
Distributed Transition Systems with Tags

for Privacy Analysis

Siva Anantharaman1 Sabine Frittella2

Benjamin Nguyen3

1 LIFO, Université d’Orléans (France), email: siva@univ-orleans.fr
2 INSA, Centre Val de Loire (France), email: sabine.frittella@insa-cvl.fr
3 INSA, Centre Val de Loire (France), email: benjamin.nguyen@insa-cvl.fr

Abstract

We present a logical framework that formally models how a given
private information P stored on a given database D, can get captured
progressively, by an agent/adversary querying the database repeatedly.
Named DLTTS (Distributed Labeled Tagged Transition System), the frame-
work borrows ideas from several domains: Probabilistic Automata of
Segala, Probabilistic Concurrent Systems, and Probabilistic labelled tran-
sition systems. To every node on a DLTTS is attached a tag that rep-
resents the ‘current’ knowledge of the adversary, acquired from the re-
sponses of the answering mechanism of the DBMS to his/her queries, at
the nodes traversed earlier, along any given run; this knowledge is com-
pleted at the same node, with further relational deductions, possibly in
combination with ‘public’ information from other databases given in ad-
vance. A ‘blackbox’ mechanism is also part of a DLTTS. It is meant as
an oracle, whose role is to tell if the private information has been de-
duced by the adversary at the current node, and if so terminate the run;
an additional special feature is that the blackbox also gives information
on how ‘close’, or how ‘far’, the knowledge of the adversary is, from the
private information P at the current node. A value-wise metric is defined
for that purpose, on the set of all ‘type compatible’ tuples from the given
database, the data themselves being typed with the headers of the base.
Despite the transition systems flavor of our framework, this metric is not
‘behavioral’ in the sense presented in some other works. It is exclusively
database oriented, and allows to define new notions of adjacency and of
ε-indistinguishabilty between databases, more generally than those usu-
ally based on the Hamming metric with a restricted notion of adjacency.
Examples are given all along to illustrate how our framework works.

Keywords:
Database, Privacy, Transition System, Probability, Distribution.

1

1 Introduction

Data anonymization has been investigated for decades, and many privacy models
have been proposed (k-anonymity, differential privacy, . . .) whose goals are to
protect sensitive information. Our goal in this paper is not to define a new
anonymization model, but rather to propose a logical framework to formally
model how the information stored in a database can get captured progressively
by any agent repeatedly querying the database. This model can also be used to
quantify reidentification attacks on a database.

The logical framework we propose below formally models how the informa-
tion stored in a database can get captured progressively, by an agent/adversary
querying repeatedly the database. The data can be of any following types:
numerical, non-numerical,or literal. In practice however, some of the literals
representing ‘sensitive data’ could be in a taxonomical relation; and part of the
data could be presented, for ‘anonymization’ purposes, as finite intervals or sets,
over the basic types. We shall therefore agree to consider the types of the data
in an extended ‘overloaded’ sense. Cf. Example 1 below. (Only tree-structured
taxonomies will be considered in this work.)

We assume given a data base D, with its attributes set A, usually divided in
three disjoint groups: the subgroup A(i) of identifiers, A(qi) of quasi-identifiers,
and A(s) of sensitive attributes. The tuples of the base D will be generally
denoted as t, and their attributes denoted respectively as ti, tqi, and ts in the
three subgroups of A. The attributes ti on any tuple t of D are conveniently
viewed as defining a ‘user’ or a ‘client’ of the database D. Quasi-identifiers1 are
informally defined in general, as a set of public attributes, which in combination
with other attributes and/or external information, can allow to re-identify all
or some of the users to whom the information refers. The base D itself could
be ‘distributed probabilistically’ over a finite set (referred to then, as ‘universe’,
and its elements named as possible ‘worlds’).

By a privacy policy P = PA(D) on D with respect to a given agent/adversary
A is meant the stipulation that for a certain given set of tuples {t ∈ P ⊂ D}, the
sensitive attributes ts on any such t shall remain inaccessible (‘even after further
deduction’ – see below) to A. It is assumed that A is not the user identified by
the attributes ti on these t’s.

The logical framework we propose in this work, to model the evolution of
the ‘knowledge’ that an adversary A can gain by repeatedly querying the given
database D – with a view to get access to sensitive data meant to remain hid-
den for him/her under the given privacy policy P –, will be called Distributed
Labeled-Tagged Transition System (DLTTS); The underlying logic for DLTTS is
first-order, with countably many variables and finitely many constants (includ-
ing certain usual dummy symbols like ‘?, $,#’). In this work, the basic signature
Σ for the framework is assumed to have no non-constant function symbols. By

1A formal definition of quasi-identifier attributes does not seem to be known. For our
purposes, it suffices to see them as those that are not identifiers nor sensitive.

2

‘knowledge’ of A we shall mean the data that A retrieves as answers to his/her
successive queries, as well as other data that can be deduced/derived, under
relational operations on these answers; and in addition, some others derivable
from these, using relational combinations with data (possibly involving some of
the users of D) from finitely many external DBs given in advance, denoted as
B1, . . . , Bm, to which the adversary A is assumed to have free access. These
relational and querying operations are all assumed done with a well-delimited
fragment of the language SQL ; it is assumed that this fragment of SQL is part
of the signature Σ underlying the DLTTSs. In addition, if n ≥ 1 is the length of
the tuples forming the data in D, finitely many predicate symbols Ki, 1 ≤ i ≤ n,
each Ki of arity i, will be part of the signature Σ; in the work presented here
they will be the only predicate symbols in Σ. The role of these symbols is to
allow us to see any data tuple of length r, 1 ≤ r ≤ n, as a variable-free first-order
formula with top symbol Kr, with all arguments assumed typed implicitly (with
the help of the headers of the base D). In practice however, we shall drop these
top symbols Ki, and see any data tuple that is not part of the given privacy
policy PA(D), directly as a first-order variable-free formula over Σ; data tuples
t that are elements of the policy PA(D) will in practice be just written as ¬t.

As we shall see, the DLTTS framework is well suited for capturing the ideas
on acquiring knowledge and on policy violation, in an elegant and abstract
setup. A preliminary definition of this framework (Section 2) considers only the
case where the data, as well as the answers to the queries, do not involve any
notion of ‘noise’. (By ‘noise’ we shall mean the perturbation of data by some
external random (probabilistic mechanism.) But we shall extend this definition
in a later section, as an option to also handle noisy data.The notion of violation
of any given privacy policy on a database can then be (optionally) extended
into a notion of violation up to some given ε ≥ 0 (ε-violation, for short). In
the first part of the work, we will be modeling the lookout for the sensitive
attributes of certain given users, by a single adversary. In the second part of
the work (Section 5 onwards), we propose a method for comparing the evolution
of knowledge of an adversary at two different nodes on a given run, or on two
different possible runs; the same method also applies for comparing the evolution
of knowledge of two different adversaries A1, A2, both querying repeatedly (and
independently) the given database.

