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We consider systems of combinatorial Dyson-Schwinger equations (briey, SDSE)

in the Connes-Kreimer Hopf algebra H I of rooted trees decorated by I = {1, . . . , N }, where B + i is the operator of grafting on a root decorated by i, and F 1 , . . . , F N are non-constant formal series. The unique solution X = (X 1 , . . . , X N ) of this equation generates a graded subalgebra H (S) of H I . We characterise here all the families of formal series (F 1 , . . . , F N ) such that H (S) is a Hopf subalgebra. More precisely, we dene three operations on SDSE (change of variables, dilatation and extension) and give two families of SDSE (cyclic and fundamental systems), and prove that any SDSE (S) such that H (S) is Hopf is the concatenation of several fundamental or cyclic systems after the application of a change of variables, a dilatation and iterated extensions.

Introduction

The Connes-Kreimer Hopf algebra of rooted trees is introduced in [START_REF] Kreimer | Combinatorics of (perturbative) Quantum Field Theory[END_REF] and studied in [START_REF] Broadhurst | Towards cohomology of renormalization: bigrading the combinatorial Hopf algebra of rooted trees[END_REF][START_REF] Chapoton | Algèbres pré-lie et algèbres de Hopf liées à la renormalisation[END_REF][START_REF] Chryssomalakos | Normal coordinates and primitive elements in the Hopf algebra of renormalization[END_REF][START_REF] Connes | Renormalization and Noncommutative geometry[END_REF][START_REF] Figueroa | On the antipode of Kreimer's Hopf algebra[END_REF][START_REF] Foissy | Finite-dimensional comodules over the Hopf algebra of rooted trees[END_REF][START_REF] Michael | Combinatorics of rooted trees and Hopf algebras[END_REF][START_REF] Panaite | Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees[END_REF]. This graded, commutative, non-cocommutative Hopf algebra is generated by the set of rooted trees. We shall work here with a decorated version H D of this algebra, where D is a nite, non-empty set, replacing rooted trees by rooted trees with vertices decorated by the elements of D. This algebra has a family of operators (B + d ) d∈D indexed by D, where B + d sends a forest F to the rooted tree obtained by grafting the trees of F on a common root decorated by d. These operators satisfy the following equation: for all x ∈ H D ,

∆ • B + d (x) = B + d (x) ⊗ 1 + (Id ⊗ B + d ) • ∆(x).
As explained in [START_REF] Connes | Renormalization and Noncommutative geometry[END_REF], this means that B + d is a 1-cocycle for a certain cohomology of coalgebras, dual to the Hochschild cohomology.

We are interested here in systems of combinatorial Dyson-Schwinger equations (briey, SDSE), that is to say, if the set of decorations is {1, . . . , N }, a system (S) of the form:

     X 1 = B + 1 (F 1 (X 1 , .
. . , X N )), . . .

X N = B + N (F N (X 1 , . . . , X N )),
where F 1 , . . . , F N ∈ K[[h 1 , . . . , h N ]] are formal series in N indeterminates. These systems (in a Feynman graph version) are used in Quantum Field Theory, as it is explained in [START_REF] Bergbauer | Hopf algebras in renormalization theory: locality and Dyson-Schwinger equations from Hochschild cohomology[END_REF][START_REF]Dyson-Schwinger equations: from Hopf algebras to number theory[END_REF][START_REF] Kreimer | An étude in non-linear Dyson-Schwinger equations[END_REF]. They possess a unique solution, which is a family of N formal series in rooted trees, or equivalently elements of a completion of H D . The homogeneous components of these elements generate a subalgebra H (S) of H D . Our problem here is to determine Hopf SDSE, that is to say SDSE (S) such that H (S) is a Hopf subalgebra of H D . In the case of a single combinatorial Dyson-Schwinger equation, this question has been answered in [START_REF]Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations[END_REF].

In order to answer this, we rst associate an oriented graph to any SDSE, reecting the dependence of the dierent X i 's; more precisely, the vertices of G (S) are the elements of I, and there is an edge from i to j if F i depends on h j . We shall say that (S) is connected if G (S) is connected. Noting that any SDSE is the disjoint union of several connected SDSE, we can restrict our study to connected SDSE. We introduce three operations on Hopf SDSE:

• Change of variables, which replaces h i by λ i h i for all i ∈ I, where λ i = 0 for all i. This operation replaces H (S) by an isomorphic Hopf algebra and does not change G (S) .

• Dilatation, which replaces each vertex of G (S) by several vertices. This operation increases the number of vertices. For example, consider:

(S) :

X 1 = B + 1 (f (X 1 , X 2 )), X 2 = B + 2 (g(X 1 , X 2 ))
, where f, g ∈ K[[h 1 , h 2 ]]; then the following SDSE is a dilatation of (S):

(S ) :

           X 1 = B + 1 (f (X 1 + X 2 + X 3 , X 4 + X 5 )), X 2 = B + 2 (f (X 1 + X 2 + X 3 , X 4 + X 5 )), X 3 = B + 3 (f (X 1 + X 2 + X 3 , X 4 + X 5 )), X 4 = B + 4 (g(X 1 + X 2 + X 3 , X 4 + X 5 )), X 5 = B + 5 (g(X 1 + X 2 + X 3 , X 4 + X 5 )),
• Extension, which adds a vertex 0 to G (S) with an ane formal series. This operation increases the number of vertices by 1. For example, consider:

(S) :

X 1 = B + 1 (f (X 1 , X 2 )), X 2 = B + 2 (f (X 1 , X 2 )), where f ∈ K[[h 1 , h 2 ]
] and a, b ∈ K; then the following SDSE is an extension of (S):

(S ) :

   X 0 = B + 0 (1 + aX 1 + bX 2 ), X 1 = B + 1 (f (X 1 , X 2 )), X 2 = B + 2 (f (X 1 , X 2 )),
We then introduce two families of Hopf SDSE:

• Cycles, which are SDSE such that the associated graph is an oriented graph and all the formal series of the system are ane; see theorem 28. For example, the following system is a 4-cycle:

       X 1 = B + 1 (1 + X 2 ), X 2 = B + 2 (1 + X 3 ), X 3 = B + 3 (1 + X 4 ), X 4 = B + 4 (1 + X 1
). The associated oriented graph is:

1 G G 2 4 y y 3 o o
• Fundamental SDSE, described in theorem 30. Here is an example of fundamental SDSE:

                                     X 1 = B + 1 f β 1 (X 1 )f β 2 1+β 2 ((1 + β 2 )h 2 )(1 -h 3 ) -1 (1 -h 4 ) -1 , X 2 = B + 2 f β 1 1+β 1 (X 1 )f β 2 (h 2 )(1 -h 3 ) -1 (1 -h 4 ) -1 , X 3 = B + 3 f β 1 1+β 1 ((1 + β 1 )X 1 )f β 2 1+β 2 ((1 + β 2 )h 2 )(1 -h 4 ) -1 , X 4 = B + 4 f β 1 1+β 1 ((1 + β 1 )X 1 )f β 2 1+β 2 ((1 + β 2 )h 2 )(1 -h 3 ) -1 , X 5 = B + 5 f β 1 1+β 1 ((1 + β 1 )X 1 )f β 2 1+β 2 ((1 + β 2 )h 2 )(1 -h 3 ) -1 (1 -h 4 ) -1 ,
where β 1 , β 2 ∈ K -{-1} and, for all β ∈ K, f β is the following formal series:

f β (h) = ∞ k=0 (1 + β) • • • (1 + (k -1)β) k! h k .
The associated oriented graph is: 

1 Õ Õ o o G G y y g g 9 9 x x x x x x x x x x x x x x
d d Ð Ð Ð Ð Ð Ð Ð
The main result of this paper is theorem 14, which says that any connected Hopf SDSE is obtained by a dilatation and a nite number of iterated extensions of a cycle or a fundamental SDSE.

Let us now give a few explanations on the way this result is obtained. An important tool is given by a family indexed by I 2 of scalar sequences λ (i,j) n n≥1 associated to any Hopf SDSE.

They allow to reconstruct the coecients of the formal series of (S), as explained in proposition 19. Particular cases of possible sequence λ

(i,j) n n≥1
are ane sequences, up to a nite number of terms: this leads to the notion of level of a vertex. It is shown that level decreases along the oriented paths of G (S) (proposition 21), and this implies the following alternative if (S) is connected: any vertex is of nite level or no vertex is of nite level. In particular, any vertex of a fundamental SDSE is of nite level, whereas no vertex of a cycle is of nite level.

We then consider two special families of SDSE:

• We rst assume that the graph associated to (S) does not contain any vertex related to itself. This case includes cycles and their dilatations (called multicycles), and a special case of fundamental SDSE called quasi-complete SDSE. We show, using graph-theoretical considerations and the coecients λ

(i,j)
n , that under an hypothesis of symmetry, they are the only possibilities.

• We then assume that any vertex of (S) has an ascendant related to itself. We then prove that (S) is fundamental.

This results are then unied in corollary 48. It says that any Hopf SDSE with a connected graph contains a multicycle or a a fundamental SDSE (S 0 ) and is obtained from (S 0 ) by adding repeatedly a nite number of vertices. This result is precised for the multicycle case in theorem 49 and for the fundamental case in theorem 50. The compilation of these results then proves theorem 14.

This text is organised as follows: the rst section gives some recalls on the structure of Hopf algebra of H D and on the pre-Lie product on g (S) = P rim H * (S) . In the second section are given the denitions of SDSE and their dierent operations: change of variables, dilatation and extension. The main theorem of the text is also stated in this section. The following section introduces the coecients λ (i,j) n and their properties, especially their link with the pre-Lie product of g (S) . The level of a vertex is dened in the fourth section, which also contains lemmas on vertices of level 0, 1 or ≥ 2, before that fundamental and multicyclic SDSE are introduced in the fth section. The next section contains preliminary results about graphs with no self-dependent vertices or such that any vertex is the descendant of a self-dependent vertex, and the main theorem is nally proved in the seventh section.

Notations. We denote by K a commutative eld of characteristic zero. All vector spaces, algebras, coalgebras, Hopf algebras, etc. will be taken over K.

1 Preliminaries 1.1 Decorated rooted trees Denition 1 [START_REF] Stanley | Enumerative combinatorics[END_REF][START_REF]Enumerative combinatorics[END_REF] 1. A rooted tree t is a nite graph, without loops, with a special vertex called the root of t.

The weight of t is the number of its vertices. The set of rooted trees will be denoted by T .

2. Let D be a non-empty set. A rooted tree decorated by D is a rooted tree with an application from the set of its vertices into D. The set of rooted trees decorated by D will be denoted by T D .

3. Let i ∈ D. The set of rooted trees decorated by D with root decorated by i will be denoted by

T (i) D .
Examples.

1. Rooted trees with weight smaller than 5: q ; q q ; q ∨ q q , q q q ; q ∨ q q q , q ∨ q q q , q ∨ q q q , q q q q ; q ∨ q q r q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q∨ q q

, q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q q q ∨ q q

, q q q q q .

2. Rooted trees decorated by D with weight smaller than 4:

q a ; a ∈ D, q q a b (a, b) ∈ D 2 ; q ∨ q q a c b = q ∨ q q a b c , q q q a b c , (a, b, c) ∈ D 3 ; q ∨ q q q a d c b = q ∨ q q q a c d b = q ∨ q q q a d b c = q ∨ q q q a b d c = q ∨ q q q a c b d = q ∨ q q q a b c d , q ∨ q q q a d b c = q ∨ q q q a b d c , q ∨ q q q a b d c = q ∨ q q q a b c d , q q q q a b c d , (a, b, c, d) ∈ D 4 .

Denition 2

1. We denote by H D the polynomial algebra generated by T D .

2. Let t 1 , . . . , t n be elements of T D and let d ∈ D. We denote by B + d (t 1 . . . t n ) the rooted tree obtained by grafting t 1 , . . . , t n on a common root decorated by d. This map

B + d is extended in an operator from H D to H D . For example, B + d ( q q a b q c ) = q ∨ q q q d c a b .

Hopf algebras of decorated rooted trees

In order to make H D a bialgebra, we now introduce the notion of cut of a tree t ∈ T D . A non-total cut c of a tree t is a choice of edges of t. Deleting the chosen edges, the cut makes t into a forest denoted by W c (t). The cut c is admissible if any oriented path in the tree meets at most one cut edge. For such a cut, the tree of W c (t) which contains the root of t is denoted by R c (t) and the product of the other trees of W c (t) is denoted by P c (t). We also add the total cut, which is by convention an admissible cut such that R c (t) = 1 and P c (t) = W c (t) = t. The set of admissible cuts of t is denoted by Adm * (t). Note that the empty cut of t is admissible; we put Adm(t) = Adm * (t) -{empty cut, total cut}. example. Let a, b, c, d ∈ D and let us consider the rooted tree t = q ∨ q q q d c b a . As it as 3 edges, it has 2 3 non-total cuts. 

cut c q ∨ q q q d c b a q ∨ q q q d c b a q ∨ q q q d c b a q ∨ q q q d c b a q ∨ q q q d c b a q ∨ q q q d c b a q ∨ q q q d c b a q ∨ q q q d c
W c (t) q ∨ q q q d c b a q q b a q q d c q a q ∨ q q d c b q q q d b a q c q a q b q q d c q q b a q c q d q a q q d b q c q a q b q c q d q ∨ q q q d c b a R c (t) q ∨ q q q d c b a q q d c q ∨ q q d c b q q q d b a × q d q q d b × 1 P c (t) 1 q q b a q a q c × q q b a q c q a q c × q ∨ q q q d c b a
The coproduct of H D is dened as the unique algebra morphism from H D to H D ⊗ H D such that for all rooted tree t ∈ T D :

∆(t) = c∈Adm * (t) P c (t) ⊗ R c (t) = t ⊗ 1 + 1 ⊗ t + c∈Adm(t) P c (t) ⊗ R c (t).
As H D is the free associative commutative unitary algebra generated by T D , this makes sense. This coproduct makes H D a Hopf algebra. Although it won't play any role in this text, we recall that the antipode S is the unique algebra automorphism of H D such that for all t ∈ T D :

S(t) = - c cut of t (-1) nc W c (t),
where n c is the number of cut edges of c.

Example.

∆(

q ∨ q q q d c b a ) = q ∨ q q q d c b a ⊗ 1 + 1 ⊗ q ∨ q q q d c b a + q q b a ⊗ q q d c + q a ⊗ q ∨ q q d c b + q c ⊗ q q q d b a + q q b a q c ⊗ q d + q a q c ⊗ q q d b .
A study of admissible cuts shows the following result:

Proposition 3 For all d ∈ D, for all x ∈ H D :

∆ • B + d (x) = B + d (x) ⊗ 1 + (Id ⊗ B + d ) • ∆(x).
Remarks.

1. In other words, B + d is a 1-cocycle for a certain cohomology of coalgebras, see [START_REF] Connes | Renormalization and Noncommutative geometry[END_REF].

