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Primitive elements of the Hopf algebra of free quasi-symmetric functions

Using the dendriform and the bidendriform Cartier-Quillen-Milnor-Moore theorem, we construct a basis of the space of primitive elements of the Hopf algebra of free quasisymmetric functions, indexed by a certain set of trees, and inductively computable.

Introduction

The Hopf algebra of free quasi-symmetric functions FQSym, also known as the Malvenuto-Reutenauer Hopf algebra, is introduced in [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF]. It is a graded self-dual Hopf algebra, with the set of all permutations as a basis. Certain interesting properties are shown in [START_REF] Duchamp | Some generalizations of quasisymmetric functions and noncommutative symmetric functions[END_REF]: in particular, it is shown that it is both free and cofree, and a basis of the space of its primitive elements is given, using the self-duality and a monomial basis. Note that computing the primitive elements of degree n by this method implies to inverse a certain n! × n! matrix.

The aim of this paper is to describe another basis of P rim coAss (FQSym), which can be inductively computed. We use for this the dendriform structure of FQSym. Recall that a dendriform algebra is an associative algebra such that its product can be split into two nonassociative products ≺ and , with good compatibilities [START_REF] Loday | Dialgebras[END_REF][START_REF] Loday | Hopf algebra of the planar binary trees[END_REF][START_REF] Ronco | Primitive elements of a free dendriform algebra[END_REF]. It is known that FQSym, or more precisely its augmentation ideal, is dendriform. More precisely, it is a dendriform Hopf algebra, in the sense of [START_REF] Ronco | Primitive elements of a free dendriform algebra[END_REF]. This implies, by the dendriform Cartier-Quillen-Milnor-Moore theorem, that P rim coAss (FQSym) is a brace algebra.

We introduced in [START_REF]Bidendriform bialgebras, trees, anf quasi-symmetric functions[END_REF] the notion of bidendriform bialgebra and showed that FQSym is bidendriform. The bidendriform Cartier-Quillen-Milnor-Moore theorem implies that FQSym is freely generated, as a dendriform algebra, by the space P rim coDend (FQSym) of primitive elements in the codendriform sense. Combining this result with the dendriform Cartier-Quillen-Milnor-Moore theorem, we show that P rim coAss (FQSym) is, as a brace algebra, freely generated by P rim coDend (FQSym). We recall in section 2 a description of free brace algebras. If (v i ) i∈I is a basis of the vector space V , then the free brace algebra generated by V has a basis indexed by planar rooted trees decorated by I, and the brace structure is described in this basis by the help of graftings. Hence, for any basis of P rim coDend (FQSym), it is possible to recover a basis of P rim coAss (FQSym), indexed by a certain set of planar rooted trees.

Let, for all n ∈ N:

p n = dim(P rim coAss (FQSym) n ), q n = dim(P rim coDend (FQSym) n ).
We then prove in section 3 that for n ≥ 2, q n = (n -2)p n-1 . We then give n -2 applications from P rim coAss (FQSym) n-1 to P rim coDend (FQSym) n , which give all elements of P rim coDend (FQSym) n . These applications are given by the insertion of n + 1 at a given place in elements of the symmetric group S n , seen as words in letters 1, . . . , n.

Combining the results of the second and third sections, we define inductively in the fourth section a new basis of P rim coAss (FQSym) n , indexed by certain planar decorated rooted trees. The trees which are only a root give a basis of P rim coDend (FQSym) n .

Notations.

1. K is a commutative field of any characteristic.

2. If V is a K-vector field which is N-graded, we shall denote by V k the space of homogeneous elements of V of degree k.

1 Bidendriform bialgebras and FQSym

Bidendriform bialgebras

We introduced in [START_REF]Bidendriform bialgebras, trees, anf quasi-symmetric functions[END_REF] the following definition:

Definition 1 A bidendriform bialgebra is a family (A, ≺, , ∆ ≺ , ∆ ) such that:

1. A is a K-vector space and:

≺: A ⊗ A -→ A a ⊗ b -→ a ≺ b, ∆ ≺ : A -→ A ⊗ A a -→ ∆ ≺ (a) = a ≺ ⊗ a ≺ , : A ⊗ A -→ A a ⊗ b -→ a b, ∆ : A -→ A ⊗ A a -→ ∆ (a) = a ⊗ a .