But before formally defining the DLTTS, a couple of examples might help;
they will also throw some light on how to delimit properly the fragment of SQL
that we want included in our logical setup.

1.1 A couple of Examples

Example 1. Table 1 below is the record kept by the central Hospital of a
Faculty, with three Departments, in a University, on recent consultations by
the faculty staff. In this record, ‘Name’ is an identifier attribute, ‘Ailment’ is
sensitive, the others are QI; ‘Ailment’ is categorical with 3 branches: Heart-
Disease, Cancer, and Viral-Infection; this latter in turn is categorical too, with

3

Name Age Gender Dept. Ailment
Joan 24 F Chemistry Heart-Disease

Michel 46 M Chemistry Cancer
Aline 23 F Physics Flu
Harry 53 M Maths Flu
John 46 M Physics CoVid

Table 1: Hospital’s ‘secret’ record

2 branches: Flu and CoVid. By convention., such taxonomical relations are
assumed known to public, (For simplicity of the example, we assume that all
Faculty staff are on the consultation list of the Hospital.)

The Hospital intends to keep ‘secret’ information concerning CoVid infected
faculty members; the tuple ¬(John, 46,M,#, CoV id) therefore constitutes its
privacy policy. The following Table 2 is then published for the public, where
the ‘Age’ attributes have been anonymized as (integer) intervals, the ‘Ailment’
attribute is anonymized by an upward push in the taxonomy.

A certain person A, who met John at a faculty banquet, suspected John
to have been infected with CoVid; (s)he thus decides to consult the published
record of the hospital for information. Knowing that the ‘John’ (s)he met is a

Age Gender Dept. Ailment
`1 [20− 30[F Chemistry Heart-Disease
`2 [40− 50[M Chemistry Cancer
`3 [20− 30[F Physics Viral-Infection
`4 [50− 60[M Maths Viral-Infection
`5 [40− 50[M Physics Viral-Infection

Table 2: Hospital’s published record

‘man’ and that the table 2 must contain John’s health bulletin), A has as choice
lines 2, 4 and 5 (`2, `4, `5) of Table 2. A being in the lookout for a ‘CoVid-
infected’ man, this choice is reduced to the last two tuples of the table – a priori
indistinguishable because of the ‘anomymization’ (as ‘Viral-Infection’). Now, A
had the impression that the John (s)he met ‘was not too old’, so feels that the
last tuple is twice more likely; (s)he thus ‘decides that John must be from the
Physics Dept.’, and goes to consult the CoVid-cases statement kept publicly
visible at that Dept.; which reads:

Recent CoVid-cases in the Dept: Female 0 ; Male 1.

And that confirms A’s suspicion concerning John.

In this case, the DLTTS framework would function as follows: At the starting
state s a transition with three branches would a priori be possible, corresponding
to the three (‘M’) lines 2, 4 and 5 of Table 2, which represent the knowledge that
would be acquired respectively along these branches. Now A is on the lookout

4

for a possible CoVid case, so rules out the ‘line 2 branch’ (i.e., gives this branch
probability 0). As for the remaining two branches (corresponding to lines 4
and 5 on Table 2), A chooses to go by the line 5 branch, considering it twice
more likely to be successful, than the other (A had the impression that ‘John
was not too old’). That leads to the probability distribution 0, 1/3, 2/3 assigned
respectively on the three possible branches for the transition. If s0, s1, s2 are
the respective successor states for the transition considered, the privacy policy
of the Hospital (concerning John’s CoVid information) would thus be violated
at state s2 (with probability 2/3), it wouldn’t be at s1 (probability 1/3); no
information deduced at state s0.

As just seen, modeling an adversary’s search for some specific information
on a given data base D – as ‘runs’ on a suitable DLTTS and probability dis-
tributions over the successor steps along the runs –, depends in general on the
nature(structure) of the information looked for. The probability distributions
on the transitions along the runs would generally depend on some random mech-
anism, which could also reflect the choices the adversary might make. �

The role of our next example is to point out that specifying Privacy policy
policies will in general have some serious side effects on the functioning of the
primitives and aggregate procedures of SQL. If the policies are to have some
‘content’, operationally speaking, the DBMS may have to stipulate that the
queries employing these primitives either should have ‘void outputs’ in certain
contexts, or ‘get filtered by the Privacy policy’.

Example 2. Table 3 below is an imaginary record D of a bank L, containing
a list of its clients: with client ids, their names, and their monthly balances.
(Client id is the identifier attribute, Monthly–balance is sensitive.) The privacy
policy P of the bank is that client Jean’s Monthly–balance should ‘be invisible’
to others; formally, the policy P is the negated formula ¬(Jean,≥ 420).

On the other hand, the bank is obliged administratively to render public a
monthly statement, on its minimum total Monthly–balance; that is Table 4.

Client id Name Monthly-balance
1 Claude 320
2 Paul 270
3 Jean 420
4 Martin 150
5 Michel 420

Table 3: L’s (secret) client record

Number of Clients Minimum Total Monthly–balance
5 ≥ 1580

Table 4: Bank L’s Monthly public statement

An adversary A wants to know if Jean is a client of the bank, and if so, with

5

a monthly balance among the highest. So A first queries the bank to get the
list of its clients with their Monthly-balances. The Bank-DBMS’s answer to A’s
query will be, say, as in Table 5 below, where ? stands for the anonymization of
Jean’s sensitive data, as a ‘mask’ or as an interval, say of the form [330− 450[.

Name Monthly-balance
Claude 320
Jean ?
Paul 270

Michel 420
Martin 150

Table 5: DBMS’s Answer to A’s query

The external Table 4 is freely accessible to A; so, if the functionalities
COUNT and SUM are applied ‘without any filter’, A can easily deduce that Jean’s
Monthly–balance at L is ≥ 420; the bank’s Privacy policy is thus violated. �

Remark 1: In the above example, if the external DB (Table 4) was unavail-
able to A, the DBMS could have answered his/her query with a Table 5’ where
the entire tuple on Jean is deleted; in such a case, the privacy policy P on D
(concerning Jean) would a priori remain unviolated; except if we assume that the
DBMS accepts queries with aggregate operations on the database D that ‘do not
explicitly look’ for Jean’s sensitive attribute: For instance A could first retrieve
the SUM on the entire Monthly–balance column, then ask for SUM(Monthly–
balance) where ‘Name <> Jean’. A relational deduction then leads to the
violation of the policy P . The above two Examples show that the violation of
privacy policies needs, in general, some additional ‘outside knowledge’. �

We may assume wlog that the given external bases B1, . . . , Bm – to which A
could resort, with relational operations for deducing additional information – are
also of the same signature Σ as D; so all the knowledge A can deduce/derive
from his/her repeated queries can be expressed as a first-order variable-free
formula over the signature Σ.

