

Tripling of western US particulate pollution from wildfires in a warming climate

Yuanyu Xie, Meiyun Lin, Bertrand Decharme, Christine Delire, Larry Horowitz, David Lawrence, Fang Li, Roland Séférian

► To cite this version:

Yuanyu Xie, Meiyun Lin, Bertrand Decharme, Christine Delire, Larry Horowitz, et al.. Tripling of western US particulate pollution from wildfires in a warming climate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 (14), 10.1073/pnas.2111372119. hal-03624043

HAL Id: hal-03624043 https://hal.science/hal-03624043

Submitted on 30 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Tripling of Western US Particulate Pollution from Wildfires in a Warming

2 Climate

4 5	Yuanyu Xie ^{1,2} *, Meiyun Lin ^{1,2} *, Bertrand Decharme ³ , Christine Delire ³ , Larry W. Horowitz ² , David M. Lawrence ⁴ , Fang Li ⁵ , Roland Séférian ³
6 7 9 10 11 12 13	 ¹Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA, ²NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA ³CNRM, Université de Toulouse, Météo - France, CNRS, Toulouse, France, ⁴Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA ⁵International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
14	*Corresponding authors: Yuanyu Xie (Email: <u>Yuanyu.Xie@noaa.gov</u> ; Phone:609-865-0982)
15	Meiyun Lin (Email: <u>Meiyun.Lin@noaa.gov;</u> Phone: 609-937-9129)
16	
17 18	Author Contributions: MYL conceived this study and designed the research. YYX and MYL performed the analyses and wrote the article. All coauthors contributed to discussions and improving the manuscript.
19	Competing Interest Statement: The authors declare no competing interests.
20	Classification: Physical Sciences (Earth, Atmospheric, and Planetary Sciences)
21	Keywords: Air quality, fires, drought, climate warming, Earth system models
22	Submitted to PNAS on June 22, 2021; revised on November 19, 2021 and January 26, 2022
23	This PDF file includes:
24 25 26	Main Text (~7785 words) Figures 1 to 7

Abstract (250 words)

The air quality impact of increased wildfires in a warming climate has often been overlooked in current model projections, owing to the lack of interactive fire emissions of gases and particles responding to climate change in Earth System Model (ESM) projection simulations. Here we combine multiensemble projections of wildfires in three ESMs from the Sixth Coupled Model Intercomparison Project (CMIP6) with an empirical statistical model to predict fine particulate (PM_{2.5}) pollution in the late 21st century under a suite of Shared Socioeconomic Pathways (SSPs). Total CO₂ emissions from fires over western North America during August-September are projected to increase from presentday values by 60–110% (model spread) under a strong-mitigation scenario (SSP1-2.6), 100–150% under a moderate-mitigation scenario (SSP2-4.5), and 130-260% under a low-mitigation scenario (SSP5-8.5) in 2080–2100. We find that enhanced wildfire activity under SSP2-4.5 and SSP5-8.5 could cause a two- to three-fold increase in PM2.5 pollution over the US Pacific Northwest during August–September. Even with strong mitigation under SSP1-2.6, PM_{2.5} in the western US would increase ~50% by mid-century. By 2080–2100 under SSP5-8.5, the 95th percentile of late summer daily PM_{2.5} may frequently reach unhealthy levels of 55–150 µg/m³. In contrast, chemistry-climate models using prescribed fire emissions of particles not responding to climate change simulate only a 7% increase in PM_{2.5}. The consequential pollution events caused by large fires during 2017–2020 might become a new norm by the late 21st century, with a return period of every 3 to 5 years under SSP5-8.5 and SSP2-4.5.

Significance Statement (120 words)

Record-setting fires in the western US over the last decade caused severe air pollution, loss of human life, and property damage. Enhanced drought and increased biomass in a warmer climate may fuel larger and more frequent wildfires in the coming decades. Applying an empirical statistical model to fires projected by Earth system models including climate-ecosystem-socioeconomic interactions, we show that fine particulate pollution over the US Pacific Northwest could double to triple during late summer to fall by the end of the 21st century under intermediate- and low-mitigation scenarios. The historic fires and resulting pollution extremes of 2017–2020 could occur every 3 to 5 years under 21st

century climate change, posing challenges for regional air quality management and threatening public health.

Main Text

Introduction

Wildfires contribute 15–30% of atmospheric primary fine particle (PM_{2.5}) emissions in the United States (1), with implications for ecosystems, human health, and climate (2-5). Marked increases in wildfire burned area over the western US in recent decades have been linked to anthropogenic climate change and land management practices (4, 6-8). Increasing emissions from wildfires have caused summertime PM_{2.5} levels to rise in some western US regions despite efforts to control anthropogenic emissions (9-11). Millions of people were exposed to very unhealthy or hazardous PM_{2.5} concentrations (150–650 µg/m³ for 24-h average) for extended periods during recent large wildfires around the world (11-17). Exposure to dense smoke from fires has detrimental effects on human health (3, 18-20), with an economic cost due to short-term smoke exposure estimated to be \$11–20 billion per year in the continental US (21). The US Clean Air Act allows for screening of air quality exceedances caused by "exceptional events," such as wildfires, from counting towards a non-attainment determination (22). Understanding the extent to which wildfire emissions in a future climate influence PM_{2.5} exceedances thus has implications for designing effective air quality policies.

A number of studies have projected enhanced wildfire activity over the western US under a warming climate during the 21st century (23-27). However, owing to the lack of interactive fire emissions of gases and particles responding to climate change in current chemistry-climate models, projections of future PM_{2.5} air quality generally overlook the impacts of changing fires (28-31). A few studies estimated future fire emissions using statistical regressions of burned area and climate variables and fed these emissions into an offline chemical transport model to estimate future PM_{2.5} air quality (26, 32-35). These studies suggested 80–170% increases in fire emissions of primary aerosols by the 2050s, which resulted in 46–70% increases in surface organic carbon concentrations (a key component in fire smoke). Using fire emissions simulated by a process-based fire model driven by archived meteorological fields from a chemistry-climate model, several studies estimated 50–90% increases in mean organic carbon concentrations over the continental US by the late 21st century (23,

36). These results have large uncertainties, as the statistical or offline fire models typically do not include feedbacks among climate, land use, ecosystem dynamics, and anthropogenic influences through ignition and suppression (2, 37-39).

Here we leverage the Sixth Coupled Model Intercomparison Project (CMIP6) multi-model and multiensemble simulations of fire CO₂ emissions responding to changes in climate, vegetation, and population distributions, combined with a multiple linear regression (MLR) model developed from historical observations, to project wildfire impacts on PM_{2.5} means and extremes over the western US under a suite of Shared Socioeconomic Pathways (SSPs; see *Methods*). The process-based fire models in CMIP6 are greatly improved compared to those in CMIP5, with better representation of the impacts of fuel wetness on fire occurrence and spread, enhanced fire spread rate in forest crowns, and ability to simulate multi-day fires (40-51). Our statistical model considers the influence of both local and regional fires, as well as inter-state smoke transport, air stagnation, and other meteorological conditions. We compare our MLR-predicted PM_{2.5} with that simulated in the chemistryclimate models using prescribed fire emissions of gases and particles not responding to climate change (see *Methods*) (29). We show that drought and increased biomass under a warmer climate in the Pacific Northwest during the late 21st century increase the risk of fires, causing a two- to three-fold increase in PM_{2.5} levels in late summer to fall.

Results

Observed correlations between fires and PM_{2.5} air quality

[Figure 1 about here]

We first use historical observations to investigate the extent to which the interannual variability of PM_{2.5} means and extremes at US surface sites can be explained by regional versus local fires as well as meteorological conditions. The observed relationships will serve as a basis for developing the MLR model used to predict future PM_{2.5} levels from fire CO₂ emissions and meteorology available from CMIP6 Earth system models. We correlate surface PM_{2.5} observations averaged over a 2°×2° grid with fire CO₂ emissions integrated over a box with size varying from 2.5°×2.5° to 20°×20° centered at that grid during May–November from 1997 to 2020, using simple linear regression and multiple linear

regression (MLR, see *Methods*). We consider four meteorological variables: surface temperature, precipitation, relative humidity, and air stagnation, which have been previously shown to be correlated with surface PM_{2.5} (11, 52).

During August and September, when fires peak seasonally over the Pacific Northwest under the present-day climate (53), mean PM_{2.5} levels at western US sites show strong correlations ($r^2 = 0.5-0.9$) with regional fire CO₂ emissions summed over a box of 10°×10° to 15°×15°, indicating the importance of regional smoke transport (11) (Fig.1a). In comparison, the correlations are much weaker ($r^2 < 0.5$) during May–July and October–November (Fig.S1), and are statistically insignificant (p > 0.05) at most eastern US sites, where fire is not the dominant source of surface PM_{2.5}. In the following analyses we thus focus on the US Pacific Northwest (solid black box on Fig.1b) during August and September.

The MLR model, including the impacts from meteorological variables, achieves higher correlations (r^2 = 0.7–0.9; Fig.1b) compared to a simple linear regression with fires alone (r^2 = 0.5–0.9; Fig.1a). Fire CO₂ emissions on average explain 66% of the observed PM_{2.5} interannual variability during August–September in the Pacific Northwest (Fig.1c), with air stagnation index being the second most important predictor (11%), consistent with our prior work suggesting that air stagnation played an important role in the accumulation of PM_{2.5} during the historic 2017 and 2018 fire seasons (11). The contributions from relative humidity, temperature, and precipitation are each less than 10%. A larger increase in correlation (r^2) with meteorology is found in July and October than August or September, suggesting a more important role of meteorology in controlling PM_{2.5} during these months (Fig.S1). These correlations confirm that it is important to consider impacts from both fires and meteorology for a robust estimation of changes in future PM_{2.5} air quality.

We next examine the relationship between regional fires and PM_{2.5} extremes defined as the 95th percentile (q95) of available daily PM_{2.5} measurements from all sites within a 2°×2° grid for August and September (see *Methods* and Fig.S2). We still use monthly mean meteorological variables instead of extremes in the MLR model, since the q95 PM_{2.5} in observations may not coincide with days having extreme meteorological conditions (i.e., heat wave, stagnation) and there are larger uncertainties in the predicted climate extremes than mean states. Significant correlations are observed between fire CO₂ emissions and the q95 PM_{2.5} at most western US sites in August and September, based on simple linear

regression ($r^2 = 0.5-0.9$; Fig.1d) and MLR ($r^2 = 0.7-0.9$; Fig.1e). Fire CO₂ emissions explain 70% of the observed PM_{2.5} interannual variability on average at US Pacific Northwest sites (Fig.1f), dominating over meteorological impacts.

The interannual variability of both mean and q95 PM_{2.5} during August–September averaged over US Pacific Northwest sites shows a strong correlation ($r^2 = 0.8-0.9$) with regional total fire CO₂ emissions over western North America (Fig.1g-h). In the 2017, 2018, and 2020 fire seasons, the western US experienced record-breaking wildfires burning ~50% more than the average area over the past two decades (54-56). The q95 PM_{2.5} averaged over the US Pacific Northwest sites during August–September was 76 µg/m³ in 2017, 44 µg/m³ in 2018, and 95 µg/m³ in 2020, respectively, exceeding the US National Ambient Air Quality Standard of 35 µg/m³.

These MLR analyses demonstrate significant interannual correlations of surface PM_{2.5} pollution with regional fire CO₂ emissions and meteorology over the western US during August–September. Cross validation further confirms the robustness of the MLR model in predicting PM_{2.5} (*SI Appendix*, Text S1). We obtain regression coefficients for the MLR model using the relationships of PM_{2.5}, fires, and meteorological conditions observed in August–September during the period 1997–2020. Then we drive the MLR model with the monthly time series of fire CO₂ emissions and meteorological variables simulated by CMIP6 Earth system models under different climate change scenarios to predict PM_{2.5} throughout the 21st century (see *Methods*).

