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Calabi—Yau versus quasi-Hamiltonian structures

Tristan Bozec* Damien Calaque! Sarah Scherotzke?

Abstract

We compare the Calabi—Yau structures defined and studied in [2, 3] with noncom-
mutative analogs of quasi-Hamiltonian and Poisson geometries developed in [7, &].
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1 Link between Hochschild and de Rham homologies

1.1 Recollection of Ginzburg and Schedler [6]

Fix a field k£ of characteristic zero. Consider a unital associative k-algebra A and fix a
complementary subspace A = A/k of k. Denote by d : A — A the associated quotient.
The dg-algebra 2A of noncommutative differential forms is defined by the quotient of
Ti.(A ® A[—1]) by the relations

a®b=ab and d(ab) =a®d(b) +d(a) ®b

for every a,b € A. The differential of QA is the derivation induced by d, satisfying d? = 0.
We will systematically use the ~ notation for the quotient by k.
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We have a contraction ¢ : Q*A — Q°~' A defined by

t(aoday . ..day) = Z(—l)(lfl)(”lel[al, dajy1 ... danaoday . . . da;—q)
=1

that factors through DRA := QA/[QA, QA], a Hochschild differential b on QA defined by
b(ada) = (-1)1¥[a, a]
and a Karoubi operator on QA given by
rk(ada) = (—1)1*daa.
We have a harmonic decomposition QA = PQA @ P+Q where
PQA = ker(1 — k)2 and PLQ = ima(1 — k).

that gives
t=0bN|p and B = Nd|p

where N is the grading operator and B the Connes differential.

Furthermore b and d are invariant under the harmonic decomposition and (P, b) is
acyclic.

We observe that

DR := /[0, Q) ~ PQ/P[Q, Q) ~ PQ/bPQ

By [6], we have
(PQ,b)* ~ HH..

Remark 1.1. We call a k-algebra A 1-smooth if it has projective dimension one as an
A ® A-module. In particular a 1-smooth algebra is smooth and has projective dimension
at most 1. This can be seen as follows: given a projective resolution Q'(A4) - A® A — A
of A-bimodules, tensoring this resolution with M ® 4 — for M € Mod 4 yields a projective
resolution of M as A-module of length at most 1.

1.2 Computations for A = k[z*]

We always mean (dz)y if no brackets appear in dzy. -
Set o, = (x71dz)?" L, B, = k(o) = (dez™1)?"~t € Q?"~1A. Then

K(Bn) = K(—Bn-r1dzdr™") = —dz™" B, _1dz = ap.

Hence ay, + B, € PQA and o, — B, = %(1 — k)% () € PLQA. Then,
1
Lo, = 5(2n — Db(aw, + Br)
1
= 5(211 — ) ([an_1z” Y™ 2] — [Bu_1dz, z7Y])

1
= 5(2n — 1)(m_16n,1dx + oy e — B_1dzx~t — xan,lx_ldmx_l)

= (2n — 1)((z~'dz)* 2 — (dwax™1)*2).



On the other hand, doy = —(z~dz)?, and if we assume da,,—1 = — (27 1dz)?" 2, we get
doy, = d(z™da(xtda)?"?)
=d(z 7 Vdz) (27 dx)* 2% — z 7 dad((z 1 dx)?"?)
= —¢ Ydertde (e de)?*" % — 27 ded? oy
= — (27 dx)®".
and similarly d3,, = (dvz~1)?" for all n. Thus, as ta, = 13y,
an + Bn) = 2ta, = —=2(2n — 1)d(Brn-1 + an—1).
As a consequence (v — ud)(y) = 0, where v, = (o, + i) € PQ*'k[z*!] and
7= .
= (2k +1)!
Now, we have the following chain of quasi-isomorphisms, functorial in A
(L,
[dQ, dQ]’

ud) £, (PQ[u], ¢ — ud) SN (PQ[u],b — uB)~—— (Q[u],b — uB)

whose homology gives the reduced negative cyclic homology HC, . Through this chain and
the isomorphism Q" A ~ A ® A®", ~ is mapped to

Z klu® ((:L‘_l ® x)®(k+1) —(z® m_1)®(k+1))
k>0

as

g1 = (7 )P = (=D k27 (dede 1)k de,
Bry1 = (deax™ )M = (=) (dedx) da™t,

and yg41 € PQZkHL

all of which being consistent with [3, 3.1.1].