2. If t ∈ T (i) D , then ∆(t) -t ⊗ 1 ∈ H D ⊗ T (i) D .

Gradation of H D and completion

We grade H D by declaring the forests with n vertices homogeneous of degree n. We denote by H D (n) the homogeneous component of H D of degree n. Then H D is a graded bialgebra, that is to say:

• For all i, j ∈ N, H D (i)H(j) ⊆ H D (i + j). • For all k ∈ N, ∆(H D (k)) ⊆ i+j=k H D (i) ⊗ H D (j).
We dene, for all x ∈ H D :

val(x) = max    n ∈ N | x ∈ k≥n H D (k)    .
We then put, for all x, y ∈ H D , d(x, y) = 2 -val(x-y) , with the convention 2 -∞ = 0. Then d is a distance on H D . The metric space (H D , d) is not complete; its completion will be denoted by H D . As a vector space:

H D = n∈N H D (n).
The elements of H D will be denoted by x n , where x n ∈ H D (n) for all n ∈ N. The product m : H D ⊗ H D -→ H D is homogeneous of degree 0, so is continuous: it can be extended from H D ⊗ H D to H D , which is then an associative, commutative algebra. Similarly, the coproduct of H D can be extended as a map:

∆ : H D -→ H D ⊗H D = i,j∈N H D (i) ⊗ H D (j). Let f (h) = p n h n ∈ K[[h]
] be any formal series, and let X = x n ∈ H D , such that x 0 = 0. The series of H D of terms p n X n is Cauchy, so converges. Its limit will be denoted by f (X). In other words, f (X) = y n , with:

     y 0 = p 0 , y n = n k=1 a 1 +•••+a k =n p k x a 1 • • • x a k if n ≥ 1.
1.4 Pre-Lie structure on the dual of H D By the Cartier-Quillen-Milnor-Moore theorem [START_REF] Milnor | On the structure of Hopf algebras[END_REF], the graded dual H * D of H D is an enveloping algebra. Its Lie algebra P rim(H * D ) has a basis (f t ) t∈T D indexed by T D :

f t :    H D -→ K t 1 . . . t n -→ 0 if n = 1, δ t,t 1 if n = 1.
Recall that a pre-Lie algebra (or equivalently a Vinberg algebra or a left-symmetric algebra) is a couple (A, ), where is a bilinear product on A such that for all x, y, z ∈ A:

(x y) z -x (y z) = (y x) z -y (x z).
Pre-Lie algebras are Lie algebras, with bracket given by [x, y] = x y -y x.

The Lie bracket of P rim(H * D ) is induced by a pre-Lie product given in the following way: if f, g ∈ P rim(H * D ), f g is the unique element of P rim(H * D ) such that for all t ∈ T D ,

(f g)(t) = (f ⊗ g) • (π ⊗ π) • ∆(t),
where π is the projection on V ect(T D ) which vanishes on the forests which are not trees. In other words, if t, t ∈ T D :

f t f t = t ∈T D n(t, t ; t )f t ,
where n(t, t ; t ) is the number of admissible cuts c of t such that P c (t ) = t and R c (t ) = t . It is proved that (prim(H * D ), ) is the free pre-Lie algebra generated by the q d 's, d ∈ D: see [START_REF] Chapoton | Algèbres pré-lie et algèbres de Hopf liées à la renormalisation[END_REF][START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF]. Note that H * D is isomorphic to the Grossman-Larson Hopf algebra of rooted trees [START_REF] Grossman | Hopf-algebraic structure of families of trees[END_REF][START_REF]Hopf-algebraic structure of combinatorial objects and dierential operators[END_REF][START_REF]Dierential algebra structures on families of trees[END_REF].

2 Denitions and properties of SDSE 

F i ∈ K[[h j , j ∈ I]] be a non-constant
formal series for all i ∈ I. The system of Dyson-Schwinger combinatorial equations (briey, the SDSE) associated to (F i ) i∈I is:

∀i ∈ I, X i = B + i (f i (X j , j ∈ I)),
where X i ∈ H I for all i ∈ I.

In order to ease the notation, we shall often assume that I = {1, . . . , N } in the proofs, without loss of generality.

Notations. We assume here that I = {1, . . . , N }.

1. Let (S) be an SDSE. We shall denote, for all i ∈ I:

F i = p 1 ,••• ,p N a (i) (p 1 ,••• ,p N ) h p 1 1 • • • h p N N . 2. Let 1 ≤ j ≤ N . We put ε j = (0, • • • , 0, 1, 0, • • • , 0)
where the 1 is in position j. We shall denote, for all i ∈ I, a

(i) j = a (i) ε j ; for all j, k ∈ I, a (i) j,k = a (i)
ε j +ε k , and so on.

Remark. We assume that there is no constant F i . Indeed, if F i ∈ K, then X i is a multiple of q i . We shall always avoid this degenerated case in all this text.

Proposition 5 Let (S) be an SDSE. Then it admits a unique solution (X i ) i∈I ∈ H I I .

Proof. We assume here that I = {1, . . . , N }.

If (X 1 , • • • , X N ) is a solution of S, then X i is
a linear (innite) span of rooted trees with a root decorated by i. We denote:

X i = t∈T (i) I a t t.
These coecients are uniquely determined by the following formulas: if

t = B + i t p 1,1 1,1 • • • t p 1,q 1 1,q 1 • • • t p N,1 N,1 • • • t p N,q N N,q N
, where the t i,j 's are dierent trees, such that the root of t i,j is decorated by i for all i ∈ I, 1 ≤ j ≤ q i , then:

a t = N i=1 (p i,1 + • • • + p i,q i )! p i,1 ! • • • p i,q i ! a (i) (p 1,1 +•••+p 1,q 1 ,••• ,p N,1 +•••+p N,q N ) a p 1,1 t 1,1 • • • a p N,q N t N,q N . (1) 
So (S) has a unique solution. 2

Denition 6 Let (S) be an SDSE and let X = (X i ) i∈I be its unique solution. The subalgebra of H I generated by the homogeneous components X i (k)'s of the X i 's will be denoted by H (S) . If H (S) is Hopf, the system (S) will be said to be Hopf.

Graph associated to an SDSE

We associate a oriented graph to each SDSE in the following way:

Denition 7 Let (S) be an SDSE.

1. We construct an oriented graph G (S) associated to (S) in the following way:

• The vertices of G (S) are the elements of I.

• There is an edge from i to j if, and only if, ∂F i ∂h j = 0.

If

∂F i ∂h i = 0, the vertex i will be said to be self-dependent. In other words, if i is selfdependent, there is a loop from i to itself in G (S) .

3. If G (S) is connected, we shall say that (S) is connected.

Remark. If (S) is not connected, then (S) is the union of SDSE (S 1 ), Let (S) be an SDSE and let G (S) be the associated graph. Let i and j be two vertices of G (S) . We shall say that j is a direct descendant of i (or i is a direct ascendant of j) if there is an oriented edge from i to j; we shall say that j is a descendant of i (or i is an ascendant of j) if there is an oriented path from i to j. We shall write "i -→ j" for "j is a direct descendant of i".

Operations on Hopf SDSE

Proposition 8 (change of variables) Let (S) be the SDSE associated to (F i (h j , j ∈ I)) i∈I . Let λ i and µ i be non-zero scalars for all i ∈ I. The system (S) is Hopf if, and only if, the SDSE system (S ) associated to (µ i F i (λ j h j , j ∈ J)) i∈I is Hopf.

Proof. We assume that I = {1, . . . , N }. We consider the following morphism:

φ : H I -→ H I F ∈ F -→ (µ 1 λ 1 ) n 1 (F ) • • • (µ N λ N ) n N (F ) F,
where n i (F ) is the number of vertices of F decorated by i. Then φ is a Hopf algebra automorphism and for all i, φ Remark. A change of variables does not change the graph associated to (S).

• B + i = µ i λ i B + i • φ. Moreover, if we put Y i = 1 λ i φ(X i ) for all i: Y i = 1 λ i φ • B + i (F i (X 1 , • • • , X N )) = 1 λ i µ i λ i B + i (F i (φ(X 1 ), • • • , φ(X N ))) = µ i B + i (F i (λ 1 Y 1 , • • • , λ N Y N )). So (Y 1 , • • • , Y N )
Proposition 9 (restriction) Let (S) be the SDSE associated to (F i (h j , j ∈ I)) i∈I and let I ⊆ I, non-empty. Let (S ) be the SDSE associated to F i (h j , j ∈ I) |h j =0, ∀j / ∈I i∈I . If (S) is Hopf, then (S ) also is.

Proof. We consider the epimorphism φ of Hopf algebras from H I to H I , obtained by sending the forests with at least a vertex decorated by an element which is not in I to zero. Then φ sends H (S) to H (S ) . As φ is a morphism of Hopf algebras, if H (S) is a Hopf subalgebra of H I , H (S ) is a Hopf subalgebra of H I .

2

Remark. The restriction to a subset of vertices I changes G (S) into the graph obtained by deleting all the vertices j / ∈ I and all the edges related to these vertices.

Proposition 10 (dilatation) Let (S) be the system associated to (F i ) i∈I and (S ) be a system associated to a family (F j ) j∈J , such that there exists a partition J = i∈I J i , with the following property: for all i ∈ I, for all x ∈ I i ,

F x = F i   y∈I j h y , j ∈ I   .
Then (S) is Hopf, if, and only if, (S ) is Hopf. We shall say that (S ) is a dilatation of (S).

Proof. We assume here that I = {1, . . . , N }.

=⇒. Let us assume that (S) is Hopf. For all i ∈ I, we can then write:

∆(X i ) = n≥0 P (i) n (X 1 , • • • , X N ) ⊗ X i (n),
with the convention X i (0) = 1. Let φ : H I -→ H I be the morphism of Hopf algebras such that, for all

1 ≤ i ≤ N : φ • B + i = j∈I i B + j • φ.
Then, immediately, for all 1 ≤ i ≤ N :

φ(X i ) = j∈I i X j .
As a consequence:

j∈I i ∆(X j ) = j∈I i n≥0 P (i) n   k∈I 1 X k , • • • , k∈I N X k   ⊗ X j (n).
Conserving the terms of the form F ⊗ t, where t is a tree with root decorated by j, for all j ∈ I i :

∆(X j ) = n≥0 P (i) n   k∈I 1 X k , • • • , k∈I N X k   ⊗ X j (n).
So (S ) is Hopf.

⇐=. By restriction, choosing an element in each I i , if (S ) is Hopf, then (S) is Hopf. 2

Remark. If (S ) is a dilatation of (S), then the set of vertices J of the graph G (S ) associated to (S ) admits a partition indexed by the vertices of G (S) , and there is an edge from x ∈ J i to y ∈ J j in G (S ) if, and only if, there is an edge from i to j in G (S) .

Example

. Let f, g ∈ K[[h 1 , h 2 ]].
Let us consider the following SDSE:

(S) :

X 1 = B + 1 (f (X 1 , X 2 )), X 2 = B + 2 (g(X 1 , X 2 )), (S ) :            X 1 = B + 1 (f (X 1 + X 2 + X 3 , X 4 + X 5 )), X 2 = B + 2 (f (X 1 + X 2 + X 3 , X 4 + X 5 )), X 3 = B + 3 (f (X 1 + X 2 + X 3 , X 4 + X 5 )), X 4 = B + 4 (g(X 1 + X 2 + X 3 , X 4 + X 5 )), X 5 = B + 5 (g(X 1 + X 2 + X 3 , X 4 + X 5 )).
Then (S ) is a dilatation of (S).

Proposition 11 (extension) Let (S) be the SDSE associated to (F i ) i∈I . Let 0 / ∈ I and let (S ) be associated to (F i ) i∈I∪{0} , with:

F 0 = 1 + i∈I a (0) i h i .
Then (S ) is Hopf if, and only if, the two following conditions hold:

1. (S) is Hopf.

For all

i, j ∈ I (0) = j ∈ I / a (0) j = 0 , F i = F j .
If these two conditions hold, we shall say that (S ) is an extension of (S).

Proof. We assume here that I = {1, . . . , N }.

=⇒. Let us assume that (S ) is Hopf. By restriction, (S) is Hopf. Moreover:

X 0 = B + 0 1 + N i=1 a (0) i X i = q 0 + N i=1 a (0) i B + 0 • B + i (f i (X 1 , • • • , X N )).
As H (S ) is a graded Hopf subalgebra, the projection on

H {0,••• ,N } ⊗ H {0,••• ,N } (2) gives: N i=1 a (0) i F i (X 1 , • • • , X N ) ⊗ q q 0 i ∈ H (S ) ⊗H (S ) .
So this is of the form:

P ⊗ X 0 (2) = P ⊗ N i=1 a (0) i q q 0 i
, for a certain P ∈ H (S ) . As the q q 0 i 's, i ∈ I, are linearly independent, we obtain that for all i, j, a

i F i (X 1 , • • • , X N ) = a (0) 
i P for all i, and this implies the second item.

⇐=. As (S) is Hopf, we can put for all 1 ≤ i ≤ N :

∆(X i ) = X i ⊗ 1 + +∞ k=1 P (i) k ⊗ X i (k),
where

P (i)
n is an element of the completion of H (S) . By the second hypothesis, if i, j ∈ I, as

F i = F j , P (i) n = P (j)
n . We then denote by P n the common value of P (i) n for all i ∈ I. So:

∆(X 0 ) = q 0 ⊗ 1 + 1 ⊗ q 0 + N i=1 a (0) i ∆ • B + 0 (X i ) = X 0 ⊗ 1 + 1 ⊗ X 0 + N i=1 a (0) i (1 + X i ) ⊗ q 0 + N i=1 ∞ j=1 a (0) i P (i) j ⊗ B + 0 (X i (j)) = X 0 ⊗ 1 + 1 ⊗ X 0 + N i=1 a (0) i (1 + X i ) ⊗ q 0 + N i=1 ∞ j=1 a (0) i P j ⊗ B + 0 (X i (j)) = X 0 ⊗ 1 + 1 ⊗ X 0 + N i=1 a (0) i (1 + X i ) ⊗ q 0 + N i=1 P j ⊗ B + 0   ∞ j=1 a (0) i X i (j)   = X 0 ⊗ 1 + 1 ⊗ X 0 + N i=1 a (0) i (1 + X i ) ⊗ q 0 + N i=1 P j ⊗ X 0 (j + 1).
This belongs to the completion of H (S ) ⊗ H (S ) , so (S ) is Hopf. 2

Remarks.

1. If (S) is an extension of (S ), then G (S) is obtained from G (S ) by adding a non-selfdependent vertex with no ascendant.

2. If I (0) is reduced to a single element, then condition 2 is empty.

Denition 12 Let (S) a Hopf SDSE and let i ∈ I. We shall say that i is an extension vertex if, denoting by J the set of descendants of i, the restriction of (S) to J ∪ {i} is an extension of the restriction of (S) to J.

Constant terms of the formal series

Lemma 13 Let (S) be an Hopf SDSE.

If F i (0, • • • , 0) = 0, then X i = 0.
Proof. If F i (0, • • • , 0) = 0, then the homogeneous component of degree 1 of X i is zero, so

q i / ∈ H (S)
. Considering the terms of the form F ⊗ q i in ∆(X i ), we obtain:

F i (X j , j ∈ I) ⊗ q i ∈ H (S) ⊗ H (S) .
As

q i / ∈ H (S) , necessarily F i (X j , j ∈ I) = 0, so X i = 0. 2 As a consequence, if F i (0, • • • , 0) = 0, then H (S) = H (S )
, where (S ) is the restriction of (S) to I -{i}. Using a change of variables, we shall always suppose in the sequel that for all i,

F i (0, • • • , 0) = 1.

Main theorem

Notations. For all β ∈ K, we put:

f β (h) = +∞ k=0 (1 + β) • • • (1 + β(k -1)) k! h k = (1 -βh) -1 β if β = 0, e h if β = 0.
The main aim of this text is to prove the following result: Theorem 14 Let (S) be a connected SDSE. It is Hopf if and only if one of the following assertion holds:

(Extended multicyclic SDSE). The set I admits a partition

I = I 1 ∪ • • • ∪ I N indexed by the elements of Z/N Z, N ≥ 2,
with the following conditions:

• For all i ∈ I k :

F i = 1 + j∈I k+1 a (i) j h j .
• If i and i have a common direct ascendant in G (S) , then F i = F i (so i and i have the same direct descendants).