Evaluating variability of fires simulated by CMIP6 models

[Figure 2 about here]

To establish the robustness of future projections, we examine how well three CMIP6 models, the Community Earth System Model version 2 (CESM2) (57), the Geophysical Fluid Dynamics Laboratory Earth System Model version 4.1 (GFDL-ESM4.1) (58) and the Centre National de Recherches Météorologiques Earth System Model version 2 (CNRM-ESM2-1) (59), simulate historical fires. We use satellite observations of burned area from the MODerate Resolution Imaging Spectrometer (MODIS) (60) and satellite-based estimates of fire CO₂ emissions from the Global Fire Emissions Database (GFED4s) (61, 62) and the Quick Fire Emissions Dataset (QFED2.5) (63). Observations show hotspots of burned area and fire CO₂ emissions over the Pacific Northwest in August and September (Fig.2a-b). We investigate the extent to which models capture the interannual variability of fires over this region relative to their respective mean state. Evaluating normalized interannual variability provides insights into the sensitivity of simulated fires to meteorological and climatic variability, which is critical to establish the robustness of projected fire responses to climate change.

We first examine the land-only experiments (see *Methods*) driven by observation-based meteorological forcings to allow direct comparison with the observed fires in space and time. The land-only simulations generally capture the observed normalized interannual variability of burned area ($r^2 = 0.32-0.67$) and fire CO₂ emission ($r^2 = 0.25-0.60$) over western North America (Fig.2c-d), despite mean-state biases (Fig.S3). Above-normal fire activity is observed and simulated in years such as 1988, 2006, 2012, 2017, 2018, and 2020, associated with severe drought conditions (64-69). The CESM2 model performs best in simulating the interannual variability of burned area ($r^2 = 0.67$; p < 0.01) and fire CO₂ emission ($r^2 = 0.60-0.64$; p < 0.01). For comparison, the correlations for burned area are $r^2 = 0.49$ (p < 0.01) for CNRM-ESM2-1, and $r^2 = 0.32$ (p < 0.05) for GFDL-ESM4.1. The amplitude of the observed interannual variability of fire CO₂ emissions (represented as standard deviation in Fig.2) is also best captured by CESM2: s.d. = 36.4%, compared to s.d. = 55.9-56.2% in observations, s.d. = 28.3% in GFDL-ESM4.1, and 20.6% in CNRM-ESM2-1.

The fully coupled ocean-land-atmosphere experiments allow us to project future fires under varying climate change scenarios. These coupled model simulations are driven by model-generated climate and thus are not expected to capture the timing and location of the observed fires during historical periods. Therefore, we evaluate the hemispheric to regional patterns in burned area and fire CO₂ emissions, as well as the strength of interannual variability during the 1997–2014 period. Both the land-only and coupled experiments from all three models simulate the salient features of the spatial patterns of fire burned area and CO₂ emissions across the Northern Hemisphere, such as capturing fire hotspots over western North America and Mediterranean Europe in August and September (Figs.S4-S7). The models simulate reasonable fire interannual variability over these hotspots areas, despite large mean-state biases. Over western North America, total fire CO₂ emissions in August and September are overestimated by a factor of two in CESM2, and factors of 4–5 in GFDL-ESM4.1 and CNRM-ESM2-1, compared to the estimates from two satellite-based fire emission inventories (Fig.S3b). Similar high biases have previously been identified in CMIP5 Earth system models (23, 41) and by the CMIP6 Fire

Model Intercomparison Project (40). These studies suggest possible biases in the simulated fuel load (biomass), fire response to human activities, and fuel consumption rate applied in the models (40, 41, 70).

We conclude that the three CMIP6 Earth system models have moderate ability to simulate changes in fire emissions in response to variations in climate and vegetation, despite varying levels of mean-state biases. To gauge the uncertainties of our PM_{2.5} predictions associated with these biases, we compare MLR predictions driven by the relative changes of fire CO₂ emissions versus those driven by the absolute emission changes in each model. For CESM2, with small mean-state biases in historical fire CO₂ emissions, we find an overall consistent magnitude of western US mean PM_{2.5} predictions between the two MLR models (top panels in Fig.S8). For GFDL-ESM4.1 and CNRM-ESM2-1, with high mean-state biases in historical fire CO₂ emissions predicts much larger PM_{2.5} in 2080–2020, with the PM_{2.5} prediction driven by relative changes agreeing better with that driven by the CESM2 model (bottom panels in Fig.S8). Thus, we conclude that it is more reasonable to use the relative change of fire CO₂ emissions to drive the MLR prediction of future PM_{2.5} levels.

Changes in climate and fires in the 21st century

[Figure 3 about here]

We next investigate changes in climate and fires over western North America in the 21st century from the CMIP6 coupled Earth system simulations under four climate change scenarios: SSP1-2.6 (low societal vulnerability combined with radiative forcing of 2.6 W m⁻² by 2100), SSP2-4.5 (intermediate societal vulnerability, 4.5 W m⁻² forcing), SSP3-7.0 (high societal vulnerability, 7.0 W m⁻² forcing) and SSP5-8.5 (fossil-fueled development, high emissions, 8.5 W m⁻² forcing) (71, 72). While studies have suggested that fire seasonality may change in a warming climate (73-75), our MLR model predictions build upon the strong correlation between PM_{2.5} and fires during August–September over the Pacific Northwest under present-day climate. To investigate whether it is reasonable to focus on August– September under future climate, we examine fire seasonality and spatial pattern over North America under SSP5-8.5 (Fig.3).

All three models project a lengthening of the fire season over the Pacific Northwest in a warmer climate, with elevated fire CO₂ emissions spanning from May to November during 2080–2100 under SSP5-8.5 compared to July to October at present (Fig.3a). Nevertheless, all three models suggest fire CO₂ emissions in the late 21^{st} century peak in August and September, similar to the current climate. Therefore, we continue to focus our projections on changes in fires and PM_{2.5} air quality in August and September. During August and September, fire CO₂ emissions are projected to increase significantly (*p*<0.05) over western North America (Fig.3b) and Mediterranean Europe (Figs.S9-S10) in the late 21^{st} century under SSP5-8.5, according to our multi-ensemble and multi-model projections. These regions are particularly susceptible to water scarcity in a warming climate (76, 77), which could impact regional air quality via vegetation feedbacks (78).

[Figure 4 about here]

Figure 4 illustrates the temporal evolution of surface temperature, soil moisture, vegetation carbon mass, burned area, and fire CO₂ emissions from CESM2, which best simulates the observed interannual variability of fires, as discussed previously (Fig.2). Changes in fire CO₂ emissions and burned area from the other two models are also shown for comparison. CESM2 projects a ~2K increase in August–September mean surface temperature over western North America by the 2040s (versus present day), with little difference across the SSPs (Fig.4a). Surface temperatures among scenarios diverge afterwards, with a 7.5K increase under SSP5-8.5 compared to a 2K increase under SSP1-2.6 by the late 21st century (versus present day). Following climate warming and rising CO₂ concentrations, which stimulates vegetation growth, CESM2 simulates a decrease in surface soil moisture and an increase in vegetation carbon mass (Fig.4b-c), both providing more favorable conditions for fires. Under the SSP3-7.0 and SSP5-8.5 high-warming scenarios, CESM2 projects a ~10% decrease in surface soil moisture by the end of the 21st century. The projected decrease is consistent with the overall drying trend projected by 13 CMIP6 models (79), attributed primarily to enhanced evaporative demand and water use by vegetation in a warmer climate (80). Vegetation carbon mass shows a ~50% increase by

2100 under SSP5-8.5, partly driven by CO₂ fertilization, increased temperature, and land use changes (81-83).

Following the projected trends in climate and vegetation, CESM2 shows 50–120% increases in burned area and 110–250% increases in fire CO₂ emissions among different SSPs by 2100 over western North America (Fig.4d,g; Table S2). The different increases in fires among the scenarios reflect impacts from both climate and population distributions (37). The projected increases in fire CO₂ emissions are ~250% under the SSP3-7.0 and SSP5-8.5 extreme warming scenarios, more than twice that under the SSP1-2.6 climate mitigation scenario. We note a smaller increase in fire burned area under SSP5-8.5 (100%) compared to SSP3-7.0 (120%) (red versus yellow lines in Fig.4g). This may be related to the larger population projected under SSP5-8.5 (84) and thus stronger effects of fire suppression (85, 86). The influence of population density on fire suppression is also evident in historical simulations (Fig.S11). Across all scenarios, the projected increases in fire CO₂ emissions are about twice those in burned area (Fig.4), indicating increased emission efficiency per area burned driven partly by increased vegetation biomass or increased fire duration in a warming climate.

All three models project substantial increases in burned area and fire CO₂ emissions in the late 21st century, although the magnitudes of the projected changes, the spatial patterns, and the spreads across scenarios and across ensemble members differ (Fig.4 and Figs.S9-S10). The projected percentage increase in fire CO₂ emissions per degree warming is ~40% in CESM2 and GFDL-ESM4.1 and ~20% in CNRM-ESM2-1. Under SSP5-8.5 by the late 2100s, the projected increase in fire CO₂ emissions over western North America is 260% from GFDL-ESM4.1, 240% from CESM2, and 130% from CNRM-ESM2-1 (Fig.4d-f). GFDL-ESM4.1 shows the largest cross-scenario spread, with a 70% increase in fire CO₂ emissions under SSP1-2.6 and a 260% increase under SSP5-8.5 by the late 21st century (Fig.4e). Among the three models, CNRM-ESM2-1 has the simplest fire module but has the greatest number of ensembles (see *Methods* and Table S1). The larger ensemble spread for both historical and future simulations in CNRM-ESM2-1 results in a better estimate of the influence of the internal climate variability on fire emissions. There are also some inter-model differences in the spatial distribution of the projected fire increases over western North America (Figs.S9-S10). CESM2 shows larger increases of fire burned area and emissions over the northern Great Plains, while CNRM-ESM2-1 and GFDL-

ESM4.1 simulate larger increases over the Pacific Northwest. These results highlight the importance of multi-model and multi-ensemble projections to access uncertainties.

Comparison with previous studies

A few prior studies have estimated changes in fire emissions in the 21st century. Here we present a brief comparison with our results. Under SSP2-4.5 by midcentury, the three CMIP6 models we consider projected a 60-80% increase in fire emissions over western North America. Our projected changes are smaller than the ~150% increase projected by a statistical fire model considering impacts from climate but not land use and population density (26). This is consistent with the smaller increase in fire carbon emissions over western North America during 1960s-2010s from the CESM2 coupled historical simulations using interannually varying versus fixed-1850 land use and population density (Fig.S11). Increased population density leads to greater fire suppression, wood harvest, and conversion of natural land (i.e. forest) to managed land (i.e. cropland), resulting in reduced forest biomass available for burning (40, 43, 87). Our projection of 60-80% increase in fire CO₂ emissions over western North America is higher than the 45% increase projected by an offline process-based fire model driven by archived meteorological fields (23). The larger changes from our projection may be related to a positive feedback between fire and climate, e.g. increased fire risk due to enhanced surface temperature caused by fire-induced damage in vegetation canopy, which is not included in the offline simulation (37, 42, 88). The comparisons suggest that it is important to consider the impacts from climate, land use, and population influence for a robust projection of fires and feedbacks.

Increasing PM_{2.5} pollution from wildfires in a warming climate

[Figure 5 about here]

Changes in fire CO₂ emissions and meteorology projected by three CMIP6 Earth system models are used to drive the MLR model to predict PM_{2.5} over the western US under four SSP scenarios (Fig.5, Table S2). The MLR model driven by historical fires generally captures the observed variability and increasing trend of western US PM_{2.5} in August–September during 1997–2020, demonstrating the credibility of the MLR-based PM_{2.5} estimations (red versus black lines in Fig.5d-f). The MLR model driven by simulated future fires projects August–September mean PM_{2.5} levels at western US sites to increase by approximately 50% in the coming decades (2020–2050), even under the SSP1-2.6 strong-mitigation scenario with global CO₂ emissions cut severely and reaching net-zero around 2050. Under

the "middle-of-the-road" SSP2-4.5 scenario, CO₂ emissions hover around current levels before falling mid-century, but do not reach net-zero by 2100 (71, 72); wildfire emissions and resulting PM_{2.5} pollution would continue to increase after 2050 and almost double by 2100 compared to present-day levels (green lines in Figs.4d-f and 5d-f). Under SSP5-8.5, with CO₂ emissions roughly double present levels by 2050 (71, 72) and western US summer mean temperature rising 6–8 K by the end of the century (Fig.4a), mean PM_{2.5} levels resulting from increasing wildfires during August–September could double to triple compared to present-day levels (red lines in Fig. 5d-f), reaching 15–45 µg/m³ for the US Pacific Northwest and northern California by the late 21st century (Fig.5a-c; Table S2). These PM_{2.5} increases are primarily driven by marked increases in fire emissions in the warming climate (Fig.S12), with a small contribution from increasing stagnation frequency (Fig.S13).

