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ABSTRACT: Using the dendriform and the bidendriform Cartier-Quillen-Milnor-Moore the-
orem, we construct a basis of the space of primitive elements of the Hopf algebra of free quasi-
symmetric functions, indexed by a certain set of trees, and inductively computable.
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Introduction

The Hopf algebra of free quasi-symmetric functions FQSym, also known as the Malvenuto-
Reutenauer Hopf algebra, is introduced in [7]. It is a graded self-dual Hopf algebra, with the
set of all permutations as a basis. Certain interesting properties are shown in [2]: in particular,
it is shown that it is both free and cofree, and a basis of the space of its primitive elements is
given, using the self-duality and a monomial basis. Note that computing the primitive elements
of degree n by this method implies to inverse a certain n!× n! matrix.

The aim of this paper is to describe another basis of PrimcoAss(FQSym), which can be
inductively computed. We use for this the dendriform structure of FQSym. Recall that a
dendriform algebra is an associative algebra such that its product can be split into two non-
associative products ≺ and �, with good compatibilities [5, 6, 8]. It is known that FQSym,
or more precisely its augmentation ideal, is dendriform. More precisely, it is a dendriform Hopf
algebra, in the sense of [8]. This implies, by the dendriform Cartier-Quillen-Milnor-Moore the-
orem, that PrimcoAss(FQSym) is a brace algebra.

We introduced in [4] the notion of bidendriform bialgebra and showed that FQSym is biden-
driform. The bidendriform Cartier-Quillen-Milnor-Moore theorem implies that FQSym is freely
generated, as a dendriform algebra, by the space PrimcoDend(FQSym) of primitive elements
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in the codendriform sense. Combining this result with the dendriform Cartier-Quillen-Milnor-
Moore theorem, we show that PrimcoAss(FQSym) is, as a brace algebra, freely generated by
PrimcoDend(FQSym). We recall in section 2 a description of free brace algebras. If (vi)i∈I is
a basis of the vector space V , then the free brace algebra generated by V has a basis indexed
by planar rooted trees decorated by I, and the brace structure is described in this basis by the
help of graftings. Hence, for any basis of PrimcoDend(FQSym), it is possible to recover a basis
of PrimcoAss(FQSym), indexed by a certain set of planar rooted trees.

Let, for all n ∈ N: {
pn = dim(PrimcoAss(FQSym)n),
qn = dim(PrimcoDend(FQSym)n).

We then prove in section 3 that for n ≥ 2, qn = (n − 2)pn−1. We then give n − 2 appli-
cations from PrimcoAss(FQSym)n−1 to PrimcoDend(FQSym)n, which give all elements of
PrimcoDend(FQSym)n. These applications are given by the insertion of n + 1 at a given place
in elements of the symmetric group Sn, seen as words in letters 1, . . . , n.

Combining the results of the second and third sections, we define inductively in the fourth
section a new basis of PrimcoAss(FQSym)n, indexed by certain planar decorated rooted trees.
The trees which are only a root give a basis of PrimcoDend(FQSym)n.

Notations.

1. K is a commutative field of any characteristic.

2. If V is a K-vector field which is N-graded, we shall denote by Vk the space of homogeneous
elements of V of degree k.

1 Bidendriform bialgebras and FQSym

1.1 Bidendriform bialgebras

We introduced in [4] the following definition:

Definition 1 A bidendriform bialgebra is a family (A,≺,�,∆≺,∆�) such that:

1. A is a K-vector space and:

≺:
{

A⊗A −→ A
a⊗ b −→ a ≺ b,

∆≺ :
{

A −→ A⊗A
a −→ ∆≺(a) = a′≺ ⊗ a′′≺,

�:
{

A⊗A −→ A
a⊗ b −→ a � b,

∆� :
{

A −→ A⊗A
a −→ ∆�(a) = a′� ⊗ a′′�.