2 Distributed Labeled-Tagged Transition Systems

The DLTTS framework presented in this section synthesizes ideas coming
from various domains, such as the Probabilistic Automata of Segala ([12], Prob-
abilistic Concurrent Systems, Probabilistic labelled transition systems ([3, 4].
Although the underlying signature for the DLTTS can be rich in general, for
the purposes of our current work we shall be working with a limited first-order
signature (as mentioned in the Introduction) denoted Σ, with countably many
variables, finitely many constants (including some ‘standard dummies’), no non-
constant function symbols, and a finite limited set of predicate (propositional)
symbols. Let E be the set of all variable-free formulas over Σ, and Ext a given
subset of E . We assume given a decidable procedure C whose role is to ‘satu-

6

rate’ any finite set G of variable-free formulas into a finite set G, by adding a
finite (possibly empty) set of variable-free formulas, using relational operations
on G and Ext. This procedure C will be internal at every node on a DLTTS;
in addition, there will also be a ‘blackbox’ mechanism O, acting as an oracle
telling if the given privacy policy on a given database is violated at the current
node. More details will be given in Section 5 on the additional role the oracle
will play in a privacy analysis procedure (for any querying sequence on a given
DB), based on a novel data-based metric, which will be defined in that section.

Definition 1 A Distributed Labeled-Tagged Transition System (DLTTS), over
a given signature Σ, is formed of:

- a finite (or denumerable) set S of states, an ‘initial’ state s0 ∈ S, and a
special state ⊗ ∈ S named ‘fail’:

- a finite set Act of action symbols (disjoint from Σ), with a special action
δ ∈ Act called ‘violation’;

- a (probabilistic) transition relation T ⊂ S×Act×Distr(S), where Distr(S)
is the set of all probability distributions over S, with finite support.

- a tag τ(s) attached to every state s ∈ S r {⊗}, formed of finitely many
first-order variable-free formulas over Σ; the tag τ(s0) at the initial state
is the singleton set {>}.

- at every state s a special action symbol ι = ιs ∈ Act, said to be internal at
s, completes/saturates τ(s) into a set τ(s) with the procedure C, by using
relational operations between the formulas in τ(s) and Ext.

A (probabilistic) transition t ∈ T will generally be written as a triple
(s, a, t(s)); and t will be said to be ‘from’ (or ‘at’) the state s, the states of
t(s) will be the ‘successors’ of s under t. The formulas in the tag τ(s) at-
tached to any state s will all be assigned the same probability as the state s
in Distr(S). If the set τ(s) of formulas turns out to be inconsistent, then the
oracle mechanism O will (intervene and) impose (s, δ,⊗) as the only transition
from s, standing for ‘violation’ and ‘fail’, by definition,

Nondeterminism of transitions can be defined without difficulty on DLTTS,
as a nondeterministic choice between the possible probabilistic transitions at any
given state. We shall assume that nondeterminism is managed by the choice of
a suitable scheduler; and in addition, that at most one probabilistic transition
is firable from any state s ∈ S r {⊗}, and none from the halting state ⊗.

DLTTS and Repeated queries on a database: The states of the DLTTS
will stand for the various ‘moments’ of the querying sequence, while the tags
attached to the states will stand for the knowledge A has acquired on the data
of D ‘thus far’. This knowledge consists partly in the answers to the queries
(s)he made so far, then completed with additional knowledge using the internal

7

‘saturation’ procedure C of the framework. In the context of DBs, this procedure
would consist in relational algebraic operations between the answers retrieved
by A for his/her repeated queries on D, all seen as tuples (variable-free formu-
las), and suitable tuples from the given external databases B1, . . . , Bm. If the
saturated knowledge of A at a current state s on the DLTTS (i.e., the tag τ(s)
attached to the current state s) is not inconsistent, then the transition from s to
its successor states represents the probability distribution of the likely answers
A would expect to get for his/her next query.

Note that we make no assumption on whether the repeated queries by A on
D are treated interactively, or non-interactively, by the DBMS. It appears that
the logical framework would function exactly alike, in both cases.

Remark 2: (a) Suppose t is a transition from a state s, on the DLTTS
corresponding to a querying sequence by an adversary A, and s′ is one of the
successors of s under t; then, by definition, the ‘fresh’ knowledge τ(s′) of A at s′

resulting from this transition, is the addition to A’s saturated knowledge τ(s) at
s, the part of the response of the DBMS’s answering mechanism for A’s current
query, represented by the branch of t going from s to s′.

(b) As already mentioned, we assume that the relational operations needed
for gaining further knowledge are done using a well delimited finite subset of the
functionalities of SQL; and that ‘no infinite set can get generated from a finite
set’ under these functionalities, assumed included in the signature Σ. (This
corresponds to the bounded inputs outputs assumption, as in e.g., [1, 2].) �

Proposition 1 Suppose given a database D, a finite sequence of repeated
queries on D by an adversary A, and a first-order relational formula P = PA(D)
over the signature Σ of D, expressing the privacy policy of D with respect to A.
Let W be the DLTTS modeling the various queries of A on D, and the evolution
of the knowledge of A on the data of D, resulting from these queries and the
internal actions at the states of W, as described above.

(i) The given privacy policy PA(D) on D is violated if and only if the failure
state ⊗ on the DLTTS W is reachable from the initial state of W.

(ii) The satisfiabiliity of the set of formulas τ(s)∪{¬P} is decidable, at any
state s on the DLTTS, under the assumptions of Remark 2(b).

Proof: Assertion (i) is restatement. Observe now, that at any state s on W,
the tags τ(s), τ(s) are both finite sets of first-order variable-free formulas over
Σ, without non-constant function symbols. For, to start with, the knowledge of
A consists of the responses received for his/her queries, in the form of a finite
set of data tuples from the given databases, and some subtuples. And by our
assumptions of Remark-2 (b), no infinite set can be generated by saturating this
initial knowledge with procedure C. Assertion (ii) follows then from the known
result that the inconsistency of any given finite set of variable-free first-order
Datalog formulas is decidable, e.g., by the analytic tableaux procedure. (Only
the absence of variables is essential.) �

8

3 ε-indistinguishability, ε-local-differential privacy

Our objective now is to extend the result of Proposition 1 to the case when
the violation to be considered can be up to some given ε ≥ 0, in a sense to
be made precise. We stick to the same notation as above. The set E of all
variable-free formulas over Σ is thus a disjoint union of subsets of the form
E = ∪{EKi | 0 < i ≤ n,K ∈ Σ}, the index i in EKi standing for the common
length of the formulas in the subset, and K for the common root symbol of its
formulas; each set EKi will be seen as a database of i-tuples.