In contrast, PM_{2.5} simulated directly by chemistry-climate models, using prescribed fire emissions of aerosol precursors responding to changes in land use but not climate (see *Methods*), do not show significant changes (+7%) throughout the 21st century under SSP5-8.5 (tan lines in Fig.5d-f). The prescribed fire emissions show little trend over western North America during the 21st century (Fig.S14). The minor changes in anthropogenic emissions from the combustion of fossil fuels over western North America are not accounted for in our MLR PM_{2.5} predictions.

[Figure 6 about here]

We next examine changes in PM_{2.5} extremes predicted by our MLR model in response to enhanced fire activity under the intermediate-mitigation SSP2-4.5 and low-mitigation SSP5-8.5 scenarios (Fig.6). We predict considerable deterioration of PM_{2.5} air quality over the western US in the 21st century under SSP5-8.5, caused by fires. By 2080–2100 under SSP5-8.5, the q95 of daily PM_{2.5} in August–September is 20–170 μ g/m³ at Pacific Northwest sites, with 72–96% (model spread) of the sites experiencing q95 PM_{2.5} above the 35 μ g/m³ US national standard, 52–68% above the unhealthy level (55 μ g/m³), and 0–8% above the very unhealthy level (150 μ g/m³; Fig.6a-c). The q95 PM_{2.5} in August–September averaged over US Pacific Northwest sites exceeds the 35 μ g/m³ US national standard by mid-21st century, the estimated q95 PM_{2.5}

levels averaged over US Pacific Northwest sites in individual models and ensembles could reach as much as $85-125 \ \mu g/m^3$ under SSP2-4.5 and $115-155 \ \mu g/m^3$ under SSP5-8.5.

[Figure 7 about here]

Large fires burning across the US West in 2017, 2018, 2020, and 2021 caused historic levels of air pollution, loss of human life, and property damage (12, 54, 56). Unhealthy to hazardous concentrations of PM_{2.5} (55–500 µg/m³) were recorded at sites in the US Pacific Northwest and California for extended periods during summer to fall (11, 12). We use extreme value theory to examine whether these historically consequential events are more likely to occur in a future climate under intermediate and high emissions scenarios (*Methods*). We analyze large samples of q95 PM_{2.5} at each site over the US Pacific Northwest during August–September from historical extremes (2017, 2018, and 2020), all historical observations for 1997–2020, and the MLR projections for 2080–2100 (Fig.7). We find that the shape of the exceedance probability distribution of $q95 PM_{2.5}$ during the late 21st century under SSP5-8.5 resembles that for the historic PM_{2.5} extremes of 2017, 2018, and 2020 caused by fires: $\sim 70\%$ of sites have q95 PM_{2.5} exceeding the 35 µg/m³ US national standard, compared to only 16% for average conditions observed during the past two decades (Fig.7a). Under SSP2-4.5, the PM_{2.5} distribution also shows a substantial shift towards extreme conditions. Figure 7b shows the return period of the g95 PM_{2.5} at US Pacific Northwest sites, fitted using a generalized extreme value distribution, from historical observations and the MLR PM_{2.5} predictions. For a range of return periods (e.g., 5, 10, 20 years), the estimated q95 PM_{2.5} would double to triple in the MLR projections compared with historical observations. The return period of the recent pollution extremes of 2017, 2018, and 2020 (with a mean August–September q95 PM_{2.5} of 72 µg/m³) would decrease to approximately 5 years in the late 21st century under SSP2-4.5 and to 3 years under SSP5-8.5.

Conclusions and Implications

Using an empirical statistical model driven by observations and CMIP6 Earth system model projections of fire CO₂ emissions and meteorology, we project western US PM_{2.5} air quality in the 21st century under a suite of Shared Socioeconomic Pathways (SSPs). Late summer to fall PM_{2.5} pollution over the US Pacific Northwest is projected to double to triple by 2080–2100 due to enhanced fire activity associated with drought and increased biomass under intermediate (SSP2-4.5) and high warming scenarios (SSP5-8.5). Even with strong mitigation under SSP1-2.6, western US PM_{2.5}

pollution would increase ~50% by mid-century. The occurrence of four severe fire years in quick succession during 2017–2021 over the western US raises the possibility that climate change is already driving strong changes in fire regimes that may be underestimated by our models. Our study suggests that severe PM_{2.5} air pollution caused by these historic fire events could occur every 5 years in the late 21st century under an intermediate climate change scenario (SSP2-4.5). Air quality exceedances caused by wildfires can be classified as 'exceptional events,' which are not counted towards a non-attainment determination, according to the US Environmental Protection Agency. However, a considerable increase in the frequency of fire-driven exceedances may complicate this policy, as these events become a new norm in the changing climate. The large spread across climate change scenarios highlights the co-benefits of climate mitigation for wildfires and air pollution. Multiagency collaborations, addressing climate mitigation, air quality, and forest management, are needed to minimize the adverse health impacts projected to result from fire smoke.

Materials and Methods

1. Data availability

The data from three CMIP6 models used in this study (89-91) are publicly available at <u>https://esgf-node.llnl.gov/projects/cmip6/</u>. Surface observations of PM_{2.5}, meteorological variables from reanalysis datasets, satellite observations of burned area, and fire emission inventories are publicly available through the links provided at the corresponding references as described below.

2. Multi-linear regression model

The multiple linear regression (MLR) model is developed using observational datasets of surface PM_{2.5} concentrations, meteorological variables, and fire CO₂ emissions over western North America during 1997–2020. This observation-based MLR model is then applied to predict future PM_{2.5} levels driven by fire CO₂ emissions and meteorology projected by the CMIP6 Earth system models. Considering that climate model projections are more robust on larger scales, all observational datasets and CMIP6 model fields used for the MLR analysis are averaged onto a 2°×2° grid. The MLR model predicts the mean and the 95th percentile of PM_{2.5} at each 2°×2° grid d and month i in the form of:

$$PM2.5_{d,i}(t) = \beta_{d,i}Fire_{d,i}(t) + \sum_{k=1}^{4} \beta_{d,i,k}Met_{d,i,k}(t) + b_{d,i}$$
(1)

where Fire(t) is the anomaly time series of fire CO₂ emissions in percentage relative to the presentday climatology, Met(t) is the anomaly time series of meteorological variables (i.e., surface temperature, precipitation, relative humidity, and air stagnation) relative to the present-day climatology; β and b are regression coefficients fitted by the MLR. We select these four meteorological variables that have been previously identified to be correlated with surface PM_{2.5} (11, 52). We performed the regression by adding and deleting prediction parameters stepwise to obtain the best fit based on the Akaike Information Criterion. The relative importance of each predictor is determined using a bootstrap approach described in (92). The performance of the MLR model is tested using leave-one-out cross-validation (*SI Appendix*, Text S1).

The observation-based MLR model is applied to predict mean and the 95th percentile of surface PM_{2.5} concentrations at each 2°x2° grid, driven by monthly time series of fire CO₂ emissions and meteorology projected by the CMIP6 Earth system models under a suite of climate change scenarios over the course of the 21st century. To ensure that we only apply the MLR predictions at locations where PM_{2.5} levels are primarily driven by fire emissions, we limit our analysis to western US grid cells where the observed correlation *r*² from the MLR model is greater than 0.5 during August and September; as such, sites located in urban areas with large anthropogenic influence are filtered out. For PM_{2.5} prediction at each valid grid, we calculate the anomaly time series (in percentage relative to the present-day 1990–2010 climatology) of total fire CO₂ emissions in a projected future climate, integrated over a regional box where the maximum correlation with PM_{2.5} is found based on historical observations (Fig.1). This approach thus accounts for the influence of regional smoke transport. Anomaly time series of meteorological variables in the future climate are calculated as the absolute differences from the present-day 1990–2010 climatology for each valid 2°×2° grid.

3. Observational datasets

Daily observations of PM_{2.5} at surface monitoring sites during 1997–2020 are obtained from the US Environmental Protection Agency's Air Quality System (<u>https://www.epa.gov/aqs</u>). To maximize data availability, we include PM_{2.5} measured with both the Federal Reference Methods and non-Federal Reference Methods, as a strong linear correlation (r^2 =0.92) between these two methods has been found at co-located monitors (93). To be consistent with the other datasets used for the MLR analysis

as well as to increase the statistical power and robustness of the analysis, we average all available daily surface $PM_{2.5}$ observations onto a 2°x2° grid. For each month at each 2°x2° grid cell, we calculate the average and the 95th percentile of available daily $PM_{2.5}$ from all sites within that grid. Most grids have sample sizes of 50–200 daily $PM_{2.5}$ observations each month; only grids with at least 20 samples per month are considered in our analyses (Fig.S2).

To represent the intensity and severity of wildfires, we use satellite observations of burned area and satellite-based estimations of fire CO₂ emissions, consistent with the datasets available from the CMIP6 fire models. The monthly burned area is from the Collection 6 Moderate Resolution Imaging Spectrometer (MODIS) climate model grid burned area product (2000–2020, 0.25°x0.25°) (60). Fire emissions of CO₂ are obtained from the Global Fire Emissions Dataset version 4 with small fires (GFED4s, 1997–2020, 0.25°x0.25°) based on satellite-retrieved burned area (61, 62), and the Quick Fire Emission Dataset version 2.5 (QFED2.5, 2001–2019, 0.1°x0.1°) based on satellite-observed fire radiative power (63). The MLR model only uses fire CO₂ emissions from GFED4s averaged onto a 2.0x2.0 grid while both GFED4s and QFED2.5 are used to evaluate the CMIP6 fire models.

The MLR analysis includes four meteorological variables that have been previously identified to have correlations with surface PM_{2.5} (11, 52): surface temperature, precipitation, relative humidity, and air stagnation (*SI Appendix*, Text S2). Monthly mean surface temperature, precipitation and relative humidity are obtained from the European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5, 1997–2020, 0.1°x0.1°) (94). The air stagnation index is obtained from the U.S. National Centers for Environmental Information (95). All original datasets are averaged onto a 2°x2° grid for the MLR analysis.

4. CMIP6 Fire Models

We use simulations from three CMIP6 Earth system models (CESM2, GFDL-ESM4.1 and CNRM-ESM2-1) that archived CO₂ emissions from fires and meteorological variables needed for the MLR model. The models' horizontal resolutions range from 1.0 to 1.5° (Table S1). Vegetation structure and functioning in all three models (e.g., leaf area index) respond to changes in climate. GFDL-ESM4.1 simulates daily vegetation distribution (58, 96-98) while CESM2 and CNRM-ESM2-1 use prescribed land use and land cover change files (49, 59). Fire CO₂ emissions in all three CMIP6 models are simulated dynamically, coupled to climate and vegetation (*SI Appendix*, Text S3) (42, 43, 45-47, 50,

51, 99). However, these models do not calculate fire emissions of particles or non-CO₂ gases, so atmospheric chemistry in these models is not coupled to interactive fire emissions responding to climate change.

Two sets of experiments from these models are used: (1) Land-only experiments (LAND-HIST experiment from the Land Use Model Intercomparison) driven by the observation-based meteorological forcings (derived from dynamic downscaling of the 20th-Century Reanalysis) (100, 101); (2) Coupled land-atmosphere-ocean historical simulations (CMIP6 HIST experiment) and future projections (from the Scenario Model Intercomparison Project) driven by emissions of greenhouse gases and aerosols under four Shared Socioeconomic Pathways: SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 (71). The land-only experiments driven by observed climate allow for direct comparison with observations in space and time in order to understand biases related to the modeling of fire dynamics (Fig.2). The coupled model simulations are used to understand changes in fires under climate change scenarios, which serve as a key predictor for future PM_{2.5} levels (Figs.5-7). To understand the drivers of the temporal evolution of historical fires (Fig.S11), we analyze three CESM2 coupled-model experiments: (1) with all historical forcings (HIST): (2) the control simulation with pre-industrial forcings, including constant land cover and land use, land management, and population density at 1850 levels (pi-Control) (102); (3) with all historical forcings same as HIST but with land use held constant at 1850 levels as in pi-Control (HIST_NoLU) (101).

