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Abstract

Commercial finite element software follow cautiously the numerical methods developed by the scientific community. Even
though the phase-field method is not a default option in Abaqus, the code proposes a unique way to implement and test
complex, extraneous models.

In the last five years, phase-field fracture models in Abaqus have gained unbelievable popularity among scientists and
engineers alike. However, most implementations are based on the quadratic crack representation function, which is easy to
solve but has no elastic threshold. Various solutions have been proposed as a workaround to implement the linear damage
function, however, none of them obtain consistent results to the original Griffith solution when the length scale is reduced
to zero.

This paper presents an energetically consistent linear damage gradient model in Abaqus. The bound constrained
optimization is achieved using Lagrange multipliers as an additional degree of freedom.

We show that when the necessary energy corrections are applied, the phase-field simulations are in agreement with the
analytical results of linear elastic fracture mechanics. Furthermore, through elaborate benchmark tests, we verified our
code and experimentally demonstrated the validity of our implementation.

Keywords: AT1 phase-field model, Abaqus, UMAT, Spectral energy decomposition, Damage gradient

1. Introduction

Modeling fracture in engineering materials remains a daunting challenge. In the past century, various approaches have
been proposed to understand and model crack initiation, propagation, and branching under different mechanical, envi-
ronmental, and physical conditions. With the improvement of experimental techniques, it has gradually been recognized
that simulating a macroscopic fracture is exceptionally challenging. As this phenomenon is an intrinsically multi-scale
problem, the models have to consider the effect of even atomic structures in some cases, which of course is impractical
from an engineering point of view.

The pioneering researcher to approximate discrete phenomena with a continuous description was van der Waals [14]
in 1873. He was the first to describe atomic liquid–gas interfaces with continuous density functions The foundation
of the phase-field method was then laid down by Ginzburg and Landau [19] then Cahn and Hilliard [9]. Both works
replaced a discrete interface with a continuous function to study superconductivity and diffuse interfaces. Since then, the
concept has been used to solve various problems, such as solidification dynamics [5], image processing [51], or even crack
propagation [6].

In fracture mechanics, B. Bourdin et al. [6] proposed a groundbreaking theory in which the discrete fracture surface [22,
21] in the variational formulation of Francfort and Marigo [16] was replaced by a continuous damage density function.
Thus, the original minimization problem was transformed using the Mumford and Shah functional [51] (which is one of
the limit cases of the Ambrosio and Tortorelli [1] elliptic regularization function).

Fundamentally, Bourdin used the concept of damage mechanics to degrade the material’s stiffness and strength. But
contrary to Kachanov’s work [25], Bourdin calculated the value of the damage (d), not based on stress or strain fields, but
using the concept of the phase-field model. By introducing the spatial gradient of the damage variable and an internal
length scale (lc) into the energy equation, the new formulation treated singular defects (e.g., cracks) in a thermodynamically
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consistent manner. Since the first introduction of the method, several modifications have been proposed, of which one of
the most important was the reformulation of the damage density function to accommodate a linear elastic threshold [55].
This step was important because the original quadratic phase-field representation needed a relatively small lc to simulate
engineering problems where elasticity was important.

The first functional Abaqus phase-field implementation to model crack propagation was published by Liu et al. [37]. In
their study, the staggered scheme was still solved using an Intel MKL library. A year later, the first publicly available UEL
code followed [49]. Since then the Abaqus community has worked hard to implement ductile material models [15, 50, 2],
cohesive-type fracture models [69, 42, 67], stress corrosion [13] and even hydrogen-assisted embrittlement theories [44, 43].
The user subroutine options allow the users to change time integration schemes (quasi-Newton [28], BFGS [68]) with
a single command. Explicit time integration schemes [63] are slightly more complicated, as the user element has to be
reformulated. Fang et al. [15] replaced the mechanical UEL in the original implementation and solved the displacement
problem in a UMAT, which significantly sped up the computation. Recently, Navidtehrani et al. [52] proposed a clever
technique to use Abaqus’s coupled thermal-stress analysis module to solve the phase-field fracture problem in a single
UMAT code. There are promising solutions [67, 53] in the literature to replace the quadratic phase-field representation
with a linear function and an energy threshold. However, a thermodynamically consistent scheme has yet to be proposed
in the finite element code Abaqus (see the discussion on existing models).