We shall first look at the situation where the queries intend to capture certain
(sensitive) values on a given tuple t in the database D. Two different tuples
in E might correspond to two likely answers to such a query, but with possibly
different probabilities in the distribution assigned for the transitions, by the
probabilistic mechanism M (e.g., as in Example 1).

Given two such instances, and a real ε ≥ 0, we can also define a notion of their
ε-local-indistinguishabilty, wrt the tuple t and the mechanismM answering the
queries. This can be done in a slightly extended setup, where the answering
mechanism may, as an option, also add ‘noise’ to certain numerical data values,
for several reasons among which the safety of data. We shall then assume that
the internal procedure C of the DLTTS at each of its states (meant to saturate
the current knowledge of the adversary querying the database) incorporates the
following three well-known noise adding mechanisms: the Laplace, Gauss, and
exponential mechanisms. With the stipulation that this optional noise additions
to numerical values can be done in a bounded fashion, so as to be from a finite
prescribed domain around the values; it will then be assumed that tuples formed
of such noisy data are also in E .

Definition 2 (i) Suppose that, while answering a given query on the base D,
at two instances v, v′, the probabilistic answering mechanism M outputs the
same tuple α ∈ E. Given ε ≥ 0, these two instances are said to be ε-local-
indistinguishable wrt α, if and only if:

Prob[M(v) = α] ≤ eεProb[M(v′) = α] and

Prob[M(v′) = α] ≤ eεProb[M(v) = α].

(ii) The probabilistic answering mechanism M is said to satisfy ε-local dif-
ferential privacy (ε-LDP) for ε ≥ 0, if and only if: For any two instances v, v′

of M that lead to the same output, and any set S ⊂ Range(M), we have

Prob[M(v) ∈ S] ≤ eεProb[M(v′) ∈ S].

We shall also be needing the following notion of ε-indistinguishability (and
of ε-distinguishability) of two different outputs of the mechanism M: These
definitions – as well that of ε-DP given below – are essentially reformulations of
the same (or similar) notions defined in [7, 8].

Definition 3 Given ε ≥ 0, two outputs α, α′ of the probabilistic mechanismM
answering the queries of an agent A, are said to be ε-indistinguishable, if and

9

only if: For every pair v, v′ of inputs for M, such that Prob[M(v) = α] = p
and Prob[M(v′) = α′] = p′, we must have: p ≤ eεp′ and p′ ≤ eεp.

Otherwise, the outputs α, α′ will be said to be ε-distinguishable.

Remark 3: Given an ε ≥ 0, one may assume as an option, that at every
state on the DLTTS the retrieval of answers to the current query (from the
mechanism M) is done up to ε-indistinguishabilty; this will then be implicitly
part of what was called the saturation procedure C at that state. The proce-
dure thus enhanced for saturating the tags at the states, will then be denoted
as εC, when necessary (it will still be decidable, under the finiteness asumptions
of Remark-2 (b)). Inconsistency of the set of formulas, in the ‘εC-saturated’
tag at any state, will be checked up to ε-indistinguishabilty, and referred to as
ε-inconsistency, or ε-failure. The notion of privacy policy will not need to be
modified; that of its violation will be referred to as ε-violation, Under these op-
tional extensions of ε-failure and ε-violation, it must be clear that the statements
of Proposition 1 continue to be valid. �

Two small examples of ε-local-indistinguishability, before closing this section.

(i) The two sub-tuples ([50–60], M, Maths) and ([40–50], M, Physics), from
the last two tuples on the Hospital’s published record in Example 1 (Table 2),
both point to Viral–Infection as output; they can thus be seen as log(2)-local-
indististinguishable, for the adversary A.

(ii) The ‘Randomized Response’ mechanismRR ([13]) can be modelled as fol-
lows. Input is (X,F1, F2) where X is a Boolean, and F1, F2 are flips of a coin (H
or T). RR outputs X if F1 = H, True if F1 = T and F2 = H, and False if F1 =
T and F2 = T . This mechanism is log(3)-LDP : the instances (True,H,H),
(True,H, T), (True, T,H) and (True, T, T) are log(3)-indistinguishable for out-
put True. (False,H,H), (False,H, T), (False, T,H)and (False, T, T) are
log(3)-indistinguishable for output False.

4 ε-Differential Privacy

The notion of ε-indistinguishability of two given databases D,D′ for an ad-
versary, is more general than that of ε-local-indistinguishability (of pairs of in-
stances of a probabilistic answering mechanism giving the same output, defined
in the previous section). ε-indistinguishability is usually defined only for pairs
of databases D,D′ that are adjacent in a certain sense (cf. below).

There is no uniquely defined notion of adjacence on pairs of databases; in
fact, several are known, and in use in the literature. Actually, a notion of
adjacence can be defined in a generic parametrizable manner (as in e.g., [5]), as
follows. We assume given a map f from the set D of all databases of m-tuples
(for some given m > 0), into some given metric space (X, dX). The binary
relation on pairs of databases in D, defined by fadj(D,D

′) = dX(f(D), f(D′)) is
then said to define a measure of adjacence on these databases. The relation fadj
is said to define an ‘adjacency relation’.

10

Definition 4 Let fadj be a given adjacency relation on a set D of databases,
and M a probabilistic mechanism answering queries on the databases in D.

- Two databases D,D′ ∈ D are said to be fadj-indistinguishable under M, if
and only if, for any possible output S ⊂ Range(M), we have

Prob[M(D) ∈ S] ≤ efadj(D,D
′)Prob[M(D′) ∈ S].

- The mechanism M is said to satisfy fadj-differential privacy (fadj-DP), if
and only if the above condition is satisfied for every pair of databases D,D′ in
D, and any possible output S ⊂ Range(M).

Comments: (i) Given ε ≥ 0, the ‘usual’ notions of ε-indistinguishability and ε-
DP correspond to the choice of adjacency fadj = εdh, where dh is the Hamming
metric on databases – namely, the number of ‘records’ where D and D′ differ,
plus the assumption dh(D,D′) ≤ 1 (cf. [5]).

(ii) In Section 6, we propose a more general notion of adjacency, based on a
different metric defined ‘value-wise’, to serve other purposes as well.

