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Abstract (250 words) 

The air quality impact of increased wildfires in a warming climate has often been overlooked in current 

model projections, owing to the lack of interactive fire emissions of gases and particles responding to 

climate change in Earth System Model (ESM) projection simulations. Here we combine multi-

ensemble projections of wildfires in three ESMs from the Sixth Coupled Model Intercomparison 

Project (CMIP6) with an empirical statistical model to predict fine particulate (PM2.5) pollution in the 

late 21st century under a suite of Shared Socioeconomic Pathways (SSPs). Total CO2 emissions from 

fires over western North America during August–September are projected to increase from present-

day values by 60–110% (model spread) under a strong-mitigation scenario (SSP1-2.6), 100–150% 

under a moderate-mitigation scenario (SSP2-4.5), and 130–260% under a low-mitigation scenario 

(SSP5-8.5) in 2080–2100. We find that enhanced wildfire activity under SSP2-4.5 and SSP5-8.5 

could cause a two- to three-fold increase in PM2.5 pollution over the US Pacific Northwest during 

August–September. Even with strong mitigation under SSP1-2.6, PM2.5 in the western US would 

increase ~50% by mid-century. By 2080–2100 under SSP5-8.5, the 95th percentile of late summer 

daily PM2.5 may frequently reach unhealthy levels of 55–150 μg/m3. In contrast, chemistry-climate 

models using prescribed fire emissions of particles not responding to climate change simulate only a 

7% increase in PM2.5. The consequential pollution events caused by large fires during 2017–2020 

might become a new norm by the late 21st century, with a return period of every 3 to 5 years under 

SSP5-8.5 and SSP2-4.5. 

Significance Statement (120 words) 

Record-setting fires in the western US over the last decade caused severe air pollution, loss of human 

life, and property damage. Enhanced drought and increased biomass in a warmer climate may fuel 

larger and more frequent wildfires in the coming decades. Applying an empirical statistical model to 

fires projected by Earth system models including climate-ecosystem-socioeconomic interactions, we 

show that fine particulate pollution over the US Pacific Northwest could double to triple during late 

summer to fall by the end of the 21st century under intermediate- and low-mitigation scenarios. The 

historic fires and resulting pollution extremes of 2017–2020 could occur every 3 to 5 years under 21st 
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century climate change, posing challenges for regional air quality management and threatening public 

health.  

 

Main Text 

 

Introduction 

Wildfires contribute 15–30% of atmospheric primary fine particle (PM2.5) emissions in the United 

States (1), with implications for ecosystems, human health, and climate (2-5). Marked increases in 

wildfire burned area over the western US in recent decades have been linked to anthropogenic 

climate change and land management practices (4, 6-8). Increasing emissions from wildfires have 

caused summertime PM2.5 levels to rise in some western US regions despite efforts to control 

anthropogenic emissions (9-11). Millions of people were exposed to very unhealthy or hazardous 

PM2.5 concentrations (150–650 μg/m3 for 24-h average) for extended periods during recent large 

wildfires around the world (11-17). Exposure to dense smoke from fires has detrimental effects on 

human health (3, 18-20), with an economic cost due to short-term smoke exposure estimated to be 

$11–20 billion per year in the continental US (21). The US Clean Air Act allows for screening of air 

quality exceedances caused by “exceptional events,” such as wildfires, from counting towards a non-

attainment determination (22). Understanding the extent to which wildfire emissions in a future climate 

influence PM2.5 exceedances thus has implications for designing effective air quality policies. 

A number of studies have projected enhanced wildfire activity over the western US under a warming 

climate during the 21st century (23-27). However, owing to the lack of interactive fire emissions of 

gases and particles responding to climate change in current chemistry-climate models, projections of 

future PM2.5 air quality generally overlook the impacts of changing fires (28-31). A few studies 

estimated future fire emissions using statistical regressions of burned area and climate variables and 

fed these emissions into an offline chemical transport model to estimate future PM2.5 air quality (26, 

32-35). These studies suggested 80–170% increases in fire emissions of primary aerosols by the 

2050s, which resulted in 46–70% increases in surface organic carbon concentrations (a key 

component in fire smoke). Using fire emissions simulated by a process-based fire model driven by 

archived meteorological fields from a chemistry-climate model, several studies estimated 50–90% 

increases in mean organic carbon concentrations over the continental US by the late 21st century (23, 
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36). These results have large uncertainties, as the statistical or offline fire models typically do not 

include feedbacks among climate, land use, ecosystem dynamics, and anthropogenic influences 

through ignition and suppression (2, 37-39). 

Here we leverage the Sixth Coupled Model Intercomparison Project (CMIP6) multi-model and multi-

ensemble simulations of fire CO2 emissions responding to changes in climate, vegetation, and 

population distributions, combined with a multiple linear regression (MLR) model developed from 

historical observations, to project wildfire impacts on PM2.5 means and extremes over the western US 

under a suite of Shared Socioeconomic Pathways (SSPs; see Methods). The process-based fire 

models in CMIP6 are greatly improved compared to those in CMIP5, with better representation of the 

impacts of fuel wetness on fire occurrence and spread, enhanced fire spread rate in forest crowns, 

and ability to simulate multi-day fires (40-51). Our statistical model considers the influence of both 

local and regional fires, as well as inter-state smoke transport, air stagnation, and other 

meteorological conditions. We compare our MLR-predicted PM2.5 with that simulated in the chemistry-

climate models using prescribed fire emissions of gases and particles not responding to climate 

change (see Methods) (29). We show that drought and increased biomass under a warmer climate in 

the Pacific Northwest during the late 21st century increase the risk of fires, causing a two- to three-fold 

increase in PM2.5 levels in late summer to fall. 

 

Results  

Observed correlations between fires and PM2.5 air quality 

[Figure 1 about here] 

We first use historical observations to investigate the extent to which the interannual variability of 

PM2.5 means and extremes at US surface sites can be explained by regional versus local fires as well 

as meteorological conditions. The observed relationships will serve as a basis for developing the MLR 

model used to predict future PM2.5 levels from fire CO2 emissions and meteorology available from 

CMIP6 Earth system models. We correlate surface PM2.5 observations averaged over a 2°×2° grid 

with fire CO2 emissions integrated over a box with size varying from 2.5°×2.5° to 20°×20° centered at 

that grid during May–November from 1997 to 2020, using simple linear regression and multiple linear 
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regression (MLR, see Methods). We consider four meteorological variables: surface temperature, 

precipitation, relative humidity, and air stagnation, which have been previously shown to be correlated 

with surface PM2.5 (11, 52). 

During August and September, when fires peak seasonally over the Pacific Northwest under the 

present-day climate (53), mean PM2.5 levels at western US sites show strong correlations (r2 = 0.5–0.9) 

with regional fire CO2 emissions summed over a box of 10°×10° to 15°×15°, indicating the importance 

of regional smoke transport (11) (Fig.1a). In comparison, the correlations are much weaker (r2 < 0.5) 

during May–July and October–November (Fig.S1), and are statistically insignificant (p > 0.05) at most 

eastern US sites, where fire is not the dominant source of surface PM2.5. In the following analyses we 

thus focus on the US Pacific Northwest (solid black box on Fig.1b) during August and September.  

