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Abstract

We define and study an extension of the logic of Here and There with dual implication

and modal operators of necessity and possibility. We provide a complete axiomatisa-

tion. We prove as well other results such as the interdefinability of modal operators

and the Hennessy-Milner property. We give an upper bound to the complexity of the

satisfiability problem.
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1 Introduction

In the last twenty years, research on extensions of the logic of Here and
There [16,21,38] (HT) have been very active due to the advent of Equilib-
rium Logic [29,30], which is considered the best-known logical characterisation
of the Stable Models Semantics [15] and Answer Sets Semantics [6] in Logic
Programming (LP). Recently, combinations of intermediate and modal log-
ics [3,9,11,12,39] have caught the attention of the LP community since they
can support the definition of non-monotonic modal logics [9,3]. Extending
intermediate logics [25] (IL) with modalities is not new, since several seman-
tics and properties have been studied about this topic in both philosophy and
formal logic [5,7,28,35,37] and computer science [2,4,13,24,32].

Also related to IL, several types of negation were considered: for instance,
Nelson’s Constructive Logic [27] was used by [30] in order to characterise the
strong negation in LP. However, other dual operators of IL 1 have not been con-
sidered in the HT setting. More precisely, we focused on the dual implication
proposed by C. Rauszer [33].

Rauszer proposed an extension of intuitionistic logic equipped with a new
implication (denoted by ←) in order to provide “a more elegant algebraic and

1 See the discussion presented in [40].



model-theoretic theory than in ordinary intuitionistic logic” [33]. Later on,
this new implication was further studied: in [41] this new operator is added
to the intuitionistic modal language providing several results such as matrix
and Kripke semantics or embeddings into (extended) tense logics. A display
calculus unifying intuitionistic and dual-intuitionistic logic was presented in [18]
and refined in [19]. Recently, in [20], a cut-free sequent calculi in terms of
derivations and refutations have been introduced 2 .

In this paper, we have considered the combination of propositional HT

with dual implication and modal logic K. On it, we have defined the concept
of modal equilibrium model and we study several interesting properties, which
can serve as a starting point for future modal extensions. These properties
are presented along this paper in the following way. In Section 2, we present
syntax and two equivalent alternative semantics based on Kripke models. The
former semantics (the “Here and There” semantics) is simulated by two valu-
ation functions while the latter semantics possesses two accessibility relations
to interpret implication, dual implication and modal operators. In Section 3
and Section 4, we present an axiomatisation of this logic and we prove its com-
pleteness with respect to the birelational semantics. In Section 5, we establish
the complexity, in PSPACE, of the satisfiability problem in this logic. In Sec-
tion 6 we define bisimulations for our BHT -modal extensions and we use them
to prove the Hennessy-Milner property. In Section 7 we define the concept of
modal equilibrium logic and shows that such definition is suitable for proving
the theorem of strong equivalence.

2 Syntax and semantics

In this section, we present the syntax and the semantics of BHT .

2.1 Syntax

Let V AR be a countable set of propositional variables (denoted p, q, etc). The
set FOR of all formulas (denoted ϕ, ψ, etc) is defined as follows:

ϕ,ψ ∶∶= p ∣ " ∣ ⊺ ∣ (ϕ ∨ ψ) ∣ (ϕ ∧ ψ) ∣ (ϕ→ ψ) ∣ (ϕ← ψ) ∣ ◻ϕ ∣◇ϕ (1)

We follow the standard rules for omission of the parentheses. As in [33], two

negations can be defined: ¬ϕ
def
= ϕ → " and ⨽ϕ

def
= ⊺ ← ϕ. Let ∣ϕ∣ denote the

number of symbol occurrences in ϕ. A set Σ of formulas is closed iff it is closed
under subformulas and for all formulas ϕ, if ϕ ∈ Σ then ¬ϕ ∈ Σ and ⨽ϕ ∈ Σ.
The modal degree of a formula ϕ (in symbols deg(ϕ)) is defined as follows:

deg(ϕ)
def
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if ϕ = p (p ∈ V AR) or ϕ = " or ϕ = ⊺
max(deg(ψ), deg(χ)) if ϕ = ψ ⊙ χ, with ⊙ ∈ {∨,∧,→,←}
1 + deg(ψ) if ϕ = ⊙ψ, with ⊙ ∈ {◻,◇}

2 Derivation Calculi are used to reason about a syntactic derivability relation (⊢). usually
associated with the ordinary implication (→). Conversely, Refutation Calculi [17] are thought
for reasoning about a syntactic refutability relation (⊣) and it comes from the use of the dual
implication (←).



A theory is a set of formulas. For all theories x, y, we define the theories

◻x
def
= {ϕ ∣ ◻ϕ ∈ x} and ◇y

def
= {◇ϕ ∣ ϕ ∈ y}.

2.2 BHT semantics

Given a nonempty set W and H,T ∶ V AR → 2W , we say that H is included
in T (in symbols H ≤ T ) iff for all p ∈ V AR, H(p) ⊆ T (p). A BHT -frame is
a structure (W,R) where W is a nonempty set and R is a binary relation on
W . A BHT -model is a structure M = ⟨W,R,H,T ⟩ where (W,R) is a BHT -
frame and H,T ∶ V AR → 2W are such that H ≤ T . Given a BHT -model
M = ⟨W,R,H,T ⟩, x ∈ W , and α ∈ {h, t}, interpreting ", ⊺, ∨ and ∧ as usual,
the satisfaction of a formula ϕ at (x,α) in M (in symbols M, (x,α) ⊧ ϕ) is
defined as follows:

● M, (x,h) ⊧ p iff x ∈H(p) and M, (x, t) ⊧ p iff x ∈ T (p),

● M, (x,α) ⊧ ϕ→ ψ iff for all α′ ∈ {α, t}, M, (x,α′) /⊧ ϕ, or M, (x,α′) ⊧ ψ,

● M, (x,α) ⊧ ϕ ← ψ iff there exists α′ ∈ {h,α} such that M, (x,α′) ⊧ ϕ and
M, (x,α′) /⊧ ψ,

● M, (x,α) ⊧ ◻ϕ iff for all y ∈W , if xR y then M, (y,α) ⊧ ϕ,

● M, (x,α) ⊧◇ϕ iff there exists y ∈W such that xR y and M, (y,α) ⊧ ϕ.

As a result, M, (x,α) ⊧ ¬ϕ iff for all α′ ∈ {α, t}, M, (x,α′) /⊧ ϕ and M, (x,α) ⊧
⨽ϕ iff there exists α′ ∈ {h,α} such that M, (x,α′) /⊧ ϕ. Notice that if H = T
then the satisfaction relation is essentially the same as the satisfaction relation
used in classical modal logic [10]. We say that the formulas ϕ and ψ are BHT -
equivalent (in symbols ϕ ≃ ψ) iff for all BHT models M = ⟨W,R,H,T ⟩, for all
x ∈W and for all α ∈ {h, t}, M, (x,α) ⊧ ϕ iff M, (x,α) ⊧ ψ. The satisfaction of
a theory Γ at (x,α) in M (in symbols M, (x,α) ⊧ Γ) is defined as usual. Two
theories Γ1 and Γ2 are BHT -equivalent (in symbols Γ1 ≃ Γ2) iff for all BHT
models M = ⟨W,R,H,T ⟩, for all x ∈W and for all α ∈ {h, t}, M, (x,α) ⊧ Γ1 iff
M, (x,α) ⊧ Γ2.

Lemma 2.1 Let ϕ be a formula. For all BHT -models M = ⟨W,R,H,T ⟩ and
for all x ∈W , if M, (x,h) ⊧ ϕ then M, (x, t) ⊧ ϕ.