5. Chemistry-climate model PM_{2.5} simulations using prescribed fire emissions

We compare the MLR-based estimations of PM_{2.5} driven by interactive fires responding to climate change with PM_{2.5} directly simulated by three chemistry-climate models (103-105). In these chemistry-climate models, fire emissions of particles are prescribed for both historical and future simulations. Historical simulations of these models use fire emissions of gases and particles from GFED version 4 with small fires (GFED4s) for 1997–2014, and historical reconstructions from the Fire Model Intercomparison project prior to 1997 (28, 48). Future fire emissions of gases and particles are prescribed based on the spatial distribution of the 2005–2014 climatology from GFED4s, and consider the impacts from land use but not climate change (29). There are no substantial trends nor interannual variability in biomass burning emissions of aerosols used for future PM_{2.5} projections from

these chemistry-climate models (Fig.S14). Future PM_{2.5} levels simulated by these chemistry-climate models thus reflect the impacts from changes in anthropogenic emissions and meteorology, but overlook the impact of climate-driven increases in fire emissions of aerosols and aerosol precursors.

6. Calculation of exceedance probability and return period

To examine how prevalent the recent PM_{2.5} pollution extremes caused by fires in 2017, 2018 and 2020 may be in a warming climate, we compare the exceedance probability and return period of the 95th percentile (q95) of daily PM_{2.5} in August–September at US Pacific Northwest sites from historical observations with MLR projections under SSP2-4.5 and SSP5-8.5 scenarios.

The exceedance probability is calculated as $1-F_n$, where F_n is the empirical cumulative distribution function, calculated as $F_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{X_i \le t}$, where *n* is the total number of the predicted monthly q95 PM_{2.5} at each site in the US Pacific Northwest in August and September. $\sum_{i=1}^n \mathbf{1}_{X_i \le t}$ is the number of events with the predicted q95 PM_{2.5} smaller than a given q95 PM_{2.5} level of t.

The return levels and return periods are estimated using extreme value theory (106). Extreme value theory has been used in previous studies to estimate return levels and days of ozone pollution events under present and future climates (107-109). Here in this study, we perform the extreme event analysis with the extRemes package in R (110) using large samples of q95 PM_{2.5} at each site in the US Pacific Northwest during August–September from historical extremes (2017, 2018, and 2020), from all historical observations for 1997–2020, and from the MLR projections for 2080–2100. The observed and MLR-predicted q95 PM_{2.5} are fitted using a generalized extreme value distribution function. The 95% confidence intervals are estimated based on the delta method using the parameter covariance (110).

Acknowledgments

This study was supported by awards from National Oceanic and Atmospheric Administration (NOAA), US Department of Commerce (NA14OAR4320106 and NA18OAR4320123). The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of NOAA. RS acknowledges the European Union's Horizon 2020 research and innovation program under grant agreement No. 101003536 (ESM2025 – Earth System Models for the Future).

We thank Yan Yu, Songmiao Fan and Wenhao Dong from NOAA GFDL and two anonymous reviewers for their helpful comments on the manuscript.

Figures:

Figure 1. Observed correlations between fires and surface PM_{2.5} **air quality.** (a-c) Correlation r^2 of mean PM_{2.5} averaged over each 2 °x2 ° grid with regional total CO₂ emissions from fires in August–September during 1997–2020 derived from simple linear regression (a) versus multiple linear regression (MLR) with consideration of meteorological variables (b), and the variance explained over the US Pacific Northwest (solid black box on b) by each predicting variable (c). The width of the box (in degrees), within which regional total fire emissions are best correlated with PM_{2.5} at that site, is given in the right corner in (a). The r^2 values are color-coded for sites with significant correlations, with gray indicating sites with insignificant correlations (p > 0.05). (d-f) Same as (a-c) but for the 95th percentile (q95) of available daily PM_{2.5} observations at each grid in August–September. (g-h) Time series of the mean and q95 PM_{2.5} in August–September averaged over US Pacific Northwest sites from 1997 to 2020, along with regional total CO₂ emissions from fires integrated over western North America (dashed black box on b).

Figure 4. Changes in climate and fires during August–September in the 21st century. Changes in 10-year running average of surface temperature (a), soil moisture in top 10 cm (b), and carbon mass in vegetation (c) relative to the 1990–2010 averages in August–September over western North America from CESM2 historical simulations (gray) and future projections (colors) under four SSPs (Table S1). (d-f) same as (a) but for total fire emissions of CO₂ (in percent) and (g-i) burned area (in percent) from three CMIP6 Earth System models: CESM2 (left), GFDL-ESM4.1 (middle) and CNRM-ESM2-1 (right). Thick lines represent the multi-ensemble mean, with shading illustrating the spread of available ensemble members (numbers denoted at the bottom-right corner of each graph).

Figure 5. Projected changes in August–September mean PM_{2.5} due to increasing fire

emissions. (a-c) The August–September mean $PM_{2.5}$ in 2080–2100 at western US sites (averaged over a 2 °×2° grid) predicted by MLR driven by fires from three CMIP6 models under SSP5-8.5. Only grids with MLR correlation r^2 >0.5 are shown. (d-f) Temporal evolution of August–September mean $PM_{2.5}$ averaged over US Pacific Northwest sites (box on map) during 1900–2100 from the chemistry-climate model simulations with prescribed fire emissions (tan lines) versus from the MLR model predictions considering the impacts of future climate change on fire emissions under SSP1-2.6 (blue lines), SSP2-4.5 (green lines), and SSP5-8.5 (red lines). Thick lines represent 10-year running multi-ensemble averages and thin lines represent averages for individual years from each ensemble member of each model (3 for CESM2, 1 for GFDL-ESM4.1, and 5 for CNRM-ESM2-1). The August–September interannual time series from observations (black lines) is also shown for comparison.

Figure 6. Projected changes in PM_{2.5} extremes in August–September due to increasing fires. (a-c) The 95th percentile of daily PM_{2.5} (q95) during August–September in 2080–2100 at western US sites (computed over a $2^{\circ}\times2^{\circ}$ grid) predicted by MLR driven by fires from three CMIP6 models under SSP5-8.5. Only grids with MLR correlation $r^2>0.5$ are shown. (d-f) Temporal evolution of the q95 PM_{2.5} in August–September averaged over US Pacific Northwest sites (box on map) from the MLR model projections under SSP2-4.5 (green) and SSP5-8.5 (red). Thick lines represent 10-year running multi-ensemble averages and thin lines represent averages for individual from each ensemble member of each model (Table S1). The August–September interannual time series from observations (black lines) is also shown for comparison.

Figure 7. Likelihood of historical pollution extremes in a warming climate. Exceedance probability of the 95th percentile of daily PM_{2.5} at US Pacific Northwest sites during August-September: from observations during 1988-2020 (gray solid line) and during the 2017, 2018 and 2020 extreme fire seasons (black dotted line), from the MLR PM2.5 predictions driven by fires in three CMIP6 models during 2080–2100 under SSP2-4.5 (green) and SSP5-8.5 (red). The arrow denotes the 35 μ g/m³ US National Ambient Air Quality Standard for 24-h average PM_{2.5}. Numbers in brackets represent sample size for calculating the exceedance probability; (b) return period of the 95th percentile of daily PM_{2.5} at US Pacific Northwest sites in August–September fitted using generalized extreme value distribution: from observations during 1997-2020 (black solid line), and from the MLR PM_{2.5} predictions driven by fires in three CMIP6 models during 2080–2100 under SSP2-4.5 (green) and SSP5-8.5 (red). The 95th percentile of daily PM_{2.5} in August–September of 2017, 2018 and 2020 is marked as the horizontal dotted line. Shading for observations represents the 95% confidence intervals of estimated PM_{2.5} levels for different return periods. Shading for MLR projections represents the maximum and minimum of estimated PM2.5 levels for different return periods from different model ensembles. Intercepts between the horizontal black dotted line and the fitted solid lines represent the return periods for the observed 2017–2020 extremes in present and future climates.

References

- USEPA, Data from the 2017 National Emissions Inventory. <u>https://www.epa.gov/air-</u> emissions-inventories/2017-national-emissions-inventory-nei-data (2017).
- 2. D. M. J. S. Bowman *et al.*, Vegetation fires in the Anthropocene. *Nature Reviews Earth & Environment* **1**, 500-515 (2020).
- F. H. Johnston *et al.*, Estimated Global Mortality Attributable to Smoke from Landscape Fires.
 Environmental Health Perspectives **120**, 695-701 (2012).
- 4. M. Burke *et al.*, The changing risk and burden of wildfire in the United States. *Proceedings of the National Academy of Sciences* **118**, e2011048118 (2021).
- G. P. Schill *et al.*, Widespread biomass burning smoke throughout the remote troposphere.
 Nature Geoscience 13, 422-427 (2020).
- 6. A. L. Westerling, H. G. Hidalgo, D. R. Cayan, T. W. Swetnam, Warming and earlier spring increase western US forest wildfire activity. *Science* **313**, 940-943 (2006).
- 7. A. L. Westerling, Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. *Philos Trans R Soc Lond B Biol Sci* **371** (2016).
- J. T. Abatzoglou, A. P. Williams, Impact of anthropogenic climate change on wildfire across western US forests. *Proceedings of the National Academy of Sciences* **113**, 11770-11775 (2016).
- 9. C. D. McClure, D. A. Jaffe, US particulate matter air quality improves except in wildfire-prone areas. *Proceedings of the National Academy of Sciences* **115**, 7901-7906 (2018).
- K. O'Dell, B. Ford, E. V. Fischer, J. R. Pierce, Contribution of Wildland-Fire Smoke to US PM2.5 and Its Influence on Recent Trends. *Environmental Science & Technology* 53, 1797-1804 (2019).
- Y. Xie, M. Lin, L. W. Horowitz, Summer PM2. 5 pollution extremes caused by wildfires over the western United States during 2017–2018. *Geophysical Research Letters* 47, e2020GL089429 (2020).
- R. J. Laing, D. A. Jaffe, Wildfires are causing extreme PM concentrations in the western United States. *The Magazine for Environmental Managers* June (2019).
- 13. P. Yu, R. Xu, M. J. Abramson, S. Li, Y. Guo, Bushfires in Australia: a serious health emergency under climate change. *The Lancet Planetary Health* **4**, e7-e8 (2020).

- S. Vardoulakis, B. B. Jalaludin, G. G. Morgan, I. C. Hanigan, F. H. Johnston, Bushfire smoke: urgent need for a national health protection strategy. *Medical Journal of Australia* 212, 349 (2020).
- A. van Donkelaar *et al.*, Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010. *Atmospheric Environment* 45, 6225-6232 (2011).
- 16. T. J. Yasunari *et al.*, Extreme air pollution events in Hokkaido, Japan, traced back to early snowmelt and large-scale wildfires over East Eurasia: Case studies. *Sci Rep* **8**, 6413 (2018).
- 17. P. Crippa *et al.*, Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. *Sci Rep* **6**, 37074 (2016).
- 18. C. E. Reid *et al.*, Critical Review of Health Impacts of Wildfire Smoke Exposure. *Environ Health Perspect* **124**, 1334-1343 (2016).
- K. O'Dell *et al.*, Hazardous Air Pollutants in Fresh and Aged Western US Wildfire Smoke and Implications for Long-Term Exposure. *Environmental Science & Technology* 54, 11838-11847 (2020).
- 20. N. Borchers Arriagada *et al.*, Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. *Medical Journal of Australia* **213**, 282-283 (2020).
- N. Fann *et al.*, The health impacts and economic value of wildland fire episodes in the U.S.:
 2008–2012. *Science of The Total Environment* 610-611, 802-809 (2018).
- 22. USEPA, Treatment of data influenced by exceptional events. <u>https://www.epa.gov/air-</u> <u>quality-analysis/final-2016-exceptional-events-rule-supporting-guidance-documents-</u> <u>updated-fags</u> (2007).
- B. Ford *et al.*, Future Fire Impacts on Smoke Concentrations, Visibility, and Health in the Contiguous United States. *GeoHealth* 2, 229-247 (2018).
- E. N. Stavros, J. T. Abatzoglou, D. McKenzie, N. K. Larkin, Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States. *Climatic Change* **126**, 455-468 (2014).
- 25. J. T. Abatzoglou, A. P. Williams, R. Barbero, Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. *Geophysical Research Letters* **46**, 326-336 (2019).