 

The MLR model, including the impacts from meteorological variables, achieves higher correlations (r2 

= 0.7–0.9; Fig.1b) compared to a simple linear regression with fires alone (r2 = 0.5–0.9; Fig.1a). Fire 

CO2 emissions on average explain 66% of the observed PM2.5 interannual variability during August–

September in the Pacific Northwest (Fig.1c), with air stagnation index being the second most important 

predictor (11%), consistent with our prior work suggesting that air stagnation played an important role 

in the accumulation of PM2.5 during the historic 2017 and 2018 fire seasons (11). The contributions from 

relative humidity, temperature, and precipitation are each less than 10%. A larger increase in correlation 

(r2) with meteorology is found in July and October than August or September, suggesting a more 

important role of meteorology in controlling PM2.5 during these months (Fig.S1). These correlations 

confirm that it is important to consider impacts from both fires and meteorology for a robust estimation 

of changes in future PM2.5 air quality.  

 

We next examine the relationship between regional fires and PM2.5 extremes defined as the 95th 

percentile (q95) of available daily PM2.5 measurements from all sites within a 2°×2° grid for August and 

September (see Methods and Fig.S2). We still use monthly mean meteorological variables instead of 

extremes in the MLR model, since the q95 PM2.5 in observations may not coincide with days having 

extreme meteorological conditions (i.e., heat wave, stagnation) and there are larger uncertainties in the 

predicted climate extremes than mean states. Significant correlations are observed between fire CO2 

emissions and the q95 PM2.5 at most western US sites in August and September, based on simple linear 
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regression (r2 = 0.5–0.9; Fig.1d) and MLR (r2 = 0.7–0.9; Fig.1e). Fire CO2 emissions explain 70% of the 

observed PM2.5 interannual variability on average at US Pacific Northwest sites (Fig.1f), dominating 

over meteorological impacts.  

 

The interannual variability of both mean and q95 PM2.5 during August–September averaged over US 

Pacific Northwest sites shows a strong correlation (r2 = 0.8–0.9) with regional total fire CO2 emissions 

over western North America (Fig.1g-h). In the 2017, 2018, and 2020 fire seasons, the western US 

experienced record-breaking wildfires burning ~50% more than the average area over the past two 

decades (54-56). The q95 PM2.5 averaged over the US Pacific Northwest sites during August–

September was 76 μg/m3 in 2017, 44 μg/m3 in 2018, and 95 μg/m3 in 2020, respectively, exceeding the 

US National Ambient Air Quality Standard of 35 μg/m3.  

 

These MLR analyses demonstrate significant interannual correlations of surface PM2.5 pollution with 

regional fire CO2 emissions and meteorology over the western US during August–September. Cross 

validation further confirms the robustness of the MLR model in predicting PM2.5 (SI Appendix, Text S1). 

We obtain regression coefficients for the MLR model using the relationships of PM2.5, fires, and 

meteorological conditions observed in August–September during the period 1997–2020. Then we drive 

the MLR model with the monthly time series of fire CO2 emissions and meteorological variables 

simulated by CMIP6 Earth system models under different climate change scenarios to predict PM2.5 

throughout the 21st century (see Methods).   

 

Evaluating variability of fires simulated by CMIP6 models 

[Figure 2 about here] 

To establish the robustness of future projections, we examine how well three CMIP6 models, the 

Community Earth System Model version 2 (CESM2) (57), the Geophysical Fluid Dynamics Laboratory 

Earth System Model version 4.1 (GFDL-ESM4.1) (58) and the Centre National de Recherches 

Météorologiques Earth System Model version 2 (CNRM-ESM2-1) (59), simulate historical fires. We 

use satellite observations of burned area from the MODerate Resolution Imaging Spectrometer 

(MODIS) (60) and satellite-based estimates of fire CO2 emissions from the Global Fire Emissions 

Database (GFED4s) (61, 62) and the Quick Fire Emissions Dataset (QFED2.5) (63).  Observations 

show hotspots of burned area and fire CO2 emissions over the Pacific Northwest in August and 
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September (Fig.2a-b). We investigate the extent to which models capture the interannual variability of 

fires over this region relative to their respective mean state. Evaluating normalized interannual 

variability provides insights into the sensitivity of simulated fires to meteorological and climatic 

variability, which is critical to establish the robustness of projected fire responses to climate change.  

We first examine the land-only experiments (see Methods) driven by observation-based meteorological 

forcings to allow direct comparison with the observed fires in space and time. The land-only simulations 

generally capture the observed normalized interannual variability of burned area (r2 = 0.32–0.67) and 

fire CO2 emission (r2 = 0.25–0.60) over western North America (Fig.2c-d), despite mean-state biases 

(Fig.S3). Above-normal fire activity is observed and simulated in years such as 1988, 2006, 2012, 2017, 

2018, and 2020, associated with severe drought conditions (64-69). The CESM2 model performs best 

in simulating the interannual variability of burned area (r2 = 0.67; p < 0.01) and fire CO2 emission (r2 = 

0.60–0.64; p < 0.01). For comparison, the correlations for burned area are r2 = 0.49 (p < 0.01) for 

CNRM-ESM2-1, and r2 = 0.32 (p < 0.05) for GFDL-ESM4.1. The amplitude of the observed interannual 

variability of fire CO2 emissions (represented as standard deviation in Fig.2) is also best captured by 

CESM2: s.d. = 36.4%, compared to s.d. = 55.9–56.2% in observations, s.d. = 28.3% in GFDL-ESM4.1, 

and 20.6% in CNRM-ESM2-1.  

 

The fully coupled ocean-land-atmosphere experiments allow us to project future fires under varying 

climate change scenarios. These coupled model simulations are driven by model-generated climate 

and thus are not expected to capture the timing and location of the observed fires during historical 

periods. Therefore, we evaluate the hemispheric to regional patterns in burned area and fire CO2 

emissions, as well as the strength of interannual variability during the 1997–2014 period. Both the land-

only and coupled experiments from all three models simulate the salient features of the spatial patterns 

of fire burned area and CO2 emissions across the Northern Hemisphere, such as capturing fire hotspots 

over western North America and Mediterranean Europe in August and September (Figs.S4-S7). The 

models simulate reasonable fire interannual variability over these hotspots areas, despite large mean-

state biases. Over western North America, total fire CO2 emissions in August and September are 

overestimated by a factor of two in CESM2, and factors of 4–5 in GFDL-ESM4.1 and CNRM-ESM2-1, 

compared to the estimates from two satellite-based fire emission inventories (Fig.S3b). Similar high 

biases have previously been identified in CMIP5 Earth system models (23, 41) and by the CMIP6 Fire 
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Model Intercomparison Project (40). These studies suggest possible biases in the simulated fuel load 

(biomass), fire response to human activities, and fuel consumption rate applied in the models (40, 41, 

70).  

 

We conclude that the three CMIP6 Earth system models have moderate ability to simulate changes in 

fire emissions in response to variations in climate and vegetation, despite varying levels of mean-state 

biases. To gauge the uncertainties of our PM2.5 predictions associated with these biases, we compare 

MLR predictions driven by the relative changes of fire CO2 emissions versus those driven by the 

absolute emission changes in each model. For CESM2, with small mean-state biases in historical fire 

CO2 emissions, we find an overall consistent magnitude of western US mean PM2.5 predictions between 

the two MLR models (top panels in Fig.S8). For GFDL-ESM4.1 and CNRM-ESM2-1, with high mean-

state biases in historical fire CO2 emissions, the MLR model driven by the absolute changes of fire 

emissions predicts much larger PM2.5 in 2080–2020, with the PM2.5 prediction driven by relative changes 

agreeing better with that driven by the CESM2 model (bottom panels in Fig.S8). Thus, we conclude that 

it is more reasonable to use the relative change of fire CO2 emissions to drive the MLR prediction of 

future PM2.5 levels.  