(Extended fundamental SDSE

). There exists a partition:

I =   i∈I 0 J i   ∪   i∈J 0 J i   ∪ K 0 ∪ I 1 ∪ J 1 ∪ I 2 ,
with the following conditions:

• K 0 , I 1 , J 1 , I 2 can be empty.

• The set of indices I 0 ∪ J 0 is not empty.

• For all i ∈ I 0 ∪ J 0 , J i is not empty. Up to a change of variables: (a) For all i ∈ I 0 , there exists β i ∈ K, such that for all x ∈ J i :

F x = f β i   y∈J i h y   j∈I 0 -{i} f β j 1+β j   (1 + β j ) y∈J j h y   j∈J 0 f 1   y∈J j h y   .
(b) For all i ∈ J 0 , for all x ∈ J i :

F x = j∈I 0 f β j 1+β j   (1 + β j ) y∈J j h y   j∈J 0 -{i} f 1   y∈J j h y   .
(c) For all i ∈ K 0 :

F i = j∈I 0 f β j 1+β j   (1 + β j ) y∈J j h y   j∈J 0 f 1   y∈J j h y   .
(d) For all i ∈ I 1 , there exist ν i ∈ K and a family of scalars a (i) j j∈I 0 ∪J 0 ∪K 0 , with

(ν i = 1) or (∃j ∈ I 0 , a (i) j = 1 + β j ) or (∃j ∈ J 0 , a (i) j = 1) or (∃j ∈ K 0 , a (i) j = 0).
Then, if ν i = 0:

F i = 1 ν i j∈I 0 f β j ν i a (i) j   ν i a (i) j y∈J j h y   j∈J 0 f 1 ν i a (i) j   ν i a (i) j y∈J j h y   j∈K 0 f 0 ν i a (i) j h j +1- 1 ν i .
If ν i = 0:

F i = - j∈I 0 a (i) j β j ln   1 - y∈J j h y   - j∈J 0 a (i) j ln   1 - y∈J j h y   + j∈K 0 a (i) j h j + 1.
(e) For all i ∈ J 1 , there exists ν i ∈ K -{0} and a family of scalars a (i)

j j∈I 0 ∪J 0 ∪K 0 ∪I 1
, with the three following conditions:

• I (i) 1 = {j ∈ I 1 / a (i) j = 0} is not empty. • For all j ∈ I (i) 1 , ν j = 1. • For all j, k ∈ I (i) 1 , F j = F k . In particular, we put b (i) t = a (j)
t for any j ∈ I (i) 1 , for all t ∈ I 0 ∪ J 0 ∪ K 0 . Then:

F i = 1 ν i j∈I 0 f β j b (i) j -1-β j   b (i) j -1 -β j y∈J j h y   j∈J 0 f β j b (i) j -1   b (i) j -1 y∈J j h y   j∈K 0 f 0 b (i) j h j + j∈I (i) 1 a (i) j h 1 + 1 - 1 ν i .
(f) I 2 = {x 1 , . . . , x m } and for all 1 ≤ k ≤ m, there exist a set:

I (x k ) ⊆   i∈I 0 J i   ∪   i∈J 0 J i   ∪ K 0 ∪ I 1 ∪ J 1 ∪ {x 1 , . . . , x k-1 }
and a family of non-zero scalars a (x k ) j j∈I (x k ) such that for all i, j ∈ I (x k ) , F i = F j . Then:

F x k = 1 + j∈I (x k ) a (x k ) j h j .
Here is the graph of a system of an extended multicyclic SDSE, with N = 5. The dierent subset of the partition are indicated by the dierent colours. the multicycle corresponds to the ve boxes. An arrow between two boxes means that all vertices of the boxes are related by an arrow.

Here is the graph of an extended fundamental SDSE. The vertices in J i , with i ∈ I 0 , are green. There are two elements in I 0 , one with β i = -1 (light green vertices) and one with β i = -1 (dark green vertex). There are two elements in J 0 , corresponding to light blue and dark blue vertices. The unique element of K 0 is red; the unique element of I 1 is yellow; the unique element of J 1 is orange; the dark vertices are the elements of I 2 . An arrow between two boxes means that all vertices of the boxes are related by an arrow.

For example, the SDSE associated to the following formal series has such a graph:

F 1 = f β (h 1 )f 1 (h 4 + h 5 )f 1 (h 6 + h 7 + h 8 ) F 2 = F 3 = (1 + h 2 + h 3 )f β 1+β ((1 + β)h 1 )f 1 (h 4 + h 5 )f 1 (h 6 + h 7 + h 8 ) F 4 = F 5 = f β 1+β ((1 + β)h 1 )f 1 (h 6 + h 7 + h 8 ) F 6 = F 7 = F 8 = f β 1+β ((1 + β)h 1 )f 1 (h 4 + h 5 ) F 9 = f β 1+β ((1 + β)h 1 )f 1 (h 4 + h 5 )f 1 (h 6 + h 7 + h 8 ) F 10 = 1 ν f β νa (10) 1 νa (10) 1 h 1 f -1 νa (10) 2 νa (10) 2 (h 2 + h 3 ) f 1 νa (10) 4 νa (10) 4 (h 4 + h 5 ) f 1 νa (10) 6 νa (10) 6 (h 6 + h 7 + h 8 ) f 0 νa (10) 9 h 9 + 1 - 1 ν , F 11 = 1 ν f β a (10) 1 -1-β a (10) 1 -1 -β h 1 f -1 a (10) 2 a (10) 2 (h 2 + h 3 ) f 1 a (10) 4 -1 a (10) 4 -1 (h 4 + h 5 ) f 1 a (10) 6 -1 a (10) 6 -1 (h 6 + h 7 + h 8 ) f 0 a (10) 9 h 9 + a (11) 10 h 10 + 1 - 1 ν , F 12 = F 13 = 1 + a (12) 10 h 10 , F 14 = 1 + a (14) 13 h 13 , F 15 = 1 + a (15) 12 h 12 + a (15) 13 h 13 , F 16 = 1 + a (16) 15 h 15 , F 17 = 1 + a (17) 2 h 2 , F 18 = 1 + a (18) 17 h 17 , F 19 = 1 + a (19) 17 h 17 ,
where β = -1, ν, ν = 0, and the coecients a Lemma 15 Let V be a subspace of V ect(T D ) and let us consider the subalgebra A of H D generated by V . Recall that for all d ∈ D, f q d is the following linear map:

f q d : H D -→ K t 1 • • • t n -→ δ t 1 •••tn, q d .
Then A is a Hopf subalgebra if, and only if, the two following assertions are both satised:

1. For all d ∈ D, (f q d ⊗ Id) • ∆(V ) ⊆ V + K.

For all

d ∈ D, (Id ⊗ f q d ) • ∆(V ) ⊆ A. Proof. =⇒. If A is Hopf, then ∆(V ) ⊆ A ⊗ A. As V ⊆ V ect(T D ), ∆(V ) ⊆ H ⊗ (V ect(T D ) + K). So: ∆(V ) ⊆ (A ⊗ A) ∩ (H ⊗ (V ect(T D ) + K)) = A ⊗ (V ⊕ K).
This implies both assertions.

⇐=. We use here Sweedler's notations:

∆(a) = a ⊗ a and (∆ ⊗ Id) • ∆(a) = a ⊗ a ⊗ a for all a ∈ A.
First step. Let us consider the following subspace of P rim(H * D ):

B = {f ∈ P rim(H * D ) / (f ⊗ Id) • ∆(V ) ⊆ V + K}.
By hypothesis 1, f q d ∈ B for all d ∈ D. We recall here that is the pre-Lie product of P rim(H * D ). Let f and g ∈ B. For all v ∈ V :

(f g ⊗ Id) • ∆(v) = f • π(v )g • π(v )v . As f ∈ B, f • π(v )v ∈ V + K. As g ∈ B, f • π(v )g • π(v )v ∈ V + K. So f g ∈ B,
and B is a sub-pre-Lie algebra of P rim(H * D ). As P rim(H * D ) is generated as a pre-Lie algebra by the f q d 's, B = P rim(H * D ).

Second step. Let us consider the following subspace of H * D :

B = {f ∈ H * D / (f ⊗ Id) • ∆(A) ⊆ A}. Let f ∈ P rim(H * D ). By the rst step, for all v 1 , • • • , v n ∈ V : (f ⊗ Id) • ∆(v 1 • • • v n ) = f (v 1 • • • v n )v 1 • • • v n = n i=1 v 1 • • • f (v i )v i • • • v n ∈ A, so P rim(H * D ) ⊆ B . Let f, g ∈ B .
For all a ∈ A:

(f g ⊗ Id) • ∆(a) = f (a )g(a )a . As f ∈ B , f (a )a ∈ A. As g ∈ B , f (a )g(a )a ∈ A. So B is a subalgebra of H * D . As it contains P rim(H * D ), it is equal to H * D . So: ∆(A) ⊆ H D ⊗ A + f ∈H * D Ker(f ) ⊗ H D = H D ⊗ A.
Third step. Let us consider the following subspace of P rim(H * D ):

C = {f ∈ P rim(H * D ) / (Id ⊗ f ) • ∆(V ) ⊆ A}.
By the second hypothesis, f q d ∈ B for all d ∈ D. Let us take f and g ∈ C. For all v ∈ V :

(Id ⊗ (f g)) • ∆(v) = v f • π(v )g • π(v ). As g ∈ C, v g • π(v ) ∈ A. Let us denote: v • π(v ) = v 1 • • • v n ,
where v 1 , . . . , v n are elements of V . Then:

v f • π(v )g • π(v ) = v 1 • • • v n f • π(v 1 • • • v n )g • π(v ).
By the second step, as V ⊆ V ect(T D ):

∆(V ) ⊆ (H D ⊗ A) ∩ (H D ⊗ (V ect(T D ) + K)) = H D ⊗ (V + K).
So:

v 1 • • • v n ⊗ π(v 1 • • • v n ) = n i=1 v 1 • • • v i • • • v n ⊗ π(v i ).
Finally:

(Id ⊗ (f g)) • ∆(v) = n i=1 v 1 • • • v i • • • v n ⊗ f • π(v i ). As f ∈ B , this belongs to A. So f g ∈ B .
As at the end of the rst step, we conclude that B = P rim(H * D ).

Last step. As in the second step, we conclude that for all

f ∈ H * D , (Id ⊗ f ) • ∆(A) ⊆ A. So ∆(A) ⊆ A ⊗ H D , and ∆(A) ⊆ (H D ⊗ A) ∩ (A ⊗ H D ) = A ⊗ A. So A is a Hopf subalgebra. 2

Denition of the structure coecients

Proposition 16 Let (S) be an SDSE. It is Hopf if, and only if, for all i, j ∈ I, for all n ≥ 1, there exists a scalar λ (i,j) n such that for all t ∈ T i (n):

t∈T i (n+1) n j (t, t )a t = λ (i,j) n a t ,
where n j (t, t ) is the number of leaves l of t decorated by j such that the cut of l gives t .

Proof. =⇒. Let us assume that (S) is Hopf. Then

H (S) is a Hopf subalgebra of H I . Let us use lemma 15, with V = V ect(X i (n), i ∈ I, n ≥ 1). So (f q j ⊗ Id) • ∆(X i (n + 1)) belongs to H (S)
, and is a linear span of trees of degree n with a root decorated by i, so is a multiple of X i (n). We then denote:

(f q j ⊗ Id) • ∆(X i (n + 1)) = λ (i,j) n X i (n) = t ∈T (n) λ (i,j) n a t t .
By denition of the coproduct ∆:

(f q j ⊗ Id) • ∆(X i (n + 1)) = t∈T (n+1), t ∈T (n) n j (t, t )a t t .
The result is proved by identifying the coecients in the basis T (n) of these two expressions of (f q j ⊗ Id) • ∆(X i (n + 1)).

⇐=. Let us prove that both conditions of lemma 15 are satised, with the same V as before. By hypothesis, for all i, j ∈ I, for all n ≥ 2, (f

q j ⊗ Id) • ∆(X i (n)) = λ (i,j) n-1 X i (n -1) ∈ V . Moreover, (f q j ⊗ Id) • ∆(X i (1)) = δ i,j ∈ K,
so the rst condition is satised. For the second one: 

(Id ⊗ f q j ) • ∆(X i ) = (Id ⊗ f q j ) • ∆(B + i (F i (X j , j ∈ I))) = F i (X j , j ∈ I) ∈ H (S) . So H (S)

For all sequence

i = i 1 -→ • • • -→ i n of vertices of G (S) : λ (i,j) n = a (in) j + n-1 p=1 (1 + δ j,i p+1 ) a (ip) j,i p+1 a (ip) i p+1 . In particular, λ (i,j) 1 = a (i) j . 2. For all p 1 , • • • , p N ∈ N: a (i) (p 1 ,••• ,p j+1 ,••• ,p N ) = 1 p j + 1 λ (i,j) p 1 +•••+p N +1 - l∈I p l a (l) j a (i) (p 1 ,••• ,p N ) .
Proof. 1. Let us consider a sequence i 1 , • • • , i n of elements of I, such that i 1 = i and for all

1 ≤ p ≤ n -1, a (ip) 
i p+1 = 0. By denition of λ (i,j) n :

λ (i,j) n a q q . . . q q i 1 i 2 i n-1 in = a q q . . . q q q i 1 i 2 i n-1 in j + (1 + δ j,in )a q q . . . q ∨ q q i 1 i 2 i n-1 in j + n-2 p=1 a q . . . q ∨ q q . . . q i 1 ip i p+1 in j , λ (i,j) n a (i 1 ) i 2 • • • a (i n-1 ) in = a (i 1 ) i 2 • • • a (i n-1 ) in a (in) j + (1 + δ j,in )a (i 1 ) i 2 • • • a (i n-1 ) in,j + n-2 p=1 (1 + δ j,i p+1 )a (i 1 ) i 2 • • • a (ip) j,i p+1 a (i p+1 ) i p+2 • • • a (i n-1 ) in , λ (i,j) n = a (in) j + n-1 p=1 (1 + δ j,i p+1 ) a (ip) j,i p+1 a (ip) i p+1
.

This proves the rst point of the lemma.

Let us now

x p 1 , • • • , p N ∈ N. By denition, for t = B + i ( q 1 p 1 • • • q N p N ): λ (i,j) p 1 +•••+p N +1 a B + i ( q 1 p 1 ••• q N p N ) = (p j + 1)a B + i ( q 1 p 1 ••• q j p j +1 ••• q N p N ) + N l=1 a B + i ( q 1 p 1 ••• q l p l -1 ••• q N p N q q l j ) , λ (i,j) p 1 +•••+p N +1 a (i) (p 1 ,••• ,p N ) = (p j + 1)a (i) (p 1 ,••• ,p j +1,••• ,p N ) + N l=1 p l a (i) (p 1 ,••• ,p N ) a (l) j .
This proves the second point of the lemma.

1. As a consequence of the second point, if (S) is Hopf and if a

(i) (p 1 ,••• ,p N ) = 0, then a (i) (l 1 ,••• ,l N ) = 0 if l 1 ≥ p 1 , • • • , l N ≥ p N .
In particular, as there is no constant F i , for all i, there exists a j such that a (i) j = 0.

2. So the sequences considered in the rst point of lemma 17 always exist.

3. Moreover, for all vertices i, j of G (S) , i → j if and only if a

(i) j = 0.
4. Finally, for all i ∈ I, for all p ≥ 1, X i (p) = 0.