(Dendriform axioms). (A, ≺,

) is a dendriform algebra: for all a, b, c ∈ A,

(a ≺ b) ≺ c = a ≺ (b ≺ c + b c), (1) 
(a b) ≺ c = a (b ≺ c), (2) 
5a ≺ b + a b) c = a (b c). (3) 
3. (Codendriform axioms). (A, ∆ ≺ , ∆ ) is a codendriform coalgebra: for all a ∈ A,

(∆ ≺ ⊗ Id) • ∆ ≺ (a) = (Id ⊗ ∆ ≺ + Id ⊗ ∆ ) • ∆ ≺ (a), (4) 
(∆ ⊗ Id) • ∆ ≺ (a) = (Id ⊗ ∆ ≺ ) • ∆ (a), (5) 
(∆ ≺ ⊗ Id + ∆ ⊗ Id) • ∆ (a) = (Id ⊗ ∆ ) • ∆ (a). (6) 
4. (Bidendriform axioms). For all a, b ∈ A,

∆ (a b) = a b ⊗ a b + a ⊗ a b + b ⊗ a b + ab ⊗ b + a ⊗ b, (7) 
∆ (a ≺ b) = a b ⊗ a ≺ b + a ⊗ a ≺ b + b ⊗ a ≺ b , (8) 
∆ ≺ (a b) = a b ≺ ⊗ a b ≺ + ab ≺ ⊗ b ≺ + b ≺ ⊗ a b ≺ , (9) 
∆ ≺ (a ≺ b) = a b ≺ ⊗ a ≺ b ≺ + a b ⊗ a + b ≺ ⊗ a ≺ b ≺ + b ⊗ a. (10) 
Remarks.

1. If A is a bidendriform bialgebra, then K ⊕ A is naturally a Hopf algebra, extending ≺ + and ∆ ≺ + ∆ on K ⊕ A.

If

A is a bidendriform bialgebra, it is also a dendriform hopf algebra in the sense of [START_REF] Ronco | Primitive elements of a free dendriform algebra[END_REF][START_REF]Eulerian idempotents and Milnor-Moore theorem for certain non-cocommutative Hopf algebras[END_REF], with coassociative coproduct given by ∆ = ∆ ≺ + ∆ . The compatibilities of dendriform Hopf algebras are given by ( 7) + ( 9) and ( 8) + (10).

If A is a bidendriform algebra, we define:

P rim codend (A) = Ker(∆ ≺ ) ∩ Ker(∆ ).
The following result is proved in [START_REF]Bidendriform bialgebras, trees, anf quasi-symmetric functions[END_REF] (theorem 35 and corollary 17):

Theorem 2 (Bidendriform Cartier-Quillen-Milnor-Moore theorem) Let A be a Ngraded bidendriform bialgebra, such that A 0 = (0). Then A is freely generated as a dendriform algebra by P rim coDend (A). Moreover, consider the following formal series:

R(X) = +∞ n=1 dim(A), Q(X) = +∞ n=1 dim (P rim coDend (A n )) X n . Then Q(X) = R(X) (R(X) + 1) 2 .

An example: the Hopf algebra FQSym

See [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF][START_REF] Duchamp | Some generalizations of quasisymmetric functions and noncommutative symmetric functions[END_REF][START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF]. The algebra FQSym is the vector space generated by the elements (F u ) u∈S , where S is the disjoint union of the symmetric groups S n (n ∈ N). Its product and its coproduct are given in the following way: for all

u ∈ S n , v ∈ S m , putting u = (u 1 . . . u n ), ∆(F u ) = n i=0 F st(u 1 ...u i ) ⊗ F st(u i+1 ...un) , F u .F v = ζ∈sh(n,m) F (u×v).ζ -1 ,
where sh(n, m) is the set of (n, m)-shuffles, and st is the standardisation. Its unit is 1 = F ∅ , where ∅ is the unique element of S 0 . Moreover, FQSym is a N-graded Hopf algebra, by putting

