf =
⊕i∈I\{2}kei and Tf = ⨿i∈I\{2}k[x

±1
i ]. 1-Calabi–Yau functors

T → C, over R,
with AC 1-smooth

 Theorem 5.65.6 //

composition
with multiplicative

pair-of-pants

��

{
quasi-bisymplectic structures

on 1-smooth R-algebras

}

fusion

�� 1-Calabi–Yau functors
Tf → Cf , over Rf ,
with ACf 1-smooth

 Theorem 5.65.6 //

{
quasi-bisymplectic structures
on 1-smooth Rf -algebras

}

5.4 Examples

5.4.1 An elementary quiver

Consider the quiver A2 = (V = {1, 2}, E = {e : 1 → 2}), with orthogonal idempotents e1
and e2 satisfying 1 = e1 + e2, R = ke1 ⊕ ke2, and set

a1 = e1 + e∗e and a2 = e2 + ee∗.

Let us denote by A the localization (kA2)a1,a2 . Recall that we have given in [44] a relative
1-Calabi–Yau structure on Φ : k[x±1]→ A defined by

Φ1(x1) = a−1
1 and Φ2(x2) = a2.

Define ∂/∂e and ∂/∂e∗ in DRA by ∂e/∂e = e2 ⊗ e1, ∂e
∗/∂e = 0, ∂e∗/∂e∗ = e1 ⊗ e2 and

∂e/∂e∗ = 0.
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In the previous section we proved that this Calabi–Yau structure induces a quasi-

bisymplectic one ω1 ∈ DR
2

RA on A. We want to prove the following.

Proposition 5.9. The double quasi-Poisson bracket compatible with ω1 through [3131, Theorem
7.1] is the one described in [3131, §8.3]:

P =
1

2

(
(1 + ee∗)

∂

∂e∗
∂

∂e
− (1 + e∗e)

∂

∂e

∂

∂e∗

)
∈ (DRA/[DRA,DRA])2 .

Note that we use the convention regarding concatenation of paths opposite to the one
in [3030], that is e = e2ee1.

Proof. In [33], one homotopy ϕ(γ1) ∼ 0 is given by

β1 =
1

2

(
e∗ ⊗ e⊗ Φ+ Φ⊗ e∗ ⊗ e− e∗ ⊗ Φ−1 ⊗ e− Φ−1 ⊗ e⊗ e∗

+ 1⊗ e∗ ⊗ eΦ− 1⊗ eΦ⊗ e∗
) (5.10)

where Φ = Φ1(x1)+Φ2(x2). It yields an element (1/4 appears because of the degree operator)

ω1 =
1

4

(
e∗dedΦ+ Φde∗de− e∗dΦ−1de− Φ−1dede∗ + de∗d(eΦ)− d(eΦ)de∗

)
in DR

2
A =

(
ΩA/[ΩA,ΩA]

)
2
. We can heavily simplify this expression working modulo

[ΩA,ΩA]. First note that (again, dab stands for (da)b)

dΦ = −a−1
1 (de∗e+ e∗de)a−1

1 + dee∗ + ede∗ = −Φ(de∗e+ e∗de)Φ + dee∗ + ede∗

dΦ−1 = de∗e+ e∗de− a−1
2 (dee∗ + ede∗)a−1

2 = de∗e+ e∗de− Φ−1(dee∗ + ede∗)Φ−1,

thus, using ΦeΦ = e and Φe∗Φ = e∗ (cf [44, (4.3)]),

4ω1 = Φde∗de− Φ−1dede∗ + e∗dedΦ− e∗dΦ−1de+ 2de∗d(eΦ)