Proposition 18 Let (S) be a Hopf SDSE.

1. Let i, j be vertices of G (S) , such that j is not a descendant of i. Then for all n ≥ 1:

λ (i,j) n = 0.
2. Let (S) be a Hopf SDSE with set of vertices I and let (S ) be a Hopf SDSE with set of vertices J. Then (S ) is a dilatation of (S) if, and only if, J admits a partition indexed by the elements of I and for all i, j ∈ I, for all x ∈ J i , y ∈ J j , for all n ≥ 1:

λ (i,j) n = λ (x,y) n .
3. Let i ∈ I such that:

F i = 1 + j∈I a (i) j h j .
Then for all direct descendant i of i, for all j, for all n ≥ 1:

λ (i,j) n+1 = λ (i ,j) n .
As a consequence, if i , i are two direct descendants of i,

F i = F i . Proof. 1. Let us consider a sequence i = i 1 , • • • , i n of elements of I such that a (i k ) i k+1 = 0 for all 1 ≤ k ≤ n -1. Then j is not a direct descendant of i 1 , • • • , i n , so a (in) j = 0 and a (i k ) j,i k+1 = 0 for all k. By lemma 17, λ (i,j) n = 0.
2. =⇒. From lemma 17-1, choosing an element x i in J i for all i ∈ I. ⇐=. Let us consider the dilatation (S ) of (S) corresponding to the partition of J. Then the coecients λ (i,j) n of (S ) and (S ) are equal, so by lemma 17-2, (S ) = (S ).

Let us consider a sequence

i, i = i 1 , • • • , i n of elements of I such that a (i k ) i k+1 = 0 for all 1 ≤ k ≤ n -1. By hypothesis on i, a (i) j,i = 0. By lemma 17-1: λ (i,j) n+1 = a (in) j + 0 + n-1 k=1 (1 + δ j,i k+1 ) a (i k ) j,i k+1 a (i k ) i k+1 = λ (i ,j) n .
So, if i and i are two direct descendants of i, for all k ∈ I, for all n ≥ 1, λ

(i ,k) n = λ (i ,k) n . By lemma 17-2, F i = F i . 2
Proposition 19 Let (S) be an SDSE, with I = {1, . . . , N }. It is Hopf if, and only if, the two following conditions are satised:

1. There exist scalars λ (i,j) n satisfying, for all

1 ≤ i, j ≤ N , for all (p 1 , • • • , p N ) ∈ N N : a (i) (p 1 ,••• ,p j+1 ,••• ,p N ) = 1 p j + 1 λ (i,j) p 1 +•••+p N +1 - l∈I p l a (l) j a (i) (p 1 ,••• ,p N ) .
2. For all p ≥ 1, for all i, j,

d 1 , • • • , d p ∈ I, such that a (i) (p 1 ,••• ,p N ) = 0 where p i is the number of d p 's equal to i, for all n 1 , • • • , n p ≥ 1: λ (i,j) n 1 +•••+np+1 -a (i) j = λ (i,j) p+1 -a (i) j + l∈I λ (d l ,j) n l -a (d l ) j .
Proof. Preliminary step. Let us assume the rst point and let t ∈ T (i) D . We use the following notations:

t = B + i   s∈T D s rs   .
We also denote, for all j ∈ I:

p j = s∈T (j) D r s .
Then, by (1):

a t = N j=1 p j ! s∈T D r s ! a (i) (p 1 ,••• ,p N ) s∈T D a rs s .
Hence:

t∈T (i) D n j (t, t )a t = n j   B + i   q j s∈T D s rs   , t   a B + i ( q j s rs ) + s 1 ,s 2 ∈T D rs 2 ≥1 (r s 1 + 1)n j (s 1 , s 2 )a B + i s 1 s 2 s rs = (r q j +1 ) (p j + 1) N j=1 p j ! (r q j +1 ) s∈T D r s ! a (i) (p 1 ,••• ,p j+1 ,••• ,p N ) a q j s∈T D a rs s + s 1 ,s 2 ∈T D (r s 1 + 1)n j (s 1 , s 2 ) r s 2 r s 1 + 1 a t a s 1 a s 2 = (p j + 1) a (i) (p 1 ,••• ,p j+1 ,••• ,p N ) a (i) (p 1 ,••• ,p N ) a t + s 1 ,s 2 ∈T D n j (s 1 , s 2 )r s 2 a t a s 1 a s 2 =     λ (i,j) p 1 +•••+p N +1 - N l=1 p j a (l) j + s 1 ,s 2 ∈T D rs 2 >0 n j (s 1 , s 2 )r s 2 a s 1 a s 2     a t .
=⇒. Let us assume that (S) is Hopf. We already prove the existence of the scalars λ (i,j)

n . We obtain from the preceding computation:

λ (i,j) weight(t ) a t =   λ (i,j) p 1 +•••+p N +1 - N l=1 p j a (l) j + s 2 ∈T D r s 2 λ (d(s 2 ),j) weight(s 2 )   a t , where d(s 2 ) is the decoration of the root of s 2 . Let us choose p, i, j, d 1 , • • • , d p , n 1 , • • • , n p
as in the hypotheses of the proposition. Let us choose for all 1 ≤ j ≤ p a tree s j with root decorated by d j , of weight n j , such that a s j = 0: this always exists (for example take a convenient ladder). ,j)

Let us take

t = B + i (s 1 • • • s p ). Then a t = 0 because a (i) (p 1 ,••• ,p N ) = 0, so: λ (i
n 1 +•••+np+1 = λ (i,j) p+1 + p l=1 λ (d l ,j) n l -a (d l ) j .
⇐=. Let us show the condition of proposition 16 by induction on the weight n of t . For n = 1, then t = q i . Then, by hypothesis on the a

(i) (p 1 ,••• ,p N ) , a (i) j = λ (i,j) 1
. So:

t∈T i (n+1) n j (t, t )a t = q q i j = a (i) j = λ (i,j) 1 a q i .
Let us assume the result for all tree of weight < n. The preceding computation then gives:

t∈T (i) D n j (t, t )a t =     λ (i,j) p 1 +•••+p N +1 - N l=1 p j a (l) j + s 1 ,s 2 ∈T D rs 2 >0 n j (s 1 , s 2 )r s 2 a s 1 a s 2     a t .
The induction hypothesis and the condition on the coecients λ

(i,j) n
then give that this is equal to λ (i,j)

weight(t )+1 a t . So H (S) is a Hopf subalgebra of H I . 2 
4 Level of a vertex

The second item of proposition 19-2 is immediately satised if there exist scalars b j and a (i)

j such that λ (i,j) n = b j (n -1) + a (i)
j for all n ≥ 1 and all i, j ∈ I. This motivates the denition of the level of a vertex.

Denition of the level

Denition 20 Let (S) be a Hopf SDSE, and let i be a vertex of G (S) . It will be said to be of level ≤ M if for all vertex j, there exist scalar b (i) j , ã(i) j , such that for all n > M :

λ (i,j) n = b (i) j (n -1) + ã(i) j .
The vertex i will be said to be of level M if it is of level ≤ M and not of level ≤ M -1.

Remark. In order to prove that i is of level ≤ M , it is enough to consider the j's which are descendants of i. Indeed, if j is not a descendant of i, by proposition 18-1, λ

(i,j) n = 0 for all n ≥ 1.
Proposition 21 Let (S) be a Hopf SDSE, i a vertex of G (S) and j a direct descendant of G (S) .

1. i has level 0 or 1 if, and only if, j as level 0.

2. Let M ≥ 2. Then i has level M if, and only if, j has level M -1.

Moreover, if this holds, then for all

k ∈ I, b (i) k = b (j) k .
Proof. Let i ∈ G (S) and j be a direct descendant of i. As (S) is Hopf, let us use the second point of proposition 19, with k = 1 and d 1 = j. Then for all l, for all n ≥ 1, as a (i) j = 0:

λ (i,l) n+1 = λ (i,l) 2 + λ (j,l) n -a (j) l .
So for all M ≥ 1, i is of level ≤ M if, and only if, j is of level ≤ M -1. Moreover, if this holds, then b

(i) k = b (j)
k for all k. The rst point is a reformulation of the preceding result for M = 1. Let us assume that

M ≥ 2. If i is of level M , then j is of level ≤ M -1. If j is of level ≤ M -2, then i is of level ≤ M -1: contradiction. So j is of level M -1.
The converse is proved in the same way.

2

Corollary 22 Let (S) be a connected Hopf SDSE. Then if one of the vertices of G (S) is of nite level, then all vertices of G (S) are of nite level. Moreover, the coecients b (i) j depend only of j. They will now be denoted by b j .

Proposition 18-1 immediately implies the following result:

Lemma 23 Let (S) be a connected Hopf SDSE and let j be a vertex of G (S) of nite level. If there exists a vertex i in G (S) which is not a descendant of j, then b j = 0.

Vertices of level 0

Let (S) be a Hopf SDSE with I = {1, . . . , N }, and let us assume that i is a vertex of level 0. In this case, the coecients a

(i) (p 1 ,••• ,p N )
satisfy an induction of the following form:

       a (i) (0,••• ,0) = 1, a (i) (p 1 ,••• ,p j +1,••• ,p N ) = 1 p j + 1 λ j + N l=1 µ (l) j p l a (i) (p 1 ,••• ,p N ) .
In order to ease the notation, we shall write

a (p 1 ,••• ,p N ) instead of a (i) (p 1 ,••• ,p N ) and F instead of F i in this section.
Lemma 24 Under the preceding hypothesis:

1. Let us denote J = {j ∈ I / λ j = 0}. There exists a partition

I = I 1 ∪ • • • ∪ I M ∪ J, and scalars β 1 , • • • , β M , such that for all i, j ∈ I \ J = I 1 ∪ • • • ∪ I M : µ (j) i = 0 if i, j do not belong to the same I l , λ i β l if i, j ∈ I l .

Moreover

F (h 1 , • • • , h N ) = M p=1 f βp   l∈Ip λ l h l   .
Proof. Let us x i = j. Then:

a (p 1 ,••• ,p i +1,••• ,p j +1,••• ,p N ) = 1 p i + 1 λ i + µ (j) i + N l=1 µ (l) i p l a (p 1 ,••• ,p j +1,••• ,p N ) = 1 (p i + 1)(p j + 1) λ i + µ (j) i + N l=1 µ (l) i p l λ j + N l=1 µ (l) j p l a (p 1 ,••• ,p N ) , = 1 (p i + 1)(p j + 1) λ j + µ (i) j + N l=1 µ (l) j p l λ i + N l=1 µ (l) i p l a (p 1 ,••• ,p N ) . For (p 1 , • • • , p N ) = (0, • • • , 0), as a (0,••• ,0) = 1: µ (j) i λ j = µ (i) j λ i . (2) 
For (p 1 , • • • , p N ) = ε k , we obtain:

λ i + µ (j) i + µ (k) i λ j + µ (k) j λ k = λ j + µ (i) j + µ (k) j λ i + µ (k) i λ k . So, if λ k = 0: µ (j) i µ (k) j = µ (i) j µ (k) i . (3) 
If

λ k = 0, it is not dicult to prove inductively that a (p 1 ,••• ,p N ) = 0 if p k > 0, so F is an element of K[[h 1 , • • • , h k-1 , h k+1 , • • • , h N ]].
Hence, up to a restriction to I \ J, we can suppose that all the λ k 's are non-zero. We then put ν

(j) i = µ (j) i
λ i for all i, j. Then ( 2) and (3) become: for all i, j, k, ν

(j) i = ν (i) j , (4) 
ν (j) i ν (k) i -ν (k) j = 0. (5) 
Let 1 ≤ i, j ≤ N . We shall say that i R j if i = j or if ν (j) i = 0. Let us show that R is an equivalence. By (4), it is clearly symmetric. Let us assume that i R j and j R k.

If i = j or j = k or i = k, then i R k. If i, j, k are distinct, then ν (j) i = 0 and ν (k) j = 0. By (5), ν (k) i = ν (k) j = 0, so i R k. We denote by I 1 , • • • , I M the equivalence classes of R .
Let us assume that i R j, i = j. Then ν

(j) i = 0, so for all k, ν (k) j = ν (k) 
i . In particular, ν

(i) j = ν (i) i = ν (j) i = ν (j)
j . So, nally, there exists a family of scalars (β i ) 1≤i≤M , such that:

• If i, j ∈ I l , then ν (j) i = β l , and µ (j) i = λ i β l .
• If i and j are not in the same I l , then ν

(j) i = µ (j) i = 0.
An easy induction then proves:

a (p 1 ,••• ,p N ) = λ p 1 1 • • • λ p N N p 1 ! • • • p N ! M p=1 (1 + β p ) • • •   1 + β p   l∈Ip p l -1     .
This implies the assertion on F . 2

Vertices of level 1

Let us now assume that i is of level 1. Then, up to a restriction to i and its direct descendants, the coecients a

(i) (p 1 ,••• ,p N ) = a (p 1 ,••• ,p N )
satisfy an induction of the form:

           a (i) (0,••• ,0) = 1, a (i) ε j = a (i) j , a (i) (p 1 ,••• ,p j +1,••• ,p N ) = 1 p j + 1 λ j + N l=1 µ (l) j p l a (i) (p 1 ,••• ,p N ) if (p 1 , • • • , p N ) = (0, • • • , 0).
In order to ease the notation, we shall write

a (p 1 ,••• ,p N ) instead of a (i) (p 1 ,••• ,p N ) and F instead of F i in this section.
Lemma 25 Under the preceding hypothesis, one of the following assertions holds:

1. There exists a partition

I = I 1 ∪ • • • ∪ I M ∪ J, scalars β 1 , • • • , β M ,
a non-zero scalar ν such that:

F (h 1 , • • • , h N ) = 1 ν M p=1 f βp   l∈Ip νa l h l   + l∈J a l h l + 1 - 1 ν .
2. There exists a partition

{1, • • • , N } = I 1 ∪ • • • ∪ I M ∪ J, scalars ν p for 1 ≤ p ∈ M , such that: F (h 1 , • • • , h N ) = 1 - M p=1 1 ν p ln   1 -ν p l∈Ip a l h l   + l∈J a l h l .
Proof. Let us compute a j,k in two dierent ways:

λ j + µ (k) j a k = λ k + µ (j) k a j .
In other words:

λ j + µ (k) j a j λ k + µ (j) k a k = 0. (6) 
Let us take J = {j / ∀k, λ j + µ (k) j = 0}. Let us consider an element j ∈ J. Then an easy induction proves that for all

(p 1 , • • • , p N ) such that p 1 + • • • + p N ≥ 2 and p j ≥ 1, a (p 1 ,••• ,p N ) = 0.
As a consequence:

F (h 1 , • • • , h N ) = F (h 1 , • • • , h j-1 , 0, h j+1 , • • • , h N ) + a j h j . So: F = F (h i , i / ∈ J) + j∈J a j h j .
We now assume that, up to a restriction, J = ∅. Let us choose an i and let us put

b (p 1 ,••• ,p N ) = (p i + 1)a (p 1 ,••• ,p i +1,••• ,p N ) . Then, for all j ∈ I, for all (p 1 , • • • , p N ): b (p 1 ,••• ,p j +1,••• ,p N ) = 1 p j + 1 λ j + µ (i) j + N l=1 µ (l) j p l b (p 1 ,••• ,p N ) .
We deduce from lemma 24 that there exist a partition I = I 1 ∪ • • • ∪ I M and scalars β 1 , . . . , β M , such that:

µ (l) j = 0 if j, l are not in the same I k , λ j + µ (i) j β k if j, l ∈ I k .
So µ (i) j does not depend on i such that µ (i) j = 0. So there exist scalars µ j such that:

µ (l) j = 0 if j, l are not in the same I k , (λ j + µ j ) β k if j, l ∈ I k .
1. Let us assume that M ≥ 2. Let us choose j ∈ I 1 . Then for all k ∈ I 2 ∪ • • • ∪ I M , (6) gives:

λ j a j λ k a k = 0.
We denote

I 2 ∪ • • • ∪ I k = {i 1 , • • • , i M }. We proved that the vectors (λ j , λ i 1 , • • • , λ i M ) and (a j , a i 1 , • • • , a i M ) are colinear.
Choosing then a j ∈ I 2 , we obtain that there exists a scalar ν, such that (λ i ) i∈I = ν(a i ) i∈I . Two cases are possible.