 

Changes in climate and fires in the 21st century 

[Figure 3 about here] 

 We next investigate changes in climate and fires over western North America in the 21st century from 

the CMIP6 coupled Earth system simulations under four climate change scenarios: SSP1-2.6 (low 

societal vulnerability combined with radiative forcing of 2.6 W m-2 by 2100), SSP2-4.5 (intermediate 

societal vulnerability, 4.5 W m-2 forcing), SSP3-7.0 (high societal vulnerability, 7.0 W m-2 forcing) and 

SSP5-8.5 (fossil-fueled development, high emissions, 8.5 W m-2 forcing) (71, 72). While studies have 

suggested that fire seasonality may change in a warming climate (73-75), our MLR model predictions 

build upon the strong correlation between PM2.5 and fires during August–September over the Pacific 

Northwest under present-day climate. To investigate whether it is reasonable to focus on August–
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September under future climate, we examine fire seasonality and spatial pattern over North America 

under SSP5-8.5 (Fig.3).  

 

All three models project a lengthening of the fire season over the Pacific Northwest in a warmer climate, 

with elevated fire CO2 emissions spanning from May to November during 2080–2100 under SSP5-8.5 

compared to July to October at present (Fig.3a). Nevertheless, all three models suggest fire CO2 

emissions in the late 21st century peak in August and September, similar to the current climate. 

Therefore, we continue to focus our projections on changes in fires and PM2.5 air quality in August and 

September. During August and September, fire CO2 emissions are projected to increase significantly 

(p<0.05) over western North America (Fig.3b) and Mediterranean Europe (Figs.S9-S10) in the late 21st 

century under SSP5-8.5, according to our multi-ensemble and multi-model projections. These regions 

are particularly susceptible to water scarcity in a warming climate (76, 77), which could impact regional 

air quality via vegetation feedbacks (78).  

 

[Figure 4 about here] 

Figure 4 illustrates the temporal evolution of surface temperature, soil moisture, vegetation carbon 

mass, burned area, and fire CO2 emissions from CESM2, which best simulates the observed 

interannual variability of fires, as discussed previously (Fig.2). Changes in fire CO2 emissions and 

burned area from the other two models are also shown for comparison. CESM2 projects a ~2K increase 

in August–September mean surface temperature over western North America by the 2040s (versus 

present day), with little difference across the SSPs (Fig.4a). Surface temperatures among scenarios 

diverge afterwards, with a 7.5K increase under SSP5-8.5 compared to a 2K increase under SSP1-2.6 

by the late 21st century (versus present day). Following climate warming and rising CO2 concentrations, 

which stimulates vegetation growth, CESM2 simulates a decrease in surface soil moisture and an 

increase in vegetation carbon mass (Fig.4b-c), both providing more favorable conditions for fires. Under 

the SSP3-7.0 and SSP5-8.5 high-warming scenarios, CESM2 projects a ~10% decrease in surface soil 

moisture by the end of the 21st century. The projected decrease is consistent with the overall drying 

trend projected by 13 CMIP6 models (79), attributed primarily to enhanced evaporative demand and 

water use by vegetation in a warmer climate (80). Vegetation carbon mass shows a ~50% increase by 
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2100 under SSP5-8.5, partly driven by CO2 fertilization, increased temperature, and land use changes 

(81-83).  

 

Following the projected trends in climate and vegetation, CESM2 shows 50–120% increases in burned 

area and 110–250% increases in fire CO2 emissions among different SSPs by 2100 over western North 

America (Fig.4d,g; Table S2). The different increases in fires among the scenarios reflect impacts from 

both climate and population distributions (37). The projected increases in fire CO2 emissions are ~250% 

under the SSP3-7.0 and SSP5-8.5 extreme warming scenarios, more than twice that under the SSP1-

2.6 climate mitigation scenario. We note a smaller increase in fire burned area under SSP5-8.5 (100%) 

compared to SSP3-7.0 (120%) (red versus yellow lines in Fig.4g). This may be related to the larger 

population projected under SSP5-8.5 (84) and thus stronger effects of fire suppression (85, 86). The 

influence of population density on fire suppression is also evident in historical simulations (Fig.S11). 

Across all scenarios, the projected increases in fire CO2 emissions are about twice those in burned area 

(Fig.4), indicating increased emission efficiency per area burned driven partly by increased vegetation 

biomass or increased fire duration in a warming climate.  

 

All three models project substantial increases in burned area and fire CO2 emissions in the late 21st 

century, although the magnitudes of the projected changes, the spatial patterns, and the spreads across 

scenarios and across ensemble members differ (Fig.4 and Figs.S9-S10). The projected percentage 

increase in fire CO2 emissions per degree warming is ~40% in CESM2 and GFDL-ESM4.1 and ~20% 

in CNRM-ESM2-1. Under SSP5-8.5 by the late 2100s, the projected increase in fire CO2 emissions 

over western North America is 260% from GFDL-ESM4.1, 240% from CESM2, and 130% from CNRM-

ESM2-1 (Fig.4d-f). GFDL-ESM4.1 shows the largest cross-scenario spread, with a 70% increase in fire 

CO2 emissions under SSP1-2.6 and a 260% increase under SSP5-8.5 by the late 21st century (Fig.4e). 

Among the three models, CNRM-ESM2-1 has the simplest fire module but has the greatest number of 

ensembles (see Methods and Table S1). The larger ensemble spread for both historical and future 

simulations in CNRM-ESM2-1 results in a better estimate of the influence of the internal climate 

variability on fire emissions. There are also some inter-model differences in the spatial distribution of 

the projected fire increases over western North America (Figs.S9-S10). CESM2 shows larger increases 

of fire burned area and emissions over the northern Great Plains, while CNRM-ESM2-1 and GFDL-
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ESM4.1 simulate larger increases over the Pacific Northwest. These results highlight the importance of 

multi-model and multi-ensemble projections to access uncertainties.  

 

Comparison with previous studies  

A few prior studies have estimated changes in fire emissions in the 21st century. Here we present a brief 

comparison with our results. Under SSP2-4.5 by midcentury, the three CMIP6 models we consider 

projected a 60–80% increase in fire emissions over western North America. Our projected changes are 

smaller than the ~150% increase projected by a statistical fire model considering impacts from climate 

but not land use and population density (26). This is consistent with the smaller increase in fire carbon 

emissions over western North America during 1960s–2010s from the CESM2 coupled historical 

simulations using interannually varying versus fixed-1850 land use and population density (Fig.S11). 

Increased population density leads to greater fire suppression, wood harvest, and conversion of natural 

land (i.e. forest) to managed land (i.e. cropland), resulting in reduced forest biomass available for 

burning (40, 43, 87). Our projection of 60–80% increase in fire CO2 emissions over western North 

America is higher than the 45% increase projected by an offline process-based fire model driven by 

archived meteorological fields (23). The larger changes from our projection may be related to a positive 

feedback between fire and climate, e.g. increased fire risk due to enhanced surface temperature caused 

by fire-induced damage in vegetation canopy, which is not included in the offline simulation (37, 42, 88). 