|F u | = n if u ∈ S n . Examples. F (1 2) F (1 2 3) = F (1 2 3 4 5) + F (1 3 2 4 5) + F (1 3 4 2 5) + F (1 3 4 5 2) + F (3 1 2 4 5) +F (3 1 4 2 5) + F (3 1 4 5 2) + F (3 4 1 2 5) + F (3 4 1 5 2) + F (3 4 5 1 2) ; ∆ F (1 2 5 4 3) = 1 ⊗ F (1 2 5 4 3) + F (1) ⊗ F (1 4 3 2) + F (1 2) ⊗ F (3 2 1) +F (1 2 3) ⊗ F (2 1) + F (1 2 4 3) ⊗ F (1) + F (1 2 5 4 3) ⊗ 1.
Let (FQSym) + = V ect(F u / u ∈ S n , n ≥ 1) be the augmentation ideal of FQSym. We define ≺, , ∆ ≺ and ∆ on (FQSym) + in the following way: for all u ∈ S n , v ∈ S m , by putting u = (u 1 . . . u n ),

F u ≺ F v = ζ∈sh(n,m) ζ -1 (n+m)=n F (u×v).ζ -1 , F u F v = ζ∈sh(n,m) ζ -1 (n+m)=n+m F (u×v).ζ -1 , ∆ ≺ (F u ) = n-1 i=u -1 (n) F st(u 1 ...u i ) ⊗ F st(u i+1 ...un) , ∆ (F u ) = u -1 (n)-1 i=1 F st(u 1 ...u i ) ⊗ F st(u i+1 ...un) .
Examples.

F (1 2) ≺ F (1 2 3) = F (1 3 4 5 2) + F (3 1 4 5 2) + F (3 4 1 5 2) + F (3 4 5 1 2) , F (1 2) F (1 2 3) = F (1 2 3 4 5) + F (1 3 2 4 5) + F (1 3 4 2 5) + F (3 1 2 4 5) + F (3 1 4 2 5) + F (3 4 1 2 5) , ∆ ≺ F (1 2 5 4 3) = F (1 2 3) ⊗ F (2 1) + F (1 2 4 3) ⊗ F (1) , ∆ F (1 2 5 4 3) = F (1) ⊗ F (1 4 3 2) + F (1 2) ⊗ F (3 2 1) .
The following result is proved in [START_REF]Bidendriform bialgebras, trees, anf quasi-symmetric functions[END_REF], theorem 38:

Theorem 3 ((FQSym) + , ≺, , ∆ ≺ , ∆ ) is a connected bidendriform bialgebra.
Moreover, (FQSym) + is N-graded, by putting the elements of S n homogeneous of degree n. By theorem 2, with q n = dim(P rim coDend (FQSym) n ), we obtain: Recall that a brace algebra is a K-vector space A together with a n-multilinear operation for all n ≥ 2:

. . . :

A ⊗n -→ A a 1 ⊗ . . . ⊗ a n -→ a 1 , . . . , a n , satisfying certain relations; see [START_REF] Ronco | Primitive elements of a free dendriform algebra[END_REF][START_REF]Eulerian idempotents and Milnor-Moore theorem for certain non-cocommutative Hopf algebras[END_REF] for more details. For example:

a 1 , a 2 , a 3 = a 1 , a 2 , a 3 + a 1 , a 2 , a 3 + a 2 , a 1 , a 3 .
The following theorem is proved in [START_REF] Ronco | Primitive elements of a free dendriform algebra[END_REF][START_REF]Eulerian idempotents and Milnor-Moore theorem for certain non-cocommutative Hopf algebras[END_REF]; more precisely, the first point of this theorem is proposition 2-8 and theorem 3-4 of [START_REF] Ronco | Primitive elements of a free dendriform algebra[END_REF] and the second point is theorem 4-6 of [START_REF]Eulerian idempotents and Milnor-Moore theorem for certain non-cocommutative Hopf algebras[END_REF]: Theorem 4 (Dendriform Cartier-Quillen-Milnor-Moore theorem) Let A be a dendriform Hopf algebra. We denote P rim coAss (A) = Ker( ∆).

