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Calabi–Yau versus quasi-Hamiltonian structures

Tristan Bozec∗, Damien Calaque†, Sarah Scherotzke‡

Abstract

We compare the Calabi–Yau structures defined and studied in [22, 33] with noncom-
mutative analogs of quasi-Hamiltonian and Poisson geometries developed in [77, 88].
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1 Link between Hochschild and de Rham homologies

1.1 Recollection of Ginzburg and Schedler [66]

Fix a field k of characteristic zero. Consider a unital associative k-algebra A and fix a
complementary subspace Ā = A/k of k. Denote by d : A → Ā the associated quotient.
The dg-algebra ΩA of noncommutative differential forms is defined by the quotient of
Tk(A⊕ Ā[−1]) by the relations

a⊗ b = ab and d(ab) = a⊗ d(b) + d(a)⊗ b

for every a, b ∈ A. The differential of ΩA is the derivation induced by d, satisfying d2 = 0.
We will systematically use the ¯ notation for the quotient by k.
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We have a contraction ι : Ω•A→ Ω•−1A defined by

ι(a0da1 . . . dan) =

n∑
l=1

(−1)(l−1)(n−1)+1[al, dal+1 . . . dana0da1 . . . dal−1]

that factors through DRA := ΩA/[ΩA,ΩA], a Hochschild differential b on ΩA defined by

b(αda) = (−1)|α|[α, a]

and a Karoubi operator on ΩA given by

κ(αda) = (−1)|α|daα.

We have a harmonic decomposition Ω̄A = P Ω̄A⊕ P⊥Ω̄ where

P Ω̄A = ker(1− κ)2 and P⊥Ω̄ = ima(1− κ)2.

that gives
ι = bN |P and B = Nd|P

where N is the grading operator and B the Connes differential.
Furthermore b and d are invariant under the harmonic decomposition and (P⊥Ω̄, b) is

acyclic.
We observe that

DR := Ω/[Ω,Ω] ' PΩ/P [Ω,Ω] ' PΩ/bPΩ

By [66], we have
(PΩ, b)• ' HH•.

Remark 1.1. We call a k-algebra A 1-smooth if it has projective dimension one as an
A ⊗ A-module. In particular a 1-smooth algebra is smooth and has projective dimension
at most 1. This can be seen as follows: given a projective resolution Ω1(A)→ A⊗A→ A
of A-bimodules, tensoring this resolution with M ⊗A − for M ∈ ModA yields a projective
resolution of M as A-module of length at most 1.

1.2 Computations for A = k[x±1]

We always mean (dx)y if no brackets appear in dxy.
Set αn = (x−1dx)2n−1, βn = κ(αn) = (dxx−1)2n−1 ∈ Ω̄2n−1A. Then

κ(βn) = κ(−βn−1dxdx
−1) = −dx−1βn−1dx = αn.

Hence αn + βn ∈ P Ω̄A and αn − βn = 1
2 (1− κ)2(αn) ∈ P⊥Ω̄A. Then,

ιαn =
1

2
(2n− 1)b(αn + βn)

=
1

2
(2n− 1)([αn−1x

−1dxx−1, x]− [βn−1dx, x
−1])

=
1

2
(2n− 1)(x−1βn−1dx+ αn−1x

−1dx− βn−1dxx
−1 − xαn−1x

−1dxx−1)

= (2n− 1)((x−1dx)2n−2 − (dxx−1)2n−2).
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On the other hand, dα1 = −(x−1dx)2, and if we assume dαn−1 = −(x−1dx)2n−2, we get

dαn = d(x−1dx(x−1dx)2n−2)

= d(x−1dx)(x−1dx)2n−2 − x−1dxd((x−1dx)2n−2)

= −x−1dxx−1dx(x−1dx)2n−2 − x−1dxd2αn−1

= −(x−1dx)2n.

and similarly dβn = (dxx−1)2n for all n. Thus, as ιαn = ιβn,

ι(αn + βn) = 2ιαn = −2(2n− 1)d(βn−1 + αn−1).

As a consequence (ι− ud)(γ) = 0, where γk = 1
2 (αk + βk) ∈ P Ω̄2k−1k[x±1] and

γ =
∑
k≥0

k!

(2k + 1)!
(−u)kγk+1.

Now, we have the following chain of quasi-isomorphisms, functorial in A(
Ω̄[[u]]

[dΩ, dΩ]
, ι− ud

)
P // (P Ω̄[[u]], ι− ud)

N ! // (P Ω̄[[u]], b− uB) �
�

// (Ω̄[[u]], b− uB)

whose homology gives the reduced negative cyclic homology HC
−
• . Through this chain and

the isomorphism ΩnA ' A⊗ Ā⊗n, γ is mapped to∑
k≥0

k!uk
(

(x−1 ⊗ x)⊗(k+1) − (x⊗ x−1)⊗(k+1)
)

as

αk+1 = (x−1dx)2k+1 = (−1)kx−1(dxdx−1)kdx,

βk+1 = (dxx−1)2k+1 = (−1)k+1x(dx−1dx)kdx−1,

and γk+1 ∈ P Ω̄2k+1,

all of which being consistent with [33, 3.1.1]. αn there is
γn here!