As a result, for arbitrary x ∈W and α ∈ {h, t}, M, (x,α) ⊧ ¬ϕ iff M, (x, t) /⊧ ϕ
and M, (x,α) ⊧ ⨽ϕ iff M, (x,h) /⊧ ϕ. Hence, M, (x, t) ⊧ ϕ∨¬ϕ and M, (x,h) /⊧
ϕ∧⨽ϕ. Remark also that M, (x,α) ⊧ ¬¬ϕ iff M, (x, t) ⊧ ϕ and M, (x,α) ⊧ ⨽⨽ϕ
iff M, (x,h) ⊧ ϕ. A formula ϕ is said to be satisfiable iff there exists a BHT
model M = ⟨W,R,H,T ⟩, there exists x ∈ W and there exists α ∈ {h, t} such
that M, (x,α) ⊧ ϕ. A formula ϕ is said to be valid iff for all BHT models
M = ⟨W,R,H,T ⟩, for all x ∈ W and for all α ∈ {h, t}, M, (x,α) ⊧ ϕ. In order
to grasp the differences between ¬ and ⨽, let us notice that, although p ∨ ¬p

is not valid and p ∧ ⨽p is satisfiable, we have ϕ ∨ ⨽ϕ is valid and ϕ ∧ ¬ϕ is not
satisfiable for arbitrary formula ϕ. In other respect, by Lemma 2.1, one can
readily conclude that ϕ is valid iff for all BHT models M = ⟨W,R,H,T ⟩ and
for all x ∈ W , M, (x,h) ⊧ ϕ and ϕ is not satisfiable iff for all BHT models



M = ⟨W,R,H,T ⟩ and for all x ∈W , M, (x, t) /⊧ ϕ. It can be easily checked that
if a formula ϕ is not satisfiable then ¬ϕ is valid and if ϕ is valid then ⨽ϕ is not
satisfiable. Finally, remark that for all formulas ϕ,ψ, ϕ → ψ is valid iff ϕ ← ψ

is not satisfiable.

Lemma 2.2 The following formulas are valid:

1) Standard axioms of Intuitionistic Propositional Calculus (IPC):

● ϕ→ (ψ → ϕ),
● (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)),
● (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ)),
● ϕ→ ϕ ∨ ψ,
● ψ → ϕ ∨ ψ,

● ϕ ∧ ψ → ϕ,
● ϕ ∧ ψ → ψ,
● ϕ→ (ψ → ϕ ∧ ψ),
● "→ ϕ,

2) Hosoi formula [22]: ϕ ∨ (ϕ→ ψ) ∨ ¬ψ,
3) Fisher Servi axioms:

● ◻(ϕ→ ψ)→ (◻ϕ→ ◻ψ),
● ◻(ϕ→ ψ)→ (◇ϕ→◇ψ),
● ◇(ϕ ∨ ψ)→◇ϕ ∨◇ψ,

● (◇ϕ→ ◻ψ)→ ◻(ϕ→ ψ),
● ¬◇ ",

4) Additional formulas:

● ϕ→ (ϕ← ψ) ∨ψ,
● ϕ ∨ ⨽ϕ,
● ¬ϕ ∨ ¬¬ϕ,

● ⨽◇ (ϕ ∧ ⨽ϕ),
● ¬¬ ◻ϕ→ ◻¬¬ϕ and ◇¬¬ϕ→ ¬¬◇ϕ,
● ⨽⨽ ◻ϕ→ ◻⨽⨽ϕ and ◇⨽⨽ϕ→ ⨽⨽◇ϕ.

Lemma 2.3 The following formulas are valid:

1) Negation-dual of standard axioms of Intuitionistic Logic:

● ¬((ϕ← ψ)← ϕ),
● ¬(((χ← ϕ)← (ψ ← ϕ))← ((χ← ψ)← ϕ)),
● ¬(((χ← ψ ∧ϕ)← (χ← ψ))← (χ← ϕ)),
● ¬(ψ ∧ϕ← ϕ),
● ¬(ψ ∧ϕ← ψ),

● ¬(ϕ← ψ ∨ϕ),
● ¬(ψ ← ψ ∨ϕ),
● ¬((ψ ∨ϕ← ψ)← ϕ),
● ¬(ϕ← ⊺).

2) Negation-dual of Hosoi formula: ¬(⨽ψ ∧ (ψ ← ϕ) ∧ϕ),
3) Negation-dual of Fisher Servi axioms:

● ¬((◇ψ ←◇ϕ)←◇(ψ ← ϕ)),
● ¬((◻ψ ← ◻ϕ)←◇(ψ ← ϕ)),
● ¬(◻ψ ∧ ◻ϕ← ◻(ψ ∧ϕ)),

● ¬(◇(ψ ← ϕ)← (◇ψ ← ◻ϕ)),
● ¬⨽ ◻ ⊺,

4) Negation-dual of additional formulas:



● ¬(ψ ∧ (ψ → ϕ)← ϕ),
● ¬(¬ϕ ∧ϕ),
● ¬(⨽⨽ϕ ∧ ⨽ϕ),

● ¬¬ ◻ (¬ϕ ∨ϕ),
● ¬(◇⨽⨽ϕ← ⨽⨽◇ϕ) and ¬(⨽⨽ ◻ϕ← ◻⨽⨽ϕ),
● ¬(◇¬¬ϕ← ¬¬◇ϕ) and ¬(¬¬ ◻ϕ← ◻¬¬ϕ).

From now on, the set of all valid formulas is denoted BHT .

Lemma 2.4 In the following tables, the formulas on the left are BHT -
equivalent to the corresponding formulas on the right.

¬ (ϕ ∨ ψ) ¬ϕ ∧ ¬ψ

¬ (ϕ ∧ ψ) ¬ϕ ∨ ¬ψ

⨽ (ϕ ∨ ψ) ⨽ϕ ∧ ⨽ψ

⨽ (ϕ ∧ ψ) ⨽ϕ ∨ ⨽ψ

¬ (ϕ→ ψ) ¬¬ϕ ∧ ¬ψ

¬ (ϕ← ψ) ¬ϕ ∨ ⨽⨽ψ ∨ (⨽ϕ ∧ ¬¬ψ)
⨽ (ϕ→ ψ) ¬¬ϕ ∧ ⨽ψ ∧ (⨽⨽ϕ ∨ ¬ψ)
⨽ (ϕ← ψ) ⨽ϕ ∨ ⨽⨽ψ

¬⨽ϕ ⨽⨽ϕ

⨽¬ϕ ¬¬ϕ

¬¬¬ϕ ¬ϕ

¬¬⨽ϕ ⨽ϕ

¬⨽¬ϕ ¬ϕ

⨽¬¬ϕ ¬ϕ

¬⨽⨽ϕ ⨽ϕ

⨽¬⨽ϕ ⨽ϕ

⨽⨽¬ϕ ¬ϕ

⨽⨽⨽ϕ ⨽ϕ

Lemma 2.5 Let ϕ be a formula. The least closed set of formulas containing
ϕ contains at most 5∣ϕ∣ equivalence classes of formulas modulo ≃.

In most modal extensions of intuitionistic logic, ◻ and◇ are non-interdefinable.
Within the context of BHT , this is no longer the case.

Lemma 2.6 In the following table, the formulas on the left are BHT -
equivalent to the corresponding formulas on the right.

◻ϕ ◇(ϕ ∧ ⨽ϕ) ∨ ⨽◇⨽ϕ←◇¬ϕ
◻ϕ (¬◇ (ϕ ∧ ⨽ϕ) ∨◇(ϕ ∧ ⨽ϕ) ∨ ⨽◇⨽ϕ) ∧ ¬◇¬ϕ
◇ϕ ◻⨽ϕ→ ¬ ◻ ¬ϕ ∧ ◻(ϕ ∨ ¬ϕ)
◇ϕ ⨽ ◻ ⨽ϕ ∨ (¬ ◻ ¬ϕ ∧ ◻(ϕ ∨ ¬ϕ) ∧ ⨽ ◻ (ϕ ∨ ¬ϕ))

2.3 Birelational semantics

A standard approach in the semantics of a modal intuitionistic logic is to con-
sider structures based on a partial order and a binary relation [37]. A birela-
tional frame is a structure (W,≤,R) where W is a nonempty set, ≤ is a partial
order on W and R is a binary relation on W . A birelational frame (W,≤,R) is
normal iff it satisfies the following conditions for all x, y, z ∈W :

1) if x ≤ y and x ≤ z then x = y, or x = z, or y = z,

2) if x ≤ z and y ≤ z then x = y, or x = z, or y = z.

As a result, if (W,≤,R) is normal then for all x ∈ W , x is a maximal element
with respect to ≤, or there exists exactly one y ∈W such that x ≤ y and x /= y.
In the former case let x̂ denote x. In the latter case, let x̂ denote this y. From
this definition, it follows that for all x, y ∈W , x ≤ y iff y = x, or y = x̂. Similarly,
if (W,≤,R) is normal then for all x ∈ W , x is a minimal element with respect
to ≤, or there exists exactly one y ∈W such that y ≤ x and x /= y. In the former
case, let qx denote x. In the latter case, let qx denote this y. From this definition
it follows that for all x, y ∈ W , y ≤ x iff x = y, or qx = y. Obviously, for all



x ∈W , q̂x = x̂ and q̂x = qx. A normal birelational frame (W,≤,R) is Cartesian iff
it satisfies the following conditions for all x, y ∈W :

1) if qxRy then qy = y and x̂Rŷ, 2) if x̂Ry then ŷ = y and qxRqy.

