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Abstract

Due to triboelectric charging, the solid phase in gas–particle flows can become electrically charged, which induces an electrical
interaction between all the particles in the system. Because this force decays very rapidly, many current models neglect the
contribution of the electrostatic interaction between the particles. Nevertheless, the impact that this force can have in many
industrial configurations is well documented. In this work an Eulerian–Eulerian model for gas–particle flow is proposed in
order to take into consideration the electrostatic interaction between the particles. We use the kinetic theory of granular flows to
derive the transport equation for the electrical charge for dense gas–particle systems. We show that the electric charge transport
equation can be derived without presuming the for the particle charge distribution. In order to close the collision integrals in
the Chapman–Enskog equation, we proposed a linear model for the charge-velocity correlation. The model was tested in a
3 dimensional periodic box. The results shows that the dispersion phenomenon have two contributions: a kinetic dispersion
due to the random motion of particles (predominant in dilute systems) and collisional dispersion due to the electron transfer
during a particle-particle collision (predominant in dense systems). Another effect that contributes to the particle transfer is
the triboconductivity effect, which is the motion of electrons following the global electric potential difference. The dispersion
and triboconductivity characteristic times where calculated, and the analysis shows that, in dense systems, the two effects are
comparable if the dispersion characteristic length is equal to the particle diameter.

Introduction

Nowadays, gas–particle flows play an extremely important
role in many industrial technologies. Fluidized beds, cy-
clonic separators and the transport of air pollutants are just
a few examples of this type of flow. In some configurations
the particles collide with other solid materials (either another
particle or a solid boundary). During these interactions the
particles can get electrically charged due to the triboelectrifi-
cation effect (Matsusaka, S. & Masuda, H. 2003). The elec-
trically charged particles can now interact with other charged
particles via the Lorentz force. Because the particle velocity
is very small compared to the speed of light, the magnetic
contribution can be dropped, and only the electrostatic term
is relevant.

The generation of electrical charges can be undesirable for
many industrial processes. There are safety hazards such as
the risk of explosions due to a spark, wall sheeting and the
generation of an intense electric field. Dynamically, the pres-
ence of electrostatic forces modifies the behavior of a gas–
particle flow: modifications on the minimum fluidization ve-
locity, rise in the entrainment rate, modification on the heat
transfer coefficient are just a few example of the effects of

the electrostatic force (Hendrickson, G. 2006; Miller, C. &
Logwinuk, A. 1951).

All these electrostatic effects are well documented in the
literature. Sowinski, A. et al. (2009, 2010) built a fluidized
bed with a Faraday cup to measure the total particle charge
after fluidization. Their results showed that the particles get
charged and that the magnitude depends on the fluidization
velocity. Moreover the entrained fines particles and the bed
particles have an inverse polarity. Salama, F. et al. (2013)
extended the study to the particles inside the bed. They ob-
served that, although globally the bed is charged negatively,
there are a small percentage of particle with a positive charge.
This suggests the wall sheet is formed by consecutive layers
of negative and positive charged particles. Zhou, Y. et al.
(2013) introduced a moving probe inside a fluidized bed to
map the electric potential inside the column. Their data re-
veal that the bed is negative charged at the bottom and pos-
itive charged at the top. Moreover, they also found a dif-
ference in the radial profile; with the wall having a stronger
potential than the center of the bed. The gas-dynamics can
also be impacted; Dong, K. et al. (2015) placed 4 electro-
static probes inside a fluidized bed to analyze the effect of the
electrostatic force on the bubble’s motion. The authors ob-



served that the bubble size decrease as the electrostatic force
increases. They attributed this result to the fact that most of
the particles have the same charge sign, this creates a repul-
sive force between them, leaving less space to the bubble to
grow.

The eulerian modeling is widely used to study gas–particle
flow (Hamidouche et al. 2018). The governing equation
can be derived from the Boltzmann and Chapman-Enskog
equations (Chapman, S. et al. 1990). In dense configura-
tion the collision term must be closed. Jenkins, J. & Savage
S. (1983) achieved a closed form of the collision integral
assuming a molecular chaos and a Maxwellian velocity dis-
tribution. If the Maxwellian hypothesis is too restrictive, a
non-equilibrium distribution can be obtained following the
Grad’s theory (Grad, H. 1949; Jenkins, J. T. & Richman, M.
W. 1985) or the Richmann method (Richman, M. 1989).