2 CY ⇒ quasi-bisymplectic in the sense of [88]

2.1 Relative setting

Consider a morphism Φ : k[x±1] → A where A is smooth and concentrated in degree 0.

Assume that Φ[γ1] = 0 ∈ HH
1
A = H1(Ω̄A, b). The space of lifts of Φ(γ1) in relative homology

is given by elements ω1 ∈ Ω̄2A/bΩ̄3A such that bω1 = Φ(γ1). As we also have

HH = ker
(
DR

ι−→ Ω̄
)
,

this space of lifts is also described by elements ω1 ∈ DR
2
A such that ιω1 = Φ(γ1), which is

condition (B2) in [88].

Similarly, if Φ[γ] = 0 ∈ HC
−
1 A, we have the existence of ωk ∈ DR

2k
A for all k such that

(ι− ud)

(∑
k≥0

ukωk+1

)
= Φ(γ)
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or equivalently

ιω1 = Φ(γ1) =
1

2
(Φ−1dΦ + dΦΦ−1) (B2)

ιω2 − dω1 = −1

6
Φ(γ2)⇒ dω1 =

1

6
(Φ−1dΦ)3 mod [−,−] (B1)

ιω3 − dω2 =
2!

5!
Φ(γ3)

...

ιωk+1 − dωk = (−1)k
k!

(2k + 1)!
Φ(γk+1) k ≥ 1.

2.2 Non-degeneracy

Set R = k[x±1] and write the relative 1-pre-Calabi–Yau structure

A∨[1]→ R∨[1]⊗Re Ae
γ
' R⊗Re Ae → A

with short resolutions to get the homotopy commuting diagram

Ae
id //

E

��

Ae
(Φ−1⊗1+1⊗Φ−1)/2

//

��

Ae
dΦ //

��

Ω1A_�

��

DA
evΦ

// Ae
(Φ−1⊗1+1⊗Φ−1)/2

// Ae
id
// Ae

where DA := Der(A,Ae) ' (Ω1A)∨. The homotopy DA → Ω1A gives ιEω1 = (Φ−1dΦ +
dΦΦ−1)/2. ιE is the ι

of previous
sectionsRemark 2.1. If ω ∈ DR2A and δ ∈ DA ' (Ω1A)∨, then ιδ(ω) ∈ Ω1A ↪→ Ae matches

〈δ, ιE(ω)〉 ∈ Ae.
use
Lemma
2.6.3 in
C-BEG

Now assume that our Calabi–Yau structure is non-degenerate, that is

and
smooth-
ness to
have the
short reso-
lution!

A∨[1] ' fib(R∨[1]⊗Re Ae
γ
' R⊗Re Ae → A).

In short resolutions, this yields a quasi-isomorphism (between vertical complexes)

Ae
(Φ−1⊗1+1⊗Φ−1)/2

//

E

��

Ae

dΦ

��

DA
ιEω1

// Ω1A

which in particular gives a surjection DA→ Ω1A/〈dΦ〉, that is (B3) in [88].

2.3 Compatibility for the quiver A2.

Consider the quiver A2 = (V = {1, 2}, E = {e : 1 → 2}), with orthogonal idempotents e1

and e2 satisfying 1 = e1 + e2, and set

a1 = e1 + e∗e and a2 = e2 + ee∗.
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Let us denote by A the localization (kA2)a1,a2 . Recall that we have given in [33] a relative
1-Calabi–Yau structure on Φ : k[x±1]→ A defined by

Φ1(x1) = a−1
1 and Φ2(x2) = a2.

In the previous section we proved that this Calabi–Yau structure induces a quasi-

bisymplectic one ω1 ∈ DR
2
A on A. We want to prove that the double quasi-Poisson bracket

compatible with ω1 through [88, Theorem 7.1] is the one described in [88, §8.3]:

P =
1

2

(
(1 + ee∗)

∂

∂e∗
∂

∂e
− (1 + e∗e)

∂

∂e

∂

∂e∗

)
∈ (DA/[DA,DA])2 .

