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Abstract—A community of developers has formed to modernize the Fortran ecosystem. In this article, we
describe the high-level features of Fortran that continue to make it a good choice for scientists and
engineers in the 21st century. Ongoing efforts include the development of a Fortran standard library and
package manager, the fostering of a friendly and welcoming online community, improved compiler support,
and language feature development. The lessons learned are common across contemporary programming
languages and help reduce the learning curve and increase adoption of Fortran.
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FORTRAN is a high-level programming lan-
guage primarily used to solve scientific and engi-
neering problems. It has been under active devel-
opment since its inception under John Backus at
IBM in 1954 to the present day. The initial goal
was to ease the translation of mathematical for-
mulas to optimized machine code instructions, a
concept now known as compilation. The intuitive
abstraction of mathematical procedures enabled
rapid development of numerical solutions to sci-
entific problems, at a time when most programs
were still hand-coded in assembly language. Fol-
lowing the release of its first implementation in
1957, the language was adopted by the scientific
and engineering communities for writing numer-
ical programs. As a result, the language was
quickly ported to several computer architectures
such that Fortran is accepted as being the first
cross-platform programming language.

The ISO Fortran Standard and its mainte-
nance of backwards compatibility provide guar-
antees for language stability and code longevity.
Consequently, there is a mature and well-
established ecosystem of Fortran compilers and
libraries—what is lesser known is how much the
language has evolved since its beginnings. In this
article, we first review the high-level features that
continue to make Fortran a powerful and effective
tool for high-performance, scientific computing.
Second, we present recent progress and efforts
towards uniting the Fortran community and im-
proving the tooling and resources available to
Fortran programmers. Finally, we provide an out-
look on the future of Fortran and its burgeoning
ecosystem.

WHY FORTRAN?
Fortran is perceived in some software devel-

opment circles as archaic, lacking the features
and conveniences of newer languages, and char-
acterized by an obtuse syntax. However, such
considerations typically stem from a lack of fa-
miliarity with Fortran standards later than Fortran
77 [1]. Similarly, later updates to the Fortran
language competed with newer alternatives such
as C, MATLAB and Python that built on the high-
level concepts first introduced in Fortran.

The Fortran language has seen many revisions
[2]–[5], with the latest international standard be-
ing Fortran 2018. Though a large body of Fortran

code written in the 1970s to 1980s remains in
use to this day, the language and its paradigms
have evolved significantly. In the remainder of
this section we present the key features that make
Fortran an effective tool for high-performance
numerical computing.

High-Level Language Features
Key to the early popularity and continued use

of Fortran are the high-level abstractions provided
by the language (Figure 1). Intrinsic support for
multidimensional arrays in combination with safe
dynamic allocation and expressive array slicing,
makes for a readable and easy-to-learn language
suitable for high-performance numerical applica-
tions. Strong, static typing helps avoid common
programming pitfalls via meaningful compile-
time errors without sacrificing runtime perfor-
mance. Similarly, modules and submodules allow
for code organisation and reuse with automatic
checking of routine signatures and types. Fortran
allocatable arrays enable dynamic allocation
without memory leaks and are guaranteed to
be non-aliasing. As a result, efficient machine
code can be generated by the compiler handling
allocatable arrays, without requiring addi-
tional annotations such as the C restrict key-
word. Moreover, the array-oriented design of the
language means that operator overloading with
object arrays can be optimized by the compiler
without requiring complex expression templates
as in C++. Additional language keywords that
aid compiler optimization and ensure compile-
time correctness include: the intent attribute
for indicating whether procedure arguments are
inputs, outputs, or bidirectional; the pure at-
tribute indicates procedures that have no external
side effects; and the elemental attribute maps
a procedure to each element of an N-dimensional
array or scalar, useful for rank polymorphism and
akin to the map operation in functional program-
ming languages.

Fortran natively supports arrays up to rank 15,
complex numbers, object-oriented programming,
and syntax for expressing shared-memory and
distributed-memory parallelism. The Fortran na-
tive parallelism offers compiler-enforceable safe-
guards against many pitfalls of parallel program-
ming. Shared-memory parallelism for ‘do‘ loops,
which has been supported through the OpenMP

2 © 2022 IEEE Published by the IEEE Computer Society Computing in Science and Engineering



▶ High Performance

▶ Static & strongly typed

▶ Standardized & portable

▶ Safe memory allocation

▶ Native C interoperability

▶ IEEE arithmetic

▶ Modules & submodules 
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▶ Do concurrent  construct