2. (Dendriform axioms). (A,≺,�) is a dendriform algebra: for all a, b, c ∈ A,

(a ≺ b) ≺ c = a ≺ (b ≺ c + b � c), (1)
(a � b) ≺ c = a � (b ≺ c), (2)

5a ≺ b + a � b) � c = a � (b � c). (3)

3. (Codendriform axioms). (A,∆≺,∆�) is a codendriform coalgebra: for all a ∈ A,

(∆≺ ⊗ Id) ◦∆≺(a) = (Id⊗∆≺ + Id⊗∆�) ◦∆≺(a), (4)
(∆� ⊗ Id) ◦∆≺(a) = (Id⊗∆≺) ◦∆�(a), (5)

(∆≺ ⊗ Id + ∆� ⊗ Id) ◦∆�(a) = (Id⊗∆�) ◦∆�(a). (6)
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4. (Bidendriform axioms). For all a, b ∈ A,

∆�(a � b) = a′b′� ⊗ a′′ � b′′� + a′ ⊗ a′′ � b + b′� ⊗ a � b′′� + ab′� ⊗ b′′� + a⊗ b, (7)
∆�(a ≺ b) = a′b′� ⊗ a′′ ≺ b′′� + a′ ⊗ a′′ ≺ b + b′� ⊗ a ≺ b′′�, (8)
∆≺(a � b) = a′b′≺ ⊗ a′′ � b′′≺ + ab′≺ ⊗ b′′≺ + b′≺ ⊗ a � b′′≺, (9)
∆≺(a ≺ b) = a′b′≺ ⊗ a′′ ≺ b′′≺ + a′b⊗ a′′ + b′≺ ⊗ a ≺ b′′≺ + b⊗ a. (10)

Remarks.

1. If A is a bidendriform bialgebra, then K⊕A is naturally a Hopf algebra, extending ≺ + �
and ∆≺ + ∆� on K ⊕A.

2. If A is a bidendriform bialgebra, it is also a dendriform hopf algebra in the sense of [8, 9],
with coassociative coproduct given by ∆̃ = ∆≺ + ∆�. The compatibilities of dendriform
Hopf algebras are given by (7) + (9) and (8) + (10).

If A is a bidendriform algebra, we define:

Primcodend(A) = Ker(∆≺) ∩Ker(∆�).

The following result is proved in [4] (theorem 35 and corollary 17):

Theorem 2 (Bidendriform Cartier-Quillen-Milnor-Moore theorem) Let A be a N-
graded bidendriform bialgebra, such that A0 = (0). Then A is freely generated as a dendriform
algebra by PrimcoDend(A). Moreover, consider the following formal series:

R(X) =
+∞∑
n=1

dim(A), Q(X) =
+∞∑
n=1

dim (PrimcoDend(An))Xn.

Then Q(X) =
R(X)

(R(X) + 1)2
.

1.2 An example: the Hopf algebra FQSym

See [1, 2, 7]. The algebra FQSym is the vector space generated by the elements (Fu)u∈S, where
S is the disjoint union of the symmetric groups Sn (n ∈ N). Its product and its coproduct are
given in the following way: for all u ∈ Sn, v ∈ Sm, putting u = (u1 . . . un),

∆(Fu) =
n∑

i=0

Fst(u1...ui) ⊗ Fst(ui+1...un),

Fu.Fv =
∑

ζ∈sh(n,m)

F(u×v).ζ−1 ,

where sh(n, m) is the set of (n, m)-shuffles, and st is the standardisation. Its unit is 1 = F∅,
where ∅ is the unique element of S0. Moreover, FQSym is a N-graded Hopf algebra, by putting
|Fu| = n if u ∈ Sn.

Examples.

F(1 2)F(1 2 3) = F(1 2 3 4 5) + F(1 3 2 4 5) + F(1 3 4 2 5) + F(1 3 4 5 2) + F(3 1 2 4 5)

+F(3 1 4 2 5) + F(3 1 4 5 2) + F(3 4 1 2 5) + F(3 4 1 5 2) + F(3 4 5 1 2);

∆
(
F(1 2 5 4 3)

)
= 1⊗ F(1 2 5 4 3) + F(1) ⊗ F(1 4 3 2) + F(1 2) ⊗ F(3 2 1)

+F(1 2 3) ⊗ F(2 1) + F(1 2 4 3) ⊗ F(1) + F(1 2 5 4 3) ⊗ 1.
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Let (FQSym)+ = V ect(Fu / u ∈ Sn, n ≥ 1) be the augmentation ideal of FQSym. We
define ≺,�,∆≺ and ∆� on (FQSym)+ in the following way: for all u ∈ Sn, v ∈ Sm, by putting
u = (u1 . . . un),