2 CY = quasi-bisymplectic in the sense of [&]

2.1 Relative setting
Consider a morphism ® : k[z*!]

Assume that ®[y;] =0 € Hil'fA = H1(QA,b). The space of lifts of ®(1) in relative homology
is given by elements w; € Q?A4/bQ3 A such that bw; = ®(71). As we also have

ﬁ:ker(DiR—UQ),

this space of lifts is also described by elements w; € DR’ A such that twi = D(71), which is
condition (B2) in [3].
Similarly, if ®[y] = 0 € HC; A, we have the existence of wy, € DR A for all k such that

(¢ — ud) ( > u"'wkﬂ) = ®(7)

k>0

— A where A is smooth and concentrated in degree 0.

«,, there is
Y, here!



or equivalently

1
wy = ®(y1) = 5(<1>—1d<1> +dod~1h) (B2)
1 1
wy — dwy = —6<I’(72) = dw = g(i’_ld@)g’ mod [—, —] (B1)
2!
twg — dwy = a@(’}/g)
e K
WEg4+1 — dLUk = (—1) mq)(’)/k_i_l) k > 1.

2.2 Non-degeneracy

Set R = k[z*!] and write the relative 1-pre-Calabi-Yau structure
AV[1] = RV[1] ®pe A° X R@pe A° — A
with short resolutions to get the homotopy commuting diagram

(27 '®1+10071)/2

Ae 4 pe Ae 2,014
DA > A° Af — A¢
Ve (7 '®1+10071)/2 id

where DA := Der(4, A°) ~ (Q'A)Y. The homotopy DA — Q'A gives tpw; = (®71d® +
ded—1)/2.

Remark 2.1. If w € DR?4 and § € DA ~ (Q'A)Y, then 15(w) € Q'A — A° matches
(0, Lp(w)) € A°.

Now assume that our Calabi—Yau structure is non-degenerate, that is

AV[1] ~ fib(RY[1] ®pe A° ~ R @pe A — A).

In short resolutions, this yields a quasi-isomorphism (between vertical complexes)

(27 'R1+10P71)/2

Ae » A°
EJ{ J{d@
DA — Q'A

which in particular gives a surjection DA — Q' A/(d®), that is (B3) in [3].

2.3 Compatibility for the quiver A,.

Consider the quiver Ay = (V = {1,2}, F = {e : 1 — 2}), with orthogonal idempotents e;
and ey satisfying 1 = e; 4 e, and set

a; = e, +ee and ag = ey + ee”.



Let us denote by A the localization (kAs)a, 4,- Recall that we have given in [3] a relative
1-Calabi-Yau structure on ® : k[z*!] — A defined by

Dy (1) = al_l and Po(x2) = as.

In the previous section we proved that this Calabi—Yau structure induces a quasi-

bisymplectic one w; € W{QA on A. We want to prove that the double quasi-Poisson bracket
compatible with w; through [8, Theorem 7.1] is the one described in [3, §8.3]:

p-1 ((1 tee) L0 (14 L0 ) € (DAJ[DA, DA)), .