Currently, some efforts have been made in order to add the
electrostatic force to the Eulerian codes. Rokkam, R. G. et
al. (2010) developed a model in which the electrostatic ef-
fect is added as a body force in the solid momentum equation.
Later, the same authors (Rokkam, R. G. et al. 2013) tested
this model in a fluidized bed reactor using Fluent. Their
model was in good agreement with the experimental observa-
tion, specially concerning the radial segregation of the solid
phase. In this approach, however, the electrical charge is an
input parameter and remain fixed throughout the simulation.

A more complex model was proposed by Kolehmainen,
J. et al. (2018); they used the kinetic theory of granular
flow to derive a transport equation for the particle charge.
Using an uncorrelated Maxwellian and Gaussian probability
density distributions for the velocity and the particle charge,
they were able to close the collision integral and to derive a
collisional dispersion coefficient. However, this coefficient
was not enough to account for all the particle dispersion,
and therefore, they decided to add a kinetic dispersion coef-
ficient following an analogy with the heat transfer coefficient
(Hsiau, S. & Hunt, M. 1993). The results showed that this
new formulation was in accordance with DEM simulations.
More recently Ray, M. et al. (2019) extended that model and
computed the charge-velocity correlation in order to derive
the kinetic dispersion coefficient. The authors were also able
to derive the charge variance equation in order to fully close
the transport equation. They implemented their model using
OpenFOAM and simulated a two-dimensional fluidized bed.
The results showed that they were able to successfully pre-
dict the thickness of the particle layer formed at the wall of
the reactor.

In our work, we propose a closure for the collisional and
kinetic dispersion terms in the mean charge balance derived
in the framework of the kinetic theory. In particular, we
show that the closure assumption for the collisional contri-
bution can be derived without presuming an uncorrelated
Maxwellian probability distribution for the particle electri-
cal charge. In addition, we derive a closure for the disper-
sion term due to transport by the random velocity from the
transport equation governing the electrical charge due to the
fluctuating particle velocity.

Particle dynamics

Following the approach described by Gatignol, R. (1983)
and Maxey, M. & Riley J. (1983) the motion equation for a
single particle follows the Newton’s second law:

mp
dup,i
dt

= −Vp
∂Pg
∂xi

+mpgi + Fd,i + qpEi (1)

Hereinafter all the equation are presented in tensor nota-
tion using the Einstein summation convection over all in-
dexes except p.
mp is the mass of the particle, up the particle velocity, Vp

the particle volume, Pg is the pressure of the gas-phase, g is
the gravity Fd is the drag force, E in the electric field and qp
is the particle electric charge.

The right hand side of the equation represents the sum of
forces acting on the particles. There we found in order: the
Archimedes force, the gravity force, the drag force (see Si-
monin, O. et al. (2016) for a detailed description), and the
last term is the electrostatic force due to the electric field gen-
erated by the presence of other charged particles.

Following the Maxwell’s equation we can find the electri-
cal field:

∇2ϕ = −%
ε

(2)

Ei = −∇ϕ (3)

Where ϕ is the electrical potential, % is the charge density
and ε is the mixture permittivity.

Collision dynamics

One of the most important aspects of particle dynamics, are
the particle-particle collisions, and the exchange of momen-
tum and electric charge during the collision. For the sake
of simplicity, we will limit our study to binary collisions of
spherical particles.

Let’s consider two particles p1 and p2 located at ~xp1 and
~xp2. They have a given velocity ~cp1 and ~cp2 and electric
charge ξp1 and ξp2. We define ~k as the unit vector going
from the center of p1 to the center of p2, we also define ~g as
the relative velocity of the particles gi = cp1,i − cp2,i.

Using the momentum and kinetic energy conservation law,
we can derive the particles velocity after the collision ~c+p1 and
~c+p2:

c+p1,i = cp1,i −
1

2
(1 + ec) (gjkj) ki (4)

c+p2,i = cp2,i +
1

2
(1 + ec) (gjkj) ki (5)

To take into account the triboelectrification phenomenon,
we are going to use the model developed by Kolehmainen,
J. et al. (2017). They used a Hertzian collision model to
calculate the overlapping area during a collision between two
particles. Using the triboelectrification model proposed by
Laurentie, J. et al. (2013) they were able to compute the
charge transfer during the impact:



ξ+
p1 = ξp1 − ε0Amax (gmkm) (E∗l kl) (6)

ξ+
p2 = ξp2 + ε0Amax (gmkm) (E∗l kl) (7)