Linear damage gradient models are predominantly available as in-house codes [55, 8, 66, 39, 41]. We therefore felt
the need for an energetically well-based linear-gradient phase-field model in Abaqus, which was used to graphically
demonstrate the different types of spatial discretization errors. Finally, we validated the current implementation and
showed its capabilities in static and dynamic 2D and 3D cases through benchmark examples.

The objective was to extend our previous code [49, 50] to solve linear damage functions (with an elastic threshold).
This paper thus presents a revised finite element structure where the stress problem was solved in a UMAT. The spectral
decomposition technique of Bernard et al. [4] was updated to remain stable even in the case when two principal strains
are equal. Finally, we describe a failure surface for both linear and quadratic phase-field functions in the space of all three
principal stresses to emphasize the microscopic (phenomenological) importance of the internal length scale.

The paper is structured as follows. First, section 2 introduces the phase-field damage model and the related energy
function. Following the theory, the details of the implementation are presented. Section 3 describes the failure envelope
and the effect of the spatial discretization errors whereas section 4 is dedicated to benchmark examples. Finally, after a
discussion in section 5, section 6 concludes the paper.

2. Methods

This section describes the underlying mathematical and physical description of the phase-field approach in order to
model regularized brittle fracture. Progressively, the different energy contributions of the individual phenomena are
presented after which the staggered solution of the weakly coupled problems is explained. This is followed by the bound
constraint optimization scheme to enforce damage irreversibility. Finally, the most crucial implementation details are
given. The energy functional of the complete elasto-dynamic problem involves the following Lagrangian function:

L = D (u̇)−Π (u, d) , (1)

where D (u̇) is the kinetic energy:

D (u̇) =
1

2

∫
Ω

u̇T u̇ρdΩ, (2)

and Π (u, d) is the potential energy:

Π (u, d) = E (u, d) +W (d) . (3)

In eq. (2), u̇ contains the nodal velocities, while ρ is the mass density. The potential energy is constructed from the
elastic strain energy (E) and the fracture energy (W ). All energy components depend on either the phase-field (d) or the
displacement field (u) and its temporal derivatives.
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Figure 1: (a) 1D bar with a crack in the middle and a cross section Γ. (b) Damage field with a sharp crack at x = 0. (c) Diffuse representation
with models AT1 (black) and AT2 (red) with the length scale parameter lc.

2.1. Phase-field/gradient-damage models

In contrast to the discrete concept of fracture, the phase-field approach introduces a gradual transition with an auxiliary
variable d between intact (d = 0) and fully damaged (d = 1) materials. The discrete crack surface is regularized by a
length scale (lc), and with the gradient of the damage field, a crack surface density functional is created.

The total energy dissipated by the opening of the crack can be written as follows:

W (d) = Γgc =

∫
Γ

gcdΓ ≈
∫
Ω

gcγ (d,∇d) dΩ, (4)

where Γ is the size of the discrete crack surface, gc is Griffith’s [22] critical energy release rate, and γ is the crack
surface density:

γ (d,∇d) =
1

cωlc

[
ω (d) + l2c |∇d|

2
]
. (5)

In the literature, multiple crack representations exist. The so-called geometric function (ω) mostly controls the topology
of the phase-field solution. The most widely used models are the AT1 [55] and AT2 [6, 46] representations. For the AT1
approach, ω (d) = d, while for AT2, ω (d) = d2. Wu [66] proposed a mixed representation which renders a cohesive zone
model-like behavior.

The total integral on the simulation domain of the crack surface density function should give the theoretical value of
the discrete representation. Therefore, depending on the model, γ is normalized