Note that we use the convention regarding concatenation of paths opposite to the one in [77],
that is e = e2ee1. In [22], one homotopy φ(γ1) ∼ 0 is given by 1/2 miss-

ing in
BCS2β1 =

1

2

(
e∗ ⊗ e⊗ Φ + Φ⊗ e∗ ⊗ e− e∗ ⊗ Φ−1 ⊗ e− Φ−1 ⊗ e⊗ e∗

+ 1⊗ e∗ ⊗ eΦ− 1⊗ eΦ⊗ e∗
) (2.2)

where Φ = Φ1(x1) + Φ2(x2). It yields an element 1/4 be-
cause of
the degree
operator

ω1 =
1

4

(
e∗dedΦ + Φde∗de− e∗dΦ−1de− Φ−1dede∗ + de∗d(eΦ)− d(eΦ)de∗

)
in DR

2
A =

(
ΩA/[ΩA,ΩA]

)
2
. We can heavily simplify this expression working modulo

[ΩA,ΩA]. First note that (again, dab stands for (da)b)

dΦ = −a−1
1 (de∗e+ e∗de)a−1

1 + dee∗ + ede∗ = −Φ(de∗e+ e∗de)Φ + dee∗ + ede∗

dΦ−1 = de∗e+ e∗de− a−1
2 (dee∗ + ede∗)a−1

2 = de∗e+ e∗de− Φ−1(dee∗ + ede∗)Φ−1,

thus, using ΦeΦ = e and Φe∗Φ = e∗ (cf [33, (4.3)]),

4ω1 = Φde∗de− Φ−1dede∗ + e∗dedΦ− e∗dΦ−1de+ 2de∗d(eΦ)

= Φde∗de− Φ−1dede∗ − e∗deΦ(de∗e+ e∗de)Φ

+ e∗Φ−1(dee∗ + ede∗)Φ−1de+ 2de∗deΦ− 2de∗eΦ(de∗e+ e∗de)Φ

= Φde∗de− Φ−1dede∗ − e∗deΦde∗eΦ
−e∗deΦe∗deΦ + e∗Φ−1dee∗Φ−1de︸ ︷︷ ︸

≡0

+e∗Φ−1ede∗Φ−1de

+ 2de∗deΦ− 2 de∗eΦde∗eΦ︸ ︷︷ ︸
≡0

−2de∗eΦe∗deΦ

≡ 3Φde∗de− Φ−1dede∗ − eΦe∗deΦde∗ + e∗Φ−1ede∗Φ−1de+ 2de∗eΦe∗deΦ

= 3Φde∗de− Φ−1dede∗ − ee∗Φ−1
2 deΦde∗ + e∗eΦ1de

∗Φ−1de+ 2de∗ee∗Φ−1
2 deΦ

= 3Φde∗de− Φ−1dede∗ − deΦde∗ + Φ−1deΦde∗

+ de∗Φ−1de− Φde∗Φ−1de− 2de∗deΦ + 2de∗Φ−1deΦ

≡ 2Φde∗de− 2Φ−1dede∗

which matches the (unproven) formula in [99, Example 2.16].
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Remark 2.3 (Sanity check).

ιE(2ω1) = −[e∗, deΦ] + [e,Φde∗] + [e, de∗Φ−1]− [e∗,Φ−1de]

= −e∗deΦ + deΦe∗ + eΦde∗ − Φde∗e+ ede∗Φ−1 − de∗Φ−1e− e∗Φ−1de+ Φ−1dee∗

= −d(e∗e)Φ + d(ee∗)Φ−1 + Φ−1d(ee∗)− Φd(e∗e)

= Φ−1(−Φd(e∗e)Φ + d(ee∗)) + (−Φd(e∗e)Φ + d(ee∗))Φ−1

= Φ−1dΦ + dΦΦ−1.

Let us prove Yamakawa’s statement. Thanks to [88, Proposition 7.4], P and ω1 are
compatible if

ι(ω1)ι(P ) = 1− 1

4
T (2.4)

with T (dp) = [p,Φ−1dΦ− dΦΦ−1]. For p = e, the LHS is

ι(ω1)ι(P )(de) =
1

2
ι(ω1)

(
∂

∂e∗
(1 + e∗e) + (1 + ee∗)

∂

∂e∗

)
=

1

2
(◦i∂/∂e∗(ω1)(1 + e∗e) + (1 + ee∗)◦i∂/∂e∗(ω1))

where
iδ(pdqdr) = pδ(q)′ ⊗ δ(q)′′dr − pdqδ(r)′ ⊗ δ(r)′′ ∈ A⊗ Ω1 + Ω1 ⊗A.

Note that above we have used, for π, ν ∈ A and δ ∈ DA, stated in
the proof
of 2.8.6 in
CBEG...