Where E∗ is the total electric field, which has the contri-
bution of the resolved electric field, plus the contribution of
the electric field generated by the colliding particles:

E∗i = Ei −
ξp2 − ξp1
πε0d2

p

(8)

And Amax (gmkm) is given by the Hertzian model:

Amax (gmkm) = 2πr∗
(

15m∗p

32Y ∗
√
r∗

)2/5

(gmkm)
4/5 (9)

Where r∗ is the effective particle radius, Y ∗ is the effective
Young’s modulus and m∗p is the effective particle mass:

1

r∗
=

1

r1
+

1

r2
(10)

1

Y ∗
=

1− ν2
1

Y1
+

1− ν2
2

Y2
(11)

1

m∗p
=

1

mp1
+

1

mp2
(12)

r is the particle radius, Y is the Young’s modulus, ν is the
Poisson ratio, and mp is the particle mass.

Finally the charge transfer model by collision can be writ-
ten as:

ξ+
p1 = ξp1 −

[
βEiki +

β

γ
(ξp2 − ξp1)

]
(gmkm)

4/5 (13)

ξ+
p2 = ξp2 +

[
βEiki −

β

γ
(ξp2 − ξp1)

]
(gmkm)

4/5 (14)

With:

β = ε02πr∗
(

15m∗p

32Y ∗
√
r∗

)2/5

(15)

γ = πε0d
2
p (16)

Eulerian modeling of the electrostatic
phenomenon

In order to derive a continuum model for the solid phase, we
will use the fact that the motion of particles in a rapid gran-
ular flow is very similar to the motion of molecules in a gas.
This allows us to use the kinetic theory to obtain the gov-
erning equation of the solid phase. Let f (~x, ~cp, ξp, t) be the
particle number density function which gives the number of
particles per unit of volume at the position ~x with a veloc-
ity ~up = ~cp and a charge qp = ξp. Using this function we
have the definition for the particle number density (np) and
the mean value for any property φ:

np =

∫
R3

∫
R
fdξpd~cp (17)

〈φ〉 =
1

np

∫
R3

∫
R
φfdξpd~cp (18)

This allows us to define some useful quantities such as he
particle mean velocity:

Up,i = 〈cp,i〉 =
1

np

∫
R3

∫
R
cp,ifdξpd~cp (19)

The particle fluctuant velocity:

c′p,i = cp,i − Up,i (20)

The particle kinetic stress tensor:

Rp,ij = 〈c′p,ic′p,j〉 =
1

np

∫
R3

∫
R
c′p,ic

′
p,jfdξpd~cp (21)

For an isotropic flow, this tensor can be reduced to:

q2
p =

Rp,ii
2

(22)

When we can assume an uncorrelated motion of particles,
the granular temperature can be defined as:

Θ =
Rp,ii

3
=

2

3
q2
p (23)

The particle mean electric charge:

Qp = 〈ξp〉 =
1

np

∫
R3

∫
R
ξpfdξpd~cp (24)

The fluctuant electric charge:

ξ′p = ξp −Qp (25)

The electric charge variance:

Q = 〈ξ′pξ′p〉 =
1

np

∫
R3

∫
R
ξ′pξ
′
pfdξpd~cp (26)

Boltzmann equation

The dynamic evolution of f is given by the Boltzmann equa-
tion:

∂f

∂t
+

∂

∂xi
[cpif ] +

∂

∂cpi

[〈
dupi
dt
|~x, ~cp, ξp

〉
f

]
+

∂

∂ξp

[〈
dqp
dt
|~x, ~cp, ξp

〉
f

]
=

(
∂f

∂t

)
coll

(27)

The notation 〈G |~x, ~cp, ξp 〉 is a short form for the condi-
tional expectation 〈G |~x, ~up = ~cp, qp = ξp 〉.

The right hand side of the Boltzmann equation accounts
for the variation due to particle-particle collisions.

We will consider that the particle charge only changes due
to the collisions with other particle, hence dq/dt = 0.

