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Helmholtz resonators often are combined with porous ma terials in order to increase the bandwidth of their reso

nances. A previous article [START_REF] Mechel | About Perforated Metal Sheets on Porous Absorbers[END_REF] has treated perforated met al sheet covers on porous absorber layers. The results from this can be applied for nonnal sound incidence directly to Helmholtz resonators in which absorber materials fill up the resonator volume totally, and in the case where there is an air gap between the resonator plate and the absorb er material in the resonator chamber. Thus, with the por ous material behind the resonator plate, it only remains to discuss the situation when a thin absorber layer is in immediate contact with the resonator plate, an arrange ment which is often applied. The performance of the com bination of Helmholtz resonators with absorber layers be comes significantly different if the absorber layer is in front of the resonator plate, in particular the high-frequen cy characteristics are changed. Exact field solutions are derived for resonator arrangements with slit-shaped ori fices (the extension to circular orifices can be made by methods indicated). The influence of the absorber ar rangement on the wall admittance of a grid of resonators is discussed. and numerical examples are shown. It is demonstrated how the maximum sound attenuation in ducts lined with the described absorber arrangements can be achieved.

Helmholtz-Resonatoren mit porosen Absorbern

Zusammenfassung Helmholtz Resonatoren werden oft mit porosen Materialien kombiniert, um die Bandbreite ihrer Resonanzen zu ver groBern. In einem friiheren Artikel [START_REF] Mechel | About Perforated Metal Sheets on Porous Absorbers[END_REF] wurde die Kombina tion von Lochblech-Abdeckungen mit Absorberschichten be handelt. Die Ergebnisse von dort konnen fiir senkrechten Schalleinfall direkt auf Helmholtz Resonatoren tibertragen werden, bei welchen das Absorbermaterial entweder das Re sonatorvol umen vollstandig ausfiillt oder ein Luftspalt zwi schen der Resonatorplatte und der Absorberschicht in der Re sonatorkammer angeordnet ist. So bleibt bei einer Absorber-
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schicht hinter der Resonatorplatte nur noch der Fall zu be handeln, daB eine dtinne Absorberschicht unmittelbaren Kon takt mit der Resonatorplatte hat, eine vielfach verwendete Anordnung. Das Verhalten einer Kombination aus Absor berschicht und Helmholtz Resonator wird vollig anders, wenn sich die Absorberschicht auf der Frontseite der Reso natorplatte befindet, insbesondere werden die hochfrequen ten Eigenschaften verandert. Exakte FeldlOsungen werden hergeleitet fiir das Beispiel von Helmholtz Resonatoren mit schlitzformigen Offnungen (die Obertragung auf Resonato ren mit runden Offnungen wird skizziert). Der EinfluB der Absorberanordnung auf die Wandimpedanz eines Resona torgitters wird diskutiert und numerische Beispiele werden vorgefiihrt. Es wird gezeigt, wie man in Kanalen, welche mit den beschriebenen Absorberanordnungen ausgekleidet sind, die maximale Schalldampfung erreichen kann.

Resonateurs de Helmholtz a absorbants poreux ajoutes

Sommaire

On ajoute souvent des materiaux poreux aux resonateurs de Helmholtz, dans le but d'accroitre la bande passante autour de leurs resonances. Un precedent article [START_REF] Mechel | About Perforated Metal Sheets on Porous Absorbers[END_REF] a traite le cas de plaques de metal perforees recouvrant des couches d' absor bants poreux. Les resultats de cette etude s' appliquent direc tement, dans l'hypothese de !'incidence normale, aux reso nateurs de Helmholtz completement emplis de materiaux ab sorbants, et dans le cas ou ii y a une couche d'air entre la plaque et I' absorbant contenu dans le resonateur. II ne reste done plus qu'a examiner la situation ou, en plus du materiau poreux place derriere la plaque du resonateur, on a dispose une fine couche absorbante au contact immectiat de la plaque, ce qui est un arrangement d'usage frequent. Les performances d'un resonateur ainsi equipe sont nettement differentes, sur tout en haute frequence. On etablit des solutions exactes du champ pour des resonateurs a orifices en forme de fente, et I' on indique Jes methodes qui permettent I' extension au cas des orifices circulaires. On discute de !'influence de ce type d'absorbeurs sur !'admittance de paroi d'un reseau de reso nateurs, et I' on fournit des exemples numeriques. On en de duit la fa9on d 'obtenir un maximum d' attenuation du son dans des tuyaux tapisses de tels absorbeurs.