Lemma 2.7 Let (W,≤,R) be a Cartesian birelational frame. For all x, y ∈W ,
if xRy then x̂Rŷ and qxRqy.

A birelational model is a structure ⟨W,≤,R, V ⟩ where (W,≤,R) is a birelational
frame and V ∶ V AR → 2W is such that for all x, y ∈W , if x ≤ y then for all p ∈
V AR, if x ∈ V (p) then y ∈ V (p). Given a birelational model M = ⟨W,≤,R, V ⟩
and x ∈W , interpreting ", ⊺, ∨ and ∧ as usual, the satisfaction of a formula ϕ
at x in M (in symbols M, x ⊧ ϕ) is defined as follows:

(i) M, x ⊧ p iff x ∈ V (p),

(ii) M, x ⊧ ϕ→ ψ iff for all y ∈W if x ≤ y then M, y /⊧ ϕ, or M, y ⊧ ψ,

(iii) M, x ⊧ ϕ← ψ iff there exists y ∈W such that y ≤ x, M, y ⊧ ϕ andM, y /⊧ ψ,

(iv) M, x ⊧ ◻ϕ iff for all y, z ∈W , if x ≤ y and yR z then M, z ⊧ ϕ,

(v) M, y ⊧◇ϕ iff there exists y ∈W such that xR y and M, y ⊧ ϕ.

Remark that the clause concerning ◻ imitates the clause for the quantifier ∀ in
first-order intuitionistic logic. Nevertheless, it can be proved that in a Cartesian
model M = ⟨W,≤,R, V ⟩, replacing the clause concerning ◻ by the clause

M, x ⊧′ ◻ϕ iff for all y ∈W , if xR y then M, y ⊧′ ϕ

would define a satisfaction relation equivalent to the relation ⊧ defined above.

2.4 Equivalence between the two semantics

In this section, we prove that a formula is satisfiable (respectively, valid) in
the BHT semantics iff it is satisfiable (respectively, valid) in the birelational
semantics. Let M = ⟨W,R,H,T ⟩ be a BHT model. We define the birelational
model M′

= ⟨W ′,≤′,R′, V ′⟩ as follows:

1) W ′
=W × {h, t},

2) (x,α) ≤′ (y, β) iff x = y and α = h, or β = t,

3) (x,α)R′ (y, β) iff xR y and α = β,

4) V ′(p) = {(x,h) ∶ x ∈H(p)} ∪ {(x, t) ∶ x ∈ T (p)}.

The reader can easily check that M′ satisfies the conditions to be normal.

Moreover, the reader can check that for all (x,α) ∈ W ′, ­(x,α) = (x,h), and

(̂x,α) = (x, t). Let us prove that M′ is Cartesian. Let us consider (x,α) and

(y, β) inW ′ satisfying ­(x,α)R′(y, β). By definition, (x,h)R′(y, β), so xRy and

β = h. Again, by definition ­(y, β) = (y, β). Assume that not (̂x,α)R′(̂y, β),
By definition not (x, t)R′(y, t). By definition we conclude not xRy: a con-

tradiction. Therefore (̂x,α)R′(̂y, β). Let us consider now (x,α) and (y, β) in

W ′ satisfying (̂x,α)R′(y, β). By definition, (x, t)R′(y, β), so xRy and β = t.

Again, by definition (̂y, β) = (y, β). Assume that not ­(x,α)R′­(y, β), By defi-



nition not (x,h)R′(y, h). By definition we conclude not xRy: a contradiction.

Therefore ­(x,α)R′­(y, β). Finally, we can prove the following correspondence
between M and M′.

Lemma 2.8 Let ϕ be a formula. For all x ∈ W and for all α ∈ {h, t},
M, (x,α) ⊧ ϕ iff M′, (x,α) ⊧ ϕ.

Proof. By induction on ϕ. In the case of a propositional variable p, if
M, (x,h) ⊧ p then x ∈ H(p) so, by definition, (x,h) ∈ V (p), so M′, (x,h) ⊧ p.
If M, (x, t) ⊧ p then x ∈ T (p) so, by definition, (x, t) ∈ V (p), so M′, (x, t) ⊧ p.
The converse direction is proved in a similar way. Also, the cases of conjunction
and disjunction are proved by using the induction hypothesis. We consider the
operators → and ◻ below:

● Case ϕ→ ψ: from left to right, assume by contradiction that M′, (x,α) /⊧
ϕ → ψ. Therefore, there exists (y, β) ∈ W ′ such that (x,α) ≤′ (y, β) and
M′, (y, β) ⊧ ϕ and M′, (y, β) ⊧ ψ. By induction hypothesis we get that
M, (y, β) /⊧ ϕ → ψ. By definition x = y and either α = h or β = t. If α = h
then there exists β ∈ {h, t}, M, (x, β) /⊧ ϕ → ψ, so M, (x,α) /⊧ ϕ → ψ:
a contradiction. If β = t then for all α ∈ {h, t}, M, (x,α) /⊧ ϕ → ψ: a
contradiction. For the converse direction, let us consider M, (x,α) /⊧ ϕ →
ψ. Therefore there exists some β ∈ {α, t}, M, (x, β) ⊧ ϕ and M, (x, β) /⊧ ψ.
By induction M′, (x, β) ⊧ ϕ and M′, (x, β) /⊧ ψ. Therefore M′, (x, β) /⊧
ϕ → ψ. If β = α we get M′, (x,α) /⊧ ϕ → ψ : a contradiction. If β = t then
(x,α) ≤′ (x, β) and M′, (x, β) /⊧ ϕ→ ψ: a contradiction.

● Case ◻ψ: from left to right, assume by contradiction that M′, (x,α) /⊧ ◻ψ.
This means that there exists (x′, β) and (y, γ) in W ′ such that (x,α) ≤′

(x′, β)R′(y, γ) and M′, (y, γ) /⊧ ϕ. By induction M, (x, γ) /⊧ ψ. By defini-
tion x′Ry and γ = β (so M, (x′, β) /⊧ ◻ψ). Again, by definition x = x′ and
either β = t or α = h. Any of the cases leads to M, (x,α) /⊧ ◻ψ. Conversely,
assume by contradiction that M, (x,α) /⊧ ◻ψ. Therefore M, (y,α) /⊧ ψ for
some xRy. By induction M′, (y,α) /⊧ ψ. By definition (x,α)R′(y,α) and
(x,α) ≤′ (x,α), so M′, (x,α) /⊧ ◻ψ.

◻

Let M = ⟨W,≤,R, V ⟩ be a Cartesian birelational model. We define the BHT
model M′

= ⟨W ′,R′,H ′, T ′⟩ as follows:

1) W ′
= {(qx, x̂) ∣ x ∈W},

2) (qx, x̂)R′(qy, ŷ) iff qxRqy and x̂Rŷ,

3) H ′(p) = {(qx, x̂) ∶ qx ∈ V (p)},

4) T ′(p) = {(qx, x̂) ∶ x̂ ∈ V (p)}.

Take (qx, x̂) ∈ H ′(p). By definition qx ∈ V (p). Since qx ≤ x̂ then, by definition,
x̂ ∈ V (p). Finally, by definition, (qx, x̂) ∈ T ′(p). Thus, H ′ ≤ T ′. Moreover, the
following result relates birelational and BHT semantics.

Lemma 2.9 Let ϕ be a formula. For all x ∈W ,

1) M, qx ⊧ ϕ iff M′, ((qx, x̂), h) ⊧ ϕ,



2) M, x̂ ⊧ ϕ iff M′, ((qx, x̂), t) ⊧ ϕ.

Proof. By induction on ϕ. For the case of a propositional variable p we get
that if M, qx ⊧ p then qx ∈ V (p) and, by definition, (qx, x̂) ∈ H ′(p). Therefore,
M′, ((qx, x̂), h) ⊧ p. The converse direction follows a similar reasoning. IfM, x̂ ⊧

p then x̂ ∈ V (p) and, by definition, (qx, x̂) ∈ T ′(p). Therefore, M′, ((qx, x̂), t) ⊧ p.
The converse direction follows a similar reasoning. The cases of conjunction
and disjunction are proved by induction. We present the proof for the → and
◻ connectives below:

● Case ϕ → ψ: from M, qx ⊧ ϕ → ψ then for all x′ ∈ {qx, x̂}, either M, x′ /⊧ ϕ
or M, x′ ⊧ ψ. From the induction hypothesis we get that for all α ∈ {h, t},
M′, ((qx, x̂), α) /⊧ ϕ or M′, ((qx, x̂), α) ⊧ ψ, so M′, ((qx, x̂), α) ⊧ ϕ → ψ. The
converse direction and the second part of the theorem are proved in a
similar way.