(a

) If ν = 0, putting a (p 1 ,••• ,p N ) = νa (p 1 ,••• ,p N ) if (p 1 , • • • , p N ) = (0, • • • , 0) and a (0,••• ,0) ,
then the family a (p 1 ,••• ,p N ) satises the hypothesis of lemma 24. As a consequence,

F (h 1 , • • • , h N ) satises the rst case.
(b) If ν = 0, then we put, for all j, µ j = ν j a j . By ( 6), for j and k in the same I l , ν j = ν k if j and k are in the same I l : this common value is now denoted ν l . It is then not dicult to prove that:

F (h 1 , • • • , h N ) = 1 - M p=1 1 ν p ln   1 -ν p l∈Ip a l h l   .
This is a second case.

Let us assume that

M = 1. Then (λ j + µ j )β 1 = µ (i)
j for all i, j ∈ I.

(a) Let us suppose that β 1 = 1. Then, for all j, k ∈ I µ j = β 1 1-β 1 λ j . So, for all j, λ j + µ j = 1 1-β 1 λ j . So [START_REF] Connes | Renormalization and Noncommutative geometry[END_REF] implies that (λ j ) j∈I and (a j ) j∈I are colinear. As in 1.(a), this is a rst case.

(b) Let us assume that β 1 = 1. So λ j = 0 for all j. As in 1.(b), this is a second case. Lemma 26 Let (S) be a Hopf SDSE and let i be a vertex of G (S) . We suppose that there exists a vertex j, such that:

• j is a descendant of i.

• All oriented path from i to j are of length ≥ 3.

Then F i = 1 + i-→l a (i) l h l .
Proof. We assume here that I = {1, . . . , N }. Let L be the minimal length of the oriented paths from i to j. By hypothesis, L ≥ 3. Then the homogeneous component of degree L + 1 of X i contains trees with a leave decorated by j, and all these trees are ladders (that is to say trees with no ramication). By proposition 16, if t ∈ T 

λ (i,j) L a t = t∈T (i) D (L+1) n j (t, t )a t .
For a good-chosen ladder t , the second member is non-zero, so λ (i,j) L is non-zero. If t is not a ladder, the second member is 0, so a t = 0. As a conclusion, X i (L) is a linear span of ladders. Considering its coproduct, for all p ≤ L, X i (p) is a linear span of ladders. In particular, X i (3) is a linear span of ladders. But:

X i (3) = l,m a (i) l a (l) m q q q i l m + l≤m a (i) l,m q ∨ q q i m l , so a (i)
l,m = 0 for all l, m. Hence, F i contains only terms of degree ≤ 1.

2

Remark. This lemma can be applied with i = j, if i is not a self-dependent vertex.

Proposition 27 Let (S) be a Hopf SDSE and let i be a vertex of G (S) of level ≥ 2. Then i is an extension vertex.

Proof. We denote by M the level of i. By proposition 21, all the descendants of i are of level ≤ M -1, so i is not a descendant of itself.

Let M be the level of i and let us assume that M ≥ 3. Let j be a direct descendant of i, k be a direct descendant of j, l be a direct descendant of k. Then j has level M -1, k has level M -2, l has level M -3. So in the graph of the restriction to {i, j, k, l} is:

i G G j G G k G G l or i G G j G G k G G l
The result is then deduced from lemma 26.

Let us now assume that i is of level 2 and is not an extension vertex. Let j be a direct descendant of i and k be a direct descendant of j. By proposition 21, j is of level 1 and k is of level 0, so k is not a direct descendant of i. The graph of the restriction of (S) to {i, j, k} is:

i G G j G G k or i G G j G G k e e
First step. Let us rst prove that there exists a direct descendant j of i such that a (i) j,j = 0. Let us assume that this is not true. As i is not an extension vertex, there exist j, j ∈ I such that a (i) j,j = 0, j = j . Let k be a direct descendant of j. Considering the dierent levels, the graph associated to the restriction to {i, j, j , k} is:

i 0 0 a a a a a a a a Ð Ð Ò Ò Ò Ò Ò Ò Ò Ò j 0 0 `j Ð Ð Ñ Ñ Ñ Ñ Ñ Ñ Ñ k or i 0 0 a a a a a a a a Ð Ð Ò Ò Ò Ò Ò Ò Ò Ò j 0 0 `j Ð Ð Ñ Ñ Ñ Ñ Ñ Ñ Ñ k e e or i 0 0 a a a a a a a a Ð Ð Ò Ò Ò Ò Ò Ò Ò Ò j 0 0 `j k or i 0 0 a a a a a a a a Ð Ð Ò Ò Ò Ò Ò Ò Ò Ò j 0 0 `j k e e
Up to a change of variables, we put:

F i (0, • • • , 0, h j , 0, • • • , 0, h j , 0, • • • , 0) = 1 + h j + h j + bh j h j + O(h 3 ).
Then by proposition 16, λ (i,j) 2 a q q i j = 2a q ∨ q q i j j + a q q q i j j = 0, so λ (i,j) 2 = 0. On the other hand, λ (i,j) 2 a q q i j = a q ∨ q q i j j + a q q q i j j = b, so 0 = b: this contradicts a (i) j,j = 0.

Second step. Let us consider a vertex j such that a (i) j,j = 0. Up to a change of variables, we can assume that a (i) j = 1 and that for all direct descendant k of j, a (j) k = 1. By lemma 23, b i = b j = 0. So, as i is of level 2, there exist scalars a, b, such that:

λ (i,j) n =    1 if n = 1, a if n = 2, b if n ≥ 3.
Then proposition 19-1 implies:

F i (0, • • • , 0, h j , 0, • • • , 0) = 1 + h j + a 2! h 2 j + ab 6 h 3 j + O(h 4 j ).
By hypothesis, a = 0. Moreover, by proposition 16, b = λ (i,j) 3 a q q q i j k = a q ∨ q q q i j j k = a. So:

F i (0, • • • , 0, h j , 0, • • • , 0) = 1 + h j + a 2! h 2 j + a 2 6 h 3 j + O(h 4 j ).
As j has level 1, we put:

λ (j,k) n = a (j) k = 1 if n = 1, c(n -1) + d if n ≥ 2,
where c(= b k ) and d are scalars. From proposition 19-1:

F j (0, • • • , 0, h k , 0, • • • , 0) = 1 + h k + c + d 2! h 2 k + (c + d)(2c + d) 6 h 3 k + O(h 4 k ).
Moreover, λ

(i,k) 3 a q ∨ q q i j j = a q ∨ q q q i j j k , so λ (i,k) 3 a 2 = a and λ (i,k) 3 = 2. Then λ (i,k) 3 a q q q i j k = 2a q ∨ q q q i j k k
, so c + d = 2. Similarly, using q ∨ q q q i j j j , we obtain λ

(i,k) 4 = 3. Using q ∨ q q q i j k k
, we obtain:

3 c + d 2 = 3 (c + d)(2c + d) 6 . As c + d = 2, 2c + d = 3, so c = d = 1 and λ (j,k) n = n for all n ≥ 2. As λ (j,k) 1 = 1, λ (j,k) n 
= n for all n ≥ 1.

Let now l ∈ I which is not a direct descendant of j and let k be a direct descendant of j. For all n ≥ 1:

λ (j,l) n = λ (j,l) n a B + j ( q k n-1 ) = a B + j ( q k n-1 q q k l ) = (n -1)a (k) 
l . We proved that for any vertex l of G (S) , for all n ≥ 1:

λ (j,l) n = n if l is a direct descendant of j, a (k) l (n -1) if l is not a direct descendant of j,
where k is any direct descendant of j. This proves that j has level 0, so i has level 1: contradiction. So i is an extension vertex. 2

5 Examples of Hopf SDSE

cycles and multicycles

Notation. We denote by l(i 1 , • • • , i n ) the ladder with decorations, from the root to the leave,

i 1 , • • • , i n .
In other words:

l(i 1 , • • • , i p ) = B + i 1 • • • • • B + in (1) = q q . . . q q i 1 i 2 i n-1 in .
Theorem 28 Let N ≥ 2. The SDSE associated to the following formal series is Hopf:

         F 1 = 1 + h 2 ,
. . .

F N -1 = 1 + h N , F N = 1 + h 1 .
Proof. We identify {1, • • • , N } and Z/N Z, via the bijection i -→ i. Then, for all n ≥ 1 and for all

1 ≤ i ≤ N , X i (n) = l(i, • • • i + n -1)
. As a consequence:

∆(X i ) = X i ⊗ 1 + 1 ⊗ X i + +∞ p=1 X i+p ⊗ X i (p).
So H (S) is Hopf. 2

Note that the graph G (S) associated to such a system is an oriented cycle of length N , with only non-self-dependent vertices.

Denition 29 Let (S) be a Hopf SDSE. It will be said to be multicyclic if, up to change of variable, it is a dilatation of a system described in theorem 28.

The graph of a multicyclic SDSE will be called a multicycle. In other term, a N -multicycle (N ≥ 2) is such that the set I of its vertices admits a partition I = I 1 ∪ • • • ∪ I N indexed by the elements of Z/N Z, such that the direct descendants of a vertex i in I j are the elements of I j+1 for all j ∈ Z/N Z. Moreover, up to a change of variables, for all i ∈ G (S) :

F i = 1 + i-→l h l .
Here is an example of a 5-multicycle:

Note that if N = 2, G (S) is a complete bipartite graph, that is to say that the set of vertices of G (S) admits a partition into two parts, and for all vertices i and j, there is an edge from i to j if, and only if, i and j are not in the same part of the partition.

Fundamental SDSE

Theorem 30 Let I be a set with a partition I = I 0 ∪ J 0 ∪ K 0 ∪ I 1 ∪ J 1 , such that:

• I 0 , J 0 , K 0 , I 1 , J 1 can be empty.

• I 0 ∪ J 0 is not empty. The SDSE dened in the following way is Hopf:

1. For all i ∈ I 0 , there exists β i ∈ K, such that:

F i = f β i (h i ) j∈I 0 -{i} f β j 1+β j ((1 + β j )h j ) j∈J 0 f 1 (h j ).
2. For all i ∈ J 0 :

F i = j∈I 0 f β j 1+β j ((1 + β j )h j ) j∈J 0 -{i} f 1 (h j ).
3. For all i ∈ K 0 :

F i = j∈I 0 f β j 1+β j ((1 + β j )h j ) j∈J 0 f 1 (h j ).
4. For all i ∈ I 1 , there exist ν i ∈ K, a family of scalars (a (i) j ) j∈I 0 ∪J 0 ∪K 0 , such that (ν i = 1) or (∃j ∈ I 0 , a (i) j = 1 + β j ) or (∃j ∈ J 0 , a (i) j = 1) or (∃j ∈ K 0 , a (i) j = 0). Then, if ν i = 0:

F i = 1 ν i j∈I 0 f β j ν i a (i) j ν i a (i) j h j j∈J 0 f 1 ν i a (i) j ν i a (i) j h j j∈K 0 f 0 ν i a (i) j h j + 1 - 1 ν i .
If ν i = 0:

F i = - j∈I 0 a (i) j β j ln(1 -h j ) - j∈J 0 a (i) j ln(1 -h j ) + j∈K 0 a (i) j h j + 1.
5. For all i ∈ J 1 , there exists ν i ∈ K -{0}, a family of scalars (a (i) j ) j∈I 0 ∪J 0 ∪K 0 ∪I 1 , with the following conditions:

• I (i) 1 = {j ∈ I 1 / a (i) j = 0} is not empty. • For all j ∈ I (i) 1 , ν j = 1. • For all j, k ∈ I (i) 1 , F j = F k . In particular, we put b (i) t = a (j) t for any j ∈ I (i) 1 , for all t ∈ I 0 ∪ J 0 ∪ K 0 .
Then:

F i = 1 ν i j∈I 0 f β j b (i) j -1-β j b (i) j -1 -β j h j j∈J 0 f 1 b (i) j -1 b (i) j -1 h j j∈K 0 f 0 b (i) j h j + j∈I (i) 1 a (i) j h 1 + 1 - 1 ν i .
Proof. In order to simplify the notation, we assume that I = {1, . . . , N }. We shall use proposition 19 with, for all i, j ∈ I:

λ (i,j) n = a (i) j if n = 1, ã(i) j + b j (n -1) if n ≥ 2,
the coecients being given in the following arrays:

1. a

(j) i : i \ j ∈ I 0 ∈ J 0 ∈ K 0 ∈ I 1 ∈ J 1 ∈ I 0 (1 + β i ) -δ i,j β i 1 + β i 1 + β i a (j) i b (j) i -1-β i ν j ∈ J 0 1 1 -δ i,j 1 a (j) i b (j) i -1 ν j ∈ K 0 0 0 0 a (j) i b (j) i ν j ∈ I 1 0 0 0 0 a (j) i ∈ J 1 0 0 0 0 0 2. ã(j) i : i \ j ∈ I 0 ∈ J 0 ∈ K 0 ∈ I 1 ∈ J 1 ∈ I 0 (1 + β i ) -δ i,j β i 1 + β i 1 + β i ν j a (j) i b (j) i -1 -β i ∈ J 0 1 1 -δ i,j 1 ν j a (j) i b (j) i -1 ∈ K 0 0 0 0 ν j a (j) i b (j) i ∈ I 1 0 0 0 0 0 ∈ J 1 0 0 0 0 0 3. b j : j ∈ I 0 ∈ J 0 ∈ K 0 ∈ I 1 ∈ J 1 b j 1 + β j 1 0 0 0
The second item of proposition 19 is immediate. Let us prove for example the rst item for i ∈ J 1 and j ∈ I 0 . Let us x (p 1 , . . . , p N ) ∈ N N -{(0, . . . , 0)}.

λ (i,j) p 1 +...+p N +1 - l a (l) j p l = b (i) j -1 -β j -(1 + β j ) N l=1 p l - l∈I 0 ∪J 0 ∪K 0 (1 + β j )p l + β j p j - l∈I 1 ∪J 1 a (l) j p l = b (i) j -1 -β j + β j p j + l∈I 1 ∪J 1 1 + β j -a (l) j p l .
If there exists l ∈ (I 1 ∪ J 1 ) -

I (i)
1 , such that p l = 0, then a

(p 1 ,...,p j +1,...,p N ) = a (i) (p 1 ,...,p N ) = 0 and then the result is immediate. We now suppose that p l = 0 for all l ∈ (I 1 ∪ J 1 ) -

I (i) 1 . Then: λ (i,j) p 1 +...+p N +1 - l a (l) j p l = b (i) j -1 -β j + β j p j + l∈I (i) 1 1 + β j -a (l) j p l = b (i) j -1 -β j + β j p j + 1 + β j -b (i) j l∈I (i) 1 p l . 1. If l∈I (i) 1 p l = 0, then: a (i) (p 1 ,...,p j +1,...,p N ) = b (i) j -1 -β j p j a (i) (p 1 ,...,p N ) p j + 1 .
The rst item of proposition 19 is immediate.