1. P rim coAss (A) is a brace algebra, with brackets given by:

p 1 , . . . , p n = n-1 i=0 (-1) n-1-i (p 1 ≺ (p 2 ≺ (. . . ≺ p i ) . . .) p n ≺ (. . . (p i+1 p i+2 ) . . .) p n-1 ) .
2. If A is freely generated as a dendriform algebra by a subvector space V ⊆ P rim coAss (A), then P rim coAss (A) is freely generated as a brace algebra by V .

Let us precise the relation between P rim coAss (A) and P rim coDend (A) if A is a bidendriform bialgebra. Combining the dendriform and the bidendriform Cartier-Quillen-Milnor-Moore theorems:

Theorem 5 Let A be a N-graded bidendriform bialgebra, with A 0 = (0). Then P rim coAss (A) is, as a brace algebra, freely generated by P rim coDend (A).

Proof. By the bidendriform Cartier-Quillen-Milnor-Moore theorem, A is freely generated as a dendriform algebra by P rim coDend (A). By the second point of the dendriform Cartier-Quillen-Milnor-Moore theorem, P rim coAss (A) is freely generated as a brace algebra by the space P rim coDend (A).

Proposition 6 If A is N-graded dendriform Hopf algebra, such that A 0 = (0), then A is generated as a dendriform algebra by P rim coAss (A). Moreover, consider the following formal series:

R(X) = ∞ n=1 dim(A n )X n , P (X) = +∞ n=1 dim(P rim coDend ((A) n )X n . Then P (X) = R(X) 1 + R(X)
.

Proof. First step. Let p 1 , . . . , p n ∈ P rim coAss (A). We define by induction on n:

ω(p 1 , . . . , p n ) = p 1 if n = 1, p n ≺ ω(p 1 , . . . , p n-1 ) if n ≥ 2.
An easy induction on n allows to show the following result, using (8)+(10):

∆(ω(p 1 , . . . , p n )) = n-1 i=1 ω(p 1 , . . . , p i ) ⊗ ω(p i+1 , . . . , p n ).
We denote by ∆n : A -→ A n+1 the iterated coproducts of A. It comes by induction:

∆m (ω(p 1 , . . . , p n )) = 0 if m ≥ n, p 1 ⊗ . . . ⊗ p n if m = n -1.
Second step. We consider the tensor (non counitary) coalgebra C = T (P rim coAss (A)):

C = ∞ n=1 P rim coAss (A) ⊗n .
It is a coalgebra for the deconcatenation coproduct. As P rim coAss (A) is N-graded, C is a graded coalgebra with formal series:

S(X) = 1 1 -P (X) -1 = P (X) 1 -P (X)
.

By the first step, the following application is a morphism of graded coalgebras:

Ψ : C -→ A p 1 ⊗ . . . ⊗ p n -→ ω(p 1 , . . . , p n ).
Third step. Suppose that Ker(Ψ) is non zero. As it is a coideal of C, it contains primitive elements of C, that is to say elements of P rim coAss (A). As Ψ is obviously monic on P rim coAss (A), this is impossible. So Ker(Ψ) = (0) and Ψ is monic.

Let a ∈ A. As A 0 = (0), for a certain N (a) ∈ N * , ∆N(a) (a) = 0. We prove that a ∈ Im(Ψ) by induction on N (a). If N (a) = 1, then a ∈ P rim coAss (A) and the result is obvious. Suppose that the result is true for all b ∈ A such that N (b) < N (a). As ∆N(a) (a) = 0, necessarily ∆N(a)-1 (a) ∈ P rim coAss (A) ⊗N (a) . We put:

∆N(a)-1 (a) = a 1 ⊗ . . . ⊗ a n , b = a -ω(a 1 , . . . , a n ).
By the first step, ∆N(a)-1 (b) = 0, so N (b) < N (a). By the induction hypothesis, b ∈ Im(Ψ).

As ω(a 1 , . . . , a n ) ∈ Im(Ψ), a ∈ Im(Ψ).

Last step. As Ψ in an isomorphism of graded coalgebras, S(X) = R(X). Hence:

R(X) = P (X) 1 -P (X) , so R(X) -R(X)P (X) = P (X) and P (X) = R(X) 1 + R(X)
.