From the Boltzmann equation, we can derive a general
transport equation for any property φ:



Dnp 〈φ〉
Dt

+ np 〈φ〉
∂Upi
∂xi

+
∂np

〈
φc′pi

〉
∂xi

− np
〈
Dφ

Dt

〉
− np

〈
c′pi

∂φ

∂xi

〉
− np

〈
Fi

∂φ

∂c′pi

〉
+ np

DUpi
Dt

〈
∂φ

∂c′pi

〉
+

np

〈
c′pj

∂φ

∂c′pi

〉
∂Upi
∂xj

= C (φ) (28)

This is called the Chapman-Enskog equation (Chapman,
S. et al. 1990)

The right hand side of the equation accounts for the mean
transfer rate of the property φ due to collision. Following
formulation proposed by Jenkins, J. & Savage S. (1983) the
term can be written as the contribution of a source term and
a flux term:

C (φ) = χ (φp)−
∂

∂xi
θi (φp) (29)

Where

χ =
d2
p

2

∫
~g·~k>0

∆φ (giki) f
(2)d~kdξp1dξp2d~cp1~cp2 (30)

θi = −
d3
p

2

∫
~g·~k>0

δφ (giki) f
(2)kid~kdξp1dξp2d~cp1~cp2 (31)

Where f (2) = f (2)
(
~xp1,~cp1, ξp1, ~xp1 + dpk̂,~cp2, ξp2, t

)
is the particle-particle pair distribution.

∆φ accounts for the total variation of the property φ during
the collision:

∆φ = φ+
p1 − φp1 + φ+

p2 − φp2 (32)

δφ is the variation of φ for the particle p1:

δφ = φ+
p1 − φp1 (33)

In order to close the collision integrals (equations 30 and
31), we need to give an expression for the single particle
number density function f . Assuming an uncorrelated par-
ticle motion, Kolehmainen, J. et al. (2018) and Ray, M. et
al. (2019) proposed the following model:

f (2) = g0f (~xp1,~cp1, ξp1, t) f (~xp2,~cp2, ξp2, t) (34)

Where g0 is the radial distribution function. f (~xp,~cp, ξp, t)
is given by an uncorrelated Maxwellian and Gaussian distri-
bution for the velocity and the charge respectively:

f =
1

(2πQ)
1/2

np

(2πΘ)
3/2
e−

ξ′p
Q e−

c′2
Θ (35)

In our study, will will not assume this form for the num-
ber density function, instead we will show that the electric

charge part does not have to be presumed a priori. Using the
definition of the probability density function, we have:

∫ ∞
−∞

φp1f
(2)dξp1dξp2 = 〈φp1 |~xp1,~cp1, ~xp2,~cp2 〉 f∗(2)

(36)

Now we are going to suppose that the property of the first
particle is not correlated with the presence of the second col-
liding particle, therefore:

〈φp1 |~xp1,~cp1, ~xp2,~cp2 〉 = 〈φp1 |~xp1,~cp1 〉 (37)

To take into consideration the correlation between the
property φ and the particle velocity, we chose a linear model
of the form:

〈φp1 |~xp1,~cp1 〉 = 〈φp1〉+Bjc
′
p,j (38)

Where the coefficientBj is given, so the first two statistical
moments are satisfied:

Bi = R−1
p,ij〈φc

′
p,j〉 (39)

Which, in a hydrodynamic isotropic model, simplifies to:

Bi =
〈φc′p,i〉
2/3q2

p

(40)

Now, f∗(2) = f∗(2) (~xp1,~cp1, ~xp2,~cp2, t) is the particle-
particle velocity distribution, which does not depend on the
electric charge of the particles. This function can be modeled
using the same methodology as the one shown above:

f (2) = g0f
∗ (~xp1,~cp1, t) f

∗ (~xp2,~cp2, t) (41)

Here, we chose to close the probability distribution using
a Maxwellian distribution:

f∗ =
np

(2πΘ)
3/2
e−

c′2
Θ (42)

With this model, the collisions terms can be fully solved.

Charge transport equation

If we now use φ = ξp in the equation 28, we find the follow-
ing expression for the charge transport equation:

np
∂Qp
∂t

+ npUpi
∂Qp
∂xi

+
∂np

〈
ξ′pc
′
pi

〉
∂xi

= C (ξp) (43)

From this equation, two terms need to be closed: the last
term on the left hand side accounts for the correlation be-
tween the charge and the velocity and the right hand side
represents the mean rate of change for the charge due to col-
lisions.