● Case ◻ψ: in the first case, assume by contradiction that M′, ((qx, x̂), h) /⊧
◻ψ. Therefore, M′, ((qy, ŷ), h) /⊧ ψ for some (qy, ŷ) ∈ W ′ satisfying
(qx, x̂)R′(qy, ŷ). By induction hypothesis M, qy /⊧ ψ. By definition, qxRqy.
Therefore, M, qx /⊧ ◻ψ: a contradiction. Conversely, assume by contradic-
tion that M, qx /⊧ ◻ψ. Therefore there exists y ∈ W such that qx ≤ x′Ry

and M, y /⊧ ψ. If x′ = qx, we use the first condition of being Cartesian to
conclude that qy = y (so qxRqy) and x̂Rŷ. By definition (qx, x̂)R′(qy, ŷ). By
induction M′, ((qy, ŷ), h) /⊧ ψ. Therefore M′, ((qx, x̂), h) /⊧ ◻ψ. If x′ = x̂, we
use the second condition of being Cartesian to conclude that ŷ = y (so x̂Rŷ)
and qxRqy. By definition (qx, x̂)R′(qy, ŷ). By induction M′, ((qy, ŷ), t) /⊧ ψ.
Therefore M′, ((qx, x̂), t) /⊧ ◻ψ. By Lemma 2.1, M′, ((qx, x̂), h) /⊧ ◻ψ. The
proof of the second second item is similar.

◻

Proposition 2.10 For any modal formula ϕ, ϕ is satisfiable (respectively,
valid) in the class of all BHT -frames iff ϕ is satisfiable (respectively, valid)
in the class of all Cartesian birelational frames.

3 Axiomatisation

The axiomatic system of BHT consists of the formulas considered in Lem-
mas 2.2 and 2.3 plus the following inference rules:

MP ϕ ϕ→ψ

ψ
,

Nec ϕ

◻ϕ
,

MR→
χ∧ψ→ϕ

χ→(ψ→ϕ)
,

MR←
ϕ→ψ∨χ

(ϕ←ψ)→χ
,

MR◻
ϕ→ψ∨χ

◻ϕ→◇ψ∨◻χ
,

MR◇
χ∧ψ→ϕ

◻χ∧◇ψ→◇ϕ
.

The notion of BHT -derivability is defined as usual.

Lemma 3.1 ⊺ is derivable in BHT .

Proof. Notice that ⊺ is valid in IPC (in fact it is equivalent to ¬"). Since
IPC ⊆ BHT we conclude that ⊺ is derivable in BHT . ◻



Proposition 3.2 (Soundness) Let ϕ be a formula. If ϕ is BHT -derivable
then ϕ is valid in the class of all BHT -model.

Proof. It suffices to check that all axioms are valid and the inference rules
preserve validity. ◻

Let x, y be theories. We say that x derives y (in symbols x ⊢ y) iff there
exists m,n ≥ 0, there exists formulas ϕ1, . . . , ϕm ∈ x and there exists formulas
ψ1, . . . , ψn ∈ y such that ϕ1 ∧ . . . ∧ϕm → ψ1 ∨ . . . ∨ ψn is BHT -derivable.

4 Completeness

We base our proof of completeness on the canonical model construction.

4.1 Tableaux

A tableau is a couple of theories. We say that a tableau (x, y) is consistent iff
x /⊢ y. The tableau (x, y) is said to be maximal iff for all formulas ϕ, ϕ ∈ x, or
ϕ ∈ y. We say that a tableau (x, y) is disjoint iff x ∩ y = ∅. The tableau (x, y)
is said to be saturated iff " ∈ y, ⊺ ∈ x and for all formulas ϕ,ψ,

(i) if ϕ ∨ψ ∈ x then ϕ ∈ x, or ψ ∈ x,

(ii) if ϕ∨ψ ∈ y then ϕ ∈ y and ψ ∈ y,

(iii) if ϕ∧ψ ∈ x then ϕ ∈ x and ψ ∈ x,

(iv) if ϕ ∧ ψ ∈ y then ϕ ∈ y, or ψ ∈ y,

(v) if ϕ→ ψ ∈ x then ϕ ∈ y, or ψ ∈ x,

(vi) if ϕ← ψ ∈ y then ϕ ∈ y, or ψ ∈ x.

Lemma 4.1 Every consistent tableau is disjoint.

Thus, if (x, y), (x′, y′) are maximal consistent tableaux then x ⊆ x′ iff y ⊇ y′.

Lemma 4.2 (Lindenbaum Lemma) Let (x, y) be a tableau. If (x, y) is con-
sistent then there exists a maximal consistent tableau (x′, y′) such that x ⊆ x′

and y ⊆ y′ .

Lemma 4.3 If (x, y) is a maximal consistent tableau then x contains the set
of all BHT -derivable formulas and x is closed under the rule MP . Moreover,
x and y constitute a partition of the set of all formulas.

Lemma 4.4 Every maximal consistent tableau is saturated.

Proof. Let (x, y) be a maximal consistent tableau. We demonstrate (x, y) is
saturated, which amounts to prove that conditions (i)-(vi) of the definition of
saturated tableaux are satisfied. We only present the proof for conditions (v)
and (vi).
Suppose ϕ → ψ ∈ x, ϕ /∈ y and ψ /∈ x. Since (x, y) is maximal consistent,
therefore ϕ→ ψ /∈ y and ψ ∈ y. Moreover, ϕ ∧ (ϕ→ ψ)← ψ is in y. Since ψ ∈ y,
therefore ϕ ∧ (ϕ → ψ) ∈ y (otherwise, we would obtain x ⊢ y which contradicts
the maximal consistency of (x, y)). Hence, ϕ ∈ y, or ϕ → ψ ∈ y. Since ϕ /∈ y,
therefore ϕ→ ψ ∈ y: a contradiction.
Suppose ϕ ← ψ ∈ y, ϕ /∈ y and ψ /∈ x. Since (x, y) is maximal consistent,
therefore ϕ← ψ /∈ x and ϕ ∈ x. Moreover, ϕ→ (ϕ← ψ)∨ψ is in x. Since ϕ ∈ x,
therefore (ϕ← ψ) ∨ ψ ∈ x (otherwise, we would obtain x ⊢ y which contradicts



the maximal consistency of (x, y)). Hence, ϕ ← ψ ∈ x, or ψ ∈ x. Since ψ /∈ x,
therefore ϕ← ψ ∈ x: a contradiction. ◻

Lemma 4.5 (Hosoi Lemma) Let (x, y), (x′, y′) and (x′′, y′′) be maximal
consistent tableaux. if x ⊆ x′ and x ⊆ x′′ then x = x′, or x = x′′, or x′ = x′′.

Proof. Suppose x ⊆ x′, x ⊆ x′′, x /= x′, x /= x′′ and x′ /= x′′. Without loss of
generality, suppose x′ /⊆ x′′. Let ϕ be a formula such that ϕ ∈ x′ and ϕ /∈ x′′.
Since x ⊆ x′, therefore ¬ϕ /∈ x (otherwise, we would obtain ϕ ∧ ¬ϕ ∈ x′ which
contradicts the maximal consistency of (x′, y′)). Since x ⊆ x′′ and x /= x′′,
therefore let ψ be a formula such that ψ /∈ x and ψ ∈ x′′. Since (x, y) is maximal
consistent, therefore ψ ∨ (ψ → ϕ) ∨ ¬ϕ (Hosoi axiom) is in x. Hence, ψ ∈ x,
or ψ → ϕ ∈ x, or ¬ϕ ∈ x. Since ¬ϕ /∈ x and ψ /∈ x, therefore ψ → ϕ ∈ x. Since
x ⊆ x′′, therefore ψ → ϕ ∈ x′′. Since ψ ∈ x′′, therefore ϕ ∈ x′′: a contradiction.◻

Lemma 4.6 (Negation-dual of Hosoi Lemma) Let (x, y), (x′, y′) and
(x′′, y′′) be maximal consistent tableaux. if x ⊇ x′ and x ⊇ x′′ then x = x′,
or x = x′′, or x′ = x′′.