▶ OpenMP & OpenACC
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▶ MPI standard
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   Array
oriented

▶ First-class n-D arrays
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Parallel  

       
  Object
oriented 

▶ Abstract types

▶ Polymorphism

▶ Type inheritance

▶ Dynamic type allocation

▶ Operator overloading

▶ Object array operations

Figure 1. High-level language features of Fortran

Listing 1. Do concurrent example
do concurrent (i = 1:n, j = 1:m)

u(i,j) = a * v(j,i)
end do

standard for many years, can now be expressed
with the new do concurrent syntax to inform
the compiler that loop iterations may be executed
in any order using threading, SIMD (single in-
struction, multiple data), or any other parallel
implementation available to the compiler. For
example, the freely available NVIDIA nvfortran
compiler can automatically offload standard do
concurrent loops for execution to NVIDIA
GPUs. Listing 1 shows a two-dimensional loop
using do concurrent.

Distributed-memory parallelism has typically
been implemented in Fortran using the MPI
standard. Fortran 2008 introduced intrinsic ab-
stractions for distributed-memory parallelism in

the form of coarrays. Parallel Fortran programs
follow the SPMD (single program, multiple data)
paradigm, where multiple copies of the same
executable are started as different processes, with
each process working on a different piece of
the problem. These processes (images, in Fortran
terminology) have independent address spaces
but can exchange data using coarrays or collec-
tive subroutines, introduced in Fortran 2018. If
a variable is declared as a coarray, an image
can read and write the value of that variable
on other images with a simple syntax that is
similar to array indexing (an image number is
used instead of an array index). Synchronizing
images is as simple as issuing a sync all
statement. More fine-grained control is possible
with subsets of workers known as teams, and
event-based scheduling with the events. Coarrays,
collectives, teams, and events abstract away much
of the verbosity required by MPI thereby helping
programmers to focus on their application rather
than the low-level details of interprocess data
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exchange. Several coarray implementations are
based on MPI, allowing Fortran programmers
to leverage the excellent hardware interconnects
supported by MPI libraries. Reid et al. summarize
the evolution of Fortran’s parallel features [6].

The iso_c_binding module is an essen-
tial feature introduced in Fortran 2003 and has
been further extended in subsequent versions. It
provides standardized interoperability with the
C programming language to access procedures,
structures, and global variables to and from For-
tran. Nearly any programming language that has
a C interface such as Python or C++ can inter-
act with compiled Fortran code in a platform-
agnostic manner. Foreign functions are bound
through interface declarations that often can be
generated automatically and are called like any
other native Fortran procedure. The resulting
application is linked against the corresponding
C library or object file. Consequently, the pro-
grammer can reuse source code in a mixed-
language environment or can outsource tasks
like connecting to hardware via OEM drivers
written in C. A broad range of interface li-
braries is already available, including common
use-cases: system libraries (libc, POSIX); toolkits
(GTK, Motif); abstraction layers (OpenGL, SDL
2.0, Curses); scripting languages (Lua, Python,
MATLAB); and networks (cURL, FastCGI). The
iso_c_binding does not cover all C99 fea-
tures—for instance, variadic functions which have
no equivalent in Fortran—however the binding
continues to be under development for future
Fortran revisions.

Additionally, Fortran procedures can be ex-
posed to C or any other programming language
with foreign function interface, such as Python,
Lua, or Rust. Interoperable functions and subrou-
tines are indicated by the bind(c) attribute and
the standardized ISO_Fortran_binding.h
header allows calling Fortran procedures from C
or other languages using a C structure to interface
with Fortran array descriptors.

Stability and Reliability
As an actively used language with a long

history, Fortran and its associated compilers have
long maintained excellent backward compatibility
and language stability. This is important for many
well-established and large Fortran projects that

are critical for numerically intensive tasks. For
such large projects, a fast-developing language
with breaking API changes would incur signif-
icant costs to the maintainers in person-hours
of redevelopment and revalidation time. By con-
trast, Fortran offers inherent guarantees of code
longevity and indeed many projects in use today
are largely unchanged from their original release
despite being written under Fortran standards
dating from decades ago.

Importantly, anyone writing Fortran software
today can have confidence not only in the
longevity of their code but also in that of any
Fortran libraries and applications they use. This
inherent future-proofing of Fortran code therefore
protects against so-called code rot or software
collapse [7] whereby code becomes unusable due
to breaking changes in its dependencies or its
implementation language.