(iii) On disjoint databases, one can work with different adjacency relations,
using different maps to the same (or different) metric space(s),

(iv) The mechanism RR described above is actually log(3)-DP, not only
log(3)-LDP. To check DP , we have to check all possible pairs of numbers of the
form (Prob[M(x) = y], P rob[M(x′) = y]), (Prob[M(x) = y′], P rob[M(x′) =
y]), (Prob[M(x) = y], P rob[M(x′) = y′]), etc., where the x, x′.... are the input
instances for RR, and y, y′, ... the outputs. The mechanism RR has 23 possible
input instances for (X,F1, F2) and two outputs (True, False); thus 16 pairs of
numbers, the distinct ones being (1/4, 1/4), (1/4, 3/4), (3/4, 1/4), (3/4, 3/4); if
(a, b) is any such pair, obviously a ≤ elog(3)b. Thus RR is indeed log(3)-DP. �

5 Comparing Two Nodes on one or more Runs

In the previous two sections, we looked at the issue of ‘quantifying’ the
indistinguishability of two data tuples or databases, under repeated queries of
an adversary A. In this section, our concern will be in a sense ‘orthogonal’:
the issue will be that of quantifying how different the probabilistic mechanism’s
answers can be, at different moments of A’s querying sequence. Remember that
the knowledge of A, at any node on the DLTTS of the run corresponding to the
query sequence, is represented as a set of tuples; and also that the data forming
any tuple are assumed implicitly typed, ‘labeled with’ (i.e., under) the headers
of the database D. To be able to compare two tuples of the same length, we
shall assume that there is a natural, injective, type-preserving map from one of
them onto the other; this map will remain implicit in general; two such tuples
will be said to be type-compatible. If the two tuples are not of the same length,
one of them will be projected onto (or restricted to) a suitable subtuple, so as
to be type-compatible and comparable with the other; if this turns out to be
impossible, the two tuples will be said to be uncomparable.

11

The quantification looked for will be based on a suitable notion of ‘distance’
between two sets of type-compatible tuples. For that, we shall first define ‘dis-
tance’ between any two type-compatible tuples; more precisely, define such a
notion of distance between any two data values under every given header of D.
As a first step, we shall therefore begin by defining, for every given header of
D, a binary ‘distance’ function on the set of all values that get assigned to the
attributes under that header, along the sequence of A’s queries. This distance
function to be defined will be a metric: non-negative, symmetric, and satisfying
the so-called Triangle Inequality (cf. below). The ‘direct-sum’ of these metrics,
taken over all the headers of D, will then define a metric d on the set of all
type-compatible tuples of data assigned to the various attributes, under all the
headers of D, along the sequence of A’s queries. The ‘distance’ d(t, t′), from any
given tuple t in this set to another type-compatible tuple t′, will be defined as
the value of this direct-sum metric on the pair of tuples (t, t′); it will, by defini-
tion, be calculated ‘column-wise’ on the base D, and also on the intermediary
databases along A’s query sequence; note that it will give us a priori an m-tuple
of numbers, where m is the number of headers (or columns) in the database D.

A single number can then be derived as the sum of the entries in the m-tuple
d(t, t′). This sum will be denoted as d(t, t′), and defined as the distance from
the tuple t to the tuple t′ in the database D. Finally, if S, S′ are any two given
finite sets of type-compatible tuples, of data that get assigned to the various
attributes (along the queries), we shall define the distance from the set S to the
set S′ as the number ρ(S, S′) = min{ d(t, t′) | t ∈ S, t′ ∈ S′ }

Some preliminaries are needed before we can define the ‘distance’ function
between the data values under every given header of D. We begin by dividing
the headers of the base D into four classes classes, for clarity of presentation:

. ‘Nominal’: identities, names, attributes receiving literal data not in any
taxonomy (e.g., gender, city, . . .), finite sets of such data;

. ‘Numerval’ : attributes receiving numerical values, or bounded intervals
of (finitely many) numerical values;

. ‘Numerical’: attributes receiving single numerical values (numbers).

. ‘Taxoral’: attributes receiving literal data in a taxonomy relation.

For defining the ‘distance’ between any two values v, v′ assigned to an at-
tribute under a given ‘Nominal’ header of D, for the sake of uniformity we
agree to consider every value as a finite set of singleton values. (In particu-
lar, a singleton value ‘x’ will be seen as the set {x}.) Given two such values
v, v′, note first that the so-called Jaccard Index between them is the number
jacc(v, v′) = |(v ∩ v′)/(v ∪ v′)|, which is a ‘measure of their similarity’; but this
index is not a metric: the triangle inequality is not satisfied; however, the Jac-
card metric dNom(v, v′) = 1 − jacc(v, v′) = |(v∆v′)/(v ∪ v′)| does satisfy that
property, and will suit our purposes. Thus defined, dNom(v, v′) is a ‘measure of
the dissimilarity’ between the sets v and v′.

12

Let τNom be the set of all data assigned to the attributes under the ‘Nominal’
headers of D, along the sequence of A’s queries. Then the above defined binary
function dNom extends to a metric on the set of all type-compatible data-tuples
from τNom, defined as the ‘direct-sum’ taken over the ‘Nominal’ headers of D.

If τNum is the set of all data assigned to the attributes under the ‘Numerval’
headers along the sequence of queries by A, we also define a ‘distance’ metric
dNum on the set of all type-compatible data-tuples from τNum, in a similar
manner. We first define dNum on any couple of values u, v assigned to the
attributes under a given ‘Numerval’ header of D, then extend it to the set of
all type-compatible data-tuples from τNum (as the direct-sum taken over the
‘Numerval’ headers of D). This will be done exactly as under the ‘Nominal’
headers: suffices to visualize any finite interval value as a particular way of
presenting a set of numerical values (integers, usually). (In particular, a single
value ‘a’ under a ‘Numerval’ header will be seen as the interval value [a].)
Thus defined the (Jaccard) metric distance dNom([a, b], [c, d]) is a measure of
‘dissimilarity’ between [a, b] and [c, d]. .

Between numerical data x, x′ under the ‘Numerical’ headers, the distance
we shall work with is the euclidean metric |x−x′|, normalized as: deucl(x, x

′) =
|x − x′|/D, where D > 0 is a fixed finite number, bigger than the maximal
euclidean distance between the numerical data on the databases and on the
answers to A’s queries.

On the data under the ‘Taxoral’ headers, we choose as distance function
the metric dwp, defined in Lemma 1 (cf. Appendix) between the nodes of any
Taxonomy tree.

Note that the ‘datawise distance functions’ defined above are all with values
in the real interval [0, 1]. (This is also one reason for our choice of the distance
metric on Taxonomy trees.) This fact is of importance, for comparing the metric
ρ we defined above with the Hamming metric, cf. Section 6.

An additonal role for Oracle O: In Section 5.1 below, we present a procedure
for comparing the knowledge of an adversary A at different nodes of the DLTTS
that models the ‘distributed sequence’ of A’s queries on a given database D. The
comparison can be with respect to any given ‘target’ dataset T (e.g., a privacy
policy P on D). In operational terms, so to say, the oracle mechanism O of the
DLTTS keeps the target dataset ‘in store’; and as said earlier, a first role for
the oracle O of the DLTTS is to keep a watch on the deduction of the target
dataset by the adversary A at some node. The additional second role that we
assign now to the oracle O, is to publish information on the distance of A’s
saturated knowledge τ(s), at any given node s, to the target dataset T . This
distance is calculated wrt the distance ρ, defined above as the minimal distance
d(t, t′) between the tuples t ∈ τ(s), t′ ∈ T , where d is the direct sum of the
‘column-wise distances’ between the data on the tuples.