Proof. Suppose x ⊇ x′, x ⊇ x′′, x /= x′, x /= x′′ and x′ /= x′′. Without loss of
generality, suppose x′ /⊇ x′′. Let ϕ be a formula such that ϕ /∈ x′ and ϕ ∈ x′′.
Since x ⊇ x′, therefore ⨽ϕ ∈ x (otherwise, we would obtain ϕ ∨ ⨽ϕ /∈ x′ which
contradicts the maximal consistency of (x′, y′)). Since x ⊇ x′′ and x /= x′′,
therefore let ψ be a formula such that ψ ∈ x and ψ /∈ x′′. Since (x, y) is
maximal consistent, therefore ¬(⨽ϕ ∧ (ϕ← ψ) ∧ψ) (dual of Hosoi axiom) is in
x and ⨽ϕ∧(ϕ← ψ)∧ψ is not in x. Hence, ⨽ϕ /∈ x, or ϕ← ψ /∈ x, or ψ /∈ x. Since
⨽ϕ ∈ x and ψ ∈ x, therefore ϕ ← ψ /∈ x. Since x ⊇ x′′, therefore ϕ ← ψ /∈ x′′.
Since ψ /∈ x′′, therefore ϕ /∈ x′′: a contradiction. ◻

4.2 Canonical model

The canonical modelMc is defined as the structureMc = ⟨Wc,≤c,Rc, Vc⟩ where:

● Wc is the set of all maximal consistent tableaux,

● ≤c is defined by (x, y) ≤c (x
′, y′) iff x ⊆ x′ and y ⊇ y′,

● Rc is defined by (x, y)Rc(x
′, y′) iff ◻x ⊆ x′ and x ⊇◇x′,

● Vc ∶ V AR → 2Wc is defined by (x, y) ∈ Vc(p) iff p ∈ x,

Lemma 4.7 Mc is normal.

Lemma 4.8 Mc is Cartesian.

Proof. Suppose Mc is not Cartesian. Let (x, y), (x′, y′) ∈ Wc be such

that ­(x, y)Rc(x
′, y′) and ­(x′, y′) /= (x′, y′), or ­(x, y)Rc(x

′, y′) and not

(̂x, y)Rc(̂x′, y′), or (̂x, y)Rc(x
′, y′) and (̂x′, y′) /= (x′, y′), or (̂x, y)Rc(x

′, y′)

and not ­(x, y)Rc ­(x′, y′). Let x↓, x↑, y↓, y↑, x′
↓
, x′

↑
, y′

↓
and y′

↑
be the-

ories such that ­(x, y) = (x↓, y↓), (̂x, y) = (x↑, y↑), ­(x′, y′) = (x′↓, y′↓) and

(̂x′, y′) = (x′↑, y′↑).

Suppose ­(x, y)Rc(x
′, y′) and ­(x′, y′) /= (x′, y′). Let ϕ be a formula such



that ϕ ∈ x′ and ϕ /∈ x′↓. Since ϕ ∨ ⨽ϕ is derivable, therefore ⨽ϕ ∈ x′
↓
. Hence,

⨽ϕ ∈ x′. Since ϕ ∈ x′, therefore ϕ ∧ ⨽ϕ ∈ x′. Since ­(x, y)Rc(x
′, y′), therefore

◇(ϕ ∧ ⨽ϕ) ∈ x↓. Thus, ⨽⨽ ◇ (ϕ ∧ ⨽ϕ) ∈ x↓. Consequently, ⨽ ◇ (ϕ ∧ ⨽ϕ) /∈ x↓

(otherwise we would obtain ⨽◇(ϕ∧⨽ϕ)∧⨽⨽◇(ϕ∧⨽ϕ) ∈ x↓ which contradicts
the maximal consistency of (x↓, y↓)). Hence, ⨽◇ (ϕ ∧ ⨽ϕ) is not derivable: a
contradiction.

Suppose ­(x, y)Rc(x
′, y′) and not (̂x, y)Rc(̂x′, y′). Let ϕ be a formula such

that ◻ϕ ∈ x↑ and ϕ /∈ x′↑, or ◇ϕ /∈ x↑ and ϕ ∈ x′↑. In the former case, ¬¬◻ϕ ∈ x↓.

Since ¬¬ ◻ ϕ → ◻¬¬ϕ is derivable, therefore ◻¬¬ϕ ∈ x↓. Since ­(x, y)Rc(x
′, y′),

therefore ¬¬ϕ ∈ x′. Hence, ϕ ∈ x′
↑
: a contradiction. In the latter case,

¬¬ϕ ∈ x′. Since ­(x, y)Rc(x
′, y′), therefore ◇¬¬ϕ ∈ x↓. Since ◇¬¬ϕ → ¬¬ ◇ ϕ

is derivable, therefore ¬¬◇ϕ ∈ x↓. Thus, ◇ϕ ∈ x↑: a contradiction.

The cases when (̂x, y)Rc(x
′, y′) and (̂x′, y′) /= (x′, y′), or (̂x, y)Rc(x

′, y′)

and not ­(x, y)Rc ­(x′, y′) are addressed in a similar way. ◻

4.3 Truth Lemma

We now prepare ourselves for the prof of the Truth Lemma.

Lemma 4.9 Let ϕ,ψ be formulas. Let (x, y) be a maximal consistent tableau.
If ϕ → ψ ∈ y then there exists a maximal consistent tableau (x′, y′) such that
x ⊆ x′, ϕ ∈ x′ and ψ ∈ y′.

Proof. Suppose ϕ → ψ ∈ y. Let x′ = x ∪ {ϕ} and y′ = {ψ}. Suppose the
tableau (x′, y′) is not consistent. Let n ≥ 0 and χ1, . . . , χn ∈ x

′ be such that
χ1 ∧ . . . ∧ χn → ψ is BHT -derivable. There are 2 cases: there exists a positive
integer i ≤ n such that χi = ϕ, or such integer does not exist. In the former case,
since χ1∧ . . .∧χn → ψ is BHT -derivable, therefore χ∧ϕ→ ψ is BHT -derivable
where χ is the conjunction of the formulas in χ1, . . . , χn which are not equal
to ϕ. Hence, by MR→, χ → (ϕ → ψ) is BHT -derivable: a contradiction with
the consistency of (x, y). In the latter case, since χ1 ∧ . . . ∧ χn → ψ is BHT -
derivable, therefore χ1 ∧ . . .∧χn → (ϕ→ ψ) is BHT -derivable: a contradiction
with the consistency of (x, y). Consequently, the tableau (x′, y′) is consistent.
By Lindenbaum Lemma, let (x′′, y′′) be a maximal consistent tableau such that
x′ ⊆ x′′ and y′ ⊆ y′′. Obviously, ϕ ∈ x′′ and ψ ∈ y′′. Moreover, x ⊆ x′′. ◻

Lemma 4.10 Let ϕ,ψ be formulas. Let (x, y) be a maximal consistent tableau.
If ϕ ← ψ ∈ x then there exists a maximal consistent tableau (x′, y′) such that
x ⊇ x′, ϕ ∈ x′ and ψ ∈ y′.

Proof. Suppose ϕ ← ψ ∈ x. Let x′ = {ϕ} and y′ = y ∪ {ψ}. Suppose the
tableau (x′, y′) is not consistent. Let n ≥ 0 and χ1, . . . , χn ∈ y

′ be such that
ϕ → χ1 ∨ . . . ∨ χn is BHT -derivable. There are 2 cases: there exists a positive
integer i ≤ n such that χi = ψ, or such integer does not exist. In the former
case, since ϕ → χ1 ∨ . . . ∨ χn is BHT -derivable, therefore ϕ → χ ∨ ψ is BHT -
derivable where χ is the disjunction of the formulas in χ1, . . . , χn which are not
equal to ψ. Hence, by MR←, (ϕ ← ψ) → χ is BHT -derivable: a contradiction



with the consistency of (x, y). In the latter case, since ϕ → χ1 ∨ . . . ∨ χn is
BHT -derivable, therefore (ϕ ← ψ) → χ is BHT -derivable: a contradiction
with the consistency of (x, y). Consequently, the tableau (x′, y′) is consistent.
By Lindenbaum Lemma, let (x′′, y′′) be a maximal consistent tableau such that
x′ ⊆ x′′ and y′ ⊆ y′′. Obviously, ϕ ∈ x′′ and ψ ∈ y′′. Moreover, x ⊇ x′′. ◻

Lemma 4.11 Let ϕ be a formula. Let (x, y) be a maximal consistent tableau.
If ◻ϕ ∈ y then there exists a maximal consistent tableau (x′, y′) such that ◻x ⊆
x′, x ⊇◇x′ and ϕ ∈ y′.

