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This Special Topic collection is focused on the fast-growing
field of electronic materials and structures in which spin and charge
can be converted from one to the other through microscopic phys-
ical mechanisms intrinsic to these materials. Spin–charge intercon-
version is of great interest for spintronics1—the emerging field of
research which exploits the electron’s spin degree of freedom apart
from its charge for information processing, storage, and sensing,
with potential to outperform semiconductor devices for some tasks
and enable post-Moore’s law technology.2 The operation principle
of spintronics is based on the efficient control of magnetization in
nanomagnets by spin currents representing the flow of a spin angu-
lar momentum. In a spin-valve configuration (i.e., ferromagnetic
layer/nonmagnetic spacer layer/ferromagnetic layer structures), the
spin-polarized charge current injected from one ferromagnetic layer
and flowing perpendicular to its plane passes to the other ferro-
magnetic layer, exerting a spin transfer torque (STT) on its mag-
netization and eventually resulting in magnetization switching. This
mechanism is currently in use for the STT magnetic random access
memory (STT-MRAM), which has been successfully manufactured
and commercialized by the major semiconductor foundries.3

As an alternative, spin–orbit coupling can generate a pure
spin current based on charge-to-spin conversion mechanisms, such
as spin-Hall and Rashba–Edelstein effects, a research topic that
has become the primary focus of the field of spintronics.4 These

mechanisms take place when a current is injected in the plane
of magnetic multilayers containing heavy-metal layers with strong
spin–orbit coupling or other spin-source materials, leading to the
generation of a vertically flowing spin current or a local interfacial
spin density that can exert a spin–orbit torque (SOT) on an adja-
cent free magnetic layer. Compared to the spin-polarized current
obtained in spin valves, the pure spin current induced by spin–orbit
coupling enables magnetization manipulation in a broader range of
magnetically ordered materials, including ferrimagnetic insulators
and antiferromagnets. From the device point of view, SOT-based
MRAM has the potential for higher efficiency compared to STT-
MRAM because in SOT-MRAM, each electron can transfer angu-
lar momentum to the magnet many times, rather than just once.
In addition, the writing and reading paths are decoupled in SOT-
MRAM due to the separation of spin and charge current chan-
nels, which gives better device endurance and faster switching speed
than STT-MRAM. For the future development of SOT-MRAM with
reduced power dissipation, low write latency, and field-free oper-
ation, the efficiency of charge-to-spin conversion becomes the key
factor.

Among the promising material candidates for efficient
spin–charge interconversion, elemental 5d metals such as platinum
and tungsten are the current benchmark systems because they
exhibit relatively large spin–charge interconversion and are easy to
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integrate within CMOS-compatible processes. Meanwhile, the dis-
covery of giant spin–charge interconversion in topological insulators
due to the spin–momentum locking effect opens up new avenues
for searching for material systems with highly efficient spin–charge
interconversion beyond conventional heavy metals. With the inten-
sive investigation of a growing family of different materials systems,
substantial spin–charge interconversion has been reported in topo-
logical insulators, topological semimetals, Rashba interfaces, transi-
tion metal oxides, 2D materials, and noncollinear antiferromagnets,
often with unique spin-dependent and symmetry-dependent prop-
erties. These emergent materials give rise to new phenomena, such
as the voltage-tunable spin–charge interconversion and unconven-
tional spin polarizations, which may eventually lead to new device
functionalities with high efficiency.

In this Special Topic, we compile a series of papers to give
an overview, highlight recent advances, and indicate new direc-
tions in the development of emerging materials for spin–charge
interconversion, including discussions of materials synthesis and
characterization and predictions of spin-dependent properties.

To study spin–charge interconversion in different material sys-
tems, accurate characterization techniques of SOT are important. In
the Perspective by Nguyen and Pai,5 the authors provide an overview
of SOT characterization techniques, and for each technique, they
summarize the operation principles, advantages, and shortcomings.
They list the challenges to quantify spin–charge interconversion in
emerging materials (i.e., topological insulators) due to their imbal-
anced current distribution at the interface and large thermoelectric
effects. The influence of thermoelectric effects on spin–charge con-
version measurements is also covered by Yue et al.6 The authors
review recent spin pumping experiments in Bi films and Bi/Ag
Rashba interfaces and show that the spin–charge conversion in such
systems is negligibly small. Besides quasistatic and microwave mea-
surements, terahertz emission spectroscopy can be another power-
ful tool to study spin–charge interconversion with high time reso-
lution. Cheng et al.7 review terahertz emission experiments in an
extensive variety of materials and heterostructures. The advantages
and future perspectives of spintronic terahertz emitters are also
discussed.

Another Research Update in the area of spin–charge intercon-
version characterization by Dey et al.8 focuses on ferromagnetic res-
onance techniques, especially spin–torque ferromagnetic resonance
and spin pumping measurements for spin–charge interconversion
in topological insulators interfaced with metallic or insulating fer-
romagnets. By using spin pumping, He et al.9 report how different
metal insertion layers affect spin–charge conversion by topological
insulators, with an enhancement of spin–charge conversion by over
60% with a Ru insertion.