Due to the charge conservation law, it can be shown that
the source term of the collision integral vanishes:

χ (ξp) = 0 (44)



Using the methodology described above, the flux term can
be computed:

θi (ξp) = d3
pβEig0n

2
p

(
q2
p

)9/10
Υ(1.1)

− d4
p

β

γ

∂Qp
∂xi

g0n
2
p

(
q2
p

)9/10
Υ(2.1)

+ g0d
5
p

∂Ut
∂xj

β

γ

∂Qp
∂xl

(
q2
p

)2/5
n2
pΨ

(2.1)
tlji Υ(2.2)

+ d3
p

β

γ
Big0n

2
p

(
q2
p

)7/5
Υ(2.3)

−Υ(2.4)d4
pg0

∂Ut
∂xj

β

γ
Bln

2
p

(
q2
p

)9/10
Ψ

(2.4)
ltji Υ(2.4) (45)

Where Υ(·) are constants, and Ψ (·)
abcd are 4-order constant

tensors.
If we insert this, into the collision term definition, and we

neglect any term proportional to ∂U/∂x, we get:

C (ξp) = − ∂

∂xi
(σpEi) +

∂

∂xi

(
κcoll
p

∂Qp
∂xi

)
(46)

κcoll
p = d4

p

β

γ
g0n

2
p

(
q2
p

)9/10 257/105

319/107
Γ

(
12

5

)
Γ

(
3

2

)
(47)

σp = d3
pβg0n

2
p

(
q2
p

)9/10 257/105

319/107
Γ

(
3

2

)
Γ

(
12

5

)
(48)

Where Γ (·) is the gamma function.
κcoll
p is the collisional dispersion coefficient and it accounts

for the particle charge dispersion due to particle-particle col-
lisions. σp is the triboconductivity coefficient and it repre-
sents the charge transport generated by the electric field when
two particles are in contact.

The second term in the charge transport equation (equation
43) that needs to be closed is the charge-velocity correlation
〈c′pξp〉. To accomplish this, we will write a transport equation
for the correlation between the particle velocity and charge.
Therefore we set φ = ξpcp,i in the Chapman-Enskog equa-
tion (equation 28):

Charge-velocity correlation

np
D
〈
ξpc
′
pi

〉
Dt

+
∂np

〈
ξ′pc
′
pic
′
pj

〉
∂xj

+ np
〈
c′pic

′
pj

〉 ∂Qp
∂xj

−np
〈
Fiξ
′
p

〉
+np

〈
c′pkξp

〉 ∂Upi
∂xk

= C
(
ξpc
′
p,i

)
−QpC

(
c′p,i
)
(49)

In order to find a first approximation for the charge-
velocity correlation, we will make a series of assumptions
to simplify the equation:

1. Steady-state (D/Dt = 0)

2. No-velocity gradient (∂U/∂x = 0)

3. We neglect the third order momentum 〈ξpc′p,ic′p,j〉

4. Electric charge does not change during a collision

With this assumptions the charge-velocity transport equa-
tions reduces to:

np
〈
c′pic

′
pj

〉 ∂Qp
∂xj

= C
(
ξpc
′
p,i

)
−QpC

(
c′p,i
)

(50)

Again the collision term can be fully computed:

C
(
ξpc
′
p,i

)
−QpC

(
c′p,i
)

=

− 213/2π1/2

35/2
d2
pg0npη

(
q2
p

)3/2
R−1
p,ijnp

〈
c′pjξ

′
p

〉
(51)

Hence the final transport equation becomes:

np
〈
c′pic

′
pk

〉 ∂Qp
∂xk

=

− 213/2π1/2

35/2
d2
pg0npη

(
q2
p

)3/2
R−1
p,ijnp

〈
c′pjξ

′
p

〉
(52)

If we assume a hydrodynamic isotropic flow:

np
2

3
q2
p

∂Qp
∂xj

= −211/2π1/2

33/2
d2
pg0npη

(
q2
p

)1/2
np
〈
c′pjξ

′
p

〉
(53)

With this model, we can derive a gradient model for the
charge-velocity correlation:

np〈ξpc′p,i〉 = −κkin
p

∂Qp
∂xi

(54)

κkin
p =

31/2

29/2π1/2ηd2
pg0

(
q2
p

)1/2
(55)

Where η = 1/2 (1 + ec)

Inserting this into the charge transport equation, we obtain:

np
∂Qp
∂t

+ npUpi
∂Qp
∂xi

=

− ∂

∂xi
(σpEi) +

∂

∂xi

((
κcoll
p + κkin

p

) ∂Qp
∂xi

)
(56)

As we can observe, we have derive a transport equation
for the electric charge. The effects of adding taking into con-
sideration of the charge velocity correlation is much clearer
now. The term κkin

p is the kinetic dispersion coefficient and it
accounts for the dispersion phenomenon due to the random
motion of particles. This terms is similar to the one found by
Ray, M. et al. (2019). However we have shown that it can be
derived using less restrictive hypothesis on the particle den-
sity distribution.