Before presenting the comparison schema, here is an example to illustrate

13

how the notions developed above operate in practice.

Example 1 bis. We go back to the Hospital-CoVid example seen earlier, more
particularly its Table 2, reproduced here:

Age Gender Dept. Ailment

`1 [20− 30[F Chemistry Heart-Disease
`2 [40− 50[M Chemistry Cancer
`3 [20− 30[F Physics Viral-Infection
`4 [50− 60[M Maths Viral-Infection
`5 [40− 50[M Physics Viral-Infection

Table 6: Hospital’s public record recalled

‘Gender’ and ‘Dept.’. are the ‘Nominal’ headers in this record, ‘Age’ is ‘Nu-
merval’ and ‘Ailment’ is ‘Taxoral’. We are interested in the second, fourth and
fifth tuples on the record, respectively referred to as l2, l4, l5. The ‘target set’ of
(type-compatible) tuple in this example is taken as the (negation of the) privacy
policy specified, namely the tuple T = (John, 46,M,#, CoV id).

We compute now the distance d between the target T , and the three tuples
l2, l4, l5. This involves only the subtuple L = (46,M,#, CoV id) of T :

. d(l2, L) = dNum(l2, L) + dNom(l2, L) + dwp(L2, L)

= (1− 1/10) + 0 + (1− 2/5) = 9/10 + 3/5 = 15/10

. d(l4, L) = dNum(l2, L) + dNom(l4, L) + dwp(L4, L)

= (1− 0) + 0 + (1− 4/5) = 1 + 1/5 = 6/5

. d(l5, L) = dNum(l5, L) + dNom(l5, L) + dwp(L5, L)

= (1− 1/10) + 0 + (1− 4/5) = 9/10 + 1/5 = 11/10

The tuple l2 is the farthest from the target, while l5 is the closest. This ‘explains’
that the adversary can choose the branch on the transition that leads to a state
where l5 is added to his/her knowledge. This is more formally detailed in the
procedure presented below. �

5.1 A (Non-Deterministic) Comparison Procedure

· Given: DLTTS associated with a querying sequence, by adversary A on given
database D; and a Target set of tuples T .

· Given: Two states s, s′ on the DLTTS, with respective saturated tags l, l′, and
probabilties p, p′. Target T assumed not in l or l′: neither ρ(l, T) nor ρ(l′, T) is
0. Also given:

- config1: successor states s1, . . . , sn for a transition t from s, with probabil-
ity distribution p1, . . . , pn; and respective tags l1, . . . , ln, with the contribution
from t (cf. Remark 2(a)).

14

- config2: successor states s′1, . . . , s
′
m for a transition t′ from s′, with proba-

bility distribution p′1, . . . , p
′
m; and respective tags l′1, . . . , l

′
m, with the contribu-

tion from t′ (cf. Remark 2(a)).

· Objective: Choose states to compare under s, s′ (with probability measures not
lower than p, p′) in config1, or in config2, or from either.

(i) Compute di = ρ(li, T), i ∈ 1 · · ·n, and d′j = ρ(l′j , T), j ∈ 1 · · ·m.

dmin(t, T) = min{di | i ∈ 1 · · ·n}, d′min(t′, T) = min{d′j | j ∈ 1 · · ·m}

(ii) Check IF the following conditions are satified by config1:

dmin(t, T) ≤ d′min(t′, T)

∃ an i, 1 ≤ i ≤ n, such that di = dmin(t, T), pi ≤ p,
and pi ≥ p′j for any j, 1 ≤ j ≤ m, where d′j = d′min(t′, T)

(iii) IF YES, continue under s with config1, else RETURN.

6 New Metric for Indistinguishability and DP

Given a randomized/probabilistic mechanism M answering the queries on
databases, and an ε ≥ 0, recall that the ε-indistinguishability of any two given
databases under M, and the notion of ε-DP for M, were both defined in Defi-
nition 4 (Section 4), based first on a hypothetical map f from the set of all the
databases concerned, into some given metric space (X, dX), and an ‘adjacency
relation’ on databases defined as fadj(D,D

′) = dX(fD, fD′), which was subse-
quently instantiated to fadj = εdh, where dh is the Hamming metric between
databases. It must be observed here, that the Hamming metric is defined only
between databases with the same number of columns, and usually only with all
data of the same type.

In this subsection, our objective is to propose a more general notion of adja-
cency, based on the distance metric ρ defined above, between type-compatible
tuples on databases with data of multiple types. In other words, our D here will
be the set of all databases, not necessarily all with the same number of columns,
and with data of several possible types as mentioned in the Introduction. We
define then a binary relation fρadj(D,D

′) between D,D′ in the set D by setting

fρadj(D,D
′) = ρ(D,D′), visualizing D,D′ as sets of type-compatible data tuples.

Given ε, we can then define the notion of ερ-indistinguishabilty of two
databases D,D′ under a (probabilistic) answering mechanism M, as well as
the notion of ερ-DP for M, exactly as in Definition 4, by replacing fadj first
with the relation fρadj , and subsequently with ερ. The notions thus defined are
more general than those presented earlier in Section 4 with the choice fadj = εdh.
An example will illustrate this point.

Example 4. We go back to the ‘Hospital’s public record’ of our previous
example, with the same notation. For this example, we shall assume that the

15

mechanismM answering a query for ‘ailment information involving men’ on that
record, returns the tuples l2, l4, l5 with the probability distribution 0, 2/5, 3/5,
respectively. Let us look for the minimum value of ε ≥ 0, for which these three
tuples will be ερ-indistinguishable under the mechanism M.

The output l2, with probability 0, will be ερ-distinguishable for any ε ≥ 0.
Only the two other outputs l4, l5 need to be considered. We first compute the
ρ-distances between these two tuples: d(l4, l5) = (1 − 1

20) + 0 + 1 + 0 = 39/20.
The condition for l4 and l5 to be ερ-indistinguishable under M is thus:

(2/5) ≤ e(39/20)ε ∗ (3/5) and (3/5) ≤ e(39/20)ε ∗ (2/5),

i.e., ε ≥ (20/39) ∗ ln(3/2). In other words, for any ε ≥ (20/39) ∗ ln(3/2),
the two tuples l4 and l5 will be ερ-indistinguishable; and for values of ε with
0 ≤ ε < (20/39) ∗ ln(3/2), these tuples will be ερ-distinguishable.