- 26. X. Yue, L. J. Mickley, J. A. Logan, J. O. Kaplan, Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. *Atmospheric Environment* **77**, 767-780 (2013).
- J. S. Littell, D. McKenzie, H. Y. Wan, S. A. Cushman, Climate Change and Future Wildfire in the Western United States: An Ecological Approach to Nonstationarity. *Earth's Future* 6, 1097-1111 (2018).
- M. J. E. van Marle *et al.*, Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015).
 Geoscientific Model Development 10, 3329-3357 (2017).
- 29. L. Feng *et al.*, The generation of gridded emissions data for CMIP6. *Geoscientific Model Development* **13**, 461-482 (2020).
- Y. F. Lam, J. S. Fu, S. Wu, L. J. Mickley, Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States. *Atmospheric Chemistry and Physics* **11**, 4789-4806 (2011).
- W. J. Collins *et al.*, AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6.
 Geoscientific Model Development 10, 585-607 (2017).
- J. C. Liu *et al.*, Particulate Air Pollution from Wildfires in the Western US under Climate Change. *Clim Change* 138, 655-666 (2016).
- 33. M. Val Martin *et al.*, How emissions, climate, and land use change will impact mid-century air quality over the United States: a focus on effects at national parks. *Atmospheric Chemistry and Physics* **15**, 2805-2823 (2015).
- 34. D. V. Spracklen *et al.*, Wildfires drive interannual variability of organic carbon aerosol in the western U.S. in summer. *Geophysical Research Letters* **34** (2007).
- J. E. Neumann *et al.*, Estimating PM2.5-related premature mortality and morbidity associated with future wildfire emissions in the western US. *Environmental Research Letters* 16, 035019 (2021).
- D. Mills *et al.*, Projecting Age-Stratified Risk of Exposure to Inland Flooding and Wildfire Smoke in the United States under Two Climate Scenarios. *Environmental Health Perspectives* 126, 047007 (2018).
- 37. W. Knorr, L. Jiang, A. Arneth, Climate, CO2 and human population impacts on global wildfire emissions. *Biogeosciences* **13**, 267-282 (2016).

- S. Kloster, N. M. Mahowald, J. T. Randerson, P. J. Lawrence, The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. *Biogeosciences* 9, 509-525 (2012).
- 39. D. McKenzie, J. S. Littell, Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA? *Ecological Applications* **27**, 26-36 (2017).
- 40. F. Li *et al.*, Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). *Atmospheric Chemistry and Physics* **19**, 12545-12567 (2019).
- 41. S. Kloster, G. Lasslop, Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. *Global and Planetary Change* **150**, 58-69 (2017).
- 42. F. Li, D. M. Lawrence, Role of Fire in the Global Land Water Budget during the Twentieth Century due to Changing Ecosystems. *Journal of Climate* **30**, 1893-1908 (2017).
- D. S. Ward, E. Shevliakova, S. Malyshev, S. Rabin, Trends and Variability of Global Fire
 Emissions Due To Historical Anthropogenic Activities. *Global Biogeochemical Cycles* 32, 122-142 (2018).
- 44. Y. Yu *et al.*, Increased Risk of the 2019 Alaskan July Fires due to Anthropogenic Activity. *Bulletin of the American Meteorological Society* **102**, S1-S7 (2021).
- 45. F. Li, X. D. Zeng, S. Levis, A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model. *Biogeosciences* **9**, 2761-2780 (2012).
- F. Li, B. Bond-Lamberty, S. Levis, Quantifying the role of fire in the Earth system Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century.
 Biogeosciences 11, 1345-1360 (2014).
- 47. S. S. Rabin *et al.*, A fire model with distinct crop, pasture, and non-agricultural burning: use of new data and a model-fitting algorithm for FINAL.1. *Geosci. Model Dev.* 11, 815-842 (2018).
- 48. S. S. Rabin *et al.*, The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. *Geoscientific Model Development* 10, 1175-1197 (2017).
- 49. D. M. Lawrence *et al.*, The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. *Journal of Advances in Modeling Earth Systems* 11, 4245-4287 (2019).

- 50. C. Delire *et al.*, The global land carbon cycle simulated with ISBA CTRIP: Improvements over the last decade. *Journal of Advances in Modeling Earth Systems* **12**, e2019MS001886 (2020).
- 51. F. Li, S. Levis, D. S. Ward, Quantifying the role of fire in the Earth system-Part 1: Improved global fire modeling in the Community Earth System Model (CESM1). *Biogeosciences* **10**, 2293-2314 (2013).
- 52. A. P. K. Tai, L. J. Mickley, D. J. Jacob, Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. *Atmospheric Environment* **44**, 3976-3984 (2010).
- 53. D. A. Jaffe *et al.*, Wildfire and prescribed burning impacts on air quality in the United States. *J Air Waste Manag Assoc* **70**, 583-615 (2020).
- 54. J. Balch *et al.*, Switching on the Big Burn of 2017. *Fire* **1**, 17 (2018).
- NICC, National Interagency Coordination Center Report on Wildland fires and acres.
 <u>https://www.nifc.gov/fireInfo/fireInfo_statistics.html</u>, last assessed Nov. 2019 (2019).
- 56. P. E. Higuera, J. T. Abatzoglou, Record-setting climate enabled the extraordinary 2020 fire season in the western United States. *Global Change Biology* **27**, 1-2 (2021).
- 57. G. Danabasoglu *et al.*, The Community Earth System Model Version 2 (CESM2). *Journal of Advances in Modeling Earth Systems* **12** (2020).
- J. P. Dunne *et al.*, The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. *Journal of Advances in Modeling Earth Systems* 12, e2019MS002015 (2020).
- 59. R. Séférian *et al.*, Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day and Future Climate. *Journal of Advances in Modeling Earth Systems* **11**, 4182-4227 (2019).
- L. Giglio, L. Boschetti, D. P. Roy, M. L. Humber, C. O. Justice, The Collection 6 MODIS burned area mapping algorithm and product. *Remote Sensing of Environment* 217, 72-85 ftp://ba71.geog.umd.edu (2018).
- J. T. Randerson, Y. Chen, G. R. Werf, B. M. Rogers, D. C. Morton, Global burned area and biomass burning emissions from small fires. *Journal of Geophysical Research: Biogeosciences* 117 (2012).
- 62. G. R. van der Werf *et al.*, Global fire emissions estimates during 1997–2016. *Earth System Science Data* **9**, 697-720 <u>https://www.globalfiredata.org/data.html</u> (2017).

- A. Darmenov, A. M. da Silva, The Quick Fire Emissions Dataset (QFED)—Documentation of Versions 2.1, 2.2 and 2.4.
 http://ftp.as.harvard.edu/gcgrid/data/ExtData/HEMCO/QFED/v2018-07/ (2015).
- 64. M. Hoerling *et al.*, Causes and Predictability of the 2012 Great Plains Drought. *Bulletin of the American Meteorological Society* **95**, 269-282 (2014).
- 65. F. Kogan, W. Guo, 2006–2015 mega-drought in the western USA and its monitoring from space data. *Geomatics, Natural Hazards and Risk* **6**, 651-668 (2015).
- A. Hoell *et al.*, Anthropogenic Contributions to the Intensity of the 2017 United States
 Northern Great Plains Drought. *Bulletin of the American Meteorological Society* 100, S19-S24 (2019).
- D. LeComte, U.S. Weather Highlights 2018: Another Historic Hurricane and Wildfire Season.
 Weatherwise 72, 12-23 (2019).
- H. Wang, S. D. Schubert, R. D. Koster, Y. Chang, Attribution of the 2017 Northern High Plains Drought. *Bulletin of the American Meteorological Society* **100**, S25-S29 (2019).
- 69. M. Lin, L. W. Horowitz, R. Payton, A. M. Fiore, G. Tonnesen, US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. *Atmospheric Chemistry and Physics* **17**, 2943-2970 (2017).
- 70. T. T. van Leeuwen *et al.*, Biomass burning fuel consumption rates: a field measurement database. *Biogeosciences* **11**, 7305-7329 (2014).
- B. C. O'Neill *et al.*, The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6.
 Geoscientific Model Development 9, 3461-3482 (2016).
- K. Riahi *et al.*, The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. *Global Environmental Change* 42, 153-168 (2017).
- 73. W. M. Jolly *et al.*, Climate-induced variations in global wildfire danger from 1979 to 2013. *Nat Commun* **6**, 7537 (2015).
- K. L. Riley, R. A. Loehman, Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States. *Ecosphere* 7, e01543 (2016).
- 75. E. K. Brown, J. Wang, Y. Feng, US wildfire potential: a historical view and future projection using high-resolution climate data. *Environmental Research Letters* **16** (2021).

- 76. L. M. Rasmijn *et al.*, Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints. *Nature Climate Change* **8**, 381-385 (2018).
- 27. L. Samaniego *et al.*, Anthropogenic warming exacerbates European soil moisture droughts.
 Nature Climate Change 8, 421-426 (2018).
- M. Lin *et al.*, Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe. *Nature Climate Change* **10**, 444-451 (2020).
- 79. B. I. Cook *et al.*, Twenty First Century Drought Projections in the CMIP6 Forcing Scenarios.
 Earth's Future 8 (2020).
- J. S. Mankin, R. Seager, J. E. Smerdon, B. I. Cook, A. P. Williams, Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. *Nature Geoscience* 12, 983-988 (2019).
- 81. R. A. Fisher *et al.*, Parametric Controls on Vegetation Responses to Biogeochemical Forcing in the CLM5. *Journal of Advances in Modeling Earth Systems* **11**, 2879-2895 (2019).
- S. Sitch *et al.*, Evaluation of the terrestrial carbon cycle, future plant geography and climatecarbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). *Global Change Biology* 14, 2015-2039 (2008).
- 83. Z. Zhu *et al.*, Greening of the Earth and its drivers. *Nature Climate Change* **6**, 791-795 (2016).
- K. C. Samir, W. Lutz, The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. *Global Environmental Change* 42, 181-192 (2017).
- 85. N. Andela *et al.*, A human-driven decline in global burned area. *Science* **356**, 1356-1362 (2017).
- F. Li, D. M. Lawrence, B. Bond-Lamberty, Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories. *Global and Planetary Change* 162, 18-27 (2018).
- 87. W. Knorr, A. Arneth, L. Jiang, Demographic controls of future global fire risk. *Nature Climate Change* **6**, 781-785 (2016).
- F. Li, D. M. Lawrence, B. Bond-Lamberty, Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. *Environmental Research Letters* 12, 044014 (2017).

- 89. G. Danabasoglu, NCAR CESM2 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. <u>https://doi.org/10.22033/ESGF/CMIP6.7627</u>.
- 90. J. P. Krasting *et al.*, NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1407.
- 91. R. Seferian, CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1391.
- 92. L. M. Ulrike Groemping, Relative Importance of Regressors in Linear Models. <u>https://cran.r-</u> project.org/web/packages/relaimpo/relaimpo.pdf (2021).
- 93. M. Z. Al-Hamdan *et al.*, Methods for characterizing fine particulate matter using ground observations and remotely sensed data: potential use for environmental public health surveillance. *J Air Waste Manag Assoc* **59**, 865-881 (2009).
- 94. H. Hersbach *et al.*, The ERA5 global reanalysis. *Quarterly Journal of the Royal Meteorological Society* **146**, 1999-2049 (2020).
- 95. J. X. Wang, J. K. Angell, Air stagnation climatology for the United States. NOAA/Air Resource Laboratory ATLAS 1, <u>https://www.ncdc.noaa.gov/societal-impacts/air-stagnation/maps</u> (1999).
- 96. S. Malyshev, E. Shevliakova, R. J. Stouffer, S. W. Pacala, Contrasting Local versus Regional Effects of Land-Use-Change-Induced Heterogeneity on Historical Climate: Analysis with the GFDL Earth System Model. *Journal of Climate* 28, 5448-5469 (2015).
- 97. E. Shevliakova *et al.*, Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. *Global Biogeochemical Cycles* **23** (2009).
- 98. E. S. Weng *et al.*, Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition. *Biogeosciences* 12, 2655-2694 (2015).
- 99. K. Thonicke, S. Venevsky, S. Sitch, W. Cramer, The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. *Global Ecology and Biogeography* **10**, 661-677 (2001).
- 100. G. P. Compo *et al.*, The Twentieth Century Reanalysis Project. *Quarterly Journal of the Royal Meteorological Society* **137**, 1-28 (2011).