Collisional and kinetic dispersion coefficients 

The kinetic theory has shown that the particle charge disper­
sion can be explained as the contribution of two independent 
phenomena When two particles collides, there is a charge 
transfer that takes place. This is characterize by a collisional 
dispersion coefficient (,ç0011 ). This coefficient is proportional 
to the radial distributio/function go, which tends to infinity 
as the solid fraction volume (a

p 
= n

p 
V

p
) goes to the maxi­

mum compacity. This is coherent, because the more particles 
are in the flow, the more probable is a collision to happen, 
and therefore the particle charge is transported faster. 

The second contribution to the dispersion coefficient is the 
kinetic contribution Kkin_ This can be explained as the parti­
cle charge diffusion d�e to random motion of particles. This 
coefficient is important in dilute system, because gon

p 
-+ O. 

This is because a particle is able to travel further where there 
are few other particles. 

Figure 1 shows the value of the two dispersion coefficient 
as a function of a

p
, for 8 = 0.01 m2/s2

• As we can see for 
dilute system the kinetic contribution is the most important, 
and for dense system the collisional terms is the dominant 
one. Also is worth noting that for an intermediate value of a

P 

both terms have the same order of magnitude and therefore 
both have to be considered 
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Figure 1: Collisional and kinetic dispersion coefficients as 
a function of the solid volume fraction for 8 =
0.01 m2/s2 

To see the effect of these dispersion coefficients, we 
are going to study one of the test cases proposed by 
Kolehmainen, J. et al. (2018). He studied a 3D peri­
odic box of 192d

p 
x 8<4, x 8d

p
. Initially, the particles at 

x < 96d are charged positively QP = Qo and the particles 
p at x � 96<4, are charged negatively Q

P 
= -Qo We are gomg 

to neglect all the extemal forces (gravity, drag force, elec­
trostatic, etc.). An initial granular temperature is imposed, 
and it remains constant during the simulations. We are also 
going to drop the triboconductivity effect With these hy­
potheses, the charge transport equation can be simplified to a 
one-dimensional diffusion equation: 

This equation can be solved analytically: 
oo coll ün (2 ) 

_ "P +"p (2ffn)2t , 7rnX 
Q - � \ e np L Slll --p - �An 

L 
n=l 

Àn = 
2Qo (1 - (-lf)
n7r 

(58) 

(59) 

Where L = 192<4, is the box length in the x direction. 
This equation allows to study the evolution of the electric 

charge in function of time. For the simulation, we set ail 
the values specified in table 1 and a

P 
= 0.25 and we plot 

the particle charge spatial profile for different values of the 
non-dirnensional time t* = ( vB/ dp) t (Figure 2). As we can 
see the electric charge diffuses inside the domain as the time 
passes, and it tends to reach the equilibrium value Qp = O. 
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Table 1: Parameters used in the test case 
Pararneter Value 

d
p 

250µm 
Pp 

1500 kg/m3 

eo 8.85 · 10-6 F/m 
e 0.01 m2

/s2 

Y 0.5 -106 Pa 
v 0.41 
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Figure 2: Particle charge profile as a function of x/ Lat dif­
ferent times t* = ( ,/aja.p) t

A more interesting analysis can be performed if we sepa­
rate the kinetic and collisional contribution in the dispersion 
coefficient Figure 3, 4 and 5 show the particle charge profile 
at t* = 4000 for a dense system (o:

p 
= 0.45) a dilute sys­

tem (o:
p 

= 0.10) and an intermediary system (o:
p 

= 0.25). 
The squares markers represent the dispersion created by the 
kinetic contribution, the circle markers account for the col­
lisional contribution, and the solid line is the sum of both 
contributions. As we can see, for dilute systems, the disper­
sion cornes almost exclusively from the kinetic contribution 
of the dispersion coefficient. On the contrary, for dense sys­
tem the collisional terms is the dominant parameter. How­
ever, we can see that for intermediate values, both coefficient 



are of the same order of magnitude, they both need to be 
taken into account in order to accurately predict the disper­
sion phenomenon. 
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Figure 3: Particle charge profile at t* = 4000 for aP = 0.45 
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Figure 4: Particle charge profile at t* = 4000 for aP = 0.10 