increase the bandwidth of the resonator and to improve the stability of the resonator against flow-induced whis tling if the resonators are applied in flow ducts. Helm holtz resonators are locally reactive because of the rigid side walls of their resonator chambers. So they can quite easily be introduced into design computations for attenu ation in silencers or for absorption and scattering from absorbing walls if their input admittance is known ana lytically. It is the main purpose of this contribution to give such analytical descriptions for the combination of Helmholtz resonators with porous layers.

In a previous paper, [START_REF] Mechel | About Perforated Metal Sheets on Porous Absorbers[END_REF], the analysis of perforated cover sheets on porous absorber layers was described. As a result of the assumption of normal sound incidence ap plied there, those methods and results can immediately be applied to Helmholtz resonators with absorber material in the resonator volume. Two situations were discussed previously: first, the absorber material totally fills up the resonator volume; second, there is an air gap between the back side of the resonator plate and the absorber layer which itself extends to the rigid termination of the res onator chamber. Although the ranges of variables and parameters in the numerical examples described there mainly were selected for perforated covers, they also ap ply to Helmholtz resonators. The principal results of that paper were, that the inner end correction of the resonator neck becomes complex and describes a flow resistance if the absorber material is in contact with the resonator plate, and that small air gaps between the resonator plate and the absorber material modify the end correction to wards the usual inner end correction of empty resonator chambers. The situations treated in the former paper are depicted in Fig. 1, graphs a) and b).

An interesting and important question arises from the described results. It is common practice to increase the losses of Helmholtz resonators by applying thin porous layers, such as wire mesh or gauze, to one side of the resonator plate, and it is common in the literature to take these layers into account in the computations just by adding their flow resistance to the impedance of the neck, without any modification of the end correction taken from the empty resonator. This seems to be in contradic tion with the results mentioned above, therefore the ar rangement of Fig. 1,c) will be studied here.

Helmholtz resonators with rigid resonator plates show useful values of their wall admittance only in the range of their resonances. Generally they are useful as absorbers for low frequencies only. In fact, at high frequencies the mass reactance in the necks becomes so large that the total arrangement tends towards the behaviour of a rigid wall. If one is interested in a combination of low-frequen cy resonant absorption with a high-frequency broad band absorption, then an arrangement such as that shown in Fig. 1,d) may be a solution.

In this paper we shall apply the conventions for sym bols and methods used in the former article. Thus we can refer to that paper instead of repeating common equa tions. As previously a time fa ctor e jwr is assumed which gives a positive sign to the reactive component of the admittance if it is resilient, and a negative sign if it is mass-like. 

Absorber layer behind the necks

The system considered first is that of Fig. 1,c). The parameters and the coordinates are shown in Fig. 2. A plane sound wave is incident on an arrangement of Helmholtz resonators with slit-shaped orifices of width a, with a separation distance L, in a resonator plate of thickness d in front of a resonator volume of depth t. A porous absorber layer of thickness s is arranged behind the resonator plate. The material of that layer is charac terized by its porosity (J a ' characteristic propagation con stant I:i and wave impedance Z3, which in normalized forms are represented by I:i n = I:i/ k0, Z an = Z3/ Z0, where k0 and Z0 are the free-field wave number and wave impedance of air respectively. The material characteris tics can be computed either from regressions through measured data or, preferably, from model theories which avoid physically unreal results for extreme values of the absorber variable E = Qo f/ 5, (here Qo is the density of air, f the frequency, and 5 the (measured) flow resistivity). In many applications, the thickness s is small not only against the wavelength ).0, but also compared to all other dimensions of the resonator when the porous layer is a wire mesh, a thin felt or glass fibre cloth, and then it is better to characterize it by its flow resistance R (normal ized to Z0). We shall treat this case by the transitions--+ 0 in such a way that the value of R = 5 s/Z0 is kept con stant.