Fu ≺ Fv =
∑

ζ∈sh(n,m)
ζ−1(n+m)=n

F(u×v).ζ−1 ,

Fu � Fv =
∑

ζ∈sh(n,m)
ζ−1(n+m)=n+m

F(u×v).ζ−1 ,

∆≺(Fu) =
n−1∑

i=u−1(n)

Fst(u1...ui) ⊗ Fst(ui+1...un),

∆�(Fu) =
u−1(n)−1∑

i=1

Fst(u1...ui) ⊗ Fst(ui+1...un).

Examples.

F(1 2) ≺ F(1 2 3) = F(1 3 4 5 2) + F(3 1 4 5 2) + F(3 4 1 5 2) + F(3 4 5 1 2),

F(1 2) � F(1 2 3) = F(1 2 3 4 5) + F(1 3 2 4 5) + F(1 3 4 2 5) + F(3 1 2 4 5) + F(3 1 4 2 5) + F(3 4 1 2 5),

∆≺
(
F(1 2 5 4 3)

)
= F(1 2 3) ⊗ F(2 1) + F(1 2 4 3) ⊗ F(1),

∆�
(
F(1 2 5 4 3)

)
= F(1) ⊗ F(1 4 3 2) + F(1 2) ⊗ F(3 2 1).

The following result is proved in [4], theorem 38:

Theorem 3 ((FQSym)+,≺,�,∆≺,∆�) is a connected bidendriform bialgebra.

Moreover, (FQSym)+ is N-graded, by putting the elements of Sn homogeneous of degree n.
By theorem 2, with qn = dim(PrimcoDend(FQSym)n), we obtain:

n 1 2 3 4 5 6 7 8 9 10 11 12
qn 1 0 1 6 39 284 2 305 20 682 203 651 2 186 744 25 463 925 319 989 030

2 Recovering PrimcoAss(FQSym) from PrimcoDend(FQSym)

2.1 Dendriform Cartier-Quillen-Milnor-Moore theorem and variations

Recall that a brace algebra is a K-vector space A together with a n-multilinear operation for
all n ≥ 2:

〈. . .〉 :
{

A⊗n −→ A
a1 ⊗ . . .⊗ an −→ 〈a1, . . . , an〉,

satisfying certain relations; see [8, 9] for more details. For example:

〈a1, 〈a2, a3〉〉 = 〈a1, a2, a3〉+ 〈〈a1, a2〉, a3〉+ 〈a2, a1, a3〉.

The following theorem is proved in [8, 9]; more precisely, the first point of this theorem is
proposition 2-8 and theorem 3-4 of [8] and the second point is theorem 4-6 of [9]:

Theorem 4 (Dendriform Cartier-Quillen-Milnor-Moore theorem) Let A be a den-
driform Hopf algebra. We denote PrimcoAss(A) = Ker(∆̃).
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1. PrimcoAss(A) is a brace algebra, with brackets given by:

〈p1, . . . , pn〉

=
n−1∑
i=0

(−1)n−1−i (p1 ≺ (p2 ≺ (. . . ≺ pi) . . .) � pn ≺ (. . . (pi+1 � pi+2) � . . .) � pn−1) .

2. If A is freely generated as a dendriform algebra by a subvector space V ⊆ PrimcoAss(A),
then PrimcoAss(A) is freely generated as a brace algebra by V .

Let us precise the relation between PrimcoAss(A) and PrimcoDend(A) if A is a bidendri-
form bialgebra. Combining the dendriform and the bidendriform Cartier-Quillen-Milnor-Moore
theorems:

Theorem 5 Let A be a N-graded bidendriform bialgebra, with A0 = (0). Then PrimcoAss(A)
is, as a brace algebra, freely generated by PrimcoDend(A).