2 de* De de De*

Note that we use the convention regarding concatenation of paths opposite to the one in [7],
that is e = egeey. In [2], one homotopy ¢(v1) ~ 0 is given by

P =

1
—(e*®e®<I>+<I>®e*®e—e*®¢_1®e—¢_1®e®e*
2 (2.2)

+1®e*®e<1>—1®e<1>®e*)

where ® = @y (x1) + Po(x2). It yields an element

wy = ~(e*ded® + ®de*de — e*dd~'de — @~ 'dede” + de*d(e®) — d(e®)de*)

] =

in DR°A = (ﬁA/ [ﬁA,ﬁA])Q. We can heavily simplify this expression working modulo
[QA, QA]. First note that (again, dab stands for (da)b)
d® = —ay ' (de*e + e*de)a; + dee” + ede™ = —®(de*e + e*de)® + dee* + ede*
A~ = de*e + e*de — ay ' (dee” + ede*)ay ' = de*e + e*de — 7 (dee* + ede™) D1,

thus, using ®e® = e and Pe*d = e* (cf [3, (4.3)]),

4w, = Bde*de — " dede* + e*ded® — e*d® ' de + 2de*d(e®)
= ®de*de — ® dede* — e*de®(de*e + e*de)d
+ e* @ (dee* + ede*)® ' de + 2de* de® — 2de*ed(de*e + e*de)®
= ®de*de — D dede* — e*dePde* ed
—e*dede*de® + e*® Ldee*d 1de +e*d Lede*d de

=0
+ 2de*ded® — 2 de*e@cje*e@ —2de*e®e*ded
= 3®de*de — P ldede — ede*dedde* + e* P Lede* D Lde + 2de* ePe* ded
= 3®de*de — ®'dede” — ee*®, ' dedde* + e*e® de* P de + 2de*ee* By ' ded
= 3®de*de — D 'dede* — dedde* + D dedde*
+ de*® de — Bde* P Lde — 2de* de® + 2de* DL ded
= 2&de*de — 20 dede*

which matches the (unproven) formula in [9, Example 2.16].



Remark 2.3 (Sanity check).
1p(2w1) = —[e*, de®] + [e, Dde*] + [e, de*d ] — [e*, D de]
= —e*ded + dede* + edde” — Dde*e + ede* P — de* P le — e* P Lde + O Ldee*
= —d(e*e)® + d(ee*) P + & Ld(ee*) — Pd(e*e)
=3 1(—®d(e*e)® + d(ee*)) + (—Pd(e*e)D 4 d(ee*)) P!
=0 1dd + ddd~ .
Let us prove Yamakawa’s statement. Thanks to [3, Proposition 7.4], P and w; are

compatible if
tw)e(P)=1-— %T (2.4)

with T'(dp) = [p, @~ 1d® — d®®~!]. For p = e, the LHS is

)P (de) = 3 1fen) (ai* (1+€%e)+(1+ ee*)ai*>

1 o- * *\0
— 5( i9/9ex (W1)(1+e"e) 4 (1 + ee*)%ip/gex (w1))
where
is(pdgdr) = pd(q)’ ® 6(q)"dr — pdgd(r)’ @ 6(r)" € A Q' + Q' @ A.
Note that above we have used, for m,v € A and § € Dy,
%inav(pdgdr) = °(pd(q)'v @ wd(q)"dr — pdgd(r)'v @ wi(r)")
= 7°%s(pdgdr)v

since the bimodule structure on D4 is induced by the inner one on A¢. We have:
%ig/ge+ (2w1) = °(® @ de + @~ 'de ® e2) = de® + ©'de
thus

41(w1)e(P)(da) = (de® 4+ ®de)(1 + e*e) + (1 4 ee*)(de® + d~de)
=2de + @ 'de® " + Pded
whereas 4 times the RHS of 2.4 is
4de — [e, @ 1d® — dPDP '] = dde — e® ! (—D(de*e + e*de)® + dee* + ede*)
+ e(—®(de*e + e*de)® + dee* + ede*) D!
+ & H(—®(de*e + e*de)® + dee* + ede*)e
— (—®(de*e + e*de)® + dee* + ede*)Dd e
= 4de + ede*e® + ec*de® — ePde*e — ePe*de
+ ® ldee*e + P lede*e — dee*® e — ede*d e
= 4de + ee*de® — D Lee*de + DL dee e — dee*ed
= 4de + Bde® — de® — de + D 'de
+ & 'de®@ ™! — @~ 'de — de + de®
=2de + @ 'de® " + Pded.