◦iπδν(pdqdr) = ◦(pδ(q)′ν ⊗ πδ(q)′′dr − pdqδ(r)′ν ⊗ πδ(r)′′)
= π◦iδ(pdqdr)ν

since the bimodule structure on DA is induced by the inner one on Ae. We have:

◦i∂/∂e∗(2ω1) = ◦(Φ⊗ de+ Φ−1de⊗ e2) = deΦ + Φ−1de

thus

4ι(ω1)ι(P )(da) = (deΦ + Φ−1de)(1 + e∗e) + (1 + ee∗)(deΦ + Φ−1de)

= 2de+ Φ−1deΦ−1 + ΦdeΦ

whereas 4 times the RHS of 2.42.4 is

4de− [e,Φ−1dΦ− dΦΦ−1] = 4de− eΦ−1(−Φ(de∗e+ e∗de)Φ + dee∗ + ede∗)

+ e(−Φ(de∗e+ e∗de)Φ + dee∗ + ede∗)Φ−1

+ Φ−1(−Φ(de∗e+ e∗de)Φ + dee∗ + ede∗)e

− (−Φ(de∗e+ e∗de)Φ + dee∗ + ede∗)Φ−1e

= 4de+ ede∗eΦ + ee∗deΦ− eΦde∗e− eΦe∗de
+ Φ−1dee∗e+ Φ−1ede∗e− dee∗Φ−1e− ede∗Φ−1e

= 4de+ ee∗deΦ− Φ−1ee∗de+ Φ−1dee∗e− dee∗eΦ
= 4de+ ΦdeΦ− deΦ− de+ Φ−1de

+ Φ−1deΦ−1 − Φ−1de− de+ deΦ

= 2de+ Φ−1deΦ−1 + ΦdeΦ.

Computations are similar to prove 2.42.4 evaluated at de∗.

Hourra.
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2.4 Double Poisson structures and the 1-Calabi-Yau property

Double Poisson algebras have been introduced by Van den Berg in [88]. Recall

Definition 2.5. • A double Poisson algebra is an algebra A together with a double bracket
{{−,−}} : A×A→ A⊗A satisfying that {{−,−}} is a derivation in the second argument,
satisfies {{u, v}} = τ{{v, u}} for the twist function τ : A⊗A→ A⊗A, a⊗ b 7→ b⊗ a and
the Jacobi identity.

• We call an algebra A bi-symplectic, if there is a closed form ω ∈ DR(A)2 which is
non-degenerate, that is ιω : DA → ΩA is an isomorphism of A-bimodules.

A double Poisson algebra structure induces a classical Poisson structures on the moduli
space of representations of A, while a bi-symplectic structure induces a symplectic structure
on the moduli space of representations of A.

If A is 1-smooth, the existence of a double Poisson structure is equivalent to the existence
of an element P ∈ (DA/[DA,DA])2 such that {P, P} = 0, where {−,−} denotes in this
context the Schouten-Nijenhuis bracket on DA/[DA,DA] .

Definition 2.6. [?, 88] Let P ∈ (DA/[DA,DA])2 and (A,P ) be a double Poisson algebra.
A moment map for the double Poisson algebra is an element µ = (µi)i ∈

⊕
eiAei such that

{P, µ} = −E.

In [88] A3 it is shown that every bi-symplectic form gives rise to non-commutative
Hamiltonian structure with Poisson bracket

Pω :=
(
ι(ω)−1 ⊗ ι(ω)−1

)
(ω) ∈ (DA/[DA,DA])2 .

Definition 2.7. We say that a relative 1-Calabi-Yau structure

µ :

n⊕
i=1

k[xi]→ A, xi 7→ µi

given by µ(β)
ω∼ 0 with β ∈

⊕n
i=1HH1(k[xi]) is compatible with a non-commutative

Hamiltonian structure (P, µ) if Pω = P .

Let Q be a finite quiver with n vertices and Q the double quiver. Note that kQ is
1-smooth. By Theorem 1.8 of [88], we have a non-commutative Hamiltonian structure on
A := kQ given by the double Poisson structure

P =
∑
a∈Q1

∂

∂a∗
∂

∂a
∈ (DA/[DA,DA])2 .

and corresponding moment map µ :=
∑
a∈Q1

[a, a∗].

In [?], we have shown that the map
⊕n

i=1 k[xi] → kQ, xi 7→ µi carries a relative 1
Calabi-Yau structure which is induced by the natural 1-Calabi-Yau structure

∑n
i=1 1⊗ xi ∈⊕n

i=1HH1(k[xi]).

Lemma 2.8. The non-commutative Hamiltonian structure on kQ coincides with the relative
1-Calabi-Yau structure on

⊕n
i=1 k[xi]→ kQ.

Proof. The homotopy of µ(1⊗x) ∼ 0 defining the relative Calabi-Yau structure on µ is given

by B(
∑
α∈Q1

α∗⊗α) =
∑
α∈Q1

1⊗α∗⊗α which corresponds to ω :=
∑
α∈Q1

dα∗dα ∈ DR
2
A.

By Proposition 8.1.1. of [44] ω is a bi-symplectic form on kQ.

7



Indeed, it is easy to verify that

Pω =
∑
a∈Q1

∂

∂a∗
∂

∂a
∈ (DA/[DA,DA])2

which finishes the proof.