Mature
A key accomplishment of Fortran 90 and 95

was to incorporate dynamic arrays and de facto
procedures and syntax widely adopted by compil-
ers of the time. Along with the C interoperability
mentioned previously, Fortran 2003 brought im-
proved operations for interacting with the envi-
ronment, such as reading environment variables,
reading command-line arguments, and running
external programs. Remaining gaps in systems
programming such as filesystem operations are
being addressed in the growing Fortran standard
library described in the following section. While
some projects have recently moved from Fortran
to C++ or other languages, the underpinnings
of numerical computing remain implemented in
Fortran. Often a user may not be aware they
are using Fortran via another language such as
the Python NumPy or SciPy libraries which are
widely used among the scientific community.

There are several mature Fortran compil-
ers, many of which support the latest Fortran
standards. The OpenMP and OpenACC stan-
dards provide directives for parallel execution
in a platform-agnostic manner. NVIDIA pro-
motes CUDA Fortran and OpenACC in the
nvfortran compiler for offloading of paral-
lel constructs to the GPU. The MPI-3 standard
continues to support modern Fortran syntax with
polymorphic interfaces scalable from multi-core

4 Computing in Science and Engineering



embedded systems to the largest supercomputers.
New books continue to be written on modern

Fortran, major funding agencies across the globe
continue to fund upgrades and new projects in
Fortran, and graduate students in many STEM
disciplines continue to learn Fortran. The Fortran
community, as discussed in the next section,
has renewed vigor and is rapidly growing the
Fortran ecosystem using best practices of modern
software development.

It is for these reasons—performance, ease-
of-use, productivity, portability, stability and
longevity—that we advocate for Fortran. In the
remainder of the paper, we describe the shortcom-
ings of Fortran and its ecosystem, and present the
ongoing community efforts to address them.

FORTRAN-LANG

A New Community for Fortran Users
Despite recent revisions to the language and

continuing to be a large share of the soft-
ware executed on major High Performance Com-
puting (HPC) systems, Fortran’s ecosystem has
stagnated across multiple fronts. First, the lack
of a standard library, a common resource in
modern programming languages, makes mun-
dane general-purpose programming tasks diffi-
cult. Second, building and distributing Fortran
software has been relatively difficult, especially
for newcomers to the language. Third, Fortran
does not have a community maintained compiler
like Python, Rust or Julia has, that can be used
for prototyping new features and is used by the
community as a basis for writing tools related
to the language. Finally, Fortran has not had a
prominent dedicated website—an essential ele-
ment for new users to discover Fortran, learn
about it, and get help from other Fortran pro-
grammers. In the same way, Fortran is no longer
widely taught to university students or valued
as a useful skill by industry. As a consequence,
adoption of new users has been stagnating, large
scientific Fortran projects have been migrating to
other languages, and the communities of Fortran
programmers remained scattered and isolated.

To address these issues, a new open source
Fortran community called Fortran-lang was
formed in December 2019 [8]. Its initial con-
ception came about in the J3 Fortran Proposals

repository on GitHub, described in a later section,
where it became clear that there was a need for
modern tooling and an improved web presence
for the Fortran community. We describe these
projects in more detail in the rest of this section.

Online channels
Modern computer languages generally

have a website, offering resources to new and
existing users all in one place. Several online
resources have existed for some time—notably,
the comp.lang.fortran Usenet group, the
Fortran Wiki1, and the https://fortran90.org
site—however, there has never been a central
web presence run by the community until now.
The new https://fortran-lang.org website provides
learning resources, a list of open source and
commercial compilers, guides to contribute to
the community projects, a Fortran package index,
and a monthly newsletter.

Besides the main website, Fortran-lang man-
ages a traditional mailing list for news and an-
nouncements, a @fortranlang Twitter account,
and the Fortran Discourse2 which provides a
friendly and welcoming online discussion board
for all Fortran programmers—existing and aspir-
ing alike. The new Discourse forum has proved a
popular success, totaling more than 300 users in
one year, with threads covering a wide variety of
interesting Fortran-related topics.

At the core of the new Fortran-lang commu-
nity have been its flagship projects—the Fortran
Standard Library and the Fortran Package Man-
ager—which were identified early on as critical
for improving the Fortran ecosystem and tooling.
The development of these projects has been per-
formed openly and collaboratively thanks to the
distributed version control software Git and the
popular hosting platform GitHub. GitHub allows
everyone to clone an open source project, test it,
modify the code and offer it to the community
via a “Pull Request” to be reviewed. Everyone
can therefore easily contribute to the projects
of the Fortran-lang GitHub organization3 and, at
the time of writing, there are 164 contributors
to the main Fortran-lang projects through code
contributions and discussions. This includes six

1http://fortranwiki.org
2http://fortran-lang.discourse.group
3https://github.com/fortran-lang
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student interns, funded by the Google Summer of
Code initiative, to work on Fortran-lang projects
in 2021. In the following sections, we present
the new standard library and package manager
projects.