The comparisons suggest that it is important to consider the impacts from climate, land use, and 

population influence for a robust projection of fires and feedbacks. 

 

Increasing PM2.5 pollution from wildfires in a warming climate 

[Figure 5 about here] 

Changes in fire CO2 emissions and meteorology projected by three CMIP6 Earth system models are 

used to drive the MLR model to predict PM2.5 over the western US under four SSP scenarios (Fig.5, 

Table S2). The MLR model driven by historical fires generally captures the observed variability and 

increasing trend of western US PM2.5 in August–September during 1997–2020, demonstrating the 

credibility of the MLR-based PM2.5 estimations (red versus black lines in Fig.5d-f). The MLR model 

driven by simulated future fires projects August–September mean PM2.5 levels at western US sites to 

increase by approximately 50% in the coming decades (2020–2050), even under the SSP1-2.6 strong-

mitigation scenario with global CO2 emissions cut severely and reaching net-zero around 2050. Under 
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the “middle-of-the-road” SSP2-4.5 scenario, CO2 emissions hover around current levels before falling 

mid-century, but do not reach net-zero by 2100 (71, 72); wildfire emissions and resulting PM2.5 pollution 

would continue to increase after 2050 and almost double by 2100 compared to present-day levels 

(green lines in Figs.4d-f and 5d-f). Under SSP5-8.5, with CO2 emissions roughly double present levels 

by 2050 (71, 72) and western US summer mean temperature rising 6–8 K by the end of the century 

(Fig.4a), mean PM2.5 levels resulting from increasing wildfires during August–September could double 

to triple compared to present-day levels (red lines in Fig. 5d-f), reaching 15–45 μg/m3 for the US Pacific 

Northwest and northern California by the late 21st century (Fig.5a-c; Table S2). These PM2.5 increases 

are primarily driven by marked increases in fire emissions in the warming climate (Fig.S12), with a small 

contribution from increasing stagnation frequency (Fig.S13).  

 

In contrast, PM2.5 simulated directly by chemistry-climate models, using prescribed fire emissions of 

aerosol precursors responding to changes in land use but not climate (see Methods), do not show 

significant changes (+7%) throughout the 21st century under SSP5-8.5 (tan lines in Fig.5d-f). The 

prescribed fire emissions show little trend over western North America during the 21st century (Fig.S14). 

The minor changes in anthropogenic emissions from the combustion of fossil fuels over western North 

America are not accounted for in our MLR PM2.5 predictions.  

 

[Figure 6 about here] 

We next examine changes in PM2.5 extremes predicted by our MLR model in response to enhanced fire 

activity under the intermediate-mitigation SSP2-4.5 and low-mitigation SSP5-8.5 scenarios (Fig.6). We 

predict considerable deterioration of PM2.5 air quality over the western US in the 21st century under 

SSP5-8.5, caused by fires. By 2080–2100 under SSP5-8.5, the q95 of daily PM2.5 in August–September 

is 20–170 μg/m3 at Pacific Northwest sites, with 72–96% (model spread) of the sites experiencing q95 

PM2.5 above the 35 μg/m3 US national standard, 52–68% above the unhealthy level (55 μg/m3), and 0–

8% above the very unhealthy level (150 μg/m3; Fig.6a-c). The q95 PM2.5 in August–September 

averaged over US Pacific Northwest sites exceeds the 35 μg/m3 US national standard by mid-21st 

century under both SSP2-4.5 and SSP5-8.5 (Fig.6d-f). By the late 21st century, the estimated q95 PM2.5 
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levels averaged over US Pacific Northwest sites in individual models and ensembles could reach as 

much as 85–125 μg/m3 under SSP2-4.5 and 115–155 μg/m3 under SSP5-8.5.  

 

[Figure 7 about here] 

Large fires burning across the US West in 2017, 2018, 2020, and 2021 caused historic levels of air 

pollution, loss of human life, and property damage (12, 54, 56). Unhealthy to hazardous 

concentrations of PM2.5 (55–500 μg/m3) were recorded at sites in the US Pacific Northwest and 

California for extended periods during summer to fall (11, 12). We use extreme value theory to 

examine whether these historically consequential events are more likely to occur in a future climate 

under intermediate and high emissions scenarios (Methods). We analyze large samples of q95 PM2.5 

at each site over the US Pacific Northwest during August–September from historical extremes (2017, 

2018, and 2020), all historical observations for 1997–2020, and the MLR projections for 2080–2100 

(Fig.7). We find that the shape of the exceedance probability distribution of q95 PM2.5 during the late 

21st century under SSP5-8.5 resembles that for the historic PM2.5 extremes of 2017, 2018, and 2020 

caused by fires: ~70% of sites have q95 PM2.5 exceeding the 35 μg/m3 US national standard, 

compared to only 16% for average conditions observed during the past two decades (Fig.7a). Under 

SSP2-4.5, the PM2.5 distribution also shows a substantial shift towards extreme conditions. Figure 7b 

shows the return period of the q95 PM2.5 at US Pacific Northwest sites, fitted using a generalized 

extreme value distribution, from historical observations and the MLR PM2.5 predictions.  For a range of 

return periods (e.g., 5, 10, 20 years), the estimated q95 PM2.5 would double to triple in the MLR 

projections compared with historical observations. The return period of the recent pollution extremes 

of 2017, 2018, and 2020 (with a mean August–September q95 PM2.5 of 72 μg/m3) would decrease to 

approximately 5 years in the late 21st century under SSP2-4.5 and to 3 years under SSP5-8.5.  

Conclusions and Implications  

Using an empirical statistical model driven by observations and CMIP6 Earth system model 

projections of fire CO2 emissions and meteorology, we project western US PM2.5 air quality in the 21st 

century under a suite of Shared Socioeconomic Pathways (SSPs). Late summer to fall PM2.5 pollution 

over the US Pacific Northwest is projected to double to triple by 2080–2100 due to enhanced fire 

activity associated with drought and increased biomass under intermediate (SSP2-4.5) and high 

warming scenarios (SSP5-8.5). Even with strong mitigation under SSP1-2.6, western US PM2.5 
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pollution would increase ~50% by mid-century. The occurrence of four severe fire years in quick 

succession during 2017–2021 over the western US raises the possibility that climate change is 

already driving strong changes in fire regimes that may be underestimated by our models. Our study 

suggests that severe PM2.5 air pollution caused by these historic fire events could occur every 5 years 

in the late 21st century under an intermediate climate change scenario (SSP2-4.5). Air quality 

exceedances caused by wildfires can be classified as 'exceptional events,' which are not counted 

towards a non-attainment determination, according to the US Environmental Protection Agency. 

However, a considerable increase in the frequency of fire-driven exceedances may complicate this 

policy, as these events become a new norm in the changing climate. The large spread across climate 

change scenarios highlights the co-benefits of climate mitigation for wildfires and air pollution. Multi-

agency collaborations, addressing climate mitigation, air quality, and forest management, are needed 

to minimize the adverse health impacts projected to result from fire smoke. 

 

Materials and Methods 

1. Data availability 

The data from three CMIP6 models used in this study (89-91) are publicly available at https://esgf-

node.llnl.gov/projects/cmip6/. Surface observations of PM2.5, meteorological variables from reanalysis 

datasets, satellite observations of burned area, and fire emission inventories are publicly available 

through the links provided at the corresponding references as described below.  