Computations are similar to prove 2.4 evaluated at de*.



2.4 Double Poisson structures and the 1-Calabi-Yau property
Double Poisson algebras have been introduced by Van den Berg in [8]. Recall

Definition 2.5. ¢ A double Poisson algebra is an algebra A together with a double bracket
{{=,-}}: Ax A — A® A satisfying that {{—, —}} is a derivation in the second argument,
satisfies {{u,v}} = 7{{v,u}} for the twist function 7: AQ A > AR A,a®b+— b®a and
the Jacobi identity.

e We call an algebra A bi-symplectic, if there is a closed form w € DR(A)? which is
non-degenerate, that is ¢, : D4 — Q4 is an isomorphism of A-bimodules.

A double Poisson algebra structure induces a classical Poisson structures on the moduli
space of representations of A, while a bi-symplectic structure induces a symplectic structure
on the moduli space of representations of A.

If A is 1-smooth, the existence of a double Poisson structure is equivalent to the existence
of an element P € (DA/[DA, DA])y such that {P, P} = 0, where {—, —} denotes in this
context the Schouten-Nijenhuis bracket on DA/[DA, DA] .

Definition 2.6. [?, 8] Let P € (DA/[DA, DA])s and (A, P) be a double Poisson algebra.
A moment map for the double Poisson algebra is an element u = (u;); € € e;Ae; such that

{P’M} =—L.

In [8] A3 it is shown that every bi-symplectic form gives rise to non-commutative
Hamiltonian structure with Poisson bracket

P, = ((w) ' ®(w)™") (w) € (DA/[DA, DA]),.
Definition 2.7. We say that a relative 1-Calabi-Yau structure
J7a @k[xz] — A,xi — g
i=1

given by u(B) < 0 with 8 € @;_, HH;(k[z;]) is compatible with a non-commutative
Hamiltonian structure (P, u) if P, = P.

Let @ be a finite quiver with n vertices and @ the double quiver. Note that kQ is
I-smooth. By Theorem 1.8 of [%], we have a non-commutative Hamiltonian structure on
A := kQ given by the double Poisson structure

0 0

P = — € (DA/[DA, DA)),.

Y a7 5 € (DA/IDA,DA)),
a€Qy

and corresponding moment map p:=3_, . la,a’].

In [?], we have shown that the map @@, k[z;] — kQ,z; — p; carries a relative 1
Calabi-Yau structure which is induced by the natural 1-Calabi-Yau structure >\ ; 1 ®@ z; €
D=1 HH (k[zi]).

Lemma 2.8. The non-commutative Hamiltonian structure on kQ coincides with the relative
1-Calabi-Yau structure on @;_, k[z;] — kQ.

Proof. The homotopy of p(1®z) ~ 0 defining the relative Calabi-Yau structure on p is given
by B(3 o eq, @"®a) =3, cq, 1®a” ®a which corresponds tow :=3_ o da*da € DR A.
By Proposition 8.1.1. of [1] w is a bi-symplectic form on kQ.



Indeed, it is easy to verify that

)
P, = P € (DA/[DA, DA)),

which finishes the proof. O

We next investigate the relationship between fusion of double Poisson and bi-symplectic
structures and relate them to the compositions of Calabi-Yau cospans. By [8] Proposition
2.6.6 if (A, P) is a double Poisson algebra, then so is (Af, PT), where Af denotes the fusion
algebra. If (A, P, 1) is a non-commutative Hamiltonian structure, then (Af, P/, uf), where
,uf = ®i>3 Wi @ 1 + ea1peers is also a non-commutative Hamiltonian structure.

Lemma 2.9. Let (A,w) with w € DR(A)? be a bi-symplectic structure and A the fusion
algebra. Then (Af ,wf) is also a bi-symplectic structure and P! = P, that is fusion
commutes with the morphism that associates a non-commutative Hamiltonian structure to a
bi-symplectic structure.