THE FORTRAN STANDARD LIBRARY

Motivation
Although the Fortran Standard specifies a

number of built-in procedures and modules (col-
lectively called intrinsics), it does not define a
standard library that is common to languages
like C, C++, Python, or Rust. Currently, Fortran
2018 defines 168 intrinsic procedures and a small
number of constants and derived types, but no
widely used data structures like linked lists and
dictionaries.

Thus, commonly used features—string and
error handling, high-level I/O, statistical meth-
ods—are programmed by users in-house, creating
many redundant implementations with different
levels of correctness and rigor. Proliferation of
tailor-made, common functionalities is inefficient
and error-prone, and discourages the adoption of
the language in emerging fields, reducing its fu-
ture relevance. For example, Fortran has not seen
much application in the computationally-intensive
area of neural networks for machine learning
despite being a performant parallel array-oriented
language. Fortran neural-network frameworks do
exist [9], but the majority of deep learning is per-
formed in Python. Though not originally designed
for high-performance numerical work, Python has
attracted machine learning practitioners with its
ecosystem of packages and rich standard library.
Furthermore, Fortran intrinsics have often been
formally standardized before being prototyped in
compilers, thus slowing down the modernization
of the language and creating opportunities for
poor API design.

The Fortran standard library (stdlib) project
aims at providing community-developed, robust
and reusable reference implementations of com-
monly used procedures, in a versioned and well-
tested library. Consequently, stdlib intends to re-
duce practitioners duplication of effort and to help
lower the bar for Fortran’s adoption. A future aim
is to collaborate with the Fortran Standard Com-
mittee and compiler developers to incorporate

relevant procedures into the language intrinsics
and provide optimized implementations alongside
compilers.

Scope
In addition to standardizing common inter-

faces for core functionalities—like input and
output (I/O), containers, and filesystem access
etc.—the scope of stdlib is akin to that of
NumPy [10], SciPy [11], and MATLAB, thus
providing procedures useful for science, engineer-
ing, and mathematics. As of July 2021, stdlib
contains 17 modules that contain procedures for
handling errors and optional arguments, working
with bitsets, facilitating I/O operations, linear al-
gebra, logging, numerical integration, descriptive
statistics, sorting, and strings. More information
can be found in full API documentation online
(https://stdlib.fortran-lang.org) generated by the
FORD tool [12].

Development
To provide generic interfaces for all supported

types, kinds, and ranks, stdlib uses the Fypp4

preprocessor to generate code from templates.
This is required since generic programming in
Fortran is currently limited to mandate for every
combination of type, kind and rank an imple-
mentation. However, all such procedures are then
usually invoked using a common generic name.

To ensure cross-platform support, stdlib ex-
ploits GitHub’s Continuous Integration (CI)
pipeline to test all procedures, derived types, and
modules on the main branch and on any changes
proposed in pull requests. The CI pipeline is
run across a combination of different compilers
and operating systems (Table 1); beyond this,
stdlib should be supported on any platform with
Python (for Fypp) and a Fortran 2008 compliant
compiler.

THE FORTRAN PACKAGE MANAGER
Motivation

The translation of a compiled language source
code to machine instructions in a large project,
involves scheduling source files for compilation,
taking into account any inter-file dependencies,
and linking the resulting objects together and

4https://github.com/aradi/fypp
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Table 1. Operating systems and compilers on which the Fortran Standard Library is regularly tested
Operating system Architecture Compiler Version

MacOS Catalina 10.15 x86 64
GCC Fortran 9, 10, 11

Intel oneAPI classic 2021.1

Ubuntu 20.04 x86 64
GCC Fortran 9, 10, 11

Intel oneAPI classic 2021.1

Microsoft Windows Server 2019 x86 64
GCC Fortran (MSYS) 10

GCC Fortran (MinGW) 10

with any third-party dependencies. A typical For-
tran project relies on hand-coded Makefiles (not
portable), CMake (complicated to learn and use),
or custom build scripts (difficult to maintain) to
perform the build process. Thus, a new Fortran
programmer not only needs to learn Fortran and
how to apply it to solve their problem, but they
also need to learn one or more build systems.
Moreover, such language-agnostic build systems
have no easy way to use existing Fortran libraries
as dependencies in new projects. For experienced
Fortran programmers, this has been the way of
life—but for newcomers it is a serious barrier to
entry.