Free brace algebras

Using a description of the free dendriform algebra generated by a set D with planar decorated forests, we gave a description of the free brace algebra Brace(D) in [START_REF] Foissy | Les algèbres de Hopf des arbres enracinés, II[END_REF]. A basis of this brace algebra is given by the set T D of planar rooted trees decorated by D. For example:

Brace(D) 1 = V ect( q a , a ∈ D), Brace(D) 2 = V ect( q q a b , a, b ∈ D), Brace(D) 3 = V ect( q ∨ q q a b c , q q q a b c , a, b, c ∈ D), Brace(D) 4 = V ect( q ∨ q qq a b c d , q ∨ q q q a b c d , q ∨ q q q a b d c , q ∨ q q q a b c d , q q q q a b c d , a, b, c, d ∈ D), . . .
The brace bracket satisfies, for all t 1 , . . . , t n-1 ∈ T D , d ∈ D:

t 1 , . . . , t n-1 , q d = B d (t n-1 . . . t 1 ),
where B d (t n-1 . . . t 1 ) is the tree obtained by grafting the trees t n-1 , . . . , t 1 (in this order) on a common root decorated by d. For example, if a, b, c, d ∈ D,

q a , q q b c , q d = q ∨ q q q d a b c .
As a consequence, if A is a connected bidendriform bialgebra and if (q d ) d∈D is a basis of P rim coDend (A), then a basis of P rim coAss (A) is given by (p t ) t∈T D defined inductively by:

p q d = q d , p B + d (t 1 ...tn) = p tn , . . . , p t 1 , q d .
3 Recovering P rim coDend (FQSym) from P rim coAss (FQSym)

For all n ∈ N * , we put:

p n = dim(P rim coAss (FQSym) n ), q n = dim(P rim coDend (FQSym) n ).
Proposition 7 For all n ≥ 2, q n = (n -2)p n-1 .

Proof. We put:

R(X) = ∞ n=1 n!X n , P (X) = ∞ n=1 p n X n , Q(X) = ∞ n=1 q n X n .
By theorem 2 and proposition 6:

P (X) = R(X) 1 + R(X) , Q(X) = R(X) (1 + R(X)) 2 .
Hence:

P (X) = R (X) (1 + R(X)) 2 . Moreover: R (X) = ∞ n=1 nn!X n-1 = ∞ n=1 (n + 1)!X n-1 - ∞ n=1 n!X n-1 = R(X) -X X 2 - R(X) X = R(X) -X(1 + R(X)) X 2 .
We deduce:

X 2 P (X) = R(X) -X(1 + R(X)) (1 + R(X)) 2 = Q(X) - X 1 + R(X) = Q(X) -X + XP (X).
So:

X 2 P (X) + XP (X) = ∞ n=1 (n -1)p n X n+1 = Q(X) -X = ∞ n=2 q n X n .
As a conclusion, for all n ≥ 2, q n = (n -2)p n-2 .

Definition 8 Let i ∈ N * . We define Φ i : FQSym -→ FQSym in the following way: for all n ∈ N, for all σ = (σ 1 , . . . , σ n ) ∈ S n , Proof. First step. Let us first prove that Φ takes its values in P rim coDend (FQSym). Let p ∈ P rim coAss (FQSym) and 1 ≤ i ≤ n -2. For all k ∈ N, let π k be the projection on FQSym k . By definition of ∆ ≺ and ∆ , for all σ ∈ S n-1 :

Φ i (F σ ) = 0 if i ≥ n, F ( 
∆ ≺ (Φ i (F σ )) =   n-2 j=i+1 π j ⊗ π n-1-j   • ∆(F σ ), ∆ (Φ i (F σ )) =   i j=1 π j ⊗ π n-1-j   • ∆(F σ ).
By linearity, we obtain:

∆ ≺ (p) =   n-2 j=i+1 π j ⊗ π n-1-j   • ∆(p) = 0, ∆ (p) =   i j=1 π j ⊗ π n-1-j   • ∆(p) = 0.
This proves the first step.

Second step. We now prove that Φ is monic. Let (p 1 , . . . , p n-2 ) ∈ Ker(Φ). Let be 1 ≤ i ≤ n -2. We define:

i :    FQSym n -→ FQSym n F σ -→ 0 if σ -1 (n) = i + 1, F σ if σ -1 (n) = i + 1.
Then, in an obvious way, i (Φ(p 1 , . . . , p n-2 )) = Φ i (p i ) = 0. As Φ i is obviously monic on FQSym n-1 (because i ≤ n -2), p i = 0. So Φ is monic.