Proof. By the bidendriform Cartier-Quillen-Milnor-Moore theorem, A is freely generated
as a dendriform algebra by PrimcoDend(A). By the second point of the dendriform Cartier-
Quillen-Milnor-Moore theorem, PrimcoAss(A) is freely generated as a brace algebra by the
space PrimcoDend(A). �

Proposition 6 If A is N-graded dendriform Hopf algebra, such that A0 = (0), then A is
generated as a dendriform algebra by PrimcoAss(A). Moreover, consider the following formal
series:

R(X) =
∞∑

n=1

dim(An)Xn, P (X) =
+∞∑
n=1

dim(PrimcoDend((A)n)Xn.

Then P (X) =
R(X)

1 + R(X)
.

Proof. First step. Let p1, . . . , pn ∈ PrimcoAss(A). We define by induction on n:

ω(p1, . . . , pn) =
{

p1 if n = 1,
pn ≺ ω(p1, . . . , pn−1) if n ≥ 2.

An easy induction on n allows to show the following result, using (8)+(10):

∆̃(ω(p1, . . . , pn)) =
n−1∑
i=1

ω(p1, . . . , pi)⊗ ω(pi+1, . . . , pn).

We denote by ∆̃n : A −→ An+1 the iterated coproducts of A. It comes by induction:

∆̃m(ω(p1, . . . , pn)) =
{

0 if m ≥ n,
p1 ⊗ . . .⊗ pn if m = n− 1.

Second step. We consider the tensor (non counitary) coalgebra C = T (PrimcoAss(A)):

C =
∞⊕

n=1

PrimcoAss(A)⊗n.

It is a coalgebra for the deconcatenation coproduct. As PrimcoAss(A) is N-graded, C is a graded
coalgebra with formal series:

S(X) =
1

1− P (X)
− 1 =

P (X)
1− P (X)

.
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By the first step, the following application is a morphism of graded coalgebras:

Ψ :
{

C −→ A
p1 ⊗ . . .⊗ pn −→ ω(p1, . . . , pn).

Third step. Suppose that Ker(Ψ) is non zero. As it is a coideal of C, it contains primitive el-
ements of C, that is to say elements of PrimcoAss(A). As Ψ is obviously monic on PrimcoAss(A),
this is impossible. So Ker(Ψ) = (0) and Ψ is monic.

Let a ∈ A. As A0 = (0), for a certain N(a) ∈ N∗, ∆̃N(a)(a) = 0. We prove that a ∈ Im(Ψ)
by induction on N(a). If N(a) = 1, then a ∈ PrimcoAss(A) and the result is obvious. Suppose
that the result is true for all b ∈ A such that N(b) < N(a). As ∆̃N(a)(a) = 0, necessarily
∆̃N(a)−1(a) ∈ PrimcoAss(A)⊗N(a). We put:

∆̃N(a)−1(a) = a1 ⊗ . . .⊗ an, b = a− ω(a1, . . . , an).

By the first step, ∆̃N(a)−1(b) = 0, so N(b) < N(a). By the induction hypothesis, b ∈ Im(Ψ).
As ω(a1, . . . , an) ∈ Im(Ψ), a ∈ Im(Ψ).

Last step. As Ψ in an isomorphism of graded coalgebras, S(X) = R(X). Hence:

R(X) =
P (X)

1− P (X)
,

so R(X)−R(X)P (X) = P (X) and P (X) =
R(X)

1 + R(X)
. �

2.2 Free brace algebras

Using a description of the free dendriform algebra generated by a set D with planar decorated
forests, we gave a description of the free brace algebra Brace(D) in [3]. A basis of this brace
algebra is given by the set TD of planar rooted trees decorated by D. For example:

Brace(D)1 = V ect( qa , a ∈ D),
Brace(D)2 = V ect( qqab , a, b ∈ D),

Brace(D)3 = V ect( q∨qq
a

bc
, qqqabc , a, b, c ∈ D),

Brace(D)4 = V ect( q∨qq q
a
b

c
d

, q∨qqq
a

bc
d

, q∨qq q
a

bd
c

,
q∨qq qabcd

, qqqqabcd , a, b, c, d ∈ D), . . .

The brace bracket satisfies, for all t1, . . . , tn−1 ∈ TD, d ∈ D:

〈t1, . . . , tn−1, qd〉 = Bd(tn−1 . . . t1),

where Bd(tn−1 . . . t1) is the tree obtained by grafting the trees tn−1, . . . , t1 (in this order) on a
common root decorated by d. For example, if a, b, c, d ∈ D,

〈 qa , qq bc , qd〉 = q∨qqq
d

ab
c

.