Newer languages like Rust (cargo), Racket
(raco), Haskell (cabal) and Python (distutils) have
simplified the process of fetching dependencies
and building/running the ensemble by abstracting
much of the aforementioned complexity through
a language-specific build system or package man-
ager.

The goal for the Fortran Package Manager
(fpm) is to have a Fortran-specific build sys-
tem and package manager to simplify compiling
Fortran code and using third-party dependencies.
Fpm removes the need to learn about and main-
tain complex build systems thereby simplifying
the learning curve for newcomers.

Design Considerations
Fpm’s functionality is accessed by an in-

tuitive command-line interface modeled after
Rust’s package manager Cargo. It covers com-
mon Fortran project tasks including: creating new
projects; compiling and linking; running applica-
tions and tests; and fetching third-party depen-
dencies to use within the current project (Figure
2).

The minimal requirement for packages to be
used with fpm is the inclusion of the package

manifest file, written using the TOML5 format.
It allows fpm to automatically find sources, exe-
cutables, and unit tests, if they are placed within
the default folder structure. The manifest file can
contain additional metadata (author, maintainer,
license, copyright, etc.) or options for finer con-
trol of fpm’s behavior. Fpm is written in Fortran
and built by itself or from a single source file
with just a Fortran compiler.

A key feature of fpm is the ability to easily
reuse code between projects. Reusing compiled
Fortran modules has been difficult due to missing
Application Binary Interface (ABI) compatibility
between compilers, and even between versions of
the same compiler. Fpm solves this by provid-
ing first-class support for handling dependencies
between Fortran projects while keeping builds
with different compilers and options separate.
Additionally, complex compiler configuration is
abstracted away from the user while retaining
access to commonly used debugging options for
development and recommended optimization set-
tings for production.

Fpm’s first class support for dependency man-
agement makes it straightforward to specify de-
pendencies and control their exact version. If
a project and all of its dependencies are han-
dled by fpm, stronger guarantees are possible
for effortless and reproducible builds. Other as-
pects that can be controlled are the compiler,
the compiler version, the build flags, and the
operating system. With a project’s dependencies
and compiler flags fully specified, one only needs
to define an operating system, compiler and its
version to reproduce a specific build, which is
manageable even for new users. This solves what
has historically been an intractable problem for
many Fortran programmers and their projects.

5https://toml.io
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Figure 2. Fortran package manager workflow

Future features

Ongoing work is currently focused on pro-
viding fine-grain control of compiler flags under
different build profiles within the manifest file.
This process is complicated by the many different
available Fortran compilers (each with their own
flags), the intricate semantics that are associated
with certain flags, and linking with platform-
specific resources. Fpm’s end goal in this respect
is to abstract away all of the complications in
a compiler-agnostic manner. Furthermore, fpm
will eventually provide native support for using
features such as MPI, OpenMP, OpenACC, and
Coarrays.

To help newcomers who are unfamiliar with
command-line interfaces, a cross-platform graph-
ical user interface is in development. Alongside
common tasks such as building and installing,
the prototype allows setting build options, such
as “debug” or “release” as well as browsing the
online fpm registry and navigating to the webpage
of a selected package.

Finally, peripheral features common to other
language-specific package managers are planned,
including the ability to query and download pack-
ages from one or more central registries with
the command line, and integrated support for
documentation generation.

THE FUTURE IS BRIGHT
In addition to the stdlib and fpm projects, there

are several other ongoing community efforts to
improve the Fortran language, its compilers, and
its outreach.

Evolving the language as a community
Development of the Fortran language stan-

dard follows the ISO standardization workflow
which is led by national Fortran standards com-
mittees and the working group WG5 of the
ISO/IEC JTC 1/SC22 standardization subcommit-
tee. Committee members are typically delegated
by participating organizations, such as national
labs, research institutes, or compiler and hard-
ware vendors. While the formal standardization
procedure is beneficial for maintaining quality
and robustness of the language, the period for a
proposed feature to become part of the standard
is consequently very long as compared to popular
non ISO-standardized languages like Python or
Rust. Moreover, the language development is
quite decoupled from the wider community of
Fortran programmers.