Proof. By functoriality, wf € DR(A)? is a closed form and 1, fits into a commutative
diagram

Dy L)QA
Dy — 0,

As the vertical arrows are surjective and the top horizontal arrow ¢, is an isomorphism by
the non-degeneracy of w, it follows that ¢, is also an isomorphism. By the definition

P,r = (L(wf)_1 ® L(wf)_l) (wh) = (L(w)—l ® L(w)—l) (w)f = P!

The moment map associated to w is given by the the element p which satisfies {P,u} = E.
Clearly {ow7ﬂf}:{Pu{7ﬂf}:{wau’}f:Ef 0

Lemma 2.10. The cospan k[z] 11 k[y] ER k(z,y) & k2] with g(2) = = +y and f(z) = ,
fly) =y is a 1 Calabi-Yau cospan.

Proof. We equip k[z] IT k[y] and k[z] with their natural Calabi-Yau structure given by
1@x+1®y =1®(z+y) € HH,(k[z]11k[y]) and 1® 2z € HH;(k[z]). Clearly, f(1® (z+y)) =
9(1® z). O

Given a relative 1-Calabi-Yau structure p : k[z] II k[y] — A, we can consider the
composition of cospans

A lyaiikly) k{2, y)

k

(2,y) A
k[z] k=] Wk[y]

where z,y is mapped to u1, pe. This yields a relative Calabi-Yau structure k[z] — B.

0



Theorem 2.11. Let (A, P,u) be a non-Hamiltonian structure which coincides with the
relative 1 Calabi-Yau structure p : klx] IL kly] — A. The fusion of the non-Hamiltonian
structure (A, P, p) coincides with the relative 1 Calabi- Yau structure k[z] — Ally kg k(, v)
given by the composition of cospans above.

Proof. As the non-commutative Hamiltonian structure is compatible with the relative 1
Calabi-Yau structure, we have P = P,, and p(z) = p1 and u(y) = pa. We have a natural
isomorphism Af ~ A g [z)11k]y) k(7,y) and under this isomorphism A — A k) k{(z,y)
is equivalent to the morphism —/ : A — A/ and p/ : k[z] — Af coincides with k[z] —
A Uy a)iikly) k{(z,y). Furthermore, since the homotopy between the 1-forms in the cospan

klx] 1T k[y] ER k(z,y) < k[z] is trivial, the zero-homotopy of the composition is given by

wf, where w denotes the zero homotopy u(1® (z +y)) ~ 0. As P/ = P, ; the fusion non-
Hamiltonian structure coincides with the relative 1-Calabi-Yau structure of the composition

of the cospans.
O

2.5 Calabi-Yau cospans and fusion

The aim of this section is to compare the relative Calabi-Yau structure obtained by the
cospan procedure with the double quasi-Poisson structure obtained by the fusion process as
in [8] Section 7. Let A be an algebra or dg category with orthogonal idempotents e1,--- e,
or respectively objects denoted 1,--- ,n.

Given a 1-relative Calabl—Yau map @ : [[, k[z'] — A such that x; = ®; := ®(;) €
(e;Ae;)*, we can compose with the Calabi-Yau cospan from [3]

ﬁk[xiﬂ]—mx;—“l,xg Hk 1 k2] Hk +

with 212 — 122 and the identity map on the x; for ¢ > 3. The composition of cospans
yields a relative 1-Calabi-Yau structure on

o/ Hk ST ki) — AT

where Af := A 1, ke k[zf%] [17_ k[zF']. This process fuses the objects respectively
vertices denoted 1 and 2. As in [3] we denote by af the image of a € A in A and by
®f : k[z¥'] — Af the new moment map. We have ®f(z;) = ®/ € A/ for i > 3 and
@f(Zl 2) (I) @f € Af

Recall from [ ] Section 3.3. that the homotopy on the cospan

k,[le:l] Hk[y:tl] N k‘<$il,yi1> — k‘[zil]