Last step. As dim (P rim coAss (FQSym) n-1 ) n-2 = dim (P rim coDend (FQSym) n ), from proposition 7, Φ is bijective.

An inductive basis of P rim coAss (FQSym)

We now combine results of the second and third sections to obtain an basis of the space P rim coAss (FQSym). We first define inductively some set of partially planar decorated trees T(n) in the following way:

1. T(0) is the set of non decorated planar trees. The weight of an element of T(0) is the number of its vertices.

2. Suppose that T(n) is defined. Then T(n + 1) is the set of planar trees defined by : (a) The elements of T(n + 1) are partially decorated planar trees.

(b) The vertices of the elements of T(n + 1) can eventually be decorated by a pair (t, k), with t ∈ T(n) and k an integer in {1, . . . , weight(t) -1}.

(c) The weight of an element of T(n) is the sum of the number of its vertices and of the weights of the trees of T(n) that appear in its decorations.

Inductively, for all n ∈ N, T(n) ⊆ T(n + 1). We put T = n∈N T(n).

Examples.

1. Elements of T of weight 1: q .

2. Elements of T of weight 2: q q .

3. Elements of T of weight 3: q ∨ q q , q q q , q ( q q ,1) .

Elements of T of weight 4:

(a) q ∨ q qq , q ∨ q q q , q ∨ q q q , q ∨ q q q , q q q q , (b) q ( q ∨ q q ,1) , q ( q ∨ q q ,2) , q q q q ,1 , q q q q ,2 , q q ( q q ,1)

,1 , q q ( q q ,1) ,2 .

(c) q q ( q q ,1) , q q ( q q ,1) .

We can then define a basis (p t ) i∈T of P rim coAss (FQSym) inductively in the following way:

1. p q = F (1) .

2. If t = q (t ,i) , then p t = Φ i (p t ).

3. If t is not a single root, let t 1 , . . . , t n-1 be the children of its roots, from left to right, and t n its root. Then p t = p t n-1 , . . . , p t 1 , p tn .

By the preceding results:

Theorem 10 (p t ) t∈T is a basis of P rim coAss (FQSym). A basis of P rim coDend (FQSym) is given by the p t 's, where t is a single root.

Examples.

1. p q = F (1) .

2. p q q = -F (21) + F (12) .

3. (a) p q ( q q ,1 ) = -F (231) + F (132) .

(b) p q ∨ q q = F (231) -F (132) -F (312) + F (213) .

(c) p q q q = F (321) -F (231) -F (213) + F (123) .

4. (a) p q q ( q q ,1) ,1

= -F (2431) + F (1432) .

(b) p q q ( q q ,1) ,2

= -F (2341) + F (1342) .

(c) p q q ∨ q q ,1 = F (2431) -F (1432) -F (3412) + F (2413) .

(d) p q q ∨ q q ,2 = F (2341) -F (1342) -F (3142) + F (2143) .

(e) p q   q q q ,1   = F (3421) -F (2431) -F (2413) + F (1423) .

(f) p q   q q q ,2   = F (3241) -F (2341) -F (2143) + F (1243) .

(g) p q ∨ q qq = -F (2341) + F (1342) + F (3142) + F (3412) -F (2143) -F (2413) -F (4213) + F (3214) .

(h) p q ∨ q q q = -F (2431) -F (4231) + F (2341) + F (3241) + F (1432) + F (4132) + F (4312) -F (1342) -F (3142) -F (3412) -F (3214) + F (2314) .
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	Theorem 9 Let n ≥ 2. The following application is bijective:
	Φ :	(P

(k) p q q q q = -F (4321) + F (3421) + F (3241) -F (2341) + F (3214) -F (2314) -F (2134) + F (1234) .

(l) p q q ( q q ,1 ) = F (2341) + F (2431) + F (4231) -2F (1342) -F (1432) -F (4132) -F (3142) -F (3412) +

(m) p q q ( q q ,1 ) = F (3421) -F (2431) -F (2314) + F (1324) .