If

l∈I (i) 1 p l = 1, then a (i)
(p 1 ,...,p j +1,...,p N ) = 0 and λ (i,j)

p 1 +...+p N +1 -l a (l)
j p l = 0. So the rst item of proposition 19 holds.

If

l∈I (i) 1 p l ≥ 2, then a (i) (p 1 ,...,p j +1,...,p N ) = a (i)
(p 1 ,...,p N ) = 0, so the result is immediate.

The other cases are proved in the same way, so this SDSE is Hopf. 2

Remarks.

1. For all λ = 0:

f β λ (λh) = ∞ k=0 λ(λ + β) • • • (λ + (k -1)β) k! h k .
The second side of this formula is equal to 1 if λ = 0. So, formulas dening the SDSE of theorem 30 are always dened.

The vertices of I

0 ∪ J 0 ∪ K 0 are of level 0. A vertex i of I 1 is of level 0 if ν i = 1; otherwise, it is of level 1.
The vertices of J 1 are of level 1.

Denition 31

1. A Hopf SDSE will be said to be fundamental if, up to a change of variables, it is the dilatation of a system of theorem 30.

2. A fundamental Hopf SDSE (S) will be said to be abelian if for any vertex i ∈ I, b i = 0.

Remark. In other words, (S) is abelian if J 0 = ∅ and if for any i ∈ I 0 ,

β i = -1. Then, for all i ∈ K 0 , F i = 1.
As there is no constant F i , we obtain K 0 = ∅.

A particular case is obtained when I = J 0 . Then we obtain the following systems:

Theorem 32 Let I be a nite subset which is not a singleton. The SDSE associated to the following formal series is Hopf:

F i = j =i (1 -h j ) -1 , for all i ∈ I.
The graph associated to such an SDSE is a complete graph with only non-self-dependent vertices, that is to say that there is an edge from i to j in G (S) if, and only if, i = j. In particular, if N = 2, G (S) is 1 ←→ 2, as for the SDSE of theorem 28 with N = 2.

Denition 33 Let (S) be a Hopf SDSE. It will be said to be quasi-complete if, up to change of variable, it is a dilatation of one of the systems described in theorem 32.

The graphs associated to quasi-complete SDSE shall be called quasi-complete. A quasicomplete graph G has only non-self-dependent vertices; there exists a partition I = I 1 ∪ • • • ∪ I M of the set I of vertices of G (S) such that, for all x, y ∈ I, there is an edge from x to y if, and only if, x and i are not in the same I i . In particular, quasi complete graphs with M = 2 are complete bipartite graphs. Moreover, if (S) is quasi-complete, up to a change of variables, for all x ∈ I i :

F x = j =i   1 - y∈I j h y   -1 .
Here is an example of a 2-quasi-complete graph and a 3-quasi-complete graph:

Another particular case is the following: assume that I = I 0 and that β x = -1 for all x ∈ I 0 . Then, for all x ∈ I, F x = 1 + h x . Note that G (S) is not connected if |I| ≥ 2, and this is the only case where G (S) is not connected. The dilatation of such an SDSE will be called a non-connected fundamental SDSE. For such an SDSE, the set of indices I admits a partition

I = I 1 ∪ • • • ∪ I M (M ≥ 2)
and up to a change of variables, for all 1 ≤ i ≤ M , for all x ∈ I i :

F x = 1 + y∈I i h y .
Remark. Note that a dilatation replacing x ∈ K 0 ∪ I 1 ∪ J 1 by a set J x in a system of theorem 30 also gives a system of theorem 30. The same remark applies when the dilatation replaces x ∈ I 0 , with β x = 0, by a set J x . So we shall always assume that the dilatation giving a fundamental SDSE from an SDSE of theorem 30 satises J x = {x} for any x ∈ K 0 ∪ I 1 ∪ J 1 and for any x ∈ I 0 such that β x = 0.

Two families of Hopf SDSE

We here rst give characterisations of multicyclic and quasi-complete SDSE. We then consider Hopf SDSE such that any vertex is a descendant of a self-dependent vertex. We prove that such an SDSE is fundamental. The results of this section will be used to prove the main theorem 14.

A lemma on non-self-dependent vertices

Lemma 34 Let (S) be a Hopf SDSE and let i ∈ I such that a (i) i = 0. Let j, k and l ∈ I such that a (i)

j = 0, a (j) k = 0 and a (i) l = 0. Then a (i) k = 0 or a (l) k = 0.
Proof. Let us assume that a (i)

k = 0. As a (i) j = 0, j = k. As a (i) k = 0, a q ∨ q q i k j = a (i) j,k = 0. Then, from proposition 16, a (i) j λ (i,k) 2 = λ (i,k) 2 a q q i j = a q q q i j k + a q ∨ q q i k j = a (i) j a (j) k + 0; hence, λ (i,k) 2 = a (j) k . Moreover, As a (i) l = 0, l = k. Then, by proposition 16, a (i) l λ (i,k) 2 = λ (i,k) 2 a q q i l = a q q q i l k + a q ∨ q q i k l = a (i) l a (l) k + 0, so λ (i,k) 2 = a (l) k . Hence, a (l) k = a (j) k = 0. 2 
Remark. In other words, if (S) is Hopf, then, in G (S) :

i G G j l k =⇒ i G G j l G G k or i G G 0 0 `j l k .
A special case is given by i = k:

i o o G G j l =⇒ i o o G G y y j l .

Symmetric Hopf SDSE

Proposition 35 Let (S) be a Hopf SDSE, such that G (S) is a N -multicycle with N ≥ 3. Then (S) is a multicyclic SDSE.

Proof. Let I = I 1 ∪ • • • ∪ I N be the partition of the set of vertices of the multicycle G (S) . As N ≥ 3, for all i ∈ I, by lemma 26 with i = j:

F i = 1 + i-→j a (i) j h j .
Let j, j ∈ I m . Then any i ∈ I m-1 is a direct ascendant of j and j . By proposition 18-3,

F j = F j . In particular, for k ∈ I m+1 , a (j) k = a (j )
k . We apply the change of variables sending

h k to 1 a (j) k h k if k ∈ I m+1
, where j is any element of I m . Then, for any j ∈ I m :

F j = 1 + k∈I m+1 h k . So (S) is multicyclic. 2
Proposition 36 Let (S) be a Hopf SDSE, such that G (S) is M -quasi-complete graph (M ≥ 2). Then (S) is a 2-multicyclic or a quasi-complete SDSE.

Proof. First, let us choose two vertices x → y in G (S) . Then y → x in G (S) , and by proposition 16, λ (y,y) 2 a q q y x = a q q q y x y + a q ∨ q q y x y , so λ y 's are equal to 0 or 1. We rst study three preliminary cases.

First preliminary case. Let us assume that G (S) = 1 ←→ 2. We put:

F 1 (h 2 ) = ∞ i=0 a i h i 2 , F 2 (h 1 ) = ∞ i=0 b i h i 1 , with a 1 = b 1 = 1. Then λ (1,1) 3 = λ (1,1) 3 a q q 
q 1 2 1 = 2a q ∨ q q q 1 2 1 1 = 2b 2 . On the other hand, λ (1,1) 3 a q ∨ q q 1 2 2 = 2a q ∨ q q q 1 2 2 1 , so 2a 2 b 2 = 2a 2 : a 2 = 0 or b 2 = 1. Similarly, b 2 = 0 or a 2 = 1. So a 2 = b 2 = 0 or 1. In the rst case, F 1 (h 2 ) = 1 + h 2 and F 2 (h 1 ) = 1 + h 1 . In the second case, let us apply lemma 17-1 with (i 1 , • • • , i n ) = (1, 2, 1, 2, • • • ). If n = 2k is even, we obtain λ (1,2) n = 2 + 2(k -1) = 2k = n. If n = 2k + 1 is odd, λ (1,2) n = 1 + 2k = n. So λ (1,2) n
= n for all n ≥ 1. By proposition 19-1, for all n ≥ 1, a n+1 = a n . So for all n ≥ 0, a n = 1 and

F 1 (h 2 ) = (1 -h 2 ) -1 . Similarly, F 2 (h 1 ) = (1 -h 1 ) -1 .
Second preliminary case. Let us suppose that G (S) is the following graph (which is 3-quasicomplete):

1 o o G G 0 0 b b b b b b b 2 d d Ð Ð Ð Ð Ð Ð Ð Ð Ð 3 
We put:

   F 1 (h 2 , h 3 ) = 1 + h 2 + h 3 + a 2 h 2 2 + a 3 h 2 3 + a h 2 h 3 + O(h 3 ), F 2 (h 1 , h 3 ) = 1 + h 1 + h 3 + b 1 h 2 1 + b 3 h 2 3 + b h 1 h 3 + O(h 3 ), F 3 (h 1 , h 2 ) = 1 + h 1 + h 2 + c 1 h 2 1 + c 2 h 2 2 + c h 1 h 2 + O(h 3 )
. By restriction, using the rst preliminary case, restricting to {1, 2}, {1, 3} and {2, 3},a 2 = b 1 , a 3 = c 1 and b 3 = c 2 and all these elements are in {0, 1}. Moreover, by proposition 16, λ

(1,2) 2 a q q 1 2 = 2a q ∨ q q 1 2 2 , so λ (1,2) 2 = 2a 2 . On the other hand, λ (1,2) 2 a q q 1 3 = a q q q 1 3 2 + a q ∨ q q 1 3 2 , so λ (1,2) 2 = 1 + a . Hence, 1 + a = 2a 2 . By symmetry, we obtain 1 + a = 2a 3 , so a 2 = a 3 . Similarly, b 1 = b 3 and c 1 = c 2 , so a 2 = a 3 = b 1 = b 3 = c 1 = c 2 = 0 or 1.
If they are all equal to 0, then a = -1. Then λ (3,1) 3

a q q q 3 1 2 = a q q q q 3 1 2 1 , so λ (3,1) 3 = 1. Moreover, λ (3,1) 3 
a q q q 3 2 1 = a q ∨ q q q 3 2 1 1 , so λ (3,1) 3 = -1: this is a contradiction, so a 2 = a 3 = b 1 = b 3 = c 1 = c 2 = 1,
and a = 1. Similarly, b = 1 and c = 1. As in the rst preliminary case, using lemma 17-1, we prove that λ (i,j) n = n if i = j for all n ≥ 1, and then that

F 1 (h 2 , h 3 ) = (1 -h 2 ) -1 (1 -h 3 ) -1 . Similarly, F 2 (h 1 , h 3 ) = (1 -h 1 ) -1 (1 -h 3 ) -1 and F 3 (h 1 , h 2 ) = (1 -h 1 ) -1 (1 -h 2 ) -1 .
Third preliminary case. We now consider the 2-quasi-complete graph with three vertices 1 ←→ 2 ←→ 3. Then I 1 = {1, 3} and I 2 = {2}. We put:

F 2 (h 1 , h 3 ) = 1 + h 1 + h 3 + a (2,0) h 2 1 + a (0,2) h 2 3 + a (1,1) h 1 h 3 + O(h 3 ).
Restricting to {1, 2}, by the rst preliminary case, we obtain

F 1 (h 2 ) = 1 + h 2 or F 1 (h 2 ) = (1 -h 2 ) -1 .
1. Let us assume that F 1 (h 2 ) = 1 + h 2 . Then by the rst case,

F 2 (h 1 , 0) = 1 + h 1 , so a (2,0) = 0. Moreover, λ (2,1) 2 
a q q 2 1 = 0, so λ

(2,1) 2

a q q 2 3 = a q ∨ q q 2 3 1 : a (1,1) = 0. Then λ (2,3) 2 a q q 2 1 = a q ∨ q q 2 3 1 , so λ (2,3) 2 = a (1,1) = 0, and λ (2,3) 2 a q q 2 3 = 2a q ∨ q q 2 3 3 : a (0,2) = 0. As a consequence, F 2 (h 1 , h 3 ) = 1 + h 2 + h 3 . Restricting to 2 ←→ 3, by the rst point, F 3 (h 2 ) = 1 + h 2 . 2. Let us assume that F 1 (h 2 ) = (1 -h 2 ) -1 . Then F 2 (h 1 , 0) = (1 -h 2 ) -1
by the rst point, so a (0,2) = 1. By the rst preliminary case, this implies that F 2 (0, h 3 ) = (1 -h 3 ) -1 and

F 3 (h 2 ) = (1 -h 2 ) -1 .
Similarly with the rst case, we prove that λ

(2,i) n

= n if i = 1 or 3 for all n ≥ 1. By proposition 19-1:

a (m+1,n) = m + n + 1 m + 1 a (m,n) , a (m,n+1) = m + n + 1 n + 1 a (m,n) .
An easy induction proves that a (m,n) = m+n m for all m, n, so

F 2 (h 1 , h 3 ) = (1 -h 1 -h 3 ) -1 .
We separate the proof of the general case into two subcases.

General case, rst subcase. M = 2. We put

I 1 = {x 1 , • • • , x r } and I 2 = {y 1 , • • • , y s }. For
x i ∈ I 1 , we put:

F xp = (q 1 ,••• ,qs) a (xp) (q 1 ,••• ,qs) h q 1 y 1 • • • h qs ys .
Restricting to the vertices x p and y q , by the rst preliminary case, two cases are possible.

a (xp)

yq,yq = 0. Then, by the third preliminary case, restricting to x p , y q and y q , for all y q , y q , a

yq,y q = 0. So:

F xp = 1 + q h yq .

λ (xp,yq) n

= n for all n ≥ 1. Using proposition 19-1, we obtain:

a (xp) (q 1 ,••• ,qm+1,••• ,qs) = 1 + q 1 + • • • + q s q m + 1 a (xp) (q 1 ,••• ,qs) .
An easy induction proves:

a (xp) (q 1 ,••• ,qs) = (q 1 + • • • + q s )! q 1 ! • • • q s ! .
So:

F xp = 1 - q h yq -1
.

A similar result holds for the y q 's. So, we prove that for any vertex i of G (S) , one of the following holds:

1.

F i = 1 + i-→j h j . 2. F i =   1 - i-→j h j   -1
.

Moreover, by the rst preliminary case, if i and j are related, they satisfy both (a) or both (b).

As the graph is connected, every vertex satises (a) or every vertex satises (b).

General case, second subcase. M ≥ 3. Let us x i ∈ G and let us denote y 1 , • • • , y q its direct descendants. Restricting to the vertices i and y j , two cases are possible.

1. a (i) y j ,y j = 0. As M ≥ 3, with a good choice of y j , we can restrict to the second preliminary case, and we obtain a (i) y j ,y j = 1: contradiction. So this case is impossible.

λ (x,y j ) n

= n for all n ≥ 1. Using proposition 19-1, we obtain, similarly with the case M = 2, if i ∈ I p :

F i = q =p   1 - l∈hq h l   -1 . So (S) is quasi-complete. 2
Denition 37

1. Let G be a graph. We shall say that G is symmetric if it has only non-self-dependent vertices and if, for i = j, there is an edge from i to j if, and only if, there is an edge from j to i.

2. Let (S) be an SDSE. We shall say that (S) is symmetric if G (S) is symmetric.

Theorem 38 Let (S) be a connected symmetric Hopf SDSE. Then (S) is 2-multicyclic or quasi-complete.