= Φde∗de− Φ−1dede∗ − e∗deΦ(de∗e+ e∗de)Φ

+ e∗Φ−1(dee∗ + ede∗)Φ−1de+ 2de∗deΦ− 2de∗eΦ(de∗e+ e∗de)Φ

= Φde∗de− Φ−1dede∗ − e∗deΦde∗eΦ

−e∗deΦe∗deΦ+ e∗Φ−1dee∗Φ−1de︸ ︷︷ ︸
≡0

+e∗Φ−1ede∗Φ−1de

+ 2de∗deΦ− 2 de∗eΦde∗eΦ︸ ︷︷ ︸
≡0

−2de∗eΦe∗deΦ

≡ 3Φde∗de− Φ−1dede∗ − eΦe∗deΦde∗ + e∗Φ−1ede∗Φ−1de+ 2de∗eΦe∗deΦ

= 3Φde∗de− Φ−1dede∗ − ee∗Φ−1
2 deΦde∗ + e∗eΦ1de

∗Φ−1de+ 2de∗ee∗Φ−1
2 deΦ

= 3Φde∗de− Φ−1dede∗ − deΦde∗ +Φ−1deΦde∗

+ de∗Φ−1de− Φde∗Φ−1de− 2de∗deΦ+ 2de∗Φ−1deΦ

≡ 2Φde∗de− 2Φ−1dede∗.

We now need to prove that P and ω1 are compatible, meaning as previously that

ι(ω1)ι(P ) = 1− 1

4
T (5.11)
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with T (dp) = [p,Φ−1dΦ− dΦΦ−1]. For p = e, the LHS is

ι(ω1)ι(P )(de) =
1

2
ι(ω1)

(
∂

∂e∗
(1 + e∗e) + (1 + ee∗)

∂

∂e∗

)
=

1

2
(◦i∂/∂e∗(ω1)(1 + e∗e) + (1 + ee∗)◦i∂/∂e∗(ω1))

where
iδ(pdqdr) = pδ(q)′ ⊗ δ(q)′′dr − pdqδ(r)′ ⊗ δ(r)′′ ∈ A⊗ Ω1 +Ω1 ⊗A

as stated earlier. Note that above we have used, for π, ν ∈ A and δ ∈ DA/R,

◦iπδν(pdqdr) =
◦(pδ(q)′ν ⊗ πδ(q)′′dr − pdqδ(r)′ν ⊗ πδ(r)′′)

= π◦iδ(pdqdr)ν

since the bimodule structure on DA/R is induced by the inner one on Ae, as explained in
the proof of [99, 2.8.6]. We have:

◦i∂/∂e∗(2ω1) =
◦(Φ⊗ de+Φ−1de⊗ e2) = deΦ+ Φ−1de

thus

4ι(ω1)ι(P )(da) = (deΦ+ Φ−1de)(1 + e∗e) + (1 + ee∗)(deΦ+ Φ−1de)

= 2de+Φ−1deΦ−1 +ΦdeΦ

whereas 4 times the RHS of (5.115.11) evaluated at de is

4de− [e,Φ−1dΦ− dΦΦ−1] = 4de− eΦ−1(−Φ(de∗e+ e∗de)Φ + dee∗ + ede∗)

+ e(−Φ(de∗e+ e∗de)Φ + dee∗ + ede∗)Φ−1

+Φ−1(−Φ(de∗e+ e∗de)Φ + dee∗ + ede∗)e

− (−Φ(de∗e+ e∗de)Φ + dee∗ + ede∗)Φ−1e

= 4de+ ede∗eΦ+ ee∗deΦ− eΦde∗e− eΦe∗de

+Φ−1dee∗e+Φ−1ede∗e− dee∗Φ−1e− ede∗Φ−1e

= 4de+ ee∗deΦ− Φ−1ee∗de+Φ−1dee∗e− dee∗eΦ

= 4de+ΦdeΦ− deΦ− de+Φ−1de

+Φ−1deΦ−1 − Φ−1de− de+ deΦ

= 2de+Φ−1deΦ−1 +ΦdeΦ

as wished. Computations are similar to prove eq. (5.115.11) evaluated at de∗.

5.4.2 Arbitrary quivers

Let us go back to the proof [44, Theorem 4.8] of the 1-Calabi–Yau structure on the multi-
plicative moment map µQ :

∐
v∈V k[z±1

v ]→ kQloc := kQ[(1 + ee∗)−1]e∈E defined by

zv 7−→
∏

e∈E∩t−1(v)

(1 + ee∗)×
∏

e∈E∩s−1(v)

(1 + e∗e)−1.