In Fig. 2 we have subdivided the sound field into zones I to IV. Assuming an amplitude A e of the incident plane wave, we constitute the sound pressure in the zones as a superposition of higher modes from which the axial par ticle velocity vx is derived.
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The factor J n = 1 for n = 0, and J n = 2 for n > 0. The summations run from m, n = 0 to m, n = oo. The wave numbers and propagation constants are:

(5)

The limit mg = INT (2aj).0) (with l-0 the free-field wave length) separates cut-on modes in the slit (m �mg) from cut-off modes (m >mg). These (exact) formulations satisfy the boundary condition of zero normal particle velocity at the rigid surfaces of the resonator and in the planes of symmetry.

The sets of unknown amplitudes A n; Bm, C m; Dn, E n; Fn are determined by the boundary conditions for the sound pressures p and for the axial particle velocities vx at the interfaces between the zones. In principle it is an extrac tion of Fourier components from a spatial Fourier series by which the above field representations can be inter preted. In the course of this procedure integrals will ap pear of the type:
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for which we introduce the abbreviation s m , n with the special values: S0.0 = 1; Sm.o = 0 and So .n =(sin (n 1t a/L))/ (n rr a/L).

Matching the particle velocities at the interfaces be tween the zones will give the equations:
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Matching the sound pressure delivers: 1 with the coefficients:
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After the solution of this system for x n -' Y,, _' the quan tities B m , C m are computed from eq. ( 17), and then the other amplitudes from eq. ( 7), ( 8) and (9). Thus the sound fields in the zones are known.

The volume of computation is vastly reduced by the approximate assumption that only plane waves exist in the resonator necks. Then the system described in eq. ( 18 

The final quantity sought is the input impedance Z or, preferably, the input admittance G = 1/Z of the absorber arrangement. These are p/v-impedances or v/p-admit tances averaged over the necks and rigid sections of the resonator plate. We name them planar impedance or ad mittance in distinction to the slit impedance Zs or admit-tance Gs = 1/Zs. If the resonator repeat length Li s small compared to the wave length A.0, then the simple relation G = a/L • Gs holds.

We start with the slit impedance Zsh at the exit plane of the neck. Then the impedance Zsv in the entrance plane of the neck is obtained by a simple impedance transfor mation using the neck as a transformer line. The rear orifice impedance z s h is defined by, and can be computed from:

Zsh <Pu (d, y))a Yo + Z0 Z0 <vnx(d,y))a Y0_ e -j k o d x 1 + e-2j k o d = 2 _Q_=._ ----- 1 _ e-2j k o d y0_ 1 _ e-2 jk0 d '
with the result:
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The first term in the brackets (together with Z an in front of the brackets) is just the planar input impedance of the absorber layer, reduced to the slit impedance by the fac tor a/ L and transformed into the exit plane of the neck. Thus the second term in the brackets (with the factor in front of the brackets) is the impedance of the oscillating mass in the rear orifice plane:

The first term in the brackets of (24) can be written:
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This is just the rear orifice impedance for an empty resonator chamber. Thus the absorber layer "vanishes" by this kind of transition: s -+ 0.

In the second way of making the transition we let R = S s/Z0 be constant. Then, remembering that the in put impedance of an absorber layer, with a pressure re lease termination for low frequencies and/or thin layers, is just the flow resistance of the layer, Z a • tanh (I'a s) � S s, we may treat R �Zan Fas as being constant, and allow Fas -+ 0 in the arguments of the exponential and of the trigonometric functions. This gives: and:
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The result of an insertion into (24) is for a thin absorber layer behind the neck plate:
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The interpretation of this is very simple. First: the flow resistance R is just added to the planar input impedance of the resonator volume (first two terms in the brackets); second: the reactance of the oscillating mass, i.e. the inner end correction, remains that of the empty chamber. A numerical study of the transition s -+ 0 shows that the relevant condition is s �a. For s smaller than about a/2 one can apply eq. ( 31) as an approximation with the inner end correction for empty resonator volumes. For s >a one should apply the more complicated eq. ( 25) with the inner end correction modified by the absorber layer. The resonance remains unchanged if R is purely resistive, but thin layers may also be excited into oscillation by the frictional forces. In most cases we can take this into con sideration by applying an effective resistance R eff which is composed of the pure resistance R = S s/Z0, and the surface mass density m = Q m s of the layer according to:
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For k0 s • Qm/Q o � R (the layer becomes effectively rigid by its mass rectance) we obtain R alone; for k0 s • Qm/(!0 � R we obtain an impervious thin foil with only a mass rectance. This, for example, can be applied to down-tune the resonator.