As a consequence, if A is a connected bidendriform bialgebra and if (qd)d∈D is a basis of
PrimcoDend(A), then a basis of PrimcoAss(A) is given by (pt)t∈TD defined inductively by:{

p qd = qd,
pB+

d (t1...tn) = 〈ptn , . . . , pt1 , qd〉.
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3 Recovering PrimcoDend(FQSym) from PrimcoAss(FQSym)

For all n ∈ N∗, we put: {
pn = dim(PrimcoAss(FQSym)n),
qn = dim(PrimcoDend(FQSym)n).

Proposition 7 For all n ≥ 2, qn = (n− 2)pn−1.

Proof. We put:

R(X) =
∞∑

n=1

n!Xn, P (X) =
∞∑

n=1

pnXn, Q(X) =
∞∑

n=1

qnXn.

By theorem 2 and proposition 6:

P (X) =
R(X)

1 + R(X)
, Q(X) =

R(X)
(1 + R(X))2

.

Hence:

P ′(X) =
R′(X)

(1 + R(X))2
.

Moreover:

R′(X) =
∞∑

n=1

nn!Xn−1

=
∞∑

n=1

(n + 1)!Xn−1 −
∞∑

n=1

n!Xn−1

=
R(X)−X

X2
− R(X)

X

=
R(X)−X(1 + R(X))

X2
.

We deduce:

X2P ′(X) =
R(X)−X(1 + R(X))

(1 + R(X))2
= Q(X)− X

1 + R(X)
= Q(X)−X + XP (X).

So:

X2P ′(X) + XP (X) =
∞∑

n=1

(n− 1)pnXn+1 = Q(X)−X =
∞∑

n=2

qnXn.

As a conclusion, for all n ≥ 2, qn = (n− 2)pn−2. �

Definition 8 Let i ∈ N∗. We define Φi : FQSym −→ FQSym in the following way: for
all n ∈ N, for all σ = (σ1, . . . , σn) ∈ Sn,

Φi(Fσ) =
{

0 if i ≥ n,
F(σ1,...,σi,n+1,σi+1,...,σn) if i < n.

Theorem 9 Let n ≥ 2. The following application is bijective:

Φ :
{

(PrimcoAss(FQSym)n−1)
n−2 −→ PrimcoDend(FQSym)n

(p1, . . . , pn−2) −→ Φ1(p1) + . . . + Φn−2(pn−2).
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Proof. First step. Let us first prove that Φ takes its values in PrimcoDend(FQSym). Let
p ∈ PrimcoAss(FQSym) and 1 ≤ i ≤ n−2. For all k ∈ N, let πk be the projection on FQSymk.
By definition of ∆≺ and ∆�, for all σ ∈ Sn−1:

∆≺(Φi(Fσ)) =

 n−2∑
j=i+1

πj ⊗ πn−1−j

 ◦ ∆̃(Fσ),

∆�(Φi(Fσ)) =

 i∑
j=1

πj ⊗ πn−1−j

 ◦ ∆̃(Fσ).

By linearity, we obtain:

∆≺(p) =

 n−2∑
j=i+1

πj ⊗ πn−1−j

 ◦ ∆̃(p) = 0,

∆�(p) =

 i∑
j=1

πj ⊗ πn−1−j

 ◦ ∆̃(p) = 0.

This proves the first step.

Second step. We now prove that Φ is monic. Let (p1, . . . , pn−2) ∈ Ker(Φ). Let be 1 ≤ i ≤
n− 2. We define:

$i :


FQSymn −→ FQSymn

Fσ −→
{

0 if σ−1(n) 6= i + 1,
Fσ if σ−1(n) = i + 1.

Then, in an obvious way, $i(Φ(p1, . . . , pn−2)) = Φi(pi) = 0. As Φi is obviously monic on
FQSymn−1 (because i ≤ n− 2), pi = 0. So Φ is monic.