We next investigate the relationship between fusion of double Poisson and bi-symplectic
structures and relate them to the compositions of Calabi-Yau cospans. By [88] Proposition
2.6.6 if (A,P ) is a double Poisson algebra, then so is (Af , P f ), where Af denotes the fusion
algebra. If (A,P, µ) is a non-commutative Hamiltonian structure, then (Af , P f , µf ), where
µf =

⊕
i≥3 µi ⊕ µ1 + e21µ2e12 is also a non-commutative Hamiltonian structure.

Lemma 2.9. Let (A,ω) with ω ∈ DR(A)2 be a bi-symplectic structure and Af the fusion
algebra. Then (Af , ωf ) is also a bi-symplectic structure and P fω = Pωf , that is fusion
commutes with the morphism that associates a non-commutative Hamiltonian structure to a
bi-symplectic structure.

Proof. By functoriality, ωf ∈ DR(Af )2 is a closed form and ιωf fits into a commutative
diagram

DA
ιω //

��

ΩA

��

DAf

ι
ωf
// ΩAf

As the vertical arrows are surjective and the top horizontal arrow ιω is an isomorphism by
the non-degeneracy of ω, it follows that ιωf is also an isomorphism. By the definition

Pωf =
(
ι(ωf )−1 ⊗ ι(ωf )−1

)
(ωf ) =

(
ι(ω)−1 ⊗ ι(ω)−1

)
(ω)f = P fω .

The moment map associated to ω is given by the the element µ which satisfies {P, µ} = E.
Clearly {Pωf , µf} = {P fω , µf} = {Pω, µ}f = Ef .

Lemma 2.10. The cospan k[x] q k[y]
f→ k〈x, y〉 g← k[z] with g(z) = x + y and f(x) = x,

f(y) = y is a 1 Calabi-Yau cospan.

Proof. We equip k[x] q k[y] and k[z] with their natural Calabi-Yau structure given by
1⊗x+1⊗y = 1⊗(x+y) ∈ HH1(k[x]qk[y]) and 1⊗z ∈ HH1(k[z]). Clearly, f(1⊗(x+y)) =
g(1⊗ z).

Given a relative 1-Calabi-Yau structure µ : k[x] q k[y] → A, we can consider the
composition of cospans

Aqk[x]qk[y] k〈x, y〉

k〈x, y〉

77

A

ff

k[z]

;;

k[x]q k[y]

gg
88

∅

cc

where x, y is mapped to µ1, µ2. This yields a relative Calabi-Yau structure k[z]→ B.
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Theorem 2.11. Let (A,P, µ) be a non-Hamiltonian structure which coincides with the
relative 1 Calabi-Yau structure µ : k[x] q k[y] → A. The fusion of the non-Hamiltonian
structure (A,P, µ) coincides with the relative 1 Calabi-Yau structure k[z]→ Aqk[x]qk[y]k〈x, y〉
given by the composition of cospans above.

Proof. As the non-commutative Hamiltonian structure is compatible with the relative 1
Calabi-Yau structure, we have P = Pω and µ(x) = µ1 and µ(y) = µ2. We have a natural
isomorphism Af ' Aqk[x]qk[y] k〈x, y〉 and under this isomorphism A→ Aqk[x]qk[y] k〈x, y〉
is equivalent to the morphism −f : A → Af and µf : k[z] → Af coincides with k[z] →
A qk[x]qk[y] k〈x, y〉. Furthermore, since the homotopy between the 1-forms in the cospan

k[x] q k[y]
f→ k〈x, y〉 g← k[z] is trivial, the zero-homotopy of the composition is given by

ωf , where ω denotes the zero homotopy µ(1⊗ (x+ y)) ∼ 0. As P fω = Pωf the fusion non-
Hamiltonian structure coincides with the relative 1-Calabi-Yau structure of the composition
of the cospans.

2.5 Calabi-Yau cospans and fusion

The aim of this section is to compare the relative Calabi-Yau structure obtained by the
cospan procedure with the double quasi-Poisson structure obtained by the fusion process as
in [88] Section 7. Let A be an algebra or dg category with orthogonal idempotents e1, · · · , en
or respectively objects denoted 1, · · · , n.

Given a 1-relative Calabi-Yau map Φ :
∐n
i=1 k[x±1

i ]→ A such that xi 7→ Φi := Φ(xi) ∈
(eiAei)

∗, we can compose with the Calabi-Yau cospan from [33]

n∐
i=1

k[x±1
i ]→ k〈x±1

1 , x±1
2 〉

n∐
i=3

k[x±1
i ]← k[z±1

1,2]

n∐
i=3

k[x±1
i ]

with z1,2 7→ x1x2 and the identity map on the xi for i ≥ 3. The composition of cospans
yields a relative 1-Calabi-Yau structure on

Φf :

n∐
i=3

k[x±1
i ]
∐

k[z±1
1,2]→ Af

where Af := A ∗∐n
i=1 k[x±1

i ] k[z±1
1,2]
∐n
i=3 k[x±1

i ]. This process fuses the objects respectively

vertices denoted 1 and 2. As in [88] we denote by af the image of a ∈ A in Af and by

Φf : k[z±1] → Af the new moment map. We have Φf (xi) = Φf
i ∈ Af for i ≥ 3 and

Φf (z1,2) = Φf1Φf2 ∈ Af .
Recall from [22] Section 3.3. that the homotopy on the cospan

k[x±1]
∐

k[y±1]→ k〈x±1, y±1〉 ← k[z±1]

is given by γ1 := y−1 ⊗ x−1 ⊗ xy − y ⊗ y−1x−1 ⊗ x, which satisfies

α1(xy)− (α1(x) + α1(y)) = b(γ1).