It is done by realizing this functor as successive compositions of Calabi–Yau cospans. Let us
specify an order that better suits our purpose. As usually we denote by Qsep the quiver with
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same edge set E but vertex set E = {ve = s(e), ve∗ = t(e)}. It is the disjoint union of |E|
copies of A2. We have a 1-Calabi–Yau morphism

µQsep :
∐
e∈E

(k[x±1
e ]⨿ k[y±1

e ]) −→ kQsep
loc (5.12)

given by xe 7→ (es(e) + e∗e)−1 and ye 7→ et(e) + ee∗. We know thanks to the previous section

that the quasi-bisymplectic structure on kQsep
loc induced by this 1-Calabi–Yau multiplicative

moment map matches the one described by Van den Bergh in [3131].
We want to prove the same for Q by fusing pairs of vertices (ve, vf ) any time s(e) = s(f)

in Q. Precisely, pick a finite sequence of fusion of pairs of vertices that takes us from Qsep

to Q, and consider an intermediary step Q⋄. Assume that the quasi-bisymplectic structure
induced by the 1-Calabi–Yau one on µQ⋄ matches Van den Bergh’s, and proceed to the next
fusion in our sequence. Assume that we fuse 1 and 2 in the vertex set I of Q⋄. We mean by
that that we precisely proceed to the composition (5.75.7), where C = kQ⋄

loc. By induction
and using theorem 5.85.8 we get the following.

Theorem 5.13. The quasi-bisymplectic structure on kQloc induced by the 1-Calabi–Yau one
on µQ matches the one given by Van den Bergh.

6 Representation spaces

As before assume that A is a 1-smooth R-algebra with R = ⊕i∈Ikei where the ei are pairwise
orthogonal idempotents and I := {1, · · · , n}. For any I-graded finite dimensional space V
define AV by

HomAlg/R(A,End(V )) = HomCommAlg/k(AV , k).

Thanks to [99, (6.2.2)], setting XV = Spec(AV ), we have a map

tr : DR∗A −→ Ω∗(XV )
GLV (6.1)

given by α 7→ tr(α̂) where α̂ is induced by the evaluation

A→ (AV ⊗ End(V ))GLV ; a 7→ â.

Thanks to [3131, Proposition 6.1], there is a quasi-Hamiltonian structure on (XV , tr(ω), Φ̂)
when (A,ω,Φ) is quasi-bisymplectic. Now Φ̂ : XV → GLV induces a lagrangian structure on
[XV /GLV ]→ [GLV /GLV ].

On the other hand, thanks to [66], if Φ carries a 1-Calabi–Yau structure, it yields a
lagrangian structure on PerfA → Perfk[x±1], and thus considering substacks on [XV /GLV ]→
[GLV /GLV ] again.

In both cases, we know that the induced 1-shifted symplectic structure on [GLV /GLV ] is
the standard one, thanks to [44, §5.1] for the latter.

Now assume that the 1-Calabi–Yau structure on Φ induces the quasi-bisymplectic structure
(A,ω,Φ), that is ω1 in the proof of theorem 5.65.6 is ω. The current section is devoted to the
proof of the following.

Theorem 6.2. These two lagrangian structures are identical.

6.1 Lagrangian morphisms and quasi-hamiltonian spaces

Let X be a smooth algebraic variety. Since we will apply the following results to X = XV

we assume X to be affine for simplicity but these results can be extended to the non-affine
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case. Assume that a reductive group G acts on X and consider a G-equivariant morphism
µ : X → G, which induces [µ] : [X/G]→ [G/G]. Consider the standard 1-shifted symplectic
structure on [G/G] given by ω = ω0 + ω1 where ω0 ∈ (Ω1(G)⊗ g∗)G and ω1 ∈ Ω3(G)G.

We refer to [33, §3] for a precise definition of the space Ap,(cl)(X,n) of (closed) p-forms of
degree n on X. When α ∈ Ω2(X)G, we say that (α, µ) satisfy the multiplicative moment
condition if

∀u ∈ g, iu⃗α = ⟨µ∗ω0, u⟩. (M)

This is condition (B2) in [3131].