- 101. D. M. Lawrence *et al.*, The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. *Geoscientific Model Development* 9, 2973-2998 (2016).
- 102. V. Eyring *et al.*, Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. *Geoscientific Model Development* 9, 1937-1958 (2016).
- T. Hajima *et al.*, Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. *Geoscientific Model Development* **13**, 2197-2244 (2020).
- 104. L. W. Horowitz *et al.*, The GFDL Global Atmospheric Chemistry-Climate Model AM4.1: Model Description and Simulation Characteristics. *Journal of Advances in Modeling Earth Systems* 12, e2019MS002032 (2020).
- 105. Ø. Seland *et al.*, Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. *Geosci. Model Dev.* **13**, 6165-6200 (2020).
- 106. S. G. Coles, An Introduction to Statistical Modeling of Extreme Values. *Springer, New York* (2001).
- H. E. Rieder, A. M. Fiore, L. W. Horowitz, V. Naik, Projecting policy-relevant metrics for high summertime ozone pollution events over the eastern United States due to climate and emission changes during the 21st century. *Journal of Geophysical Research: Atmospheres* 120, 784-800 (2015).
- 108. H. E. Rieder, A. M. Fiore, L. M. Polvani, J. F. Lamarque, Y. Fang, Changes in the frequency and return level of high ozone pollution events over the eastern United States following emission controls. *Environmental Research Letters* **8**, 014012 (2013).
- 109. L. Shen, L. J. Mickley, E. Gilleland, Impact of increasing heat waves on U.S. ozone episodes in the 2050s: Results from a multimodel analysis using extreme value theory. *Geophys Res Lett* 43, 4017-4025 (2016).
- E. Gilleland, R. W. Katz, extRemes2.0: An Extreme Value Analysis Package inR. *Journal of Statistical Software* 72 (2016).

Supplementary Information for

Tripling of Western US Particulate Pollution from Wildfires in a Warming Climate

Yuanyu Xie^{1,2*}, Meiyun Lin^{1,2*}, Bertrand Decharme³, Christine Delire³, Larry W. Horowitz², David M. Lawrence⁴, Fang Li⁵, Roland Séférian³

Corresponding authors: Yuanyu Xie (Email: Yuanyu.Xie@noaa.gov)

Meiyun Lin (Email: Meiyun.Lin@noaa.gov)

This PDF file includes:

Texts S1 to S3

Figures S1 to S14

Tables S1 to S2

SI References

Supplementary Information Text

Appendix S1. Cross validation of the MLR model

For each grid d with n years of available observations, we train the model using n-1 years of data and predict over the remaining year. The resulting leave-one-out cross validation results for both the mean $PM_{2.5}$ (r^2 =0.56–0.61, root mean square error, RMSE =4.0–5.6 µg/m³) and the 95th percentile $PM_{2.5}$ (r^2 =0.51–0.66, RMSE=11.3–14.1 µg/m³) in August–September averaged over western US grids are statistically significant (p<0.05). The results are close to the standard model fit (r^2 =0.76–0.82, RMSE=2.3–7.7 µg/m³), indicating robustness of the MLR model.

Appendix S2. Meteorological dataset

Monthly mean surface temperature, precipitation and relative humidity are obtained from the European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) (94). The relative humidity is calculated from the dew point temperature in ERA5 as

 $RH = 100\% \times \frac{e_s(T_d)}{e_s(T)},$

where T_d is the dewpoint temperature and T is the temperature, and e_s is the saturation vapor pressure, which can be empirically calculated using Bolton's method (111) in the form of

$$e_s(T) = 0.6112 \exp\left(\frac{17.67T}{T+243.5}\right)$$

Air stagnation in the U.S. National Centers for Environmental Information dataset is defined as days when there is no precipitation, sea level geostrophic winds are lower than 8 m/s (or <10 m/s when there is a surface to 850 mb temperature inversion), and 500 mb wind speeds are lower than 13 m/s (112). Air stagnation in the CMIP6 models is defined as days with precipitation smaller than 1 mm, surface wind speed lower than 3.2 m/s and 500 mb wind speeds lower than 13 m/s (113).

Appendix S3. Fire modules in the three CMIP6 models

The fire module in CESM2 includes four components: non-peat fires outside croplands and tropical closed forests, agricultural fires in croplands, deforestation and degradation fires in the tropical closed forests, and peat fires (42, 45, 51). The burned area fraction is determined by climate and weather conditions, vegetation composition and structure, and human activities. Among them, human influence is represented by anthropogenic ignitions (increase with population density), fire suppression (increase with population density and gross domestic product per capita human), agricultural waste burning, and deforestation rate. After the calculation of burned area fraction, fire impacts are estimated, including fire emissions due to biomass and peat burning as well as plant-tissue mortality, which lead to adjustment of terrestrial ecosystem structure and functioning. We use the coupled simulations from CESM2-WACCM, a version of CESM2 with the same land model but with comprehensive chemistry extending to 130 km vertically (57, 114).

The fire module in GFDL-ESM4.1 is developed within a global dynamic vegetation and land surface model that comprises two sub-models for simulating agricultural and non-agricultural fires (43, 47, 97). The area burned for agricultural fires on cropland and pasture at each grid cell is forced with satellite observations of fire seasonality and frequency, depending on grid-scale crop and pasture area but not environmental changes. Simulation of non-agricultural fires follows the process-based fire model in CESM2, which predicts area burned at each grid cell as a product of the number of fires and burned area per fire, depending on grid-scale fuel availability, fuel moisture, and ignition source. Human fire suppression is represented as a function of population density. An enhanced fire rate of spread is introduced to better represent crown fires with high intensity. Non-agricultural fires are simulated on a daily basis, allowing multiday burning with a maximum duration of 30 days. CO₂

emissions from fires are estimated by applying combustion completeness factors for different vegetation types on the aboveground biomass within the burned area.

CNRM-ESM2-1 represents natural wildfires over forests and grasslands in a land model that uses prescribed land use and land cover change files (50, 99). The grid cell fire fraction calculation was adapted to a daily timestep and depends on availability of fuel and fuel moisture, approximated by soil moisture and temperature. Fire fraction is set to zero when the surface litter carbon content is below 200 gC/m² and when soil temperature is lower than 0°C. It is also set to zero when more than 20% of the grid cell is covered by croplands. Except for this limitation on cropland, human fire suppression is not represented. Fire-induced emissions and fire effects on living and dead biomass are Plant Functional Type-dependent.

Supplementary Figures S1 to S14:

Figure S1. Observed correlations between fires and surface PM_{2.5} air quality. Correlation r^2 of mean PM_{2.5} averaged over each 2°x2° grid with regional total CO₂ emissions from fires in May–November during 1997–2020, derived from simple linear regression (left panels) and multiple linear regression (middle panels) with consideration of meteorological variables, and the variance explained over the western US (black box on maps) by each predicting variable (right panels). The r^2 values are color-coded for sites with significant correlations, with gray indicating sites with insignificant correlations (p

> 0.05). The width of the box (in degrees), within which regional total fire emissions are best correlated with $PM_{2.5}$ at that site, is given in the right corner in the top panel.

Figure S2. Sample sizes of surface $PM_{2.5}$ observations. Number of samples for calculating monthly means and q95 $PM_{2.5}$ at each 2°×2° grid in August and September averaged over 1997–2020.

2 **Figure S3.** Evaluating model simulations of fires over western North America. (a) The August–September

total burned area over western North America (black box in Fig. S4) from 1980 to 2020 from MODIS satellite
 observations (black) and from three CMIP6 land-only experiments (solid lines). (b) same as (a) but for fire

5 CO₂ emissions from two satellite observation-based inventories (black for GFED4s; gray for QFED2.5) and

from three CMIP6 land-only experiments (solid lines). Means and standard deviations (sd) during 2000–2014
 are reported.

9 **Figure S4.** Spatial distribution of burned area from observations and land-only simulations. Mean (left panels)

10 and standard deviation (right panels) of the August–September total burned area during 2000–2014 from

11 MODIS satellite observations and from three CMIP6 land-only simulations. Black box represents western

12 North America where fire CO₂ emissions are integrated for analysis in Figs. 2-4. Global and Northern

13 Hemisphere total burned area (Mha) are reported at the right corner.

(left panels) and standard deviation (right panels) of the August-September total CO2 emission from fires

during 2000-2014 from two satellite observation-based emission inventories (GFED4s and QFED2.5) and from land-only experiments of three CMIP6 fire models driven by observation-based meteorological forcings.

Black box represents western North America where fire CO₂ emissions are integrated for analysis in Figs. 2-4. Global and Northern Hemisphere total fire CO₂ emissions from fires (TgC) are reported at the right corner.

Figure S6. Same as Fig. S4, but with model results from the CMIP6 coupled model simulations.

27 Figure S7. Same as Fig. S5, but with model results from the CMIP6 coupled model simulations.

Figure S8. Uncertainties in MLR PM_{2.5} predictions based on percentage versus absolute change of fires. (Left
 panels) August–September mean PM_{2.5} in the late 21st century (2080–2100) at western US sites (averaged

32 over a 2°×2° grid) predicted by MLR driven by the percentage change of fire CO₂ emissions under SSP5-8.5

relative to the respective 1990–2010 average from each CMIP6 fire model. (Right panels) same as the left

34 panels but driven by the absolute changes in each model. Only grids with MLR correlation r^2 >0.5 are shown.

37 Figure S9. Changes in burned area over northern mid-latitudes by three CMIP6 Earth system models. Changes in the August–September total burned area during the late 21st century (2080–2100) compared to 38 39 present day (1990-2010) under SSP5-8.5 simulated by three CMIP6 models. Number of ensembles for each model is shown in the parentheses at the bottom-left corner. The black box represents western North 40 America. Stippling indicates grids where the changes are not statistically significant at 95% confidence level 41 42 from >50% of the available ensembles. For multi model mean, the results are first averaged across the available ensemble members from each model (3 for CESM2, 1 for GFDL-ESM4.1 and 5 for CNRM-ESM2-1), 43 44 and then averaged across the models. Stippling indicates grids with less than two models show statistically significant (p < 0.05) changes or the three models do not agree in sign. For each model, a change is defined 45 significant if >50% of the ensemble changes are statistically significant (p < 0.05). 46

Figure S10. Same as Fig. S9, but for fire CO₂ emissions.

Fire CO₂ emissions (Aug–Sep total, CESM2)

51

54 September total fire CO₂ emissions (10-year running average) over western North America during 1900–2014

55 from CESM2 pre-industrial control simulation (pi-Control, black), coupled simulation with all forcings and

56 historical land use and population density (HIST, blue), and coupled simulation with all forcings but with land

57 use and population density held constant at 1850 level (HIST_NoLU, orange). Linear trends (in absolute and

58 percentage relative to 1960 level) during 1960–2014 as well as the 95% confidence limits are reported.

Figure S12. Projected changes in August–September mean PM_{2.5} from each predicting variable. The MLR
 predicted 10-yr running average of changes in August–September mean PM_{2.5} averaged over the US Pacific
 Northwest (black box in Fig. 5) based on the CMIP6 Earth system model projections of each predicting

variable: fire CO₂ emissions (orange), air stagnation index (blue), surface temperature (green), precipitation

variable: fire CO₂ emissions (orange), air stagnation
(cyan) and relative humidity (red).

Figure S13. Same as Fig. S9, but for air stagnation frequency.

72 **Figure S14.** Prescribed organic carbon emissions used for chemistry-climate model PM_{2.5}

73 predictions. Shown are August–September total organic carbon emissions over western North

74 America from biomass burning (color-coded solid lines) and anthropogenic sources (color-coded

dashed lines) during 2015–2100 under four SSPs. Prescribed fire emissions from GFED4s for

historical simulations (before 2014; black) are also shown.