We can assume that n = 2. Let us assume that ω1 and P are compatible in the sense of [88].

We want to show that ωff1 and P ff := P f −Ef1E
f
2 are also compatible. The composition of

cospans yields that ωff1 = βf1 + Φf (ζ1) = βf1 + Φ−1
1 dΦ1dΦ− Φ2dΦ−1dΦ1

let me try to reproduce below the strategy used in 2.3
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We need to understand the following composition of Calabi–Yau cospans:

B

k〈x±1, y±1〉

66

A

ff

k[z±1]

88

k[x±1]q k[y±1]

hh
99

C

cc

where x, y is mapped to Φ2,Φ1. The homotopy

ζ1 =
1

2

(
y−1 ⊗ x−1 ⊗ xy − y ⊗ y−1x−1 ⊗ x

)
is mapped in DR

2
k〈x±1, y±1〉 to

ω =
1

4

(
y−1dx−1d(xy)− yd(y−1x−1)dx

)
=

1

4

(
− y−1x−1dxx−1(xdy + dxy) + dyy−1x−1dx+ x−1dxx−1dx

)
=

1

4

(
− y−1x−1dxdy − y−1x−1dxx−1dxy + dyy−1x−1dx+ x−1dxx−1dx

)
≡ −1

2
x−1dxdyy−1

which is mapped to

−1

2
Φ−1

1 dΦ1dΦ2Φ−1
2 ∈ DR

2
B.

which is precisely the opposite of the corrective term given in [99] following [11]. right now
I don’t
see how
to correct
this sign

3 Comparison of Lagrangian structures

Assume that we have a finite set {ei | i ∈ I} of idempotents in A, and define the commutative
algebra R = ⊕i∈Ikei. For any I-graded finite dimensional space V define AV by

HomAlg/R(A,End(V )) = HomCommAlg/k(AV , k).

Thanks to [44, (6.2.2)], setting XV = Spec(AV ), we have a map

tr : DR•A −→ Ω•(XV )GLV

given by α 7→ tr(α̂) where α̂ is induced by the evaluation

A→ (AV ⊗ End(V ))GLV ; a 7→ â.

Thanks to [88, Proposition 6.1], there is a quasi-Hamiltonian structure on (XV , tr(ω1), Φ̂). the ω1 and
Φ from
section 2

Now Φ̂ : XV → GLV induces a lagrangian structure on [XV /GLV ]→ [GLV /GLV ].
On the other hand, thanks to [33], the 1-Calabi-Yau structure on Φ yields a lagrangian struc-

ture on PerfA → Perfk[x±1], and thus considering substacks on [XV /GLV ] → [GLV /GLV ]
again.

Theorem 3.1. These two lagrangian structures are identical.
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Thanks to the following lemma, it will boil down to comparing 2-forms on XV . From
now on we write X and G instead of XV and GLV . Consider a G-equivariant morphism
µ : X → G, which induces [µ] : [X/G]→ [G/G]. Consider the standard 1-shifted symplectic
structure on [G/G] given by ω̄ = ω̄0 + ω̄1 where ω̄0 ∈ (Ω1(G)⊗ g∗)G and ω̄1 ∈ Ω3(G)G.

Lemma 3.2. The space of homotopies between [µ]∗ω̄ and 0 in A2,cl([X/G], 1) is discrete. It
is the space of 2-forms α ∈ Ω2(X)G such that for every u ∈ g ω1 is such

an α
ι~uα = 〈µ∗ω̄0, u〉

ddRα = µ∗ω̄1.

Proof. The bicomplex giving the de Rham complex of [X/G] in weight ≥ 2 is

Ω3(X)G // (Ω2(X)⊗ g∗)G // (Ω2(X)⊗ S2g∗)G // (O(X)⊗ S3g∗)G

Ω2(X)G

ddR

OO

∂ // (Ω1(X)⊗ g∗)G

OO

// (O(X)⊗ S2g∗)G

OO

We are interested in the space of 2-forms α ∈ Ω2(X)G mapped on µ∗ω ∈ Ω3(X)G⊕ (Ω1(X)⊗
g∗)G by ddR ⊕ ∂. Now just note that by definition ∂ is given by 〈∂α, u〉 = ι~uα for every
u ∈ g.