Lemma 6.3. The space of homotopies between [µ]∗ω0 and 0 in A2,cl([X/G], 1) is discrete.
It is the space of invariant 2-forms α ∈ Ω2(X)G satisfying (MM).

Proof. The cochain complex of 2-forms on [X/G] is given by

Ω2(X)G
∂ // (Ω1(X)⊗ g∗)G // (O(X)⊗ S2g∗)G .

The result follows from the fact that, by definition, ∂ is given by ⟨∂α, u⟩ = iu⃗α for every
u ∈ g.

This can be extended to the following, where we recognize the extra condition (B1)
of [3131].

Lemma 6.4. The space of homotopies between [µ]∗ω and 0 in A2,cl([X/G], 1) is discrete. It
is the space of 2-forms α ∈ Ω2(X)G satisfying (MM) and

ddRα = µ∗ω1.

Proof. The de Rham (cochain) complex of [X/G] in weight ≥ 2 is the total (cochain) complex
of the bicomplex

Ω3(X)G // (Ω2(X)⊗ g∗)G // (Ω2(X)⊗ S2g∗)G // (O(X)⊗ S3g∗)G

Ω2(X)G

ddR

OO

∂ // (Ω1(X)⊗ g∗)G

OO

// (O(X)⊗ S2g∗)G

OO

The space of 2-forms α ∈ Ω2(X)G mapped on µ∗ω ∈ Ω3(X)G ⊕ (Ω1(X)⊗ g∗)G by ddR ⊕ ∂
has the expected description.

Now thanks to [2121], the non-degeneracy condition (that is (B3) in [3131]) defines an union
of connected components in the space of (closed) 2-forms. Therefore we have the following
result (which is already implicit in [77, 2323]).

Theorem 6.5. The space of lagrangian structures on [µ] is discrete; it is the set of 2-forms
α ∈ Ω2(X)G such that (MM).

In particular, the space of lagrangian structures on [µ] (or, equivalently, the set of
quasi-hamiltonian structures on X with group valued moment map µ) is a subset of Ω2(X).

Corollary 6.6. Two lagrangian structures on [µ] coincide if and only if the associated
2-forms on X are the same.
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Remark 6.7. Here is how we understand geometrically the 2-form on X we get from an α
satisfying (MM). The pull-back of ω0 along the quotient G→ [G/G] is zero. As [µ]∗ω0 ∼ 0
via α, we get a self-homotopy of 0 in the space 2-forms of degree 1 on the fiber product

[X/G] ×
[G/G]

G ≃ X.

Such a self-homotopy is a 2-form of degree 0 on X, which is nothing but α.

6.2 Identifying two lagrangian structures: proof of theorem 6.26.2

Consider the composition

Spec(AV ) = XV ↠ [XV /GLV ] ↪→ PerfA.

It is given by an A−AV -bimodule M which induces a chain

HHA

a7→â

55
// HH(ModperfAV

) HH(EndAV
(M))

tr //∼oo HHAV ≃ Ω∗AV

given by
a0 ⊗ a1 ⊗ · · · ⊗ an 7→ tr(â0)dtr(â1) . . . dtr(ân),

that is tr again, cf (6.16.1). Thus the 2-forms match on XV , and therefore the associated
lagrangian structures as well thanks to the previous subsection.

Example 6.8. (i) Let us get back to section 5.4.15.4.1, where A is a localization of the path
algebra of the A2 quiver and Φ denotes the associated multiplicative moment map.
Thanks to the computations in section 5.4.15.4.1, theorem 6.26.2 applies and the 1-Calabi–Yau
structure on Φ exhibited in [44] induces the same lagrangian structure on[

Φ̂
]
:
[
Rep(A, n⃗)/GLn⃗

]
−→

[
GLn⃗/GLn⃗

]
,

for some dimension vector n⃗ = (n1, n2), as the one induced by Van den Bergh’s quasi-
Hamiltonian GLn⃗-structure in [3131].

(ii) Similarly, using section 5.4.25.4.2, we finally prove the conjecture raised in [44, §5.3] which is
the identical statement for an arbitrary quiver Q.
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[25] B. Toën, Derived algebraic geometry, EMS Surveys in Mathematical Sciences 1
(2014), no. 2, 153–240.
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