It is evident that the principal results derived here for a slit resonator also apply to resonators with circular necks.

Absorber layer in front of the necks

The discussion of the arrangement of Fig. 1,d) would be an avoidable repetition of the above results if the ab sorber layer is very thin. However, there are some differ ent points of interest in this arrangement. Near the reso nances, the absorber layer has a low-impedance termi nation. Its sound absorption then can be much higher than with a rigid termination. This fact can be applied to achieve an increase in the sound absorption of the layer at low frequencies. At high frequencies, when the mass reactance of the resonator necks become large and the resonator plate effectively rigid, there still remains the absorption of the absorber layer. The arrangement of the layer and the numbering of the zones (which is chosen as shown, with the intention of retaining as much as possible unchanged from the previous section) are shown in Fig. 3.

The fields established in the zones are:

Zone I: = L bn Fn cosh ( Yn (x -d -t)) cos (11 n y), (36) n=O
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The wave numbers and propagation constants are the same as in eq. ( 5).

The boundary conditions in the planes x = -s, x = 0, x = d for the particle velocity v x give (in that order) with the coefficients sm.n from eq. ( 6):

Yn a x m • d + • d -F sinh (y t) = J • -" -S (B e -Jxm -C e JXm ). k n n L � k m, n m m O m -0 O (39) 
The boundary conditions for the sound pressure yield: 

(Bo+ Co)= L <\So,n (D n +E n ), (39a) 
(B0 e -jko d + C0 e +jko d ) = L bnSo .nFn cosh (y n t). (42a) n=O The aim of the next step is again the derivation of a system of linear equations for the unknown ampli tudes. One equation can be easily derived from eq. (39a) and eq. (42a) for the quantities X o ± = B0 ± C0, Yo±= Bo e-jko d ± Co e -jko d : This gives, fr om eq. ( 23), the impedance Zsh of the rear orifice which, as expected, is the impedance for the empty resonator chamber. The derivation of a second equation is somewhat more complicated. We define U n ±, v:i± in analogy with X 0 ±, Y0 ±:
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Then we find from eq. (38 a):

and with eq. (41 a) this gives:

X0+ = [ -jcot ( k0d)] • X0_ + [j/sin ( k0 d)] • Y0_ = L bnS O .n • U n + = L bnS O ,n n =O n=O b s + n O,n , V sinh ( c; n s) n -' (47) 
where the first line stems fr om eq. ( 16), the second line from eq. (41 a) and ( 45), and eq. ( 46) is introduced into the third line. We still have to reduce V n _ to X o-and Y0 _.

This derivation starts with eq. ( 37) from which we obtain: This, inserted into eq. ( 47), gives the second required equation:
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The eqs. ( 43) and (50) can be explicitly solved for X 0 _ and Y0_, from which all amplitudes can be computed. ---+---+---f---l---1----+--+------- resonance is tuned to still lower frequencies, as in Fig. 6 a and 6 b, the sound absorption in the first maximum will usually be decreased. The diameter of the additional loop can be influenced by the ratio a/L. The diameter generally becomes smaller, the closer the original curve is to the matching point at the onset of the additional loop. This is quite plausible, because the absorber layer must be rather thick and/or must have a high flow resistivity to approach the match ing point. Under such conditions, the absorber layer -in an acoustical sense -becomes infinitely thick, and then it t t 0.8 --rU--rV--rW--rX--rY--rZ--r[--r\--r]--r^ .,,.----0.2 r-----r---r.--r/--r0--r1--r2--r3--r4--r5--r6 -0 . 4 t-----+---+-----+--+---+----+--+------ becomes less important whether the termination of the layer has a high or a low impedance.