 

2. Multi-linear regression model 

The multiple linear regression (MLR) model is developed using observational datasets of surface 

PM2.5 concentrations, meteorological variables, and fire CO2 emissions over western North America 

during 1997–2020. This observation-based MLR model is then applied to predict future PM2.5 levels 

driven by fire CO2 emissions and meteorology projected by the CMIP6 Earth system models. 

Considering that climate model projections are more robust on larger scales, all observational 

datasets and CMIP6 model fields used for the MLR analysis are averaged onto a 2°×2° grid. The 

MLR model predicts the mean and the 95th percentile of PM2.5 at each 2°×2° grid d and month i in the 

form of: 

PM2.5!,#(t) = β!,#Fire!,#(t) + ∑ β!,#,$Met!,#,$(t)%
$&' +	b!,#                                                               (1) 
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where Fire(t) is the anomaly time series of fire CO2 emissions in percentage relative to the present-

day climatology, Met(t) is the anomaly time series of meteorological variables (i.e., surface 

temperature, precipitation, relative humidity, and air stagnation) relative to the present-day 

climatology; β and b are regression coefficients fitted by the MLR. We select these four 

meteorological variables that have been previously identified to be correlated with surface PM2.5 (11, 

52). We performed the regression by adding and deleting prediction parameters stepwise to obtain 

the best fit based on the Akaike Information Criterion. The relative importance of each predictor is 

determined using a bootstrap approach described in (92).  The performance of the MLR model is 

tested using leave-one-out cross-validation (SI Appendix, Text S1).  

 

The observation-based MLR model is applied to predict mean and the 95th percentile of surface PM2.5 

concentrations at each 2°x2° grid, driven by monthly time series of fire CO2 emissions and meteorology 

projected by the CMIP6 Earth system models under a suite of climate change scenarios over the course 

of the 21st century. To ensure that we only apply the MLR predictions at locations where PM2.5 levels 

are primarily driven by fire emissions, we limit our analysis to western US grid cells where the observed 

correlation r2 from the MLR model is greater than 0.5 during August and September; as such, sites 

located in urban areas with large anthropogenic influence are filtered out.  For PM2.5 prediction at each 

valid grid, we calculate the anomaly time series (in percentage relative to the present-day 1990–2010 

climatology) of total fire CO2 emissions in a projected future climate, integrated over a regional box 

where the maximum correlation with PM2.5 is found based on historical observations (Fig.1). This 

approach thus accounts for the influence of regional smoke transport. Anomaly time series of 

meteorological variables in the future climate are calculated as the absolute differences from the 

present-day 1990–2010 climatology for each valid 2°×2° grid.  

 

 

3. Observational datasets 

Daily observations of PM2.5 at surface monitoring sites during 1997–2020 are obtained from the US 

Environmental Protection Agency’s Air Quality System (https://www.epa.gov/aqs). To maximize data 

availability, we include PM2.5 measured with both the Federal Reference Methods and non-Federal 

Reference Methods, as a strong linear correlation (r2=0.92) between these two methods has been 

found at co-located monitors (93). To be consistent with the other datasets used for the MLR analysis 



 

 

16 

 

as well as to increase the statistical power and robustness of the analysis, we average all available 

daily surface PM2.5 observations onto a 2°x2° grid. For each month at each 2°x2° grid cell, we 

calculate the average and the 95th percentile of available daily PM2.5 from all sites within that grid. 

Most grids have sample sizes of 50–200 daily PM2.5 observations each month; only grids with at least 

20 samples per month are considered in our analyses (Fig.S2). 

To represent the intensity and severity of wildfires, we use satellite observations of burned area and 

satellite-based estimations of fire CO2 emissions, consistent with the datasets available from the 

CMIP6 fire models. The monthly burned area is from the Collection 6 Moderate Resolution Imaging 

Spectrometer (MODIS) climate model grid burned area product (2000–2020, 0.25°x0.25°) (60). Fire 

emissions of CO2 are obtained from the Global Fire Emissions Dataset version 4 with small fires 

(GFED4s, 1997–2020, 0.25°x0.25°) based on satellite-retrieved burned area (61, 62), and the Quick 

Fire Emission Dataset version 2.5 (QFED2.5, 2001–2019, 0.1°x0.1°) based on satellite-observed fire 

radiative power (63). The MLR model only uses fire CO2 emissions from GFED4s averaged onto a 

2.0x2.0 grid while both GFED4s and QFED2.5 are used to evaluate the CMIP6 fire models. 

The MLR analysis includes four meteorological variables that have been previously identified to have 

correlations with surface PM2.5 (11, 52): surface temperature, precipitation, relative humidity, and air 

stagnation (SI Appendix, Text S2). Monthly mean surface temperature, precipitation and relative 

humidity are obtained from the European Centre for Medium-Range Weather Forecasts Reanalysis 

version 5 (ERA5, 1997–2020, 0.1°x0.1°) (94). The air stagnation index is obtained from the U.S. 

National Centers for Environmental Information (95). All original datasets are averaged onto a 2°x2° 

grid for the MLR analysis.  

 

4. CMIP6 Fire Models 

We use simulations from three CMIP6 Earth system models (CESM2, GFDL-ESM4.1 and CNRM-

ESM2-1) that archived CO2 emissions from fires and meteorological variables needed for the MLR 

model. The models’ horizontal resolutions range from 1.0 to 1.5° (Table S1). Vegetation structure and 

functioning in all three models (e.g., leaf area index) respond to changes in climate. GFDL-ESM4.1 

simulates daily vegetation distribution (58, 96-98) while CESM2 and CNRM-ESM2-1 use prescribed 

land use and land cover change files (49, 59). Fire CO2 emissions in all three CMIP6 models are 

simulated dynamically, coupled to climate and vegetation (SI Appendix, Text S3) (42, 43, 45-47, 50, 



 

 

17 

 

51, 99). However, these models do not calculate fire emissions of particles or non-CO2 gases, so 

atmospheric chemistry in these models is not coupled to interactive fire emissions responding to 

climate change. 

 

Two sets of experiments from these models are used: (1) Land-only experiments (LAND-HIST 

experiment from the Land Use Model Intercomparison) driven by the observation-based 

meteorological forcings (derived from dynamic downscaling of the 20th-Century Reanalysis) (100, 

101); (2) Coupled land-atmosphere-ocean historical simulations (CMIP6 HIST experiment) and future 

projections (from the Scenario Model Intercomparison Project) driven by emissions of greenhouse 

gases and aerosols under four Shared Socioeconomic Pathways: SSP1-2.6, SSP2-4.5, SSP3-7.0, 

SSP5-8.5 (71). The land-only experiments driven by observed climate allow for direct comparison with 

observations in space and time in order to understand biases related to the modeling of fire dynamics 

(Fig.2). The coupled model simulations are used to understand changes in fires under climate change 

scenarios, which serve as a key predictor for future PM2.5 levels (Figs.5-7). To understand the drivers 

of the temporal evolution of historical fires (Fig.S11), we analyze three CESM2 coupled-model 

experiments: (1) with all historical forcings (HIST): (2) the control simulation with pre-industrial  

forcings, including constant land cover and land use, land management, and population density at 

1850 levels (pi-Control) (102); (3) with all historical forcings same as HIST but with land use held 

constant at 1850 levels as in pi-Control (HIST_NoLU) (101).  