Proof. Suppose ◻ϕ ∈ y. Let x′ = ◻x and y′ = {χ ∶ ◇χ ∈ y}∪ {ϕ}. Suppose the
tableau (x′, y′) is not consistent. Let m,n ≥ 0, ψ1, . . . , ψm ∈ x

′ and χ1, . . . , χn ∈

y′ be such that ψ1∧. . .∧ψm → χ1∨. . .∨χn is BHT -derivable. There are 2 cases:
there exists a positive integer i ≤ n such that χi = ϕ, or such integer does not
exist. In the former case, since ψ1 ∧ . . .∧ψm → χ1 ∨ . . .∨χn is BHT -derivable,
therefore ψ → χ∨ϕ is BHT -derivable where ψ is the conjunction of the formulas
in ψ1, . . . , ψm and χ is the disjunction of the formulas in χ1, . . . , χn which are not
equal to ϕ. Hence, by MR◻, ◻ψ →◇χ∨◻ϕ is BHT -derivable: a contradiction
with the consistency of (x, y). In the latter case, since ψ1∧. . .∧ψm → χ1∨. . .∨χn
is BHT -derivable, therefore ψ → χ∨ϕ is BHT -derivable. Hence, ◻ψ →◇χ∨◻ϕ
is BHT -derivable: a contradiction with the consistency of (x, y). Consequently,
the tableau (x′, y′) is consistent. By Lindenbaum Lemma, let (x′′, y′′) be a
maximal consistent tableau such that x′ ⊆ x′′ and y′ ⊆ y′′. Obviously, ◻x ⊆ x′′

and x ⊇◇x′′. Moreover, ϕ ∈ y′′. ◻

Lemma 4.12 Let ϕ be a formula. Let (x, y) be a maximal consistent tableau.
If ◇ϕ ∈ x then there exists a maximal consistent tableau (x′, y′) such that
◻x ⊆ x′, x ⊇◇x′ and ϕ ∈ x′.

Proof. Suppose ◇ϕ ∈ x. Let x′ = ◻x∪{ϕ} and y′ = {χ ∶ ◇χ ∈ y}. Suppose the
tableau (x′, y′) is not consistent. Let m,n ≥ 0, ψ1, . . . , ψm ∈ x

′ and χ1, . . . , χn ∈

y′ be such that ψ1 ∧ . . . ∧ ψm → χ1 ∨ . . . ∨ χn is BHT -derivable. There are 2
cases: there exists a positive integer i ≤ m such that ψi = ϕ, or such integer
does not exist. In the former case, since ψ1 ∧ . . . ∧ψm → χ1 ∨ . . . ∨χn is BHT -
derivable, therefore ψ ∧ϕ→ χ is BHT -derivable where ψ is the conjunction of
the formulas in ψ1, . . . , ψm which are not equal to ϕ and χ is the disjunction
of the formulas in χ1, . . . , χn. Hence, by MR◇, ◻ψ ∧ ◇ϕ → ◇χ is BHT -
derivable: a contradiction with the consistency of (x, y). In the latter case,
since ψ1 ∧ . . . ∧ ψm → χ1 ∨ . . . ∨ χn is BHT -derivable, therefore ψ ∧ ϕ → χ is
BHT -derivable. Hence, ◻ψ∧◇ϕ→◇χ is BHT -derivable: a contradiction with
the consistency of (x, y). Consequently, the tableau (x′, y′) is consistent. By
Lindenbaum Lemma, let (x′′, y′′) be a maximal consistent tableau such that
x′ ⊆ x′′ and y′ ⊆ y′′. Obviously, ◻x ⊆ x′′ and x ⊇◇x′′. Moreover, ϕ ∈ x′′. ◻

Lemma 4.13 (Truth Lemma) For all formulas ϕ and for all (x, y) ∈ Wc,
ϕ ∈ x iff Mc, (x, y) ⊧ ϕ and ϕ ∈ y iff Mc, (x, y) /⊧ ϕ.

Proposition 4.14 (Completeness) Let ϕ be a formula. If ϕ is valid in the
class of all BHT -frames then ϕ is BHT -derivable.



Proof. Suppose ϕ is not BHT -derivable. Hence, the tableau (∅,{ϕ}) is con-
sistent. By Lindenbaum Lemma, let (x, y) be a maximal consistent tableau
such that ϕ ∈ y. By the Truth Lemma, Mc, (x, y) /⊧ ϕ. By Proposition 2.10, ϕ
is not valid in the class of all BHT -frames. ◻

5 Decidability/complexity

There is a classical method for building finite models, namely filtration, and this
method could easily be adapted to the BHT setting. Nevertheless, it will fail
to give us a tight upper bound for the complexity of the satisfiability problem in
BHT . The truth is that, as shown in this section, see below Proposition 5.7, the
satisfiability problem is in PSPACE. Our argument is based on a translation
into modal logic. In order to define a translation from the BHT to modal logic
K, we need for all formulas ϕ, two new variables: aϕ and bϕ. Let h() and t()
be translations that are structure-preserving for ", ⊺, ∨, ∧, ◻ and ◇ such that

● h(p) = ap,

● h(ϕ → ψ) = (h(ϕ)→ h(ψ)) ∧
(bϕ → bψ),

● h(ϕ← ψ) = h(ϕ) ∧ ¬h(ψ),

● t(p) = bp,

● t(ϕ→ ψ) = t(ϕ)→ t(ψ),

● t(ϕ ← ψ) = (t(ϕ) ∧ ¬t(ψ)) ∨
(aϕ ∧ ¬aψ).

Lemma 5.1 For all formulas ϕ, ∣h(ϕ)∣ ≤ 11∣ϕ∣ and ∣t(ϕ)∣ ≤ 11∣ϕ∣.

For all formulas ϕ, let µ(ϕ) be the conjunction of the following formulas:

● ap → bp for each ϕ’s variable p,

● aψ ↔ h(ψ) for each ϕ’s subformula ψ,

● bψ ↔ t(ψ) for each ϕ’s subformula ψ.

Lemma 5.2 For all formulas ϕ, ∣µ(ϕ)∣ = O(∣ϕ∣2).

For all formulas ϕ, let ν(ϕ) = µ(ϕ) ∧ ◻µ(ϕ) ∧ . . . ∧ ◻deg(ϕ)µ(ϕ).

Lemma 5.3 For all formulas ϕ, ∣ν(ϕ)∣ = O(∣ϕ∣3).

Given a BHT -model M = ⟨W,R,H,T ⟩, we define its associated model M =

⟨W,R,V ⟩ as follows:

1) V (aψ) = {x ∈W ∶ M, (x,h) ⊧ ψ} for each ϕ’s subformula ψ,

2) V (bψ) = {x ∈W ∶ M, (x, t) ⊧ ψ} for each ϕ’s subformula ψ.

This associated modelM is considered as a model of modal logicK. Obviously,
for all ϕ’s variables p, V (ap) ⊆ V (bp). Moreover,

Lemma 5.4 For all ϕ’s subformulas ψ and for all x ∈W ,

1) M, (x,h) ⊧ ψ iffM, x ⊧ h(ψ) iff x ∈ V (aψ),
2) M, (x, t) ⊧ ψ iffM, x ⊧ t(ψ) iff x ∈ V (bψ).

Thus, for all x ∈ W , M, x ⊧ µ(ϕ). Consider now a generated model M =

⟨W,R,V ⟩ of modal logic K of depth at most deg(ϕ) such that for all x ∈ W ,



M, x ⊧ µ(ϕ). We define the corresponding BHT -model M = ⟨W,R,H,T ⟩ as
follows:

1) H(p) = V (ap), 2) T (p) = V (bp).

Obviously, M is a BHT -model. Moreover,

Lemma 5.5 For all ϕ’s subformulas ψ and for all x ∈W ,

1) M, x ⊧ h(ψ) iff M, (x,h) ⊧ ψ, 2) M, x ⊧ t(ψ) iff M, (x, t) ⊧ ψ.

Proposition 5.6 For all formulas ϕ,

● ⨽⨽ϕ is satisfiable in a BHT -model iff h(ϕ)∧ν(ϕ) is satisfiable in a model
of modal logic K,

● ¬¬ϕ is satisfiable in a BHT -model iff t(ϕ)∧ν(ϕ) is satisfiable in a model
of modal logic K.

Proposition 5.7 The satisfiability problem in BHT is in PSPACE.

6 Bisimulations

Bisimulations are binary relations that relate elements of models carrying the
same modal information. We now adapt the definition of bisimulations to the
BHT setting.