1

isgiven by y1 ==y '@z ' @ zy — y @ y 'z~ ! ® x, which satisfies

ar(zy) — (a1 (z) + a1(y)) = b(m)-

We can assume that n = 2. Let us assume that w; and P are compatible in the sense of [8].
We want to show that wf ! and P11 .= pf — E{ Eg are also compatible. The composition of
cospans yields that w ﬁl + <I>f((:1) ,8{ + &7 1d®,dD — Dpd®'dD,



We need to understand the following composition of Calabi—Yau cospans:

B

N,
N

:I:l] 11k yzl:l

:I:l
where z,y is mapped to ®5, ;. The homotopy
1
=5 (y_l wr '@y —yey 'z ® x)
is mapped in DR’ k(zt y*h) to

Ll —1,.-1
w—4<y de™ d(zy) —yd(y =z )dx)

1
=1 ( — yilelda::cfl(xdy + dzy) + dyy e ldx + xildmfld:z:>
1
=1 ( —yte dady — y~ e Vdar T Vday + dyy e e + x_ldxx_ldfl?>
1
= —§x_1dfcdyy_1

which is mapped to
1 .
—5 1 d®1dD0; " € DR’B.

which is precisely the opposite of the corrective term given in [9] following [1].

3 Comparison of Lagrangian structures

Assume that we have a finite set {e; | i € I'} of idempotents in A, and define the commutative
algebra R = @;crke;. For any [-graded finite dimensional space V' define Ay by

Homag/r(A, End(V)) = Homcommalg/k(Av, k).
Thanks to [4, (6.2.2)], setting Xy = Spec(Ay ), we have a map
tr: DR®A — Q°*(Xy,)Ctv
given by a — tr(&) where & is induced by the evaluation
A= (Ay @ End(V)CM  © g a.

Thanks to |3, Proposition 6.1], there is a quasi-Hamiltonian structure on (Xy, tr(w; ), ®).
Now & : Xy — GLy induces a lagrangian structure on [Xy/GLy] — [GLy /GLy].

On the other hand, thanks to [3], the 1-Calabi-Yau structure on ® yields a lagrangian struc-
ture on Perf, — Perfy,+1), and thus considering substacks on [Xy /GLy| — [GLy /GLy/]
again.

Theorem 3.1. These two lagrangian structures are identical.

10



Thanks to the following lemma, it will boil down to comparing 2-forms on Xy . From
now on we write X and G instead of Xy and GLy . Consider a G-equivariant morphism
w: X — G, which induces [u] : [X/G] — [G/G]. Consider the standard 1-shifted symplectic
structure on [G/G] given by @ = @y + @1 where @y € (21(G) ® g*)¢ and @, € Q*(G)°.

Lemma 3.2. The space of homotopies between [u]*@ and 0 in A>([X/G],1) is discrete. It
is the space of 2-forms o € Q%(X)Y such that for every u € g

tgo = ("o, u)

* —
ddRa = U wi.

Proof. The bicomplex giving the de Rham complex of [X/G] in weight > 2 is

§2g")¢ —— (0(X) ® §%g")¢

Q(X)T s (Q2(X) © ) s (O(X) @
o] | T
02(X)¢ —2 (Q1(X) ® g)¢ —— (0(X) ® S2g")

We are interested in the space of 2-forms a € Q2(X)% mapped on p*w € Q3(X)¢ @ (QY(X)®
g*)¢ by dar ® 0. Now just note that by definition J is given by (da,u) = tza for every
u € g. O

Now consider the composition Spec(Ay) = X — [X/G] — Perf4. It is given by an
A — Ay-bimodule M which induces a chain

DRA ~ HHA —— HH(Mod""") «~— HH(End, (M)) —— HHAy ~ Q*Ay

\/’

ar—ra-

given by
ag ® a1 ® -+ ® ay, > tr(dg)dtr(ay) ... dtr(a,),

that is tr again. Thus the 2-forms match on X = Xy, and therefore the associated lagrangian
structures as well.