 

 

5. Chemistry-climate model PM2.5 simulations using prescribed fire emissions 

We compare the MLR-based estimations of PM2.5 driven by interactive fires responding to climate 

change with PM2.5 directly simulated by three chemistry-climate models (103-105). In these chemistry-

climate models, fire emissions of particles are prescribed for both historical and future simulations. 

Historical simulations of these models use fire emissions of gases and particles from GFED version 4 

with small fires (GFED4s) for 1997–2014, and historical reconstructions from the Fire Model 

Intercomparison project prior to 1997 (28, 48). Future fire emissions of gases and particles are 

prescribed based on the spatial distribution of the 2005–2014 climatology from GFED4s, and consider 

the impacts from land use but not climate change (29). There are no substantial trends nor 

interannual variability in biomass burning emissions of aerosols used for future PM2.5 projections from 
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these chemistry-climate models (Fig.S14). Future PM2.5 levels simulated by these chemistry-climate 

models thus reflect the impacts from changes in anthropogenic emissions and meteorology, but 

overlook the impact of climate-driven increases in fire emissions of aerosols and aerosol precursors.  

 

6. Calculation of exceedance probability and return period 

To examine how prevalent the recent PM2.5 pollution extremes caused by fires in 2017, 2018 and 

2020 may be in a warming climate, we compare the exceedance probability and return period of the 

95th percentile (q95) of daily PM2.5 in August–September at US Pacific Northwest sites from historical 

observations with MLR projections under SSP2-4.5 and SSP5-8.5 scenarios.  

 

The exceedance probability is calculated as 1-𝐹(, where 𝐹( is the empirical cumulative distribution 

function, calculated as 𝐹((𝑡) =
'
(
	∑ 𝟏𝑿𝒊*𝒕

(
,&' , where n is the total number of the predicted monthly q95 

PM2.5  at each site in the US Pacific Northwest in August and September.  ∑ 𝟏𝑿𝒊*𝒕
(
,&'  is the number of 

events with the predicted q95 PM2.5 smaller than a given q95 PM2.5 level of t.  

The return levels and return periods are estimated using extreme value theory (106). Extreme value 

theory has been used in previous studies to estimate return levels and days of ozone pollution events 

under present and future climates (107-109). Here in this study, we perform the extreme event 

analysis with the extRemes package in R (110) using large samples of q95 PM2.5 at each site in the 

US Pacific Northwest during August–September from historical extremes (2017, 2018, and 2020), 

from all historical observations for 1997–2020, and from the MLR projections for 2080–2100. The 

observed and MLR-predicted q95 PM2.5 are fitted using a generalized extreme value distribution 

function. The 95% confidence intervals are estimated based on the delta method using the parameter 

covariance (110). 
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Figures: 

 
Figure 1. Observed correlations between fires and surface PM2.5 air quality. (a-c) Correlation r2 of 
mean PM2.5 averaged over each 2 ox2 o grid with regional total CO2 emissions from fires in August–
September during 1997–2020 derived from simple linear regression (a) versus multiple linear 
regression (MLR) with consideration of meteorological variables (b), and the variance explained over 
the US Pacific Northwest (solid black box on b) by each predicting variable (c). The width of the box 
(in degrees), within which regional total fire emissions are best correlated with PM2.5 at that site, is 
given in the right corner in (a). The r2 values are color-coded for sites with significant correlations, with 
gray indicating sites with insignificant correlations (p > 0.05). (d-f) Same as (a-c) but for the 95th 
percentile (q95) of available daily PM2.5 observations at each grid in August–September. (g-h) Time 
series of the mean and q95 PM2.5 in August–September averaged over US Pacific Northwest sites 
from 1997 to 2020, along with regional total CO2 emissions from fires integrated over western North 
America (dashed black box on b).  
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Figure 2. Evaluating model simulations of fires over western North America. (a-b) The 2001–
2020 climatology of August–September total burned area from MODIS satellite observations and fire 
CO2 emissions from GFED4s over North America. (c) The relative changes of August–September total 
burned area over western North America (WNA, black box on map) from 1980 to 2020 versus 2000–
2014 averages from MODIS satellite observations (black) and from three CMIP6 land-only 
experiments (solid lines). (d) same as (c) but for fire CO2 emissions from two satellite-based 
inventories (black for GFED4s and gray for QFED2.5) and from three CMIP6 land-only experiments 
(solid lines). Standard deviations (sd, in percentage) and correlations r2 between models and 
observational datasets (QFED2.5 in parentheses) are shown in c and d. 
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Figure 3. Changes in fire seasonality in the late 21st century. (a) Monthly mean fire CO2 emissions 
over western North America under present day (1990–2010, solid lines) and SSP5-8.5 (2080–2100, 
dashed lines) normalized by the month with peak emissions at present day from CMIP6 coupled 
model experiments. Also shown are satellite-based estimates for present-day climate (black). (b) 
Multi-model and multi-ensemble mean changes in CO2 emissions from fires (in Gg C) in August–
September during the late 21st century under SSP5-8.5 (2080–2100 minus 1990–2010). The results 
are first averaged across the available ensemble members from each model (3 for CESM2, 1 for 
GFDL-ESM4.1, and 5 for CNRM-ESM2-1), and then averaged across the models. Stippling indicates 
grids with less than two models show statistically significant (p < 0.05) changes or where the three 
models do not agree in sign. For each model, a change is defined significant if >50% of the ensemble 
changes are statistically significant (p < 0.05).  
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Figure 4. Changes in climate and fires during August–September in the 21st century. Changes 
in 10-year running average of surface temperature (a), soil moisture in top 10 cm (b), and carbon 
mass in vegetation (c) relative to the 1990–2010 averages in August–September over western North 
America from CESM2 historical simulations (gray) and future projections (colors) under four SSPs 
(Table S1). (d-f) same as (a) but for total fire emissions of CO2 (in percent) and (g-i) burned area (in 
percent) from three CMIP6 Earth System models: CESM2 (left), GFDL-ESM4.1 (middle) and CNRM-
ESM2-1 (right). Thick lines represent the multi-ensemble mean, with shading illustrating the spread of 
available ensemble members (numbers denoted at the bottom-right corner of each graph). 
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Figure 5. Projected changes in August–September mean PM2.5 due to increasing fire 
emissions. (a-c) The August–September mean PM2.5 in 2080–2100 at western US sites (averaged 
over a 2 o×2o grid) predicted by MLR driven by fires from three CMIP6 models under SSP5-8.5. Only 
grids with MLR correlation r2>0.5 are shown. (d-f) Temporal evolution of August–September mean 
PM2.5 averaged over US Pacific Northwest sites (box on map) during 1900–2100 from the chemistry-
climate model simulations with prescribed fire emissions (tan lines) versus from the MLR model 
predictions considering the impacts of future climate change on fire emissions under SSP1-2.6 (blue 
lines), SSP2-4.5 (green lines), and SSP5-8.5 (red lines). Thick lines represent 10-year running multi-
ensemble averages and thin lines represent averages for individual years from each ensemble 
member of each model (3 for CESM2, 1 for GFDL-ESM4.1, and 5 for CNRM-ESM2-1). The August–
September interannual time series from observations (black lines) is also shown for comparison. 
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Figure 6. Projected changes in PM2.5 extremes in August–September due to increasing fires. 
(a-c) The 95th percentile of daily PM2.5 (q95) during August–September in 2080–2100 at western US 
sites (computed over a 2 o×2o grid) predicted by MLR driven by fires from three CMIP6 models under 
SSP5-8.5. Only grids with MLR correlation r2>0.5 are shown. (d-f) Temporal evolution of the q95 PM2.5 
in August–September averaged over US Pacific Northwest sites (box on map) from the MLR model 
projections under SSP2-4.5 (green) and SSP5-8.5 (red). Thick lines represent 10-year running multi-
ensemble averages and thin lines represent averages for individual from each ensemble member of 
each model (Table S1). The August–September interannual time series from observations (black 
lines) is also shown for comparison. 
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Figure 7. Likelihood of historical pollution extremes in a warming climate. Exceedance 
probability of the 95th percentile of daily PM2.5 at US Pacific Northwest sites during August–
September: from observations during 1988–2020 (gray solid line) and during the 2017, 2018 and 
2020 extreme fire seasons (black dotted line), from the MLR PM2.5 predictions driven by fires in three 
CMIP6 models during 2080–2100 under SSP2-4.5 (green) and SSP5-8.5 (red). The arrow denotes 
the 35 μg/m3 US National Ambient Air Quality Standard for 24-h average PM2.5. Numbers in brackets 
represent sample size for calculating the exceedance probability; (b) return period of the 95th 
percentile of daily PM2.5 at US Pacific Northwest sites in August–September fitted using generalized 
extreme value distribution: from observations during 1997–2020 (black solid line), and from the MLR 
PM2.5 predictions driven by fires in three CMIP6 models during 2080–2100 under SSP2-4.5 (green) 
and SSP5-8.5 (red). The 95th percentile of daily PM2.5 in August–September of 2017, 2018 and 2020 
is marked as the horizontal dotted line. Shading for observations represents the 95% confidence 
intervals of estimated PM2.5 levels for different return periods. Shading for MLR projections represents 
the maximum and minimum of estimated PM2.5 levels for different return periods from different model 
ensembles. Intercepts between the horizontal black dotted line and the fitted solid lines represent the 
return periods for the observed 2017–2020 extremes in present and future climates.  
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Supplementary Information Text 