78 Supplementary Tables 1 and 2

Coupled Coupled Coupled Coupled Models Land-only Coupled SSP2-4.5 Historical SSP1-2.6 SSP3-7.0 SSP5-8.5 1850–2014 2015-2100 CESM2 1 3 1 3 3 3 (1.25°×0.94°) GFDL-ESM4.1 1 3 1 3 1 1 (1.25°×1°) CNRM-ESM2-1 1 5 5 5 5 5 (1.4°×1.4°)

79 **Table S1** List of CMIP6 fire models, and number of ensembles from each experiment.

- 81 **Table S2** Multi-ensemble means of changes in fire CO₂ emissions (in percent relative to 1990–2010)
- 82 over western North America and the MLR-predicted PM_{2.5} (µg/m³; percentage changes in
- 83 parenthesis) averaged over US Pacific Northwest sites by late 21st century (2080–2100).

Models	SSP1-2.6	SSP2-4.5	SSP3-7.0	SSP5-8.5
		Fire CO ₂ emissions	, August-Septembe	r
CESM2	+113%	+145%	+254%	+242%
GFDL-ESM4.1	+70%	+121%	+202%	+262%
CNRM-ESM2-1	+60%	+100%	+110%	+133%
	Mean P	M _{2.5} (US Pacific Nor	thwest), August–Se	ptember
MLR (CESM2)	15.4 (+62%)	18.4 (+93%)	22.7 (+138%)	23.9 (+150%)
MLR (GFDL- ESM4.1)	12.7 (+34%)	17.8 (+87%)	22.4 (+135%)	24.8 (+160%)
MLR (CNRM- ESM2-1)	13.2 (+39%)	16.6 (+74%)	18.9 (+99%)	18.9 (+99%)
	q95 PN	1 _{2.5} (US Pacific Nort	hwest), August–Sep	otember
MLR (CESM2)	46.4 (+91%)	55.8 (+129%)	73.0 (+201%)	76.9 (+217%)
MLR (GFDL- ESM4.1)	39.1 (+61%)	57.2 (+136%)	73.6 (+203%)	81.6 (+236%)
MLR (CNRM- ESM2-1)	38.1 (+57%)	50.4 (+108%)	56.4 (+132%)	58.0 (+139%)

85		
86		
87		
88	:	SI References
89		
90	1.	USEPA, Data from the 2017 National Emissions Inventory. <u>https://www.epa.gov/air-</u>
91		emissions-inventories/2017-national-emissions-inventory-nei-data (2017).
92	2.	D. M. J. S. Bowman et al., Vegetation fires in the Anthropocene. Nature Reviews Earth &
93		Environment 1 , 500-515 (2020).
94	3.	F. H. Johnston et al., Estimated Global Mortality Attributable to Smoke from Landscape Fires.
95		Environmental Health Perspectives 120 , 695-701 (2012).
96	4.	M. Burke et al., The changing risk and burden of wildfire in the United States. Proceedings of
97		the National Academy of Sciences 118, e2011048118 (2021).
98	5.	G. P. Schill et al., Widespread biomass burning smoke throughout the remote troposphere.
99		Nature Geoscience 13 , 422-427 (2020).
100	6.	A. L. Westerling, H. G. Hidalgo, D. R. Cayan, T. W. Swetnam, Warming and earlier spring
101		increase western US forest wildfire activity. Science 313, 940-943 (2006).
102	7.	A. L. Westerling, Increasing western US forest wildfire activity: sensitivity to changes in the
103		timing of spring. Philos Trans R Soc Lond B Biol Sci 371 (2016).
104	8.	J. T. Abatzoglou, A. P. Williams, Impact of anthropogenic climate change on wildfire across
105		western US forests. Proceedings of the National Academy of Sciences 113, 11770-11775
106		(2016).
107	9.	C. D. McClure, D. A. Jaffe, US particulate matter air quality improves except in wildfire-prone
108		areas. Proceedings of the National Academy of Sciences 115, 7901-7906 (2018).
109	10.	K. O'Dell, B. Ford, E. V. Fischer, J. R. Pierce, Contribution of Wildland-Fire Smoke to US PM2.5
110		and Its Influence on Recent Trends. Environmental Science & Technology 53, 1797-1804
111		(2019).
112	11.	Y. Xie, M. Lin, L. W. Horowitz, Summer PM2. 5 pollution extremes caused by wildfires over
113		the western United States during 2017–2018. Geophysical Research Letters 47,
114		e2020GL089429 (2020).

115	12.	R. J. Laing, D. A. Jaffe, Wildfires are causing extreme PM concentrations in the western
116		United States. The Magazine for Environmental Managers June (2019).
117	13.	P. Yu, R. Xu, M. J. Abramson, S. Li, Y. Guo, Bushfires in Australia: a serious health emergency
118		under climate change. The Lancet Planetary Health 4, e7-e8 (2020).
119	14.	S. Vardoulakis, B. B. Jalaludin, G. G. Morgan, I. C. Hanigan, F. H. Johnston, Bushfire smoke:
120		urgent need for a national health protection strategy. Medical Journal of Australia 212, 349
121		(2020).
122	15.	A. van Donkelaar et al., Satellite-based estimates of ground-level fine particulate matter
123		during extreme events: A case study of the Moscow fires in 2010. Atmospheric Environment
124		45 , 6225-6232 (2011).
125	16.	T. J. Yasunari et al., Extreme air pollution events in Hokkaido, Japan, traced back to early
126		snowmelt and large-scale wildfires over East Eurasia: Case studies. Sci Rep 8, 6413 (2018).
127	17.	P. Crippa et al., Population exposure to hazardous air quality due to the 2015 fires in
128		Equatorial Asia. Sci Rep 6, 37074 (2016).
129	18.	C. E. Reid et al., Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ Health
130		Perspect 124 , 1334-1343 (2016).
131	19.	K. O'Dell et al., Hazardous Air Pollutants in Fresh and Aged Western US Wildfire Smoke and
132		Implications for Long-Term Exposure. Environmental Science & Technology 54, 11838-11847
133		(2020).
134	20.	N. Borchers Arriagada et al., Unprecedented smoke-related health burden associated with
135		the 2019–20 bushfires in eastern Australia. Medical Journal of Australia 213, 282-283 (2020).
136	21.	N. Fann et al., The health impacts and economic value of wildland fire episodes in the U.S.:
137		2008–2012. Science of The Total Environment 610-611 , 802-809 (2018).
138	22.	USEPA, Treatment of data influenced by exceptional events. <u>https://www.epa.gov/air-</u>
139		quality-analysis/final-2016-exceptional-events-rule-supporting-guidance-documents-
140		updated-faqs (2007).
141	23.	B. Ford et al., Future Fire Impacts on Smoke Concentrations, Visibility, and Health in the
142		Contiguous United States. GeoHealth 2, 229-247 (2018).
143	24.	E. N. Stavros, J. T. Abatzoglou, D. McKenzie, N. K. Larkin, Regional projections of the
144		likelihood of very large wildland fires under a changing climate in the contiguous Western
145		United States. Climatic Change 126, 455-468 (2014).

146	25.	J. T. Abatzoglou, A. P. Williams, R. Barbero, Global Emergence of Anthropogenic Climate
147		Change in Fire Weather Indices. Geophysical Research Letters 46, 326-336 (2019).
148	26.	X. Yue, L. J. Mickley, J. A. Logan, J. O. Kaplan, Ensemble projections of wildfire activity and
149		carbonaceous aerosol concentrations over the western United States in the mid-21st
150		century. Atmospheric Environment 77, 767-780 (2013).
151	27.	J. S. Littell, D. McKenzie, H. Y. Wan, S. A. Cushman, Climate Change and Future Wildfire in the
152		Western United States: An Ecological Approach to Nonstationarity. Earth's Future 6, 1097-
153		1111 (2018).
154	28.	M. J. E. van Marle et al., Historic global biomass burning emissions for CMIP6 (BB4CMIP)
155		based on merging satellite observations with proxies and fire models (1750–2015).
156		Geoscientific Model Development 10 , 3329-3357 (2017).
157	29.	L. Feng et al., The generation of gridded emissions data for CMIP6. Geoscientific Model
158		Development 13 , 461-482 (2020).
159	30.	Y. F. Lam, J. S. Fu, S. Wu, L. J. Mickley, Impacts of future climate change and effects of
160		biogenic emissions on surface ozone and particulate matter concentrations in the United
161		States. Atmospheric Chemistry and Physics 11, 4789-4806 (2011).
162	31.	W. J. Collins <i>et al.</i> , AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6.
163		Geoscientific Model Development 10 , 585-607 (2017).
164	32.	J. C. Liu et al., Particulate Air Pollution from Wildfires in the Western US under Climate
165		Change. <i>Clim Change</i> 138 , 655-666 (2016).
166	33.	M. Val Martin et al., How emissions, climate, and land use change will impact mid-century air
167		quality over the United States: a focus on effects at national parks. Atmospheric Chemistry
168		and Physics 15 , 2805-2823 (2015).
169	34.	D. V. Spracklen et al., Wildfires drive interannual variability of organic carbon aerosol in the
170		western U.S. in summer. Geophysical Research Letters 34 (2007).
171	35.	J. E. Neumann et al., Estimating PM2.5-related premature mortality and morbidity
172		associated with future wildfire emissions in the western US. Environmental Research Letters
173		16 , 035019 (2021).
174	36.	D. Mills et al., Projecting Age-Stratified Risk of Exposure to Inland Flooding and Wildfire
175		Smoke in the United States under Two Climate Scenarios. Environmental Health Perspectives
176		126 , 047007 (2018).

177	37.	W. Knorr, L. Jiang, A. Arneth, Climate, CO2 and human population impacts on global wildfire
178		emissions. Biogeosciences 13, 267-282 (2016).
179	38.	S. Kloster, N. M. Mahowald, J. T. Randerson, P. J. Lawrence, The impacts of climate, land use,
180		and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences 9,
181		509-525 (2012).
182	39.	D. McKenzie, J. S. Littell, Climate change and the eco-hydrology of fire: Will area burned
183		increase in a warming western USA? Ecological Applications 27, 26-36 (2017).
184	40.	F. Li et al., Historical (1700–2012) global multi-model estimates of the fire emissions from the
185		Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics 19,
186		12545-12567 (2019).
187	41.	S. Kloster, G. Lasslop, Historical and future fire occurrence (1850 to 2100) simulated in CMIP5
188		Earth System Models. Global and Planetary Change 150, 58-69 (2017).
189	42.	F. Li, D. M. Lawrence, Role of Fire in the Global Land Water Budget during the Twentieth
190		Century due to Changing Ecosystems. Journal of Climate 30 , 1893-1908 (2017).
191	43.	D. S. Ward, E. Shevliakova, S. Malyshev, S. Rabin, Trends and Variability of Global Fire
192		Emissions Due To Historical Anthropogenic Activities. Global Biogeochemical Cycles 32, 122-
193		142 (2018).
194	44.	Y. Yu et al., Increased Risk of the 2019 Alaskan July Fires due to Anthropogenic Activity.
195		Bulletin of the American Meteorological Society 102 , S1-S7 (2021).
196	45.	F. Li, X. D. Zeng, S. Levis, A process-based fire parameterization of intermediate complexity in
197		a Dynamic Global Vegetation Model. Biogeosciences 9, 2761-2780 (2012).
198	46.	F. Li, B. Bond-Lamberty, S. Levis, Quantifying the role of fire in the Earth system – Part 2:
199		Impact on the net carbon balance of global terrestrial ecosystems for the 20th century.
200		Biogeosciences 11 , 1345-1360 (2014).
201	47.	S. S. Rabin et al., A fire model with distinct crop, pasture, and non-agricultural burning: use
202		of new data and a model-fitting algorithm for FINAL.1. Geosci. Model Dev. 11, 815-842
203		(2018).
204	48.	S. S. Rabin et al., The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental
205		and analytical protocols with detailed model descriptions. Geoscientific Model Development
206		10 , 1175-1197 (2017).