11



Recall that a relative 1-Calabi-Yau morphism of algebras k[z*] — A induces a 1-shifted
Lagrangian morphism of stacks Perf 4 — Perfy,+). Now by [?], a 1-shifted Lagrangian
morphism induces a non-degenerate Poisson structure on Perf 4 via pullback of forms. In
our setting, [rep4/GL,] is an open substack of Perf, and therefore the non-degenerate
Poisson form restricts to [rep 4 /GL,]. Equivalently, given a Lagrangian morphism Perf 4 —
Perf),+), we can consider the following commutative diagram

Perfy ———— Perfy,+)

T |

[rep, A/GL,] — [rep, k[z¥]/GL,]

where the vertical arrows are open embeddings and the bottom horizontal morphism inherits
a 1-Lagrangian structure from the top morphism. As shown in [}, the 1-Calabi-Yau structure
on k[z¥] given by (z7! ® 1 + 1 ® z7!)/2 induces the classical symplectic structure on
[rep,, k[z*]/GL,] ~ [Gl,/GL,] via restriction from Perfy,=) which we can pull back to
[rep,, A/GL,].

Question: Does the non-degenerate quasi-Poisson form respectively quasi-Hamiltonian
structure on rep, A given in [7] yield the same Poisson structure on [rep,, A/GL,| than the
two methods described above?

Here DR® denotes either the Karoubi-DeRham complex in the non-commutative case
and the DeRham complex of derived stacks seen as a functor DR® : dSt — Mod; ?".

Recall that every B-point z : SpecB — Perf 4 is given by a dg functor A — Mod%™.
Applying HC™ yields a map HC™ (4) — HC_(Mod%erf) ~ HC™ (B). The DeRham complex
of Perf 4 can be computed as the limit lim,.specB—perf, HC™ (B) and we therefore obtain a
natural map DR(A) ~ HC™ (A) — DR(Perf 4).

We have a diagram

DRA ——— DR*(Perf,)

o |

R([rep,A/GLy])

|

DR(rep,, A4).

tr

The vertical arrows on the right are given by the functoriality of DR® with respect to the
natural maps rep,, A — [rep,, A/GL,] — Perf 4 of derived stacks. The maps tr : HC™ A ~
DR*(A) — DR*(rep,,4) and HC™ A ~ DR*(A) — DR*([rep,,A/GL,]) are given in [7]. To
answer our question, we have to show that the diagram above commutes.

We will first show that the outside triangle commutes.

Remark 3.3 (pre-quotient case). Thanks to [1, (6.2.2)], setting Xy = Spec(Ay ), we have
a map
DR*A — Q*(Xy)%"

given by a — tr(&) where & is induced by the evaluation
A— (Ay @ End(V)SMv; e a.

On the other hand, we have a chain

HO™A—— HC™ (Mod7) —— HC™ Ay —— DR"Ay
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given by
ap ® a1 ® -+ @ a, — tr(ag)dtr(ay) ... dtr(a,).

Let us clarify the map DR*A ~ HC™ A — DR(Perf4). By the above description, we
know that for every B-point z : A — Mod%™, we have a map HC™(A) — HC™ (Mod®™) ~
HC™ (B) given by ag®a1®- - -Qay, — tr(zag)dtr(zay) . .. dtr(zay). Now the map repy (A) —
Perf 4 corresponds to the Ay-point A — Ay ® End(V).

We get that the square

DR*A~HC A—— s DR(Perfy)

| |

Q*(Xy )G — - DR(Xy) ~ DR(repy A)

commutes.

4 Simplicial complexes
Now denote by A(n) the category with objects (a,7), a € Ob(A), i =1,...,n and morphisms

Aa,b), ifi=y
An)((a,1), (b, 7)) = < A(a,a)~, ifj=i+1 (4.1)
0, otherwise

This gives rise to a simplicial object
AN == 42) =S 40) ...

Let V = (Va)acoba be a vector-space indexed by the objects of A. We denote repy, A(m)
the moduli space which sends every (a,) to V,. Then

repy, A(m) ~ rep, A x GLJ}™' = Xy x (GLy)™ .