Up to now we have considered optimizations with respect to sound absorption. The goal of optimization here is the point of impedance matching Z0 G = 1 (for normal sound incidence and sufficiently large absorber areas). The aim of optimization becomes quite different from that for sound absorbers in silencers. This shall be explained shortly. These explanations hold for locally reacting duct linings. A Helmholtz resonator with a front side absorber layer is not precisely locally reacting, but it can be approximately treated as locally reacting if the flow resistance of the layer is high enough ( 5 s/Z0 > 2) and/or the layer is thin (s < L). Since Cremer's famous paper [START_REF] Cremer | Theorie der Luftschall-Dampfung im Rechteck kanal mit schluckender Wand und das sich dabei ergebende hochste DampfungsmaB[END_REF] the design computa tions for lined silencers assume one mode of the sound wave propagating in the duct, namely the least attenu ated mode, and the absorbent lining is designed such that the attenuation of this mode becomes as high as possible. We consider a two-dimensional rectangular duct along the x-axis having a width 2 h along the y-axis and being coated by locally reacting absorbers with a wall admit tance G at y = ±h. A sound wave symmetrical with re spect to y, which also describes the least attenuated mode, can be written as:

p (x,y) = A • e -r x • cos (c:y), j o p . c: -r x ( ) v (x,y) = ---= -J A• --e • cos c:y . Y k o Z oDY k o Z o (53) 
The propagation constants rand c: are connected to each other by the wave equation:

(54)

The boundary condition of agreement between the field admittance and the wall admittance at y = ± h leads to the characteristic equation for c: h:

c: h • tan ( c: h) = j k0 h • Z0 G = j U, (55) 
where we have introduced the quantity U = k0 h • Z0 G, which we name ab sorber function, because it is the quan tity which contains the information about the absorber lining. There exists an infinite manifold of solutions c:m h, m = 0, 1, 2, ... as a consequence of the periodicity of tan (c: h); they correspond to the possible modes (56)

A usual measure for the sound attenuation is the sound level decrease D h in dB along a distance L\x = h. This is given by D h = 8.68 • Re {I' m h}. The decrease per meter is then L\L = Dh/h dB, with h in meters.

The modal solutions c:mh cover the U-plane as an infin ity of leaves of a Riemann surface. The boundaries be tween the solutions are the branch cuts between adjacent leaves. Succeeding modal solutions have the branch point, which is the end of the branch cut between them, as a common solution.

Cremer has shown that the least attenuated mode be longs to the first two orders, m = 0, 1, and that it attains its maximum attenuation in the branch point u = ub between these two modes. The branch points Ub and (c: h)b for the first 20 modes were computed in [START_REF] Mechel | Modal solutions in rectangular ducts lined with locally reacting absorbers[END_REF] Thus, an optimization goal for silencer absorbers is to design the wall admittance of the absorber such that the absorber function U = k0 h • Z0 G attains the value of Ub and keeps it over as wide a frequency band as possible. There exist, however, some principal dif ficulties. The first problem lies in the fact that the ab sorber must be rather reactive. The tan <5 of G must be tan b =Im {G}/Re {G} =Im {Ub}/Re {Ub} = 0.801 which is a value characteristic for reactive absorbers. Reactive absorbers generally have a pronounced frequency depen-dence. One type of frequency dependence would be fa vourable; in order that U can be constant in a frequency band, the admittance Gi n that band should be inversely proportional to the frequency. This is the frequency de pendence of a mass-type reactance. However, the positive sign of Im { Ub} indicates a spring-type reactance. It be comes plausible from these facts, that a passive absorber can reach Ub only by some kind of resonance.

The next problem is, how precisely the branch point must be reached. To find an answer to that question we show a 3-D-plot of the attenuation Dh around Ub taking a fixed value for the frequency. We choose k0 h = 0.597 which belongs to a frequency about two octaves below the ray formation limit (that is the frequency above which the sound begins to propagate in the duct as a ray which is barely influenced by the duct walls, and above which, therefore, the sound attenuation generally decreases; see also Fig. 8b. The exact value of k0 h is not important for the present question). Fig. 7 shows the distribution of Dh around Ub. The curves for the least attenuated mode are thick; the curves for the next higher mode are thin. One sees that the attenuation Dh steeply decreases if U devi ates from U b towards the real axis of U, and that there is a saddle point on the other side of Ub on which the attenuation becomes nearly as high as in the branch point Ub itself. An important design rule can be derived from these facts: if it is not possible that the curve of U of a given absorber in the U-plane can exactly pass through Ub, then it is better that the curve passes behind Ub rather than in front of it (as seen from the side of the real axis of U).