Now consider the composition Spec(AV ) = X → [X/G] → PerfA. It is given by an
A−AV -bimodule M which induces a chain

DRA ' HHA

a 7→a·

55
// HH(Modperf

AV
) HH(EndAV

(M))
tr //∼oo HHAV ' Ω•AV

given by
a0 ⊗ a1 ⊗ · · · ⊗ an 7→ tr(â0)dtr(â1) . . . dtr(ân),

that is tr again. Thus the 2-forms match on X = XV , and therefore the associated lagrangian
structures as well.
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Recall that a relative 1-Calabi-Yau morphism of algebras k[x±]→ A induces a 1-shifted
Lagrangian morphism of stacks PerfA → Perfk[x±]. Now by [?], a 1-shifted Lagrangian
morphism induces a non-degenerate Poisson structure on PerfA via pullback of forms. In
our setting, [repA/GLn] is an open substack of PerfA and therefore the non-degenerate
Poisson form restricts to [repA/GLn]. Equivalently, given a Lagrangian morphism PerfA →
Perfk[x±], we can consider the following commutative diagram

PerfA // Perfk[x±]

[repnA/GLn]

OO

// [repnk[x±]/GLn]

OO

where the vertical arrows are open embeddings and the bottom horizontal morphism inherits
a 1-Lagrangian structure from the top morphism. As shown in [], the 1-Calabi-Yau structure
on k[x±] given by (x−1 ⊗ 1 + 1 ⊗ x−1)/2 induces the classical symplectic structure on
[repnk[x±]/GLn] ' [Gln/GLn] via restriction from Perfk[x±] which we can pull back to
[repnA/GLn].

Question: Does the non-degenerate quasi-Poisson form respectively quasi-Hamiltonian
structure on repnA given in [77] yield the same Poisson structure on [repnA/GLn] than the
two methods described above?

Here DR• denotes either the Karoubi-DeRham complex in the non-commutative case
and the DeRham complex of derived stacks seen as a functor DR• : dSt→ Modε−grk .

Recall that every B-point x : SpecB → PerfA is given by a dg functor A → Modperf
B .

Applying HC− yields a map HC−(A)→ HC−(Modperf
B ) ' HC−(B). The DeRham complex

of PerfA can be computed as the limit limx:SpecB→PerfA HC−(B) and we therefore obtain a
natural map DR(A) ' HC−(A)→ DR(PerfA).

We have a diagram

DRA //

''

tr

��

DR•(PerfA)

��

DR([repnA/GLn])

��

DR(repnA).

The vertical arrows on the right are given by the functoriality of DR• with respect to the
natural maps repnA→ [repnA/GLn]→ PerfA of derived stacks. The maps tr : HC−A '
DR•(A)→ DR•(repnA) and HC−A ' DR•(A)→ DR•([repnA/GLn]) are given in [77]. To
answer our question, we have to show that the diagram above commutes.

We will first show that the outside triangle commutes.

Remark 3.3 (pre-quotient case). Thanks to [44, (6.2.2)], setting XV = Spec(AV ), we have
a map

DR•A −→ Ω•(XV )GLV

given by α 7→ tr(α̂) where α̂ is induced by the evaluation

A→ (AV ⊗ End(V ))GLV ; a 7→ â.

On the other hand, we have a chain

HC−A // HC−(Modperf
AV

)
∼ // HC−AV

HKR

∼ // DR•AV
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given by
a0 ⊗ a1 ⊗ · · · ⊗ an 7→ tr(â0)dtr(â1) . . . dtr(ân).

Let us clarify the map DR•A ' HC−A −→ DR(PerfA). By the above description, we

know that for every B-point x : A→ Modperf
B , we have a map HC−(A)→ HC−(Modperf

B ) '
HC−(B) given by a0⊗a1⊗· · ·⊗an 7→ tr(xa0)dtr(xa1) . . . dtr(xan). Now the map repV (A)→
PerfA corresponds to the AV -point A −→ AV ⊗ End(V ).

We get that the square

DR•A ' HC−A //

��

DR(PerfA)

��

Ω•(XV )GLV // DR(XV ) ' DR(repVA)

commutes.

4 Simplicial complexes

Now denote by A(n) the category with objects (a, i), a ∈ Ob(A), i = 1, . . . , n and morphisms

A(n)((a, i), (b, j)) =


A(a, b), if i = j

A(a, a)∼, if j = i+ 1

0, otherwise

(4.1)

This gives rise to a simplicial object

A(1)
//
// A(2)oo

//

//
// A(3) . . .oo

oo

Let V = (Va)a∈ObA be a vector-space indexed by the objects of A. We denote repVA(m)
the moduli space which sends every (a, i) to Va. Then

repVA(m) ' repVA×GLm−1
V = XV × (GLV )m−1.