6.1 Bisimulations for BHT

Let M1 = ⟨W1,R1,H1, T1⟩ and M2 = ⟨W2,R2,H2, T2⟩ be BHT -models. Let
D1 = W1 × {h, t} and D2 = W2 × {h, t}. A binary relation Z between D1 and
D2 is a bisimulation iff the following conditions are satisfied:

1) if (x1, α1)Z(x2, α2) then M1, (x1, α1) ⊧ p iff M2, (x2, α2) ⊧ p for all p ∈
V AR,

2) if (x1, α1)Z(x2, α2) then (x1, t)Z(x2, t),

3) if (x1, α1)Z(x2, α2) then (x1, h)Z(x2, h),

4) if (x1, α1)Z(x2, α2) and x1R1y1 then there exists y2 ∈W2 such that x2R2y2
and (y1, α1)Z(y2, α2), or (y1, t)Z(y2, α2),

5) if (x1, α1)Z(x2, α2) and x2R2y2 then there exists y1 ∈W1 such that x1R1y1
and (y1, α1)Z(y2, α2), or (y1, α1)Z(y2, t),

6) if (x1, α1)Z(x2, α2) and x2R2y2 then there exists y1 ∈W1 such that x1R1y1
and (y1, α1)Z(y2, α2), or (y1, t)Z(y2, α2),

7) if (x1, α1)Z(x2, α2) and x1R1y1 then there exists y2 ∈W2 such that x2R2y2
and (y1, α1)Z(y2, α2), or (y1, α1)Z(y2, t).

Lemma 6.1 (Bisimulation Lemma) Let ϕ be a formula. For all (x1, α1) ∈
D1 and for all (x2, α2) ∈ D2, if (x1, α1)Z(x2, α2) then M1, (x1, α1) ⊧ ϕ iff
M2, (x2, α2) ⊧ ϕ.

Obviously, the union of two bisimulations is also a bisimulation.



6.2 Hennessy-Milner property

In this section we show that BHT possesses the Hennessy-Milner property. Our
proof follows the line of reasoning suggested in [24]. Let M1 = ⟨W1,R1,H1, T1⟩
and M2 = ⟨W2,R2,H2, T2⟩ be finite BHT models. Let D1 = W1 × {h, t} and
D2 =W2×{h, t}. We define the binary relation↭ betweenD1 andD2 as follows:
(x1, α1)↭ (x2, α2) iff for all formulas ϕ, M1, (x1, α1) ⊧ ϕ iff M2, (x2, α2) ⊧ ϕ.

Lemma 6.2 (Hennesy-Milner property) The binary relation ↭ is a
bisimulation between M1 and M2.

Proof. Suppose ↭ is not a bisimulation. Hence, one of the conditions 1)-7)
does not hold for some (x1, α1) ∈D1 and some (x2, α2) ∈D2.
Suppose Condition 1) is not satisfied. Hence, there exists a variable p such
that, without loss of generality, M1, (x1, α1) ⊧ p and M2, (x2, α2) /⊧ p. Thus,
(x1, α1)❩❩↭ (x2, α2): a contradiction.
Suppose Condition 2) is not satisfied. Hence, (x1, α1)↭ (x2, α2) but (x1, t)❩❩↭
(x2, t). Let ϕ be a formula such that M1, (x1, t) ⊧ ϕ and M2, (x2, t) /⊧ ϕ,
or M1, (x1, t) /⊧ ϕ and M2, (x2, t) ⊧ ϕ. Thus, M1, (x1, α1) ⊧ ¬¬ϕ and
M2, (x2, α2) /⊧ ¬¬ϕ, or M1, (x1, α1) /⊧ ¬¬ϕ and M2, (x2, α2) ⊧ ¬¬ϕ. Con-
sequently, (x1, α1) /↭ (x2, α2): a contradiction.
Suppose Condition 3) is not satisfied. Hence, (x1, α1)↭ (x2, α2) but (x1, h)❩❩↭
(x2, h). Let ϕ be a formula such that M1, (x1, h) ⊧ ϕ and M2, (x2, h) /⊧ ϕ,
or M1, (x1, h) /⊧ ϕ and M2, (x2, h) ⊧ ϕ. Thus, M1, (x1, α1) ⊧ ⨽⨽ϕ and
M2, (x2, α2) /⊧ ⨽⨽ϕ, or M1, (x1, α1) /⊧ ⨽⨽ϕ and M2, (x2, α2) ⊧ ⨽⨽ϕ. Con-
sequently, (x1, α1) /↭ (x2, α2): a contradiction.
Suppose Condition 4) is not satisfied: Then (x1, α1)↭ (x2, α2) and there exists
x1 ∈W1 such that x1R1y1 and for all y2 ∈W2, if x2R2y2 then (y1, α1)❩❩↭(y2, α2)

and (y1, t)❩❩↭(y2, α2). Let R2(x2)
def
= {(y2, α2) ∈ D2 ∣ x2R2y2} and R1(x1)

def
=

{(y1, α1) ∣ x1R1y1}. Let I ⊆ R2(x2), J ⊆ R2(x2), (y2, α2) ∈ R2(x2) and for all
(y2, α2) ∈ R2(x2), let ϕ(y2, α2) and ψ(y2, α2) be formulas such that

1) M1, (y1, α1) ⊧ ϕ(y2, α2) and M2, (y2, α2) /⊧ ϕ(y2, α2) if (y2, α2) ∈ I;

2) M1, (y1, α1) /⊧ ϕ(y2, α2) and M2, (y2, α2) ⊧ ϕ(y2, α2) if (y2, α2) ∈ I;

3) M1, (y1, t) ⊧ ψ(y2, α2) and M2, (y2, α2) /⊧ ψ(y2, α2) if (y2, α2) ∈ J ;

4) M1, (y1, t) /⊧ ψ(y2, α2) and M2, (y2, α2) ⊧ ψ(y2, α2) if (y2, α2) ∈ J .

Let us define χ(y2, α2) as the following formula:

χ(y2, α2) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ϕ(y2, α2) if y2 ∈ I;

ϕ(y2, α2)→ ψ(y2, α2) if y2 ∈ I ∩ J ;

¬ψ(y2, α2) if y2 ∈ I ∩ J.

It follows that M1, (y1, α1) ⊧ χ(y2, α2) and M2, (y2, α2) /⊧ χ(y2, α2), for all
(y2, α2) ∈ R2(x2). Therefore M1, (x1, α1) ⊧ ◇ ⋀

(y2,α2)∈R2(x2)
χ(y2, α2) while

M2, (x2, α2) /⊧◇ ⋀
(y2,α2)∈R2(x2)

χ(y2, α2): a contradiction.

Suppose Condition 5) is not satisfied. Then (x1, α1) ↭ (x2, α2), x2R2y2 and



for all y1 ∈ W1, if x1R1y1 then (y1, α1)❩❩↭(y2, α2) and (y1, α1)❩❩↭(y2, t). Let

R2(x2)
def
= {(y2, α2) ∈ D2 ∣ x2R2y2} and R1(x1)

def
= {(y1, α1) ∣ x1R1y1}. Let

I ⊆ R1(x1), J ⊆ R1(x1) and for all (y1, α1) ∈ R1(x1), let ψ(y1, α1) and ϕ(y1, α1)
be formulas such that:

1) M1, (y1, α1) ⊧ ϕ(y1, α1) and M2, (y2, α2) /⊧ ϕ(y1, α1) if (y1, α1) ∈ I;

2) M1, (y1, α1) /⊧ ϕ(y1, α1) and M2, (y2, α2) ⊧ ϕ(y1, α1) if (y1, α1) ∈ I;

3) M1, (y1, α1) ⊧ ψ(y1, α1) and M2, (y2, t) /⊧ ψ(y1, α1) if (y1, α1) ∈ J ;

4) M1, (y1, α1) /⊧ ψ(y1, α1) and M2, (y2, t) ⊧ ψ(y1, α1) if (y1, α1) ∈ J .

Let us consider the formula χ(y1, α1) defined as

χ(y1, α1) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ϕ(y1, α1) if (y1, α1) ∈ I;
ϕ(y1, α1)→ ψ(y1, α1) if (y1, α1) ∈ I ∩ J ;

¬ψ(y1, α1) if (y1, α1) ∈ I ∩ J.

It follows that M1, (y1, α1) /⊧ χ(y1, α1) and M2, (y2, α2) ⊧ χ(y1, α1), for all
(y1, α1) ∈ R1(x1). Therefore M2, (x2, α2) ⊧ ◇ ⋀

(y1,α1)∈R1(x1)
χ(y1, α1) while

M1, (x1, α1) /⊧◇ ⋀
(y1,α1)∈R1(x1)

χ(y1, α1): a contradiction. The proof for Condi-

tion 6) is similar to the proof for Condition 5) but using

χ(y1, α1)
def
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ϕ(y1, α1) if (y1, α1) ∈ I;
ϕ(y1, α1)→ ψ(y1, α1) if (y1, α1) ∈ I ∩ J ;

¬ψ(y1, α1) if (y1, α1) ∈ I ∩ J.