Applying the functor repy, to the simplicial complex yields therefore the simplicial complex

[Xy/GLy] = colim ( Xy &= Xy x GLy &= Xv x GLy x GLy ... ) :
Hence, we morphisms of derived stacks
Xy x (GLy)" ! = Perf 4(»)
that induce a morphism
[Xv/GLy] — colim Perf 4,y ~ Perf,.

We have natural maps A(n) — A, (a,i) — a. This induces a map between the sim-
plicial complex above and the constant simplicial complex in A. Applying DR yields
a map lim, DR(A(n)) — DR(A) which is an isomorphism. Let us spell out this map
tr(ag)dtr(ay) ... dtr(a,) —-.

We obtain the following commutative diagram
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DR(A) +——— lim,, DR(A(n)) ——% lim,, DR(repy (A(n)))

DR(Perf ) «— lim,, DR(Perf 4(,)) — DR([Xy/GLy))

Assume first that our categories in
f
A= A(1) ?; A(2)=:B

only have one object, so that an isomorphism f = ¢ corresponds to z € B* satisfying
zf = gz. On simplicial complexes we have morphisms

A®n (n+1) A®n+1
f®nug®n f®n+1\ug®n+1
B®n (n+1) B®n+1

induced by f and g. Horizontal maps are given by m;, ¢ = 1...n + 1, the multiplication of
the i-th and ¢ 4+ 1-th factors, with the convention n + 2 = 1.

Proposition 4.2. The homotopy between f and g induced by z
(h: Ax A= B) = ((hnj)1<jcn « (A®")" = B

reads _ _
hnj=f2"t©g¥ 1 @ze oI
meaning
hnjlar @+ @an) = fla1)z' @ g% a2 ®@ -+ ®a;) @20 f€" 7 (aj41 @ - @ ap).

Proof. First note that myh, 1 = f©" and my1hnn = g™,
Next consider 1 < i < j < n, then

Mihn; =mi(fz' @ ¢g® @z fO")
=(fz'®@g¢® @z fO" T )m,
= hn—l,j—lmi
the only nontrivial case being i = 1 where we use m1(fz=!' ® g) = fz='m;.
If1<i=y,
mihn,i _ mi(fz_l ®g®i—1 Rz® f®n—i)
_ fz—l ®g®i—2 ®gz®f®n—i
_ fz—l ®g®i—2 ®Zf® f®n—i
= mihn,ifb
Finally, when ¢ > j 4+ 1 we have
mihn; =mi(fz"' @g® @z o)
= (fz ' @g¥ @2 @ fO T )miy

= hnfl,jmifl

even if i = n + 1. O
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Proposition 4.3. Assume that zf = gz and wg = hw for f,g,h: A — B and z,w € B*.
Denote by h*, h* and h*'* the induced homotopies. The homotopy H = (H,, : A®™ — B®n+2)
between h* + h* and h"“?* reads

Hy,= > ffz'v ' @b oweg® oz .

r,8,t>0
r+s+t=n—1

Proof. Write H, s+ = fz7'w™ ' @ h®" @uw @ ¢®* @ 2@ f®!, and hy o = fzleg®P 2@ f1,
same with A", h#*. Then note that
miHo st =N,
mn+2H'r,s,0 = h:fjs
mr+2Hr,O,t = h;lftz
Ifi<r,
miHr,s,t = Hr—l,s,tmiv

thanks to my (fz lw= ' ®@ h) = fz~lw™lm; when i = 1.
Ifi=r—+1,
miHr,s7t = miHrfl,s+17t
since hw = wyg.
fr4+3<i<r+s+1,
miHr,s,t = Hr,sfl,tmifl'
fi=r+s+2,
miHr,s,t = miHT,s—l,t-i-l
since gz = zf.
Ifr+s+4<i<n-—+2,
miHr,s,t = Hr,s,tflmif%
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