Applying the functor repV to the simplicial complex yields therefore the simplicial complex

[XV /GLV ] = colim
(
XV

// XV ×GLVoo
oo //

// XV ×GLV ×GLV . . .oo
oo

oo
)
.

Hence, we morphisms of derived stacks

XV × (GLV )n−1 → PerfA(n)

that induce a morphism

[XV /GLV ]→ colim PerfA(n) ' PerfA.

We have natural maps A(n) → A, (a, i) 7→ a. This induces a map between the sim-
plicial complex above and the constant simplicial complex in A. Applying DR yields
a map limn DR(A(n)) −→ DR(A) which is an isomorphism. Let us spell out this map
tr(a0)dtr(a1) . . . dtr(an) 7→.

We obtain the following commutative diagram
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DR(A)

��

limn DR(A(n))
∼oo

��

tr // limn DR(repV (A(n)))

DR(PerfA) limn DR(PerfA(n))
∼oo // DR([XV /GLV ])

∼

OO

Assume first that our categories in

A = A(1)
f
//

g
// A(2) =: B

only have one object, so that an isomorphism f
∼⇒ g corresponds to z ∈ B× satisfying

zf = gz. On simplicial complexes we have morphisms

. . . A⊗n

f⊗n

��

g⊗n

��

A⊗n+1
(n+1)

oo

f⊗n+1

��

g⊗n+1

��

. . .

. . . B⊗n B⊗n+1
(n+1)

oo . . .

induced by f and g. Horizontal maps are given by mi, i = 1 . . . n+ 1, the multiplication of
the i-th and i+ 1-th factors, with the convention n+ 2 = 1.

Proposition 4.2. The homotopy between f and g induced by z

(h : A×∆1→B) = ((hn,j)1≤j≤n : (A⊗n)n → B⊗n+1)n≥1

reads
hn,j = fz−1 ⊗ g⊗j−1 ⊗ z ⊗ f⊗n−j

meaning

hn,j(a1 ⊗ · · · ⊗ an) = f(a1)z−1 ⊗ g⊗j−1(a2 ⊗ · · · ⊗ aj)⊗ z ⊗ f⊗n−j(aj+1 ⊗ · · · ⊗ an).

Proof. First note that m1hn,1 = f⊗n and mn+1hn,n = g⊗n.
Next consider 1 ≤ i < j ≤ n, then

mihn,j = mi(fz
−1 ⊗ g⊗j−1 ⊗ z ⊗ f⊗n−j)

= (fz−1 ⊗ g⊗j−2 ⊗ z ⊗ f⊗n−j)mi

= hn−1,j−1mi

the only nontrivial case being i = 1 where we use m1(fz−1 ⊗ g) = fz−1m1.
If 1 < i = j,

mihn,i = mi(fz
−1 ⊗ g⊗i−1 ⊗ z ⊗ f⊗n−i)

= fz−1 ⊗ g⊗i−2 ⊗ gz ⊗ f⊗n−i

= fz−1 ⊗ g⊗i−2 ⊗ zf ⊗ f⊗n−i

= mihn,i−1.

Finally, when i > j + 1 we have

mihn,j = mi(fz
−1 ⊗ g⊗j−1 ⊗ z ⊗ f⊗n−j)

= (fz−1 ⊗ g⊗j−1 ⊗ z ⊗ f⊗n−1−j)mi−1

= hn−1,jmi−1

even if i = n+ 1.
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Proposition 4.3. Assume that zf = gz and wg = hw for f, g, h : A→ B and z, w ∈ B×.
Denote by hz, hw and hwz the induced homotopies. The homotopy H = (Hn : A⊗n → B⊗n+2)
between hz + hw and hwz reads

Hn =
∑

r,s,t≥0
r+s+t=n−1

±fz−1w−1 ⊗ h⊗r ⊗ w ⊗ g⊗s ⊗ z ⊗ f⊗t.

Proof. Write Hr,s,t = fz−1w−1⊗h⊗r⊗w⊗ g⊗s⊗ z⊗ f⊗t, and hzp,q = fz−1⊗ g⊗p⊗ z⊗ f⊗q,
same with hw, hwz. Then note that

m1H0,s,t = hzs,t

mn+2Hr,s,0 = hwr,s

mr+2Hr,0,t = hwzr,t .

If i ≤ r,
miHr,s,t = Hr−1,s,tmi,

thanks to m1(fz−1w−1 ⊗ h) = fz−1w−1m1 when i = 1.
If i = r + 1,

miHr,s,t = miHr−1,s+1,t

since hw = wg.
If r + 3 ≤ i ≤ r + s+ 1,

miHr,s,t = Hr,s−1,tmi−1.

If i = r + s+ 2,
miHr,s,t = miHr,s−1,t+1

since gz = zf .
If r + s+ 4 ≤ i ≤ n+ 2,

miHr,s,t = Hr,s,t−1mi−2.
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