In the Perspective by Han and Liu,10 experiments on SOT
switching of magnetization by topological insulators are extensively
reviewed. The authors summarize the spin–charge interconversion
efficiency, the critical switching current, and the power consump-
tion in various topological insulator/ferromagnet heterostructures.
The prospects for further improvement of the switching efficiency
are discussed. In particular, it is proposed to generate an out-of-
plane spin polarization using topological insulators with lower sym-
metry, which can enable a field-free switching of magnets with
perpendicular magnetic anisotropy. On this topic, Xie et al.11 report
the field-free switching of perpendicularly magnetized SrRuO3

by the out-of-plane spin polarization originated from WTe2,
a transition metal dichalcogenide with the reduced crystal sym-
metry. Li et al.12 pursue another strategy for broken symmetry by
using a wedged structure and demonstrate the field-free switching
of perpendicularly magnetized samples.

Spin–charge interconversion in van der Waals materials is
reviewed by Galceran et al.13 with highlights on 2D material syn-
thesis, 2D material-based SOT device fabrication, and the result-
ing physics. This Special Topic provides a summary of spin–charge
interconversion parameters in a vast variety of van der Waals
heterostructures, including transition metal dichalcogenides and
2D ferromagnets. The challenges of using van der Waals het-
erostructures for SOT devices are described. Anadón et al.14 report
the effect of a graphene monolayer insertion within a heavy-
metal/ferromagnet bilayer on the spin transport and spin–charge
interconversion.

In the material system of oxides, Chen and Yi15 review recent
theoretical and experimental efforts on 4d/5d transition metal oxides
with large spin–orbit coupling for spin–charge interconversion. The
progress in using three representative materials, IrO2, SrIrO3, and
SrRuO3, with large spin-Hall angles is summarized. Other possi-
ble candidate 4d/5d transition metal oxides with exotic electronic
properties are also surveyed. In a different aspect, ferroelectricity in
oxides can be used to control the spin-dependent transport. This
topic is reviewed by Fang et al.16 with their emphasis on ferro-
electric control of spin–charge interconversion and magnetoelectric
spin–orbit devices.

Two papers explore the potential of using the non-collinear
antiferromagnetic material Mn3Sn for spin–charge interconversion.
Yu et al.17 report the spin–charge interconversion efficiency of
Mn3Sn to be two times of that of the heavy-metal Ta in YIG/Mn3Sn
heterostructures. Cheng et al.18 show that in Mn3Sn/Pt bilayers,
the spin–orbit coupling in Pt and the Dzyaloshinskii–Moriya inter-
action at the interface help improve the onset temperature of the
topological Hall effect in Mn3Sn.

Several papers deal with the challenge of enhancing the
spin–charge interconversion and reducing the switching current in
the heavy-metal system. Shi et al.19 investigate spin–charge inter-
conversion in PtRh as a function of Rh fraction and find an opti-
mized PtRh composition for the enhanced spin-Hall conductivity.
Chi et al.20 focus on another alloy system, PtBi, and study the depen-
dence on the PtBi composition of the spin-Hall conductivity and
the magnetic anisotropy of the Co overlayer. Lau et al.21 report a
strong crystallinity dependence of spin–charge interconversion in
PtAl alloys, in which the switching power consumption of the tex-
tured film can be significantly reduced compared to that of the poly-
crystalline film. Xue et al.22 show a large enhancement of the SOT
efficiency by the insertion of a thin layer of Co with perpendicu-
lar anisotropy in a heavy-metal/ferromagnet heterostructure. The
temperature dependence of the current induced SOT switching in
heavy-metal/ferrimagnetic insulator heterostructures is studied by
Ren et al.23 The authors report the role of current induced Joule
heating on the switching behavior of SOT devices.

In the field of superconducting spintronics, Yang et al.24 review
recent progress in the study of spin transport and spin supercur-
rents in superconductor/ferromagnet hybrid systems. The potential
of superconducting spin currents and the fundamental challenges
for both experiments and theory are discussed.

APL Mater. 9, 120401 (2021); doi: 10.1063/5.0076924 9, 120401-2

© Author(s) 2021

https://scitation.org/journal/apm


APL Materials EDITORIAL scitation.org/journal/apm

Finally, besides the conventional inverse spin-Hall effect con-
figuration, the theory of generating a charge current vortex by local-
ized spin current injection at a point contact is proposed by Fujimoto
et al.25 The authors analyze the spatial profile of the current that
can act as a probe for the electronic structure of spin–orbit coupled
systems.

Overall, this Special Topic reviews recent progress in the field
of spin–charge interconversion, highlighting advances in emergent
materials, material-based solutions, and challenges in the realiza-
tion of SOT devices. We hope this Special Topic will inspire readers
who are interested in this fast-growing field, stimulate new mate-
rials discovery with potential for spin–charge interconversion, and
facilitate new developments to utilize spin–charge interconversion
in spintronics.
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