Appendix S1. Cross validation of the MLR model 
For each grid d with n years of available observations, we train the model using n-1 years of data and 
predict over the remaining year. The resulting leave-one-out cross validation results for both the mean 
PM2.5 (r2=0.56–0.61, root mean square error, RMSE =4.0–5.6 μg/m3) and the 95th percentile PM2.5 
(r2=0.51–0.66, RMSE=11.3–14.1 μg/m3) in August–September averaged over western US grids are 
statistically significant (p<0.05). The results are close to the standard model fit (r2=0.76–0.82, 
RMSE=2.3–7.7 μg/m3), indicating robustness of the MLR model.  
 

Appendix S2. Meteorological dataset 
Monthly mean surface temperature, precipitation and relative humidity are obtained from the 
European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) (94). The 
relative humidity is calculated from the dew point temperature in ERA5 as  
 𝑅𝐻 = 100%× -"(/#)

-"(/)
 ,  

where 𝑇1 is the dewpoint temperature and 𝑇 is the temperature, and 𝑒2 is the saturation vapor 
pressure, which can be empirically calculated using Bolton’s method (111) in the form of  
𝑒2(𝑇) = 0.6112 exp B '3.53/

/67%8.9
C	 , 

 
Air stagnation in the U.S. National Centers for Environmental Information dataset is defined as days 
when there is no precipitation, sea level geostrophic winds are lower than 8 m/s (or <10 m/s when 
there is a surface to 850 mb temperature inversion), and 500 mb wind speeds are lower than 13 m/s 
(112). Air stagnation in the CMIP6 models is defined as days with precipitation smaller than 1 mm, 
surface wind speed lower than 3.2 m/s and 500 mb wind speeds lower than 13 m/s (113).  
 

Appendix S3. Fire modules in the three CMIP6 models 
The fire module in CESM2 includes four components: non-peat fires outside croplands and tropical 
closed forests, agricultural fires in croplands, deforestation and degradation fires in the tropical closed 
forests, and peat fires (42, 45, 51). The burned area fraction is determined by climate and weather 
conditions, vegetation composition and structure, and human activities. Among them, human 
influence is represented by anthropogenic ignitions (increase with population density), fire 
suppression (increase with population density and gross domestic product per capita human), 
agricultural waste burning, and deforestation rate. After the calculation of burned area fraction, fire 
impacts are estimated, including fire emissions due to biomass and peat burning as well as plant-
tissue mortality, which lead to adjustment of terrestrial ecosystem structure and functioning. We use 
the coupled simulations from CESM2-WACCM, a version of CESM2 with the same land model but 
with comprehensive chemistry extending to 130 km vertically (57, 114). 

 

The fire module in GFDL-ESM4.1 is developed within a global dynamic vegetation and land surface 
model that comprises two sub-models for simulating agricultural and non-agricultural fires (43, 47, 
97). The area burned for agricultural fires on cropland and pasture at each grid cell is forced with 
satellite observations of fire seasonality and frequency, depending on grid-scale crop and pasture 
area but not environmental changes. Simulation of non-agricultural fires follows the process-based 
fire model in CESM2, which predicts area burned at each grid cell as a product of the number of fires 
and burned area per fire, depending on grid-scale fuel availability, fuel moisture, and ignition source. 
Human fire suppression is represented as a function of population density. An enhanced fire rate of 
spread is introduced to better represent crown fires with high intensity. Non-agricultural fires are 
simulated on a daily basis, allowing multiday burning with a maximum duration of 30 days. CO2 



 

 

38 

 

emissions from fires are estimated by applying combustion completeness factors for different 
vegetation types on the aboveground biomass within the burned area. 
 
CNRM-ESM2-1 represents natural wildfires over forests and grasslands in a land model that uses 
prescribed land use and land cover change files (50, 99). The grid cell fire fraction calculation was 
adapted to a daily timestep and depends on availability of fuel and fuel moisture, approximated by soil 
moisture and temperature. Fire fraction is set to zero when the surface litter carbon content is below 
200 gC/m2 and when soil temperature is lower than 0°C. It is also set to zero when more than 20% of 
the grid cell is covered by croplands. Except for this limitation on cropland, human fire suppression is 
not represented. Fire-induced emissions and fire effects on living and dead biomass are Plant 
Functional Type-dependent. 
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Supplementary Figures S1 to S14: 

 

Figure S1. Observed correlations between fires and surface PM2.5 air quality. Correlation r2 of mean 
PM2.5 averaged over each 2ox2o grid with regional total CO2 emissions from fires in May–November 
during 1997–2020, derived from simple linear regression (left panels) and multiple linear regression 
(middle panels) with consideration of meteorological variables, and the variance explained over the 
western US (black box on maps) by each predicting variable (right panels). The r2 values are color-
coded for sites with significant correlations, with gray indicating sites with insignificant correlations (p 
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> 0.05). The width of the box (in degrees), within which regional total fire emissions are best 
correlated with PM2.5 at that site, is given in the right corner in the top panel. 
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Figure S2. Sample sizes of surface PM2.5 observations. Number of samples for calculating monthly 
means and q95 PM2.5 at each 2°×2° grid in August and September averaged over 1997–2020.
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 1 