Triboconductivity effect 

One of the effects found on the collision integrals is the so 
called triboconductivity, characterize by aP. When the global 
charge distribution produces an electric potential difference, 
the positive charged particle tend to move against the po­
tential gradient and the negative charged particles tend to 
move towards the gradient (Ohm's law). Taking the charge 
transport equation (equation 56) and the Maxwell's equations 
(equations 2 and 3) we can derive the following transport 
equation for the electric charge: 

n 8Qp = _-5?._Q +!._((/\;coll + 11:kin) 8Qp) (60)
P 8t VpEO P 8x P P 8x 

If we apply this equation to the same problem described 
before, we find the analytic solution (equation 61). Using the 
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Figure 5: Particle charge profile at t* = 4000 for aP = 0.25 

same parameters as before, we can determine the dynarnic 
evolution of the electric charge (figure 6).As we can see, the 
electric charge reaches the equilibrium value faster, which 
confirms that fact that the triboconductivity helps to the re­
distribution of the electric charge. However, it is worth noting 
that the triboconductivity effect seerns to be more important 
than the diffusion process, this was also reported in the liter­
ature (Kolehmainen, J. et al 2018). 
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Figure 6: Particle charge profile as function of x/ Lat differ­
ent times t* = ( ,/ej dp) t

In order to verify this, we are going to rewrite the equa­
tion 60, so we make appear the characteristic times for the 
dispersion (7,.) and the triboconductivity Tu. Taking las the 
diffusion characteristic length, we have: 

(62)
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(64) 

(65) 

(66) 

If we chose l = L, then we can represent them as func­
tion of the solid volume fraction (figure 7). We remark that 
the triboconductivity characteristic time is much smaller than 
the dispersion characteristic time for alrnost ail values of aP. 

It is only in very dilute (where there are almost no collisions) 
cases where the kinetic diffusion process is more efficient 
This can be shown if we perform a simple analysis between 
the characteristic times of the dispersion and triboconductiv­
ity phenomena: 
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Figure 7: Triboconductivity and dispersion characteristic 
times in function of solid volume fraction for e = 
0.01 m2/s2 

T d2y2/o 
_!!_ (X p 
7kin 2/o 2 2[2 ( 2)

2/o 
K, Pv T/9o aP qP 

Where PP is the particle density. 

(67) 

(68) 

This shows, that for dense systems, the dispersion effect 
is only comparable to the triboconductivity when the disper­
sion characteristic length is of the same order of magnitude 
as the particle diameter. For dilute systems, the ratio between 
the characteristic times is more complex, because it depends 
on the particle physical properties (Young's module and den­
sity). However, we can say that when aP -+ 0 the kinetic 
dispersion is dominant, because there are not enough colli­
sion for the triboconductivity to take place. 

Conclusions 

An eulerian model for the electric charge transport has been 
derived following the kinetic theory of granular flows. As­
surning a correlated form between the electric charge and 
the particle velocity, we have been able to fully close the 
collision integrals without having to presume the expression 
for the particle electric charge distribution. This model have 
shown the main mechanisms involved in the electric charge 
dynarnics. First of ail, the dispersion phenomenon can be 
classified in two: a collisional dispersion that accounts for 
the charge transfer during a particle-particle collision, and a 
kinetic dispersion that due to the random motion of the par­
ticles. For both types of dispersion an expression was fully 
derived. We have shown that the collisional dispersion coef­
ficient is predorninant in dense regimes and that the kinetic 
dispersion coefficient is is the most important in dilute con­
figurations. There is, nevertheless, an intermediary region 
where both coefficient have to taken into account in order to 
accurately predict the dispersion effect 

The second mechanism responsible for the electric charge 
transfer, is the triboconductivity effect. The global charge 
distribution can create a electric potential difference. When 
two particles touch each other, they behave like a conduc­
tor material and therefore the electric charge flows following 
the potential gradient. In order to characterize which effect 
is more important between the dispersion and the tribocon­
ductivity, we have derive their characteristic times. These 
parameters have allowed us to show that, for dense regimes, 
the triboconductivity and the dispersion are of the same order 
of magnitude if the characteristic dispersion length is compa­
rable to the particle diameter. For dilute regimes, the expres­
sion is more complicated. It depends on the particle geomet­
rical and physical properties, solid volume fraction and the 
particle agitation. 
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