Proof. By proposition 36, it is enough to prove that G (S) is a M -quasi-complete graph, with M ≥ 2. Let us consider a maximal quasi-complete subgraph G of G (S) . This exists, as G (S) contains quasi-complete subgraphs (for example, two related vertices). Let us assume that G = G (S) . As G (S) is connected, there exists a vertex i ∈ G (S) , related to a vertex of G . Let us put I = I 1 ∪ • • • I M be the partition of the set of vertices of G .

First, if i is related to a vertex j of I p , it is related to any vertex of I p . Indeed, let j be another vertex of I p and let k ∈ I q , q = p. By lemma 34, j is related to i. As G (S) is symmetric, i is related to j .

Let us assume that i is not related to at least two I p 's. Let us take k, l in G , in two dierent I p 's, not related to i. By the rst step, j, k and l are in dierent I p 's, so are related. By lemma 34, k or l is related to i. As G (S) is symmetric, then i is related to k or l: contradiction. So i is not related to at most one I p 's.

As a conclusion:

1. If i is related to every I p 's, by the rst step i is related to every vertices of G , so G ∪ {i} is an M + 1-quasi-complete graph, with partition I 1 ∪ • • • ∪ I M ∪ {x}: this contradicts the maximality of G .

2. If i is related to every I p 's but one, we can suppose up to a reindexation that i is not related to I M . Then, by the rst step, i is related to every vertices of

I 1 ∪ • • • ∪ I M -1 . So G ∪ {x} is an M -quasi-complete graph, with partition I 1 ∪ • • • ∪ (I M ∪ {x}):
this contradicts the maximality of G .

In both cases, this is a contradiction, so G (S) = G is quasi-complete. 2

6.3 Formal series of a self-dependent vertex Let (S) be a Hopf SDSE, and let us assume that i is a self-dependent vertex of G (S) . Up to a change of variables, we can suppose that a (i) j = 0 or 1 for all j. In particular, we assume that a

(i) i = 1.
Lemma 39 Under these hypotheses, i is of level 0 and for all j ∈ I, b j = (1 + δ i,j )a (i) i,j .

Proof. We apply lemma 17-1, with i k = i for all i. We obtain, for all n ≥ 1:

λ (i,j) n = a (i) j + (1 + δ i,j )(n -1) a (i) i,j a (i) i
.

So this proves the assertion. 2

Remark. So all the descendants of i are also of level 0.

Lemma 40 Under the former hypotheses, there exists a partition I = I 1 ∪ • • • ∪ I M ∪ J (J eventually empty), with i ∈ I 1 , such that the coecients a (k) j are given in the following array: . . .

j \ k I 1 I 2 I 3 • • • I M J I 1 1 β 1 + 1 • • • • • • β 1 + 1 * I 2 . . . 1 -β 2 1 • • • 1 . . .
I M 1 1 • • • 1 1 -β M . . . J 0 • • • • • • • • • 0 *
Moreover, for all j ∈ I 1 :

F j = M p=1 f βp   l∈Ip h l   .
Finally, the coecients λ (j,k) n are given by λ (j,k)

n = b k (n -1) + a (j)
k for all n ≥ 1 with:

k I 1 I 2 • • • I M J b k β 1 + 1 1 • • • 1 0
Proof. We can apply lemma 24 with λ j = a (i) j and µ

(l) j = -a (l) j + (1 + δ i,j ) a (i) i,j . Then I = I 1 ∪ • • • I M ∪ J, such that -a (k) j + (1 + δ i,j ) a (i)
i,j is given for all j, k by the array: 

j \ k I 1 I 2 • • • I M J I 1 β 1 0 • • • 0 * I 2 0
I M 0 • • • 0 β M . . . J 0 • • • • • • 0 *
We assume that i ∈ I 1 , without loss of generality. For the row j ∈ J, the result comes from the following observation: let j, k ∈ I such that a 

a (i) j,k = a (i) j -a (k) j + a (i) i,j a (i) k = 0.
If l = 1 and l = j:

a (j) (k 1 ,••• ,k l +1,••• ,k M ) = M l=1 k l - M l=1 k l + β l k l a (j) (k 1 ,••• ,k M ) k l + 1 = (1 + β l k l ) a (j) (k 1 ,••• ,k M ) k l + 1 .
So, if j = 1:

F j = f β 1 1+β 1 ((1 + β 1 )h 1 )f β j 1-β j ((1 -β j )h j ) k =1,j f β k (h k ).
Let us put I 0 = {j ≥ 2 / β j = 1} and J 0 = {j ≥ 2 / β j = 1}. Then, after the change of variables h j -→ 1 1-β j h j for all j ∈ I 0 :

                     F 1 = f β 1 (h 1 ) j∈I 0 f β j 1 1 -β j h j j∈J 0 f 1 (h j ), F j = f β 1 1+β 1 ((1 + β 1 )h 1 )f β j 1-β j (h j ) j∈I 0 -{j} f β j 1 1 -β j h j j∈J 0 f 1 (h j ) if j ∈ I 0 , F j = f β 1 1+β 1 ((1 + β 1 )h 1 ) j∈I 0 f β j 1 1 -β j h j j∈J 0 -{j} f 1 (h j ) if j ∈ J 0 .
Putting γ j = β j 1-β j for all j ∈ I 0 , then, as β j = γ j 1+γ j and 1 -β j = 1 1+γ j :

                 F 1 = f β 1 (h 1 ) j∈I 0 f γ j 1+γ j ((1 + γ j )h j ) j∈J 0 f 1 (h j ), F j = f β 1 1+β 1 ((1 + β 1 )h 1 )f γ j (h j ) j∈I 0 -{j} f γ j 1+γ j ((1 + γ j )h j ) j∈J 0 f 1 (h j ) if j ∈ I 0 , F j = f β 1 1+β 1 ((1 + β 1 )h 1 ) j∈I 0 f γ j 1+γ j ((1 + γ j )h j ) j∈J 0 -{j} f 1 (h j ) if j ∈ J 0 .
So this a fundamental system, with I 0 = {1} ∪ I 0 and J 0 = J 0 . 2

Corollary 42 Let (S) be a connected Hopf SDSE such that any vertex of G (S) is the descendant of a self-dependent vertex. Then (S) is fundamental, with K 0 = I 1 = J 1 = ∅.

Proof. Let x be a self-dependent vertex of (S). Then the system formed by x and its descendants is fundamental. We then put I (x) 0 and J (x) 0 the partition of the set formed by x and its descendants. We separate I (x) 0 into two parts:

I 0,1 = y ∈ I (x) 0 /β y = -1 , I 0,2 = y ∈ I (x) 0 /β y = -1 .
Then, after elimination of an eventual dilatation by restriction, the direct descendants of x ∈ I 

j I 1 • • • I M J λ j ν • • • ν 0
As there are no vertices with no descendants, necessarily ν = 0 and β p = 0 for all p. For the same reason,

I 1 ∪ • • • ∪ I M = ∅ is impossible. If J = ∅, then any vertex of J is related to every vertex of I 1 ∪ • • • ∪ I M , so G (0)
(S) -{0} is connected: impossible, as 0 is a connected vertex. So J = ∅, and 0 connects several totally self-dependent subgraphs.

2. In the second case, we obtain the following values for a (k) j and λ j : 

j \ k I 1 I 2 • • • I M J I 1 -ν 1 0 • • • 0 0 I 2 0 -
I M 0 • • • 0 -ν M 0 J 0 • • • • • • 0 0 j I 1 • • • I M J λ j 0 • • • 0 0
As there are no vertices with no descendants, J = ∅ and ν l = 0 for all l.

Moreover, as b j = 1 + β j = 0 for all j ≥ 1, 0 connects several components of a non-connected fundamental SDSE. Proof. Let us assume that the vertex 0 of G (S) have a direct descendant x ∈ I k and y ∈ I l with k = l. Then lemma 34 implies that any direct descendant of x is a direct descendant of 0, so 0 has also a direct descendant in I k+1 . Similarly, 0 has a direct descendant in I l+1 . Iterating this process, 0 has direct descendants in all the I i 's. Up to a restriction, the situation is the following:

0 0 0 a a a a a a a 9 9 x x x x x x x x x x x x x x C C 1 G G 2 G G 3 G G • • • G G N f f Moreover, for all 1 ≤ i ≤ k, F i (h i+1 ) = 1 + h i+1 , with the convention h N +1 = h 1 .
We rst assume M ≥ 3. In order to ease the notation, we do not write the index (0) in the sequel of the proof. By proposition 16, λ (0,2) 2

a q q 0 1 = a q q q 0 1 2 + a q ∨ q q 0 2 1 , so λ (0,2) 2 = 1 + a 1,2 a 1 . On the other hand, λ (0,2) 2 a q q 0 2 = 2a q ∨ q q 0 2 2 , so λ (0,2) 2 = 2 a 2,2
a 2 . Hence:

1 + a 1,2 a 1 = 2 a 2,2 a 2 .
Moreover, λ (0,2) 3

a q q q 0 2 3 = a q ∨ q q q 0 2 2 3 , so λ (0,2) 3 = 2 a 2,2
a 2 . On the other hand, λ (0,2) 3

a q q q 0 1 2 = a q ∨ q q q 0 1 2 2 , so λ (0,2) 3 = a 1,2 a 1 . Hence: a 1,2 a 1 = 2 a 2,2 a 2 = 1 + a 1,2 a 1 .
This is a contradiction.

Let us now prove the result for N = 2. We assume that there exists a Hopf SDSE with the graph:

0 0 0 b b b b b b b Ð Ð Ð Ð Ð Ð Ð Ð Ð 1 o o G G 2
and such that F 1 = 1 + h 2 and F 2 = 1 + h 1 . We write:

F 0 = i,j a (i,j) h i 1 h j 2 ,
with a (1,0) and a (0,1) non-zero. Then λ (0,1) 2

a q q 0 1 = 2a q ∨ q q 0 1 1 , so λ (0,1) 2 = 2a (2,0) a (1,0)
. On the other hand,

λ (0,1) 2 a q q 0 2 = a q ∨ q q 0 2 1 + a q q q 0 2 1 , so λ (0,1) 2 = a (1,1) a (0,1) + 1. We obtain: 2a (2,0) a (1,0) = a (1,1) a (0,1) + 1.
Moreover, λ (0,1) 3

a q q q 0 1 2 = a q ∨ q q q 0 1 1 2 +a q q q q 0 1 2 1 , so λ (0,1) 3 = 2a (2,0) a (1,0)
+1. On the other hand, λ (0,1) 3

a q q q 0 2 1 = 2a q ∨ q q q 0 2 1 1 , so λ (0,1) 3 = a (1,1) a (0,1)
. So:

a (1,1) a (0,1) + 1 = 2a (2,0) a (1,0) = a (1,1) a (0,1) -1. 
This is a contradiction. 2

Lemma 46 Let (S) be a Hopf SDSE, such that any vertex of G (S) has a direct ascendant. Let i be a vertex of G (S) . Then (i is a descendant of a self-dependent vertex) or (i belongs to a multicycle of G (S) ) or (i belongs to a symmetric subgraph of G (S) ).

Proof. Let us rst prove that i is the descendant of a vertex of a cycle of G (S) . As any vertex has a direct ascendant, it is possible to dene inductively a sequence (x l ) l≥0 of vertices of G (S) , such that x 0 = i and x l+1 is a direct ascendant of x l for all l. As G (S) is nite, there exists 0 ≤ l < m, such that x l = x m . Then

x l ← x l+1 ← • • • ← x m-1 ← x m = x l is a cycle of G (S)
, and i is a descendant of any vertex of this cycle.

Let G = x 1 → • • • → x s → x 1 be a cycle such that i is a descendant of a vertex of G , chosen with a minimal s. As s is minimal, there are no edges from x l to x m in G (S) if m = l + 1, with the convention x s+1 = x 1 . The situation is the following:

x 1 G G • • • G G x s v v y 1 G G • • • G G y t-1 G G i
Three cases are possible:

1. If s = 1, then i is the descendant of a self-dependent vertex.

2. If s = 2, the situation is the following:

x 1 o o G G x 2 y 1 G G • • • G G y t-1 G G i
By minimality of s, there are no self-dependent vertex in {x 1 , x 2 , y 1 , • • • , y t-1 , i}. Applying repeatedly lemma 34, there is an edge from y 1 to x 1 , then from y 2 to y 1 , • • • , then from i to y t-1 . So i belongs to a symmetric subgraph of G (S) .

3. If s ≥ 3, then the subgraph formed by x 1 , • • • , x s is a multicycle. Let G be a maximal multicycle of length s of G, such that i is a descendant of a vertex of G . We denote by I the set of vertices of G . Let us assume that i / ∈ G . There exists x 1 → y 1 → • • • → y t-1 → y t = i in G, with t ≤ 1, and x 1 ∈ I . Up to a reindexation, we can assume that x 1 ∈ I 1 . By lemma 34, y 1 is the direct descendant of any vertex of I 1 and the direct ascendant of any vertex of I 3 . By lemma 45, y 1 is not the direct ascendant of any vertex of I k if k = 3. Corollary 47 Let (S) be connected Hopf SDSE, such that any vertex of G (S) has a direct ascendant. Then (any vertex of G (S) is the descendant of a self-dependent vertex, so (S) is fundamental) or ((S) is quasi-complete, so (S) is fundamental) or ((S) is multicyclic).

So I ∪ {x} = I 1 ∪ I 2 ∪ {i} ∪ • • • ∪ I s
Corollary 48 Let (S) be a connected Hopf SDSE. Then there exists a sequence (G i ) 0≤i≤k of subgraphs of G (S) , such that:

• The system (S 0 ) associated to the F i 's, i ∈ G 0 , is fundamental or is multicyclic. • G k = G (S) . • For all 0 ≤ i ≤ k -1, G i+1 is obtained from G i by adding a non-self-dependent vertex without any ascendant in G i . If G 0 is fundamental, any vertex is of nite level. If G 0 is multicyclic, no vertex is of nite level.
Proof. First step. Let us rst prove the following (weaker) result: if (S) is a Hopf SDSE, there exists a sequence (G i ) 0≤i≤k of subgraphs of G (S) , such that:

• G 0 is the disjoint union of several fundamental systems or is multicyclic.

• G k = G (S) .

• For all 0 ≤ i ≤ k -1, G i+1 is obtained from G i by adding a non-self-dependent vertex without any ascendant in G i .

Let us proceed by induction on N . If N = 1, then G (S) = G 0 is formed by a single vertex which is necessarily self-dependent, so (S) is fundamental. Let us assume the induction hypothesis at rank ≤ N -1. If any vertex of G (S) has an ascendant, then by corollary 47, we can take G (S) = G 0 . If it is not the case, let us take i being a vertex with no ascendant. The induction hypothesis can be applied to the components of G (S) -{i}. We complete the sequence

(G 0 , • • • , G k ) given in this way by G k+1 = G (S) .
As a consequence, the set of descendants of any self-dependent vertex, every symmetric subgraph, every multicycle of G (S) is included in G 0 .

Second step. Let us assume that G (S) is connected. If G 0 is connected, then it is fundamental or multicyclic. If it is not, let us assume that it is not a non-connected abelian fundamental SDSE. So one of the components H of G 0 is not a fundamental abelian SDSE with I = I 0 . Then for a good choice of i, the vertex added to G i-1 to obtain G i is a connecting vertex, connecting a subgraph containing H and other subgraphs. By the rst step, as it does not belong to G 0 , this vertex is not the descendant of a self-dependent vertex and does not belong to a symmetric subgraph. By construction, it does not connect several components of a nonconnected fundamental SDSE: this is a contradiction with lemma 44. So G 0 is of the announced form. 2

Connected Hopf SDSE with a multicycle

Let us precise the structure of connected Hopf SDSE containing a multicycle.