To address this shortcoming, two members of
the U.S. Fortran Standards Committee suggested
establishing a public Git repository6 for language
proposals. The repository was created in October
2019 on GitHub and became an immediate suc-

6https://github.com/j3-fortran/fortran proposals
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cess, highlighting a long-standing desire within
the community to participate in developing the
language. Community members are now able to
easily propose and discuss additions to the lan-
guage which, after discussion and consensus, can
be made into formal proposals for discussion by
the committee. More than 190 issues and 25 pull
requests have been created so far, and some of the
suggested features are expected to become part of
the Fortran future 202Y standard. Similarly, the
highly discussed topic of improving generic pro-
gramming in Fortran has had a separate working
group and public repository7 set up to address this
widely sought after functionality.

Compiler development
Fortran has several free-to-use compilers (Ta-

ble 2), of which GFortran—part of GCC—is
the most advanced open source option (licensed
under GPL). It supports most of the latest Fortran
standards and is the recommended option for a
production compiler today.

Three new Fortran compilers, based on
LLVM, are currently under development: Flang,
which is part of the LLVM project, ifx by Intel
and LFortran8.

LFortran is a modern open-source (BSD li-
censed) interactive Fortran compiler built on top
of LLVM. Its goal is to become a community
supported compiler that can be used to proto-
type new features and develop new tools for
Fortran. It can execute user’s code interactively
for exploratory work at the command line or in a
Jupyter notebook (much like Python, MATLAB
or Julia) as well as compiling to binaries. LFor-
tran is currently under active development with
the aims to support all of Fortran 2018 and target
modern architectures such as multi-core CPUs
and GPUs.

LFortran has separate Abstract Syntax Tree
(AST) and Abstract Semantic Representation
(ASR) structures which allows for greater flex-
ibility in the compiler. For example, the AST
representation can be used as an automatic code
formatter. Likewise, the standalone ASR can be
the input of multiple backends for code genera-
tion. Indeed, LFortran has an LLVM backend, a
fast x86 one, and a code generator for C++.

7https://github.com/j3-fortran/generics
8https://lfortran.org

Research and dissemination
A great landmark for Fortran was the inaugu-

ral FortranCon 20209, an international conference
which took place on July 2–4, 2020, in Zürich,
Switzerland. Lead by Tiziano Müller (Department
of Chemistry, University of Zürich) and Alfio
Lazzaro (Hewlett Packard Enterprise, Switzer-
land), the conference attracted more than 270
participants for two full days of talks and a half-
day workshop on object-oriented programming in
Fortran. The keynote talk “Fortran 2018 . . . and
Beyond” was delivered by Steve Lionel giving
an overview of the recent standardization efforts;
this was followed by talks covering community
projects, scientific applications, compilers, pro-
gramming tools, parallel programming, and in-
teroperability with other languages. FortranCon
2021 was held in September 2021, with simi-
lar scope of presentation and attendance as the
inaugural one. We hope that future FortranCon
events continue to amplify the work of Fortran
practitioners, enhance community-building, and
increase language adoption.

CONCLUSIONS
The Fortran language has evolved enormously

since its invention over sixty years ago such that
it continues to offer a wealth of useful high-
level abstractions for engineers and scientists.
Moreover, the language still retains its high per-
formance through its array oriented design, strong
static guarantees, and its native support for shared
memory and distributed memory parallelism.

In this article we have exposed the lesser-
known, high-level features of Fortran and high-
lighted the key advantages for code longevity
and stability. Similarly, we have identified the
main limitations to using Fortran in the modern
age, and have described recent efforts by the
new Fortran-lang online community at addressing
these. In particular are the provision of a central
online web presence with a moderated discussion
board; the collaborative development of a Fortran
standard library and Fortran package manager;
and community led efforts to develop the lan-
guage and its compilers.

With a burgeoning ecosystem of tooling and
open source code, a growing online community,

9https://tcevents.chem.uzh.ch/event/12/
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Table 2. Summary of free-to-use multi-platform Fortran compilers
gfortran Open source, GPLv3 Full support for F2003, partial support for F2008 and F2018

Classic flang Open source, Apache-2.0 Full support for F2003, to be superseded by LLVM flang
LLVM flang Open source, Apache-2.0 Under development, full support for parsing F2018

LFortran Open source, BSD-3-Clause Under development, full support for parsing F2018
Intel Classic (ifort) Proprietary, Intel Full support for F2018

Intel LLVM (ifx) Proprietary, Intel Beta development, full support for F95
nvfortran Proprietary, NVIDIA Full support for F2003, partial support for F2008

and ongoing development of the language and its
compilers, Fortran is on track for continued and
increased growth into the future.
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