A final point is a suitable representation of intermedi ate results of design computations. It would be a too great an amount of computational work to solve eq. ( 55) for each design guess in order to see whether the maxi mum attenuation is reached. On the other hand, in 55); for methods of solution see [START_REF] Mechel | Modal solutions in rectangular ducts lined with locally reacting absorbers[END_REF]) is plotted in Fig. 8 b (as a full line) against the product f • h [Hz• m]. The dashed curve is the maxi mum attenuation of the least attenuated duct mode if the value of the absorber function U would be Ub for all frequencies. One sees that the maximum attenuation is approached indeed at two frequencies, but one also realizes that the design is not good, because the max ima are reached in a frequency range beyond the limit of ray formation, in which the attenuation principally de creases. As all parameters are non-dimensional (and the abscissa f • h comes from k0 h for the sound velocity c0 = 343.3 [m/s] of air at room temperature), we can tune the maxima to some wanted frequencies.

The loop in Fig. 8 a, which crosses the branch point, comes from the Helmholtz resonance. It is possible to combine the Helmholtz resonance with an absorber layer resonance in order to achieve a triple crossing of the branch point. Fig. 9 a shows a plot of the UL curve for an absorber arrangement with a front-side absorber layer and slit resonators behind it which realizes this idea. The L/ h ratio is L/ h = 0.52. With (s + d + t)/ L = 2.125, the lining-to-duct width ratio is (s + d + t)/ h = 1.105, which is a quite normal ratio for absorber linings. Fig. 9 b shows the corresponding attenuation curve. The first maximum is tuned down by the increase of the thickness ratio. The two other maxima do not completely reach the theoreti cal maximum because their U curve crosses the saddle in Fig. 7 behind the branch point. It would be possible to bring them closer to the branch point by a fine-tuning of the parameters, but the intention was here to demon strate the effect of a crossing over the Dh-U-saddle. 

Concluding remarks

It was shown above (and in [START_REF] Mechel | About Perforated Metal Sheets on Porous Absorbers[END_REF]) how the near fields of the resonator orifices, which are characterized by the end corrections of the orifices, are influenced by porous ab sorber layers behind or in front of the resonator plate. This influence was demonstrated for the special cases of normal sound incidence and slit resonators. The restriction to normal sound incidence can be re laxed without any modification (as an approximation) in the case of absorber layers behind the resonator plate, because the absorber arrangement is locally reacting. The modification of the external end correction by an oblique sound incidence generally can be neglected as long as the period length Lis small compared to the wave length ).0. If L approaches ).0/2 or exceeds that value, then the absorber arrangement must be treated as a periodic structure as was shown in [START_REF] Mechel | AuBere Schallfelder[END_REF]. For the arrangement with the absorber layer in front of the resonators, an oblique sound incidence can be taken into account by a replace ment of the first term in the third line of ( 51 ), which is the (planar) input impedance of an absorber layer with a rigid termination for normal sound incidence, by the corre sponding impedance for oblique sound incidence with a polar angle e: Z an Ze/ Z 0 = --coth (�s •cos e1), cos e1

(57) wherein e 1 is the (complex) angle of the refracted wave in the absorber layer given by: (58)

Another geometry of interest, other than that of slit resonators, is that of Helmholtz resonators with circular necks arranged in a grid with square or hexagonal res onator volumes. Such arrangements are treated analyti cally in [START_REF] Mechel | Innere Schallfelder, Strukturen[END_REF]. There the absorber surface is subdivided into cylindrical cells with a cell radius R and one cell concen tric to each orifice with radius a. The cell radius R is selected such that the cell cross-sections just cover the absorber area, i.e. the porosity (a/R) 2 is that of the real absorber. The (approximate) replacement of the square or hexagonal resonator volumes by cylindrical resonator volumes of the same cross-sectional area is based on the experience that the exact shape of the polygon in a polyg onal grid becomes unimportant if R/ }.0 � 1. Then the sound fields in the zones of a cell are synthesized by radial mode sums, and the mode amplitudes are determined as above. The main modifications as compared to the results for slit resonators are the replacement of the porosity a/L of the slit resonators by (a/ R) 2 for cylindrical resonators and further of cos (c; y) by J0 (c; r) and of sin (c; y) by J1 (c; r), with J0,J1 being Bessel functions.

Fig. 1 .