The proof for Condition 7) is similar to the proof for Condition 4) but using

χ(y2, α2) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ϕ(y2, α2) if (y2, α2) ∈ I;
ϕ(y2, α2)→ ψ(y2, α2) if (y2, α2) ∈ I ∩ J ;

¬ψ(y2, α2) if (y2, α2) ∈ I ∩ J.
(2)

◻

Remark how the formulas defining χ(y1, α1) and χ(y2, α2) above are related
to the Hosoi Axiom.

7 Strong equivalence property

Pearce’s Equilibrium logic [29] is the best-known logical characterization of the
stable models semantics [15] and of Answer Sets [6]. It is defined in terms of
the monotonic logic of Here and There [30] (HT) plus a minimisation criterion
among the given models. This simple definition led to several modal extensions
of Answer Set Programming [9,11]. All these extensions have their roots in
the corresponding modal extensions of HT-logic defined as the combination
of propositional HT and any modal logic [14]) that play an important role in
the proof of several interesting properties of the resulting formalisms such as



strong equivalence [8,11,23]. In this section, we define the concept of modal
equilibrium model and prove the associated theorem of strong equivalence. A
BHT -model M = ⟨W,R,H,T ⟩, is said to be total iff H = T . Given a BHT -
model M = ⟨W,R,H,T ⟩, x ∈ W and k ∈ N, we say that H is strictly included
in T with respect to x and k (in symbols H <kx T ) iff there exists y ∈ W such
that xR≤ky and H(y) /= T (y). A total BHT -modelM = ⟨W,R,T, T ⟩ is a Modal
Equilibrium Model of a formula ϕ iff there exists x ∈W such that

1) M, (x,h) ⊧ ϕ;

2) For all M′
= ⟨W,R,H,T ⟩, if H <deg(ϕ)x T then M′, (x,h) /⊧ ϕ.

The notion of modal equilibrium model of a theory is defined in a similar
way. When dealing with non-monotonicity the relation of equivalence between
theories depends on the context where they are considered. We say that two
theories Γ1 and Γ2 are strongly equivalent (in symbols Γ1 ≡s Γ2) iff for all
theories Γ, the equilibrium models of Γ1 ∪ Γ and Γ2 ∪ Γ coincide [23].

Proposition 7.1 For all theories Γ1 and Γ2, Γ1 ≡s Γ2 iff Γ1 and Γ2 are BHT -
equivalent.

Proof. Suppose Γ1 and Γ2 are BHT -equivalent. Let Γ be an arbitrary theory.
Thus Γ1 ∪Γ and Γ2 ∪Γ are BHT -equivalent. Therefore Γ1 ∪Γ and Γ2 ∪Γ have
the same equilibrium models. Reciprocally, suppose that Γ1 and Γ2 are not
BHT -equivalent.

● First case: Γ1 and Γ2 are not K-equivalent. Without loss of generality,
there exists a total BHT -model M = ⟨W,R,T, T ⟩ and x ∈ W such that

M, (x,h) ⊧ Γ1 but M, (x,h) /⊧ Γ2. Let Γ0

def
= {◻k (p ∨ ¬p) ∣ k ≥ 0 and p ∈

V AR}. It can be checked that M is an equilibrium model of Γ1 ∪ Γ0 but
not of Γ2 ∪ Γ0.

● Second case: Γ1 and Γ2 are K-equivalent. Without loss of generality,
there exists a BHT -model M = ⟨W,R,H,T ⟩ (M̂ = ⟨W,R,T, T ⟩ denote its
corresponding total model) such that
(1) for all y ∈W , M, (y, t) ⊧ Γ1 iff M, (y, t) ⊧ Γ2;
(2) there exists x ∈W such that M, (x,h) ⊧ Γ1 and M, (x,h) /⊧ Γ2.

Therefore there exists ϕ ∈ Γ2 such that M, (x,h) /⊧ ϕ. Let Γ
def
= {ϕ →

◻k (p ∨ ¬p) ∣ k ≥ 0 and p ∈ V AR}. It follows that M, (x,h) ⊧ Γ1 ∪ Γ, since
M, (x,h) /⊧ ϕ and M, (x, t) ⊧ ◻k (p ∨ ¬p), for all k ≥ 0 and for all p ∈ V AR.
Therefore M̂ is not an equilibrium model of Γ1 ∪ Γ. Since Γ1 ≡s Γ2, M̂
is not an equilibrium model of Γ2 ∪ Γ. Since M̂, (x,h) ⊧ Γ2 ∪ Γ, therefore

there exists a BHT -model M′
= ⟨W,R,H ′, T ⟩ such that H ′ <

deg(Γ2∪Γ)
x T

and M′, (x,h) ⊧ Γ2 ∪Γ. However, from M′, (x,h) ⊧ Γ2 and M′, (x,h) ⊧ Γ
we conclude that M′, (x,h) ⊧ Γ0, thus H

′
= T and this is a contradiction.

◻

The theorem played a important role in the area of Answer Set Programming [6]
since it allows, under ASP semantics, to exchange two logic programs (or the-
ories) regardless the context in which they are considered. This theorem also



justifies the use of BHT as a monotonic basis supporting non-monotonicity.

8 Conclusions

In this paper we have studied a combination of the modal logic of Here and
There equipped with the dual implication [33]. For this new logic we have
presented two alternative (and equivalent) semantics as well as several results
concerning axiomatisation, bisimulation, Hennessy-Milner property, decidabil-
ity and complexity. Finally we have considered the property of strong equiva-
lence from Answer Set Programming [6,30] in our setting.

The reader might have noticed that the dual implication is not used in the
proof of the strong equivalence theorem. This fact gives us the idea that this
new operator would allow us to characterise, in terms of strong equivalence,
new kinds of minimal models like the ones introduced in [1].

Another area of potential application of this logic could be Inductive Logic
Programming [36,31] (ILP). Among other techniques used to infer rules from
facts, called Inverse Entailment [26] (IE) reverse the ordinary semantical conse-
quence (⊧). This technique was revisited under the perspective of ASP in [34].
Thanks to the dual implication we can define an inverse entailment relation (')
in a very natural way allowing us to use this logic for ILP in modal contexts.

References

[1] Amendola, G., T. Eiter, M. Fink, N. Leone and J. Moura, Semi-equilibrium models for
paracoherent answer set programs, Artificial Intelligence 234 (2016), pp. 219–271.

[2] Balbiani, P., J. Boudou, M. Diéguez and D. Fernández-Duque, Bisimulations for
intuitionistic temporal logics, in: Intuitionistic Modal Logic and Applications (IMLA),
2017, forthcoming.

[3] Balbiani, P. and M. Diéguez, Temporal Here and There, in: JELIA’16, 2016, pp. 81–96.
[4] Boudou, J., M. Diéguez and D. Fernández-Duque, A decidable intuitionistic temporal

logic, in: 26th EACSL Annual Conference on Computer Science Logic (CSL), 2017, pp.
14:1–14:17.

[5] Boi, M. and K. Doen, Models for normal intuitionistic modal logics, Studia Logica 43

(1984), p. 217245.
[6] Brewka, G., T. Eiter and M. Truszczyński, Answer set programming at a glance,
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Appendix

Proof of Lemma 2.1. By induction on ϕ.
Proof of Lemma 2.5. By induction on ϕ.
Proof of Proposition 2.10. By Lemmas 2.8 and 2.9.
Proof of Lemma 4.2. This is a standard result [10].
Proof of Lemma 4.3. This is a standard result [10].
Proof of Lemma 4.7. By Lemmas 4.5 and 4.6.
Proof of Lemma 4.13. By induction on ϕ. While considering the cases for
formulas ψ → χ, ψ ← χ, ◻ψ and ◇χ, one has to respectively use Lemmas 4.9,
4.10, 4.11 and 4.12.
Proof of Lemma 5.1. By induction on ϕ.
Proof of Lemma 5.2. By Lemma 5.1.
Proof of Lemma 5.3. By Lemma 5.2.
Proof of Lemma 5.4. By induction on ψ.
Proof of Lemma 5.5. By induction on ψ.
Proof of Proposition 5.6. By Lemmas 5.4 and 5.5.
Proof of Proposition 5.7. By Lemmas 5.1 and 5.3, Proposition 5.6 and the
fact that the satisfiability problem in modal logic K is in PSPACE.
Proof of Lemma 6.1. By induction on ϕ.