For the ε-indistinguishabilty of these tuples wrt the Hamming metric dh, we
proceed similarly: the distance dh(l4, l5) is by definition the number of ‘records’
where these tuples differ, so dh(l4, l5) = 2. So the condition on ε ≥ 0 for their
ε-indistinguishabilty wrt dh is: (3/5) ≤ e2ε ∗ (2/5), i.e., ε ≥ (1/2) ∗ ln(3/2) .

In other words, if these two tuples are ερ-indistinguishables wrt ρ under M
for some ε, then they will be ε-indistinguishable wrt dh for the same ε. But the
converse is not true, since (1/2) ∗ ln(3/2) < (20/39) ∗ ln(3/2). Said otherwise:
M ε-distinguishes more finely with ρ, than with dh. �

Remark 4: The statement¡‘M ε-distinguishes more finely with ρ, than with
dh”, is always true (not just in Example 4). For the following reasons: The
records that differ ‘at some given position’ on two bases D,D′ are always at
distance 1 for the Hamming metric dh, by definition, whatever be the type of
data stored at that position. Now, if the data stored at that position ‘happened
to be’ numerical, the usual euclidean distance between the two data could have
been (much) bigger than their Hamming distance 1; precisely to avoid such
a situation, our definition of the metric deucl on numerical data ‘normalized’
the euclidean distance, to ensure that their deucl-distance will not exceed their
Hamming distance. Thus, all the ‘record-wise’ metrics we have defined above
have their values in [0, 1], as we mentioned earlier; so, whatever the type of data
at corresponding positions on any two bases D,D′, the ρ-distance between the
records will never exceed their Hamming distance. That suffices to prove our
statement above. The Proposition below formulates all this, more precisely:

Proposition 2 Let Dm be the set of all databases with the same number m
of columns, over a finite set of given data, and M a probabilistic mechanism
answering queries on the bases in D. Let ρ be the metric (defined above) and dh
the Hamming metric, between the databases in D, and suppose given an ε ≥ 0.

- If two databases D,D′ ∈ Dm are ερ-indistinguishable under M wrt ρ, then
they are also ε-indistinguishable under M wrt dh.

- If the mechanism M is ερ-DP on the bases in Dm (wrt ρ), then it is also
ε-DP (wrt dh) on these bases.

16

The idea of ‘normalizing’ the Hamming metric between numerical databases
(with the same number of columns) was already suggested in [5] for the same
reasons. When only numerical databases are considered, the metric ρ that we
have defined above is the same as the ‘normalized Hamming metric’ of [5]. Our
metric ρ must actually be seen as a generalization of that notion, to directly
handle bases with more general types of data: anonymized, taxonomies, . . .

7 Related Work and Conclusion

A starting point for the work presented is the observation that databases could
be distributed over several ‘worlds’ in general, so querying such bases leads to
answers which would also be distributed; to such distributed answers one could
conceivably assign probability distributions of relevance to the query. The prob-
abilistic automata of Segala ([11, 12]) are among the first logical structures pro-
posed to model such a vision, in particular with outputs. Distributed Transition
Systems (DTS) appeared a little later, with as objective the behavioral analysis
of the distributed transitions, based on traces or on simulation/bisimulation,
using quasi- or pseudo- or hemi- metrics as in [3, 4, 6]. As the developments
presented in our work show, our lookout was for a syntax-based metric that can
directly handle data of ‘mixed’ types, which can be numbers or literals, but can
also be ‘anonymized’ as intervals or sets; they can also be taxonomically related
to each other in a tree structure. (The metric dwp we have defined on the nodes
of a taxonomy tree, in the Appendix, is syntax-based and is quite novel.) A
data-wise metric as defined in our work can be the basis for a syntactic mea-
sure to express ‘how far’ or ‘how close’ a querying process on a database gets
to a given privacy policy on that base. Implementation and experimentation
are part of future work, where we also hope to define a ‘divergence measure’
between two given nodes on a DLTTS modeling a querying process, in terms of
the knowledge distributions at the two nodes – independently of any notion of
a given target data set.

References

[1] G. Barthe, B. Köpf, F. Olmedo, S.Z. Béguelin. “Probabilistic relational
reasoning for differential privacy”. In: Proceedings of POPL, ACM (2012)

[2] G. Barthe, R. Chadha, V. Jagannath, A. Prasad Sistla, M. Viswanathan.
“Deciding Differential Privacy for Programs with Finite Inputs and Outputs”.
In: LICS’20: 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, Saarbrücken, Germany, July 8-11, 2020.

[3] V. Castiglioni, K. Chatzikokolakis, C. Palamidessi. “A Logical Characteri-
zation of Differential Privacy via Behavioral Metrics”. In: Formal Aspects of
Component Software (FACS), Pohang, South Korea. pp. 75–96, Oct. 2018.

17

[4] V. Castiglioni, M. Loreti, S. Tini. “The metric linear-time branching-time
spectrum on nondeterministic probabilistic processes”. In: Theoretical Comp.
Science, Vol. 813:20–69, 2020.

[5] K. Chatzikokolakis, M. Andrés, N. Bordenabe, C. Palamidessi. “Broadening
the Scope of Differential Privacy Using Metrics”. In: Privacy Enhancing
Technologies Symposium (PETS), Bloomington, IND (US), pp. 82–102, 2013,

[6] L. de Alfaro, M. Faella, M. Stoelinga. “Linear and Branching System Met-
rics”. In: IEEE Trans. on Software Engineering, Vol. 35(2):258–273, 2009.

[7] C. Dwork. “Differential privacy”. In: Proceedings of ICALP 2006. LNCS
(Springer–Verlag), Vol. 4052, pp. 1–12 (2006).

[8] C. Dwork. A. Roth. “The Algorithmic Foundations of Differential Privacy”.
In: Found. Trends Theor. Comput. Sci., Vol. 9:3-4, pp. 211–407, 2014.

[9] N. Holohan, S. Antonatos, S. Braghin, P. M. Aonghusa. “The Bounded
Laplace Mechanism in Differential Privacy”. In: Journal of Privacy and
Confidentiality (Proc. TPDP 2018), Vol. 10 (1), 2020.

[10] R. Segala. “Modeling and Verification of Randomized Distributed Real-
Time Systems”. Ph.D. thesis, MIT (1995).

[11] R. Segala. “A compositional trace-based semantics for probabilistic au-
tomata”. In: Proc. CONCUR’95, 1995, pp. 234–248.

[12] R. Segala, N.A. Lynch. “Probabilistic simulations for probabilistic pro-
cesses”. In: Nord. J. Comput. 2(2):250–273, 1995.

[13] Stanley L. Warner. “Randomized Response: A Survey Technique for Elim-
inating Evasive Answer Bias” In: Journal of the American Statistical Asso-
ciation Vol. 60(309), pp. 63–69, 1965.