 1 Fig. 1. Treated combinations of porous absorber layers with Helmholtz resonators; a), b): in the fo rmer article; c), d): in this article.

Fig. 2 .

 2 Fig. 2. Helmholtz resonators in a linear grid with additional losses from a porous layer in zone III behind the resonator plate.

  e -JX m d + Cme +Jxm d ) (11) = L bnSm, n(Dn e -t: n d + Ene + t: n d), n=O with the Kronecker symbol <> m.n = 0 or 1 depending on m =t= norm= n . Elimination of F n from eq. (9) and eq. (12) gives: with the modal reflection factors: i(X m + + Xm_) = i(Ym + + Ym_)e + jxmd C m = i(X m+ -Xm_) = i( Ym + -Ym_)ejxmd. (17) For these auxiliary quantities one obtains two coupled inhomogeneous linear systems of equations with m = 0, 1, 2, ... from the above boundary equations: oc; L: a m.nxn-+cm Ym-= bm , n=O L: dm. n Y,, _ + cmxm-= o , n=O

  ) reduces to the two equations a o .o Xo -+Co Yo -= 2 Co Xo -+ do .o Yo -= 0, o = J-LL i-: S o.i-JCO t(k0 ) ,

  . e -2 e; s l j s- 1 -2 e ; s = --_:coth (y J) . 1 -r i e s-0 Fan z a n y i This gives the rear orifice impedance: z sh a [ . k -= --J cot ( 0

Fig. 3 .

 3 Fig. 3. Helmholtz resonators in a linear grid with additional losses from a porous layer in zone III in fr ont of the resonator plate.

  e -J xrnd+C e+Jxmd) = " b S F cosh (y t) (42) the assumption of only plane waves in the res onator necks, which we mostly apply in what follows for reasons of simplicity, i.e. with B m =C m= 0 for m > 0, these matching conditions simplify to: (01 t) = j -S (B e -J 0 -C e 1 0 )

1 +

 1 Y0_ [cot ( k0 d) + � L: bnS cf.n coth (y n t)] L n=O Y n/ko X0_ = 0.

[ a k0 1 ++) 2

 12 , s n--O .n an c e + J an an k n e 0 _ s: A + jk 0 s ( z • r z Y n ) • r z Y n . V u o, n c e JI'.in Z ank --L I'.in Z an-So.n . h( coth (e. s) • V0_ J (48) in which the second line comes from eq. (40a) and the third line from eq. (38 a). The solution for V n-is: V.-= [ 2 <> o .• z,. A, e + ;,,, • h( ) X oc;n SID c;n S /[ 1 -j r;. z,. �coth(e.s)J. (49)

  The planar input impedance (normalized to Z0) of the arrangement is then:(Pm ( -s , y ) ) L = z Vo+ Z o ( Vm x ( -s, Y )) Lan Vo -2ej kos cosh (�s)-a/L• X0_ = Z an 2 e j kos sinh ( I's )+ a/L Z • in the last line is just the (normalized) input impedance of a rigidly backed absorber layer of thickness s. The second term thus is a correction term as a conse quence of the backing by the Helmholtz resonator.

4 .

 4 Fig.4a shows an example of the curve of the (planar) normalized input admittance Z0 G of an absorber layer backed by Helmholtz resonators in the complex admit tance plane, with a running frequency variable Lj).0. The dashed curve is for the absorber layer with a rigid back ing; the continuous curve is for the absorber layer with Helmholtz resonators. The depth of the resonators is relatively small with s/L = 1; t/L = 0.075. (The other shape parameters are indicated in the graph.) The sum mation index of the sums runs up to n0b = 10. The opti mum for the sound absorption under normal sound inci dence (which was assumed here for simplicity) lies in the matching point Z0 G = 1. The absorber layer alone (dashed curve) would, for higher frequencies, trace other circles which would contract towards the matching point. The Helmholtz resonators add a loop to the original curve which is directed towards the inner side of the original loop and which approaches the optimum condi tions for sound absorption already at lower frequencies. This can be seen immediately from Fig.4 b, where the sound absorption coefficient r:J. is plotted against L/ ).0 for the absorber layer with rigid backing (dashed curve) and with the Helmholtz resonators from Fig.4a(full line). The absorption coefficient is computed as:4Z0G' r:J. = ---------(1 + Z0 G') 2 + (Z0 G") 2 (52)from the components of Z0 G = Z0 G' + j • Z0 G". The starting point for the additional loop can be con trolled by those parameters which influence the reso nance frequency of the Helmholtz resonators. In Fig.5a and 5 b the resonance frequency was lowered mainly by increasing t/L. The maxima of the sound absorption have about the same heights with and without the resonators, respectively; the first maximum with the resonators is shifted downwards by about one octave. If the Helmholtz

Fig. 4a .