207 49. D. M. Lawrence et al., The Community Land Model Version 5: Description of New Features, 208 Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth 209 Systems 11, 4245-4287 (2019). 210 50. C. Delire *et al.*, The global land carbon cycle simulated with ISBA-CTRIP: Improvements over 211 the last decade. Journal of Advances in Modeling Earth Systems 12, e2019MS001886 (2020). 212 51. F. Li, S. Levis, D. S. Ward, Quantifying the role of fire in the Earth system-Part 1: Improved 213 global fire modeling in the Community Earth System Model (CESM1). Biogeosciences 10, 214 2293-2314 (2013). 215 52. A. P. K. Tai, L. J. Mickley, D. J. Jacob, Correlations between fine particulate matter (PM2.5) and 216 meteorological variables in the United States: Implications for the sensitivity of PM2.5 to 217 climate change. Atmospheric Environment 44, 3976-3984 (2010). 218 53. D. A. Jaffe et al., Wildfire and prescribed burning impacts on air quality in the United States. J 219 Air Waste Manag Assoc 70, 583-615 (2020). 220 54. J. Balch et al., Switching on the Big Burn of 2017. Fire 1, 17 (2018). 221 55. NICC, National Interagency Coordination Center Report on Wildland fires and acres. 222 https://www.nifc.gov/fireInfo/fireInfo_statistics.html, last assessed Nov. 2019 (2019). 223 56. P. E. Higuera, J. T. Abatzoglou, Record-setting climate enabled the extraordinary 2020 fire 224 season in the western United States. Global Change Biology 27, 1-2 (2021). 225 57. G. Danabasoglu et al., The Community Earth System Model Version 2 (CESM2). Journal of 226 Advances in Modeling Earth Systems 12 (2020). 227 58. J. P. Dunne et al., The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled 228 Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth 229 Systems 12, e2019MS002015 (2020). 230 59. R. Séférian et al., Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth 231 System Processes in Present-Day and Future Climate. Journal of Advances in Modeling Earth 232 Systems 11, 4182-4227 (2019). 233 60. L. Giglio, L. Boschetti, D. P. Roy, M. L. Humber, C. O. Justice, The Collection 6 MODIS burned 234 area mapping algorithm and product. Remote Sensing of Environment 217, 72-85 235 ftp://ba71.geog.umd.edu (2018).

236	61.	J. T. Randerson, Y. Chen, G. R. Werf, B. M. Rogers, D. C. Morton, Global burned area and
237		biomass burning emissions from small fires. Journal of Geophysical Research: Biogeosciences
238		117 (2012).
239	62.	G. R. van der Werf et al., Global fire emissions estimates during 1997–2016. Earth System
240		Science Data 9, 697-720 https://www.globalfiredata.org/data.html (2017).
241	63.	A. Darmenov, A. M. da Silva, The Quick Fire Emissions Dataset (QFED)—Documentation of
242		Versions 2.1, 2.2 and 2.4.
243		http://ftp.as.harvard.edu/gcgrid/data/ExtData/HEMCO/QFED/v2018-07/ (2015).
244	64.	M. Hoerling et al., Causes and Predictability of the 2012 Great Plains Drought. Bulletin of the
245		American Meteorological Society 95 , 269-282 (2014).
246	65.	F. Kogan, W. Guo, 2006–2015 mega-drought in the western USA and its monitoring from
247		space data. Geomatics, Natural Hazards and Risk 6, 651-668 (2015).
248	66.	A. Hoell et al., Anthropogenic Contributions to the Intensity of the 2017 United States
249		Northern Great Plains Drought. Bulletin of the American Meteorological Society 100, S19-S24
250		(2019).
251	67.	D. LeComte, U.S. Weather Highlights 2018: Another Historic Hurricane and Wildfire Season.
252		Weatherwise 72 , 12-23 (2019).
253	68.	H. Wang, S. D. Schubert, R. D. Koster, Y. Chang, Attribution of the 2017 Northern High Plains
254		Drought. Bulletin of the American Meteorological Society 100 , S25-S29 (2019).
255	69.	M. Lin, L. W. Horowitz, R. Payton, A. M. Fiore, G. Tonnesen, US surface ozone trends and
256		extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic
257		controls, wildfires, and climate. Atmospheric Chemistry and Physics 17, 2943-2970 (2017).
258	70.	T. T. van Leeuwen et al., Biomass burning fuel consumption rates: a field measurement
259		database. Biogeosciences 11, 7305-7329 (2014).
260	71.	B. C. O'Neill et al., The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6.
261		Geoscientific Model Development 9 , 3461-3482 (2016).
262	72.	K. Riahi et al., The Shared Socioeconomic Pathways and their energy, land use, and
263		greenhouse gas emissions implications: An overview. Global Environmental Change 42, 153-
264		168 (2017).
265	73.	W. M. Jolly et al., Climate-induced variations in global wildfire danger from 1979 to 2013. Nat
266		Commun 6 , 7537 (2015).

267	74.	K. L. Riley, R. A. Loehman, Mid-21st-century climate changes increase predicted fire
268		occurrence and fire season length, Northern Rocky Mountains, United States. Ecosphere 7,
269		e01543 (2016).
270	75.	E. K. Brown, J. Wang, Y. Feng, US wildfire potential: a historical view and future projection
271		using high-resolution climate data. Environmental Research Letters 16 (2021).
272	76.	L. M. Rasmijn et al., Future equivalent of 2010 Russian heatwave intensified by weakening
273		soil moisture constraints. Nature Climate Change 8, 381-385 (2018).
274	77.	L. Samaniego et al., Anthropogenic warming exacerbates European soil moisture droughts.
275		Nature Climate Change 8 , 421-426 (2018).
276	78.	M. Lin et al., Vegetation feedbacks during drought exacerbate ozone air pollution extremes in
277		Europe. Nature Climate Change 10, 444-451 (2020).
278	79.	B. I. Cook et al., Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios.
279		Earth's Future 8 (2020).
280	80.	J. S. Mankin, R. Seager, J. E. Smerdon, B. I. Cook, A. P. Williams, Mid-latitude freshwater
281		availability reduced by projected vegetation responses to climate change. Nature Geoscience
282		12 , 983-988 (2019).
283	81.	R. A. Fisher et al., Parametric Controls on Vegetation Responses to Biogeochemical Forcing in
284		the CLM5. Journal of Advances in Modeling Earth Systems 11, 2879-2895 (2019).
285	82.	S. Sitch et al., Evaluation of the terrestrial carbon cycle, future plant geography and climate-
286		carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global
287		Change Biology 14 , 2015-2039 (2008).
288	83.	Z. Zhu et al., Greening of the Earth and its drivers. Nature Climate Change 6, 791-795 (2016).
289	84.	K. C. Samir, W. Lutz, The human core of the shared socioeconomic pathways: Population
290		scenarios by age, sex and level of education for all countries to 2100. Global Environmental
291		Change 42 , 181-192 (2017).
292	85.	N. Andela et al., A human-driven decline in global burned area. Science 356, 1356-1362
293		(2017).
294	86.	F. Li, D. M. Lawrence, B. Bond-Lamberty, Human impacts on 20th century fire dynamics and
295		implications for global carbon and water trajectories. Global and Planetary Change 162, 18-
296		27 (2018).

- 297 87. W. Knorr, A. Arneth, L. Jiang, Demographic controls of future global fire risk. *Nature Climate*298 *Change* 6, 781-785 (2016).
- 299
 88.
 F. Li, D. M. Lawrence, B. Bond-Lamberty, Impact of fire on global land surface air temperature
- and energy budget for the 20th century due to changes within ecosystems. *Environmental Research Letters* 12, 044014 (2017).
- 302 89. G. Danabasoglu, NCAR CESM2 model output prepared for CMIP6 CMIP historical. Earth
 303 System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.7627.
- 304 90. J. P. Krasting *et al.*, NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP. Earth
 305 System Grid Federation. <u>https://doi.org/10.22033/ESGF/CMIP6.1407</u>.
- 306 91. R. Seferian, CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP. Earth
 307 System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1391.
- 308 92. L. M. Ulrike Groemping, Relative Importance of Regressors in Linear Models. <u>https://cran.r-</u>
 309 project.org/web/packages/relaimpo/relaimpo.pdf (2021).
- 310 93. M. Z. Al-Hamdan *et al.*, Methods for characterizing fine particulate matter using ground
- 311 observations and remotely sensed data: potential use for environmental public health
 312 surveillance. *J Air Waste Manag Assoc* 59, 865-881 (2009).
- H. Hersbach *et al.*, The ERA5 global reanalysis. *Quarterly Journal of the Royal Meteorological Society* 146, 1999-2049 (2020).
- 315 95. J. X. Wang, J. K. Angell, Air stagnation climatology for the United States. *NOAA/Air Resource*316 *Laboratory ATLAS* 1, <u>https://www.ncdc.noaa.gov/societal-impacts/air-stagnation/maps</u>
 317 (1999).
- S. Malyshev, E. Shevliakova, R. J. Stouffer, S. W. Pacala, Contrasting Local versus Regional
 Effects of Land-Use-Change-Induced Heterogeneity on Historical Climate: Analysis with the
 GFDL Earth System Model. *Journal of Climate* 28, 5448-5469 (2015).
- 321 97. E. Shevliakova *et al.*, Carbon cycling under 300 years of land use change: Importance of the
 322 secondary vegetation sink. *Global Biogeochemical Cycles* 23 (2009).
- 323 98. E. S. Weng *et al.*, Scaling from individual trees to forests in an Earth system modeling
- 324 framework using a mathematically tractable model of height-structured competition.
- 325 *Biogeosciences* **12**, 2655-2694 (2015).

326	99.	K. Thonicke, S. Venevsky, S. Sitch, W. Cramer, The role of fire disturbance for global
327		vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Global Ecology
328		and Biogeography 10 , 661-677 (2001).
329	100.	G. P. Compo et al., The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal
330		Meteorological Society 137, 1-28 (2011).
331	101.	D. M. Lawrence et al., The Land Use Model Intercomparison Project (LUMIP) contribution to
332		CMIP6: rationale and experimental design. Geoscientific Model Development 9, 2973-2998
333		(2016).
334	102.	V. Eyring et al., Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
335		experimental design and organization. Geoscientific Model Development 9, 1937-1958
336		(2016).
337	103.	T. Hajima et al., Development of the MIROC-ES2L Earth system model and the evaluation of
338		biogeochemical processes and feedbacks. Geoscientific Model Development 13, 2197-2244
339		(2020).
340	104.	L. W. Horowitz et al., The GFDL Global Atmospheric Chemistry-Climate Model AM4.1: Model
341		Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems
342		12 , e2019MS002032 (2020).
343	105.	otin. Seland <i>et al.</i> , Overview of the Norwegian Earth System Model (NorESM2) and key climate
344		response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 13, 6165-
345		6200 (2020).
346	106.	S. G. Coles, An Introduction to Statistical Modeling of Extreme Values. Springer, New York
347		(2001).
348	107.	H. E. Rieder, A. M. Fiore, L. W. Horowitz, V. Naik, Projecting policy-relevant metrics for high
349		summertime ozone pollution events over the eastern United States due to climate and
350		emission changes during the 21st century. Journal of Geophysical Research: Atmospheres
351		120 , 784-800 (2015).
352	108.	H. E. Rieder, A. M. Fiore, L. M. Polvani, J. F. Lamarque, Y. Fang, Changes in the frequency and
353		return level of high ozone pollution events over the eastern United States following emission
354		controls. <i>Environmental Research Letters</i> 8 , 014012 (2013).

355	109.	L. Shen, L. J. Mickley, E. Gilleland, Impact of increasing heat waves on U.S. ozone episodes in
356		the 2050s: Results from a multimodel analysis using extreme value theory. Geophys Res Lett
357		43 , 4017-4025 (2016).
358	110.	E. Gilleland, R. W. Katz, extRemes2.0: An Extreme Value Analysis Package inR. Journal of
359		Statistical Software 72 (2016).
360	111.	D. Bolton, The Computation of Equivalent Potential Temperature. Monthly Weather Review
361		108 , 1046-1053 (1980).
362	112.	J. X. L. Wang, J. K. Angell, Air stagnation climatology for the United States (19481998).
363		NOAA/Air Resources Laboratory ATLAS No.1 (1999).
364	113.	D. E. Horton, C. B. Skinner, D. Singh, N. S. Diffenbaugh, Occurrence and persistence of future
365		atmospheric stagnation events. Nature Climate Change 4, 698-703 (2014).
366	114.	J. W. Hurrell et al., The Community Earth System Model: A Framework for Collaborative
367		Research. Bulletin of the American Meteorological Society 94, 1339-1360 (2013).