Theorem 49 Let (S) be a connected Hopf SDSE containing a N -multicyclic SDSE. Then I admits a partition I = I 1 ∪ • • • ∪ I N , with the following conditions:

1. If x ∈ I k , its direct descendants are all in I k+1 .

2. If x and x have a common direct ascendant, then they have the same direct descendants.

Moreover, for all x ∈ I:

F x = 1 + x-→y a (x)
y h y .

If x and x have a common direct ascendant, then F x = F x . Such an SDSE will be called an extended multicyclic SDSE.

Proof. We use the notations of corollary 48. We proceed by induction on k. If k = 0, (S) is a multicycle and the result is immediate. Let us assume the result at rank k -1 and let (S ) be the restriction of (S) to all the vertices except the last one, denoted by x. By the induction hypothesis, the set of its vertices admits a partition I = I 1 ∪• • •∪I N , with the required conditions. Let us rst prove that all the direct descendants of x are in the same I m . Let y ∈ I k and z ∈ I l be two direct descendants of x, with k = l. Let y ∈ I k+1 be a direct descendant of y and z ∈ I l+1 be a direct descendant of z. Lemma 34 implies that x is a direct ascendant of z and y , as y can't be a direct ascendant of z and z can't be a direct ascendant of y because k = l. So we can replace y by y and z by z . Iterating the process, we can assume that y and z are in the multicycle: this contradicts lemma 45. So the direct descendants of x are all in I m for a good m. We then take I l = I l if l = m -1 and I m-1 = I m-1 ∪ {x} and this proves the rst assertion on G (S) .

We now prove the assertion on F x . We separate the proof into two subcases. Let us rst assume M ≥ 3. There is an oriented path x → x m → • • • → x m+M -1 , with x i ∈ I i for all i. Moreover, there is no shorter oriented path from x to x m+M -1 . As M ≥ 3, from lemma 26:

F x = 1 + x-→y a (x) y h y .
Let us secondly assume that M = 2. Let 1, . . . , p be the direct descendants of x and let 0 be a direct descendant of 1. Then as 1, . . . , p are in the same part of the partition of I , they are not direct descendants of 1. Let us rst restrict to {x, 1, 0}. By proposition 16, λ (x,0) 3 a q q q x 1 0 = 0 as a

0,0 = 0 by the induction hypothesis, λ

(x,0) 3 = 0. Moreover, 0 = λ (x,0) 3 a q ∨ q q x 1 1 = a q ∨ q q q
x 1 1 0 , so a p,p = 0. Let us now take 1 ≤ i < j ≤ p. Then λ (x,i) 2 a q q x i = 0, so λ (x,i) 2 = 0 and 0 = λ (x,i) 2 a q q x j = a q q q x j i , so a (x) i,j = 0. As a conclusion, F x is of the required form. Proposition 18-3 implies that F x = F x if x and x have a common ascendant, and this implies the second assertion on G (S) .

2

Remark. In particular, the vertex added to G i in order to obtain G i+1 is an extension vertex. By proposition 11, any such SDSE is Hopf.

Connected Hopf SDSE with nite levels

We now prove the following theorem:

Theorem 50 Let (S) be a connected Hopf SDSE, such that any vertex of (S) has a nite level. Then (S) is obtained from a fundamental system by a nite number (possibly 0) of extensions. Such an SDSE will be called an extended fundamental SDSE.

Proof. Let (S) be a connected Hopf SDSE, such that any vertex of (S) is of nite level. We use notations of corollary 48. We shall proceed by induction on k. If k = 0, then S = S 0 and the result is obvious. Let us now assume the result at rank k -1. By the induction hypothesis, the system (S ) associated to G k-1 is a dilatation of a system of theorem 30. Moreover, G is obtained from G k-1 by adding a vertex with all its direct descendants in G k-1 . Let us denote by 0 this vertex. We separate the proof into three cases.

First case. Let us assume that 0 is of level 0. Then all the direct descendants of 0 are of level 0, so are in I 0 ∪ J 0 ∪ I 1 , and ν x = 1 for all direct descendants of x in J i with i ∈ I 1 . Moreover, for all x ∈ I, λ (0,x) n = b x (n -1) + a (0)

x . Let us take x, y ∈ I. Using proposition 19-1 into two dierent ways:

a (0)
x,y = b y + a (0) y -a (x) y a (0) x = b x + a (0)

x -a (y)

x a (0) y . So, for all x, y ∈ I: b y -a (x) y a (0) x = b x -a (y)

x a (0) y .

If x and y are in the same I i with i ∈ I 0 ∪ J 0 , then b y -a . Hence, up to a restriction, we can assume that there is no dilatations on (S ).

Let i ∈ I 1 . If ν i = 1, we already know that a (0) i = 0. Let us assume ν i = 1 and let us choose j ∈ I 0 ∪ J 0 ∪ K 0 , such that a So:

F 0 = i∈I 0 f β i a (0) i a (0) i h i i∈J 0 f 1 a (0) i a (0) i h i i∈K 0 f 0 a (0) i h i .
So (S) is a system of theorem 30, with 0 ∈ K 0 ∪ I 1 .

Second case. Let us assume that 0 is of level 1 and is not an extension vertex. Then all the direct descendants of 0 are of level 0, so are in I 0 ∪ J 0 ∪ I 1 , and ν x = 1 for all direct descendants of x in I 1 . Moreover, for all i ∈ I, λ First item. Let us assume that a (0) i = 0. Then by proposition 19-1:

a (0) (p 1 ,••• ,1,••• ,p N ) =   ã(0) i + b i (p 1 + • • • + p N ) - N j=1 a (j) i p j   a (0) (p 1 ,••• ,0,••• ,p N ) 0 =   ã(0) i - j∈I 1 a (j) i p j   a (0) (p 1 ,••• ,0,••• ,p N ) .
If there is a j ∈ I 0 ∪ J 0 ∪ K 0 , such that a (0) j = 0, then for (p 1 , • • • , p N ) = ε j , we obtain ã(0) i = 0. If it is not the case, as 0 is not an extension vertex, there exists j, k ∈ I 1 , a (0) j,k = 0 (so a 

Let us take i, j ∈ I 1 . Then a are colinear. By the rst item, we deduce that there exists a scalar ν ∈ K, such that for all i ∈ I 1 , ã

i . Let us now take i, j ∈ I 0 ∪ J 0 ∪ K 0 , with i = j. Then b i = a 

Third item. Let us assume that I (0) 1 = ∅. Then all the direct descendants of 0 are in I 0 ∪ J 0 ∪ K 0 . Moreover, if i ∈ I 0 ∪ J 0 ∪ K 0 :

a (0) (p 1 ,••• ,p i+1 ,••• ,p N ) =   νa (0) i + b i (p 1 + • • • + p N ) - j∈I 0 ∪J 0 ∪K 0 -{i} b i p j -a (i) i p i   a (0) (p 1 ,••• ,p N ) p i + 1 = νa (0) i + b i -a (i) i p i a (0) (p 1 ,••• ,p N ) p i + 1 .
It is then not dicult to show that (S) is a system of theorem 30, with 0 ∈ I 1 .

Fourth item. Let us assume that ν = ν . Let j ∈ I 1 . If ν j = 1, then we already know that a (0) j = 0. If ν j = 1, then for a good choice of i, b i -a By [START_REF]Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations[END_REF], for all i ∈ I 0 ∪ J 0 ∪ K 0 , a Let us x i ∈ I 0 ∪ J 0 ∪ K 0 and j ∈ I (0)

1 . Then:

a (0) i,i = ν a (0) i + b i -a (i) i a (0) i , a (0) 
i,i,j = νa 

i = 0, then F j = 1; this is impossible. So there is an i ∈ I 0 ∪ J 0 ∪ K 0 , such that a (0) i = 0. As a consequence, ν = 0. So ν = 0, and we then easily obtain that:

F 0 = 1 ν i∈I 0 f β i b (0) i -1-β i b (0) i -1 -β i h i i∈J 0 f 1 b (0) i -1 b (0) i -1 h i i∈I 0 f 0 b (0) i h i + i∈I (0) 1 a (0) i h i + 1 - 1 ν .
So (S) is a system of theorem 30, with 0 ∈ J 1 .

Third case. 0 is a vertex of level ≥ 2. By proposition 27, it is an extension vertex.

2

j

  are non-zero.

3

  Characterisation and properties of Hopf SDSE 3.1 Subalgebras of H D generated by spans of trees Let us x a non-empty set D.

2 3. 3

 23 is a Hopf subalgebra of H I . Properties of the coecients λ (i,j) n The coecients λ (i,j) n 's are entirely determined by the a (i) j 's and a (i) j,k 's, and determine the other coecients of the F i 's, as shown by the following result: Lemma 17 Let us assume that (S) is Hopf, with I = {1, . . . , N }. Let us x i ∈ I.

2 4. 4

 24 Vertices of level ≥ 2

  y. So, up to a change of variables, we can suppose that all the a (x)

1

 1 

j

  = 0 and a (i) k = 0, then, by proposition 19-1:

1 . 1 =

 11 Let us consider the following cases:1. If there exists a vertex x, such that J (x) 0 = ∅, then, as G (S) is connected, for any selfdependent vertex y, J a consequence, for any self-dependent vertex y, I We then deduce that (S) is fundamental, with J 0 = J (x) 0 for any self-dependent vertex x.2. If for any self-dependent vertex x, J(x) 0 = ∅, and if there is a self-dependent vertex x such that I (x) 0,2 = ∅, then by connectivity of G (S) , for any self-dependent vertex y, I {y}, or I (y) 0,2 is empty if y ∈ I (x) 0,2 . Then (S) is a fundamental, with J 0 = ∅.

2

 2 

7. 2

 2 Structure of connected Hopf SDSE Lemma 45 Let (S) be a Hopf SDSE containing a multicycle with set of vertices I = I 1 ∪ • • • ∪ I M , Then any non-self-dependent vertex of G (S) has direct descendants in at most one I k .

  gives a multicycle of length s, such that i is a descendant of a vertex of I ∪ {i}: this contradicts the maximality of G . So i ∈ I .2By the preceding study of Hopf symmetric SDSE:

ji

  = b j . Then b i = a (j) i = 0, so[START_REF] Figueroa | On the antipode of Kreimer's Hopf algebra[END_REF] gives b j -a for all i ∈ I 1 . So the direct descendants of 0 are all in I 0 ∪ J 0 ∪ K 0 . Using proposition 19-1 with i ∈ I 0 ∪ J 0 ∪ K 0 :a (0) (p 1 ,••• ,p i+1 ,••• ,p N ) + b i (p 1 + • • • + p N ) -j∈I 0 ∪J 0 ∪K 0 -{i} b i p j -a ,••• ,p N ) p i + 1.

.i

  k = 0). Then, for (p 1 , • • • , p N ) = ε j , (p 1 , • • • , p N ) = ε k , and (p 1 , • • • , p N ) = ε j + ε k , we obtain: So in all cases, ã(0) i = 0. Moreover, for (p 1 , • • • , p N ) = ε jfor any j ∈ I 1 , we obtain a As a conclusion, we proved:1. For all i ∈ I, a = 0 . Then for i ∈ I, such that a Second item. Let us take i, j ∈ I. Using proposition 19-1 into two dierent ways:

  i = b i = b j = 0, so[START_REF] Foissy | Finite-dimensional comodules over the Hopf algebra of rooted trees[END_REF] gives:

i

  and b j = a

0

 0 ∪J 0 ∪K 0 are colinear. By the rst item, we deduce that there exists a scalar ν ∈ K, such that for all i ∈ I 0 ∪ J 0 ∪ K 0 , us now take i ∈ I 0 ∪ J 0 ∪ K 0 and j ∈ I 1 . Then b j = a other words:∀i ∈ I 0 ∪ J 0 ∪ K 0 , ∀j ∈ I 1 , (ν -ν )a

i

  = 0 in[START_REF]Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations[END_REF], so a (0) j = 0: then I (0) 1 = ∅, and the result is proved in the third item.

Fifth

  item. Let us assume that I (0) 1 = ∅. By the preceding item, ν = ν . Let us take j ∈ I

ii 1 ,

 1 = b i -(ν -ν )a (0) idoes not depend of j. As a consequence, F j = F k for all j, k ∈ I for all i ∈ I 0 ∪ J 0 ∪ K 0 , where j is any element ofI (0) 1 . Let us use proposition 19-1. For all i ∈ I 0 ∪ J 0 ∪ K 0 , if (p 1 , • • • , p N ) = (0, • • • , 0): a (0) (p 1 ,••• ,p i +1,••• ,p N ) if (p 1 , • • • , p N ) = (0, • • • , 0): a (0) (p 1 ,••• ,p i +1,••• ,p N ) = νa

2 = 0 .

 20 i + b i -a (i) i + (ν -ν )a (0) i .Identifying the two expressions of a (0) i,i,j , as ν = ν and a If forall i ∈ I 0 ∪ J 0 ∪ K 0 , a(0)i = 0, then by the second item, for all j ∈ I

  • • • , (S k ) with disjoint sets of indeterminates , so H (S) ≈ H (S 1 ) ⊗ • • • ⊗ H (S k ) . As a corollary, (S) is Hopf if, and only if, for all j, (S j ) is Hopf.

  is the solution of the system (S ). Moreover, φ sends H (S) onto H (S ) . As φ is a Hopf algebra automorphism, H (S) is a Hopf subalgebra of H I if, and only if, H (S ) is.2

As a (i) j = 0, then a (i) i,j = 0, so a (k) j = 0. Lemma 24 also gives:

and 0 if j ∈ J. So a (k) j is given by for all j, k by the indicated array. We obtain in lemma 39 that:

Hopf SDSE generated by self-dependent vertices

Proposition 41 Let (S ) be a Hopf SDSE, and let i be a self-dependent vertex of G (S ) . Let (S) be the restriction of (S ) to i and all its descendants. Then (S) is fundamental, with

Proof. We use the notations of lemma 40. Note that if i, j are in the same I k , then

for all n ≥ 1, for all k ∈ I. So, by proposition 18-2 the Hopf SDSE formed by i and its descendant is the dilatation of a system with the following coecients λ

We already proved in lemma 40 that:

3. If for any self-dependent vertex x, J 1. We denote by

is the subgraph of G (S) formed by i and all its descendants.

The vertex

Lemma 44 Let (S) be a Hopf SDSE and let i ∈ G (S) be a connecting vertex. Then (i is the descendant of a self-dependent vertex) or (i belongs to a symmetric subgraph of G (S) ) or (i is not self-dependent and relates several components of a non-connected fundamental SDSE).

Proof. First step. If i is self-dependent, it is a descendant of itself and the conclusion holds.

Let us assume that

be a direct descendant of i for all p. Let x p be a direct descendant of x p . Then x p ∈ G p . Choosing q = j and applying lemma 34, there is an edge from i to x p . Iterating this process, we deduce that any vertex of

, so the conclusion holds.

Second step. Let us now assume that i is not the direct descendant of any j ∈ G (i) (S) -{i}. Let n ≥ 2, j ∈ G p , and let i →

, where x 2 , • • • , x n ∈ G q , p = q. Then, as i is not related to any x l , λ

, and λ (i,j) n

does not depend on n: we put λ (i,j) n = λ j for all j ∈ G -{i}, n ≥ 2. In other words, i has level ≤ 1, and b j = 0 for all j.

Third step. In order to simplify the writing of the proof, up to a reindexation, we shall suppose that i = 0 and the vertices of G 1. In the rst case, we obtain the following values for a (k) j and λ j :