 4a Fig. 4a. Curve for varying L/1.0 of the input admittance Z0 G of an arrangement as in Fig. 3. Full line: Absorber layer backed by resonators; dashed: absorber layer with a rigid backing.

Fig. 4 b

 4 Fig. 4 b. Frequency curves of the absorption coefficients corre sponding to the plots of Fig. 4 a.

Fig. 5 a

 5 Fig. 5 a. As in Fig. 4 a, but with the resonators tuned to a lower fr equency.Fig. 5 b. Absorption curves for Fig. 5 a.

Fig

  Fig. 6 a. As in Fig. 4 a and 5 a, but with a still lower tuning of the resonators. Fig. 6 b. Absorption curves for Fig. 6 a.

  . The values needed here are Ub = 2.05998 + j • 1.65061, and the solu tion ( c: h)b = 2. 1062 + j • 1.12536 of eq. (55) belonging to this value of the absorber function Ub. If in eq. (54) ( k0h) 2 �Ic:h1 2 , i.e. for low frequencies, the attenuation Dh in the branch point attains the extremely high value Dh � 18.3 dB (which corresponds in a duct with h = 0.1 [m] to L\L � 185 [dB]!).

Fig. 7

 7 Fig. 7. 3 D-plot of the attenuation Dh in dB over the complex plane of the absorber function U of a lined duct with that ab sorber function around the branch point Ub between the first two duct modes. Thick lines: least attenuated duct mode; thin lines: next higher mode.

U

  = k0 h • Z0 G the length h of the (half) duct width is not a dimension of the absorber. In order to design an absorber without this length h in the first design steps, one takes any characteristic length of absorber, let us say L, and plots the curve of UL = k0 L • Z0 G in the plane of UL (see Fig. 8 a). Since UL= ( L/ h). U, the branch point ub is shifted by the factor ( L/ h) into the branch point ubL = ( L/ h). Ub. This means that the branch points ub L for ratios L/ h < 1 lie on a straight line between the origin of the plane UL and Ub, and branch points for ratios L/ h > 1 lie on a continuation of the straight line beyond Ub.

Fig. 8 a

 8 Fig. 8 a shows a plot of UL = k0 L • Z 0 G in the complex plane of UL for an absorber arrangement consisting of an absorber layer with slit resonators as a termination. The parameters are indicated in the graph. The value of Ub is indicated in the graph as a dot near the upper border, and the straight line (dash-dotted) connecting it with the orig in is the locus for branch points for ratios L/h < 1. With a value L/ h = 0.282 the branch point is passed by the curve at two frequencies. The thickness ratio of the total arrangement is (s + d + t)/ L = 1.75, and the ratio (s + d + t)/ h = 0.4935 of the absorber thickness to the duct width is rather low. The attenuation Dh of the least attenuated duct mode with this absorber arrangement (which follows from a solution of eq. (55); for methods of solution see [5]) is plotted in Fig. 8 b (as a full line) against

Fig

  Fig. 8 a. Curve for varying L/ A.0 of the absorber fu nction k0 L • Z0 G for an absorber layer backed by Helmholtz res onators. Point at the upper border: branch point Uh for L/h = 1; dash-dotted line: locus of the branch points for other values of the ratio L/h.

Fig. 8 b

 8 Fig. 8 b. Curve of the attenuation Dh for the arrangement of Fig. 8 a (full line). Dashed line: Theoretical maximum attenua tion if the absorber function would keep the value Uh of the branch point for all frequencies. The upper decline of this curve comes from the ray formation in the duct.

R=0. 43 Fig. 9

 439 Fig.9a. As in Fig.8a, but now the Helmholtz resonance com bined with a layer resonance in order to achieve a triple crossing of the branch point.

Fig. 9 b

 9 Fig. 9 b. Attenuation curve belonging to Fig. 9 a.