Last step. As dim
(
(PrimcoAss(FQSym)n−1)

n−2
)

= dim (PrimcoDend(FQSym)n), from
proposition 7, Φ is bijective. �

4 An inductive basis of PrimcoAss(FQSym)

We now combine results of the second and third sections to obtain an basis of the space
PrimcoAss(FQSym). We first define inductively some set of partially planar decorated trees
T(n) in the following way:

1. T(0) is the set of non decorated planar trees. The weight of an element of T(0) is the
number of its vertices.

2. Suppose that T(n) is defined. Then T(n + 1) is the set of planar trees defined by :

(a) The elements of T(n + 1) are partially decorated planar trees.

(b) The vertices of the elements of T(n + 1) can eventually be decorated by a pair (t, k),
with t ∈ T(n) and k an integer in {1, . . . , weight(t)− 1}.

(c) The weight of an element of T(n) is the sum of the number of its vertices and of the
weights of the trees of T(n) that appear in its decorations.

Inductively, for all n ∈ N, T(n) ⊆ T(n + 1). We put T =
⋃
n∈N

T(n).

Examples.
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1. Elements of T of weight 1: q .
2. Elements of T of weight 2: qq .
3. Elements of T of weight 3: q∨qq

, qqq , q( qq ,1).
4. Elements of T of weight 4:

(a) q∨qq q
, q∨qqq

, q∨qq q
, q∨qq q , qqqq ,

(b) q( q∨qq
,1), q( q∨qq

,2), q( qqq ,1), q( qqq ,2), q( q
( qq ,1)

,1
), q( q

( qq ,1)
,2

).

(c) qq ( qq ,1), qq ( qq ,1).
We can then define a basis (pt)i∈T of PrimcoAss(FQSym) inductively in the following way:

1. p q = F(1).

2. If t = q (t′,i), then pt = Φi(pt′).

3. If t is not a single root, let t1, . . . , tn−1 be the children of its roots, from left to right, and
tn its root. Then pt = 〈ptn−1 , . . . , pt1 , ptn〉.

By the preceding results:

Theorem 10 (pt)t∈T is a basis of PrimcoAss(FQSym). A basis of PrimcoDend(FQSym)
is given by the pt’s, where t is a single root.

Examples.

1. p q = F(1).

2. p qq = −F(21) + F(12).

3. (a) p q( qq ,1)
= −F(231) + F(132).

(b) p q∨qq = F(231) − F(132) − F(312) + F(213).

(c) p qqq = F(321) − F(231) − F(213) + F(123).

4. (a) p q( q
( qq ,1)

,1

) = −F(2431) + F(1432).

(b) p q( q
( qq ,1)

,2

) = −F(2341) + F(1342).

(c) p q( q∨qq
,1

) = F(2431) − F(1432) − F(3412) + F(2413).

(d) p q( q∨qq
,2

) = F(2341) − F(1342) − F(3142) + F(2143).

(e) p q qqq ,1 = F(3421) − F(2431) − F(2413) + F(1423).

(f) p q qqq ,2 = F(3241) − F(2341) − F(2143) + F(1243).

(g) p q∨qq q = −F(2341) + F(1342) + F(3142) + F(3412) − F(2143) − F(2413) − F(4213) + F(3214).

(h) p q∨qqq = −F(2431) −F(4231) + F(2341) + F(3241) + F(1432) + F(4132) + F(4312) −F(1342) −

F(3142) − F(3412) − F(3214) + F(2314).
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(i) p q∨qq q = −F(3241) + F(2341) + F(2143) + F(2413) + F(4213) −F(1243) −F(1423) −F(4123) −

F(2314) − F(3214) + F(1324) + F(3124).

(j) p q∨qq q = −F(3421) + F(2431) + F(4231) − F(3241) + F(2314) − F(1324) − F(3124) + F(2134).

(k) p qqqq = −F(4321) + F(3421) + F(3241) − F(2341) + F(3214) − F(2314) − F(2134) + F(1234).

(l) p qq ( qq ,1)
= F(2341) +F(2431) +F(4231)−2F(1342)−F(1432)−F(4132)−F(3142)−F(3412) +

F(1243) + F(2143) + F(2413).

(m) p qq ( qq ,1) = F(3421) − F(2431) − F(2314) + F(1324).
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