[14] Z. Wu, M. Palmer. “Verb Semantics and Lexical selection”. In: Proc. 32nd
Annual meeting of the Associations for Comp. Linguistics, pp 133-138. 1994.

Appendix

Taxonomies are frequent in machine learning. Data mining and clustering tech-
niques employ reasonings based on measures of symmetry, or on metrics, de-
pending on the objective. The Wu-Palmer symmetry measure on tree-structured
taxonomies is one among those in use; it is defined as follows ([14]): Let T be a
given taxonomy tree. For any node x on T , define its depth cx as the number of
nodes from the root to x (both included), along the path from the root to x. For
any pair x, y of nodes on T , let cxy be the depth of the common ancestor of x, y
that is farthest from the root. The Wu-Palmer symmetry measure between the
nodes x, y on T is then defined as WP(x, y) =

2 cxy

cx+cy
. This measure, although

18

considered satisfactory for many purposes, is known to have some disadvantages
such as not being conform to semantics in several situations.

What we are interested in, for the purposes of our current paper, is a metric
between the nodes of a taxonomy tree, which in addition will suit our semantic
considerations. This is the objective of our Lemma below. (A result that seems
to be unknown, to our knowledge.)

Lemma 1 On any taxonomy tree T , the binary function between its nodes
defined by dwp(x, y) = 1− 2 cxy

cx+cy
(notation as above) is a metric.

Proof: We drop the suffix wp for this proof, and just write d. Clearly d(x, y) =
d(y, x); and d(x, y) = 0 if and only if x = y. We only have to prove the Triangle
Inequality; i.e. show that d(x, z) ≤ d(x, y) + d(y, z) holds for any three nodes
x, y, z on T . A ‘configuration’ can be typically represented in its ‘most general
form’ by the diagram below. The boldface characters X,Y, Z, a, h in the diagram
all stand for the number of arcs on the corresponding paths. So that, for the
depths of the three nodes x, y, z, and of their farthest common ancestors on the
tree T , we get:

cx = X + h+ 1, cy = Y + h+ a+ 1, cz = Z + h+ a+ 1,
cxy = h+ 1, cyz = h+ a+ 1, cxz = h+ 1

The ‘+1’ in these equalities is because the X,Y, Z, a, h stand for the number of
arcs on the paths, whereas the depths are defined as the number of nodes. Also
note that the X,Y, Z, a, h must all be integers ≥ 0.

For the Triangle Inequality on the three nodes x, y, z on T , it suffices to
prove the following two relations:

d(x, z) ≤ d(x, y) + d(y, z) and d(y, z) ≤ d(y, x) + d(x, z).

by showing that the following two algebraic inequalities hold:

(1) 1− 2∗(h+1)
(X+Y+2∗h+a+2) + 1− 2∗(h+a+1)

(Y+Z+2∗h+2∗a+2) ≥ 1− 2∗(h+1)
(X+Z+2∗h+a+2)

(2) 1− 2∗(h+1)
(X+Y+2∗h+a+2) + 1− 2∗(h+1)

(X+Z+2∗h+2∗a+2) ≥ 1− 2∗(h+a+1)
(Y+Z+2∗h+2∗a+2)

The third relation d(x, y) ≤ d(x, z) + d(z, y) is proved by just exchanging the
roles of Y and Z in the proof of inequality (1).

Inequality (1): We eliminate the denominators (all strictly positive), and write
it out as an inequality between two polynomials eq1, eq2 on X,Y, Z, h, a, which
must be satisfied for all their non-negative integer values:

eq1 : (X +Y + 2 ∗h+ a+ 2) ∗ (Y +Z + 2 ∗h+ 2 ∗ a+ 2) ∗ (X +Z + 2 ∗h+ a+ 2)
eq2 : (h+ 1) ∗ (Y + Z + 2 ∗ h+ 2 ∗ a+ 2) ∗ (X + Z + 2 ∗ h+ a+ 2)

+(h+ a+ 1) ∗ (X + Y + 2 ∗ h+ a+ 2) ∗ (X + Z + 2 ∗ h+ a+ 2)
−(h+ 1) ∗ (X + Y + 2 ∗ h+ a+ 2) ∗ (Y + Z + 2 ∗ h+ 2 ∗ a+ 2)

eq : eq1− 2 ∗ eq2. We need to check: eq ≥ 0 ?

The equation eq once expanded (e.g., under Maxima) appears as:

19

eq : Y Z2 +XZ2 + aZ2 + Y 2Z + 2XY Z + 4hY Z + 2aY Z + 4Y Z +X2Z +
4hXZ + 2aXZ + 4XZ + a2Z +XY 2 + 4hY 2 + aY 2 + 4Y 2 +X2Y + 4hXY +

2aXY + 4XY + 8h2Y + 8ahY + 16hY + a2Y + 8aY + 8Y

The coefficients are all positive, and inequality (1) is proved.

Inequality (2): We again proceed as above: we first define the following poly-
nomial expressions:

eq3 : (X+Y + 2 ∗h+a+ 2) ∗ (X+Z+ 2 ∗h+a+ 2) ∗ (Y +Z+ 2 ∗h+ 2 ∗a+ 2);

eq4 : (h+ 1) ∗ (Y + Z + 2 ∗ h+ 2 ∗ a+ 2) ∗ (2 ∗X + Y + Z + 4 ∗ h+ 2 ∗ a+ 4);

eq5 : (h+ a+ 1) ∗ (X + Y + 2 ∗ h+ a+ 2) ∗ (X + Z + 2 ∗ h+ a+ 2);

If we set eqn : eq3 + 2 ∗ eq5− 2 ∗ eq4, we get

eqn : −2(h+ 1) ∗ (Z + Y + 2h+ 2a+ 2) ∗ (Z + Y + 2X + 4h+ 2a+ 4) +
(Y +X + 2h+ a+ 2) ∗ (Z +X + 2h+ a+ 2)(Z + Y + 2h+ 2a+ 2) +
2(h+ a+ 1) ∗ (Y +X + 2h+ a+ 2) ∗ (Z +X + 2h+ a+ 2)

To prove inequality (2), we need to show that eqn remains non-negative for all
non-negative values of X,Y, Z, h, a. Expanding eqn (with Maxima), we get:

eqn: Y Z2 + XZ2 + aZ2 + Y 2Z + 2XY Z + 4hY Z + 6aY Z + 4Y Z + X2Z +
4hXZ + 6aXZ + 4XZ + 8ahZ + 5a2Z + 8aZ +XY 2 + aY 2 +X2Y + 4hXY +
6aXY + 4XY + 8ahY + 5a2Y + 8aY + 4hX2 + 4aX2 + 4X2 + 8h2X + 16ahX +
16hX + 8a2X + 16aX + 8X + 8ah2 + 12a2h+ 16ah+ 4a3 + 12a2 + 8a

The coefficients are all positive, so we are done. �.

20