Figure S3. Evaluating model simulations of fires over western North America. (a) The August–September 2 
total burned area over western North America (black box in Fig. S4) from 1980 to 2020 from MODIS satellite 3 
observations (black) and from three CMIP6 land-only experiments (solid lines). (b) same as (a) but for fire 4 
CO2 emissions from two satellite observation-based inventories (black for GFED4s; gray for QFED2.5) and 5 
from three CMIP6 land-only experiments (solid lines). Means and standard deviations (sd) during 2000–2014 6 
are reported. 7 
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 8 

Figure S4. Spatial distribution of burned area from observations and land-only simulations. Mean (left panels) 9 
and standard deviation (right panels) of the August–September total burned area during 2000–2014 from 10 
MODIS satellite observations and from three CMIP6 land-only simulations. Black box represents western 11 
North America where fire CO2 emissions are integrated for analysis in Figs. 2-4. Global and Northern 12 
Hemisphere total burned area (Mha) are reported at the right corner.13 
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 14 

Figure S5. Spatial distribution of fire emissions of CO2 from observations and land-only simulations. Mean 15 
(left panels) and standard deviation (right panels) of the August–September total CO2 emission from fires 16 
during 2000–2014 from two satellite observation-based emission inventories (GFED4s and QFED2.5) and 17 
from land-only experiments of three CMIP6 fire models driven by observation-based meteorological forcings. 18 
Black box represents western North America where fire CO2 emissions are integrated for analysis in Figs. 2-4. 19 
Global and Northern Hemisphere total fire CO2 emissions from fires (TgC) are reported at the right corner. 20 

 21 

  22 
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 23 

 24 

Figure S6. Same as Fig. S4, but with model results from the CMIP6 coupled model simulations. 25 
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 26 

Figure S7. Same as Fig. S5, but with model results from the CMIP6 coupled model simulations. 27 

 28 
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 29 

Figure S8. Uncertainties in MLR PM2.5 predictions based on percentage versus absolute change of fires. (Left 30 
panels) August–September mean PM2.5 in the late 21st century (2080–2100) at western US sites (averaged 31 
over a 2 o×2o grid) predicted by MLR driven by the percentage change of fire CO2 emissions under SSP5-8.5 32 
relative to the respective 1990–2010 average from each CMIP6 fire model. (Right panels) same as the left 33 
panels but driven by the absolute changes in each model. Only grids with MLR correlation r2>0.5 are shown.  34 
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 35 

 36 

Figure S9. Changes in burned area over northern mid-latitudes by three CMIP6 Earth system models. 37 
Changes in the August–September total burned area during the late 21st century (2080–2100) compared to 38 
present day (1990–2010) under SSP5-8.5 simulated by three CMIP6 models. Number of ensembles for each 39 
model is shown in the parentheses at the bottom-left corner. The black box represents western North 40 
America. Stippling indicates grids where the changes are not statistically significant at 95% confidence level 41 
from >50% of the available ensembles. For multi model mean, the results are first averaged across the 42 
available ensemble members from each model (3 for CESM2, 1 for GFDL-ESM4.1 and 5 for CNRM-ESM2-1), 43 
and then averaged across the models. Stippling indicates grids with less than two models show statistically 44 
significant (p < 0.05) changes or the three models do not agree in sign. For each model, a change is defined 45 
significant if >50% of the ensemble changes are statistically significant (p < 0.05).46 
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 47 

Figure S10. Same as Fig. S9, but for fire CO2 emissions. 48 

 49 
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 52 

Figure S11. Historical evolution of fires over western North America. Temporal evolution of August–53 
September total fire CO2 emissions (10-year running average) over western North America during 1900–2014 54 
from CESM2 pre-industrial control simulation (pi-Control, black), coupled simulation with all forcings and 55 
historical land use and population density (HIST, blue), and coupled simulation with all forcings but with land 56 
use and population density held constant at 1850 level (HIST_NoLU, orange). Linear trends (in absolute and 57 
percentage relative to 1960 level) during 1960–2014 as well as the 95% confidence limits are reported.  58 

  59 
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 60 

Figure S12. Projected changes in August–September mean PM2.5 from each predicting variable. The MLR 61 
predicted 10-yr running average of changes in August–September mean PM2.5 averaged over the US Pacific 62 
Northwest (black box in Fig. 5) based on the CMIP6 Earth system model projections of each predicting 63 
variable: fire CO2 emissions (orange), air stagnation index (blue), surface temperature (green), precipitation 64 
(cyan) and relative humidity (red). 65 
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 66 

 67 

Figure S13. Same as Fig. S9, but for air stagnation frequency. 68 

 69 
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 71 

Figure S14.  Prescribed organic carbon emissions used for chemistry-climate model PM2.5 72 
predictions. Shown are August–September total organic carbon emissions over western North 73 
America from biomass burning (color-coded solid lines) and anthropogenic sources (color-coded 74 
dashed lines) during 2015–2100 under four SSPs.  Prescribed fire emissions from GFED4s for 75 
historical simulations (before 2014; black) are also shown. 76 

  77 
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Supplementary Tables 1 and 2 78 

Table S1  List of CMIP6 fire models, and number of ensembles from each experiment. 79 

Models  Land-only Coupled 

Historical 

Coupled 

SSP1-2.6 

Coupled 

SSP2-4.5 

Coupled 

SSP3-7.0 

Coupled 

SSP5-8.5 

1850–2014 2015–2100 

CESM2 

(1.25°×0.94°) 
1 3 1 3 3 3 

GFDL-ESM4.1 
(1.25°×1°) 1 3 1 3   1       1 

CNRM-ESM2-1 

(1.4°×1.4°) 
1 5 5 5 5 5 

 80 
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Table S2  Multi-ensemble means of changes in fire CO2 emissions (in percent relative to 1990–2010) 81 

over western North America and the MLR-predicted PM2.5 (μg/m3; percentage changes in 82 

parenthesis) averaged over US Pacific Northwest sites by late 21st century (2080–2100).  83 

Models SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

 Fire CO2 emissions, August–September 

CESM2 +113% +145%  +254% +242% 

GFDL-ESM4.1 +70% +121%  +202% +262% 

CNRM-ESM2-1 +60%  +100% +110% +133% 

 Mean PM2.5 (US Pacific Northwest),  August–September 

MLR (CESM2) 15.4 (+62%) 18.4 (+93%) 22.7 (+138%) 23.9 (+150%) 

MLR (GFDL-
ESM4.1) 

12.7 (+34%) 17.8 (+87%) 22.4 (+135%) 24.8 (+160%) 

MLR (CNRM-
ESM2-1) 

13.2 (+39%) 16.6 (+74%) 18.9 (+99%) 18.9 (+99%) 

 q95 PM2.5 (US Pacific Northwest),  August–September 

MLR (CESM2) 46.4 (+91%) 55.8 (+129%) 73.0 (+201%)  76.9 (+217%) 

MLR (GFDL-
ESM4.1) 

39.1 (+61%) 57.2 (+136%) 73.6 (+203%) 81.6 (+236%) 

MLR (CNRM-
ESM2-1) 

38.1 (+57%) 50.4 (+108%) 56.4 (+132%) 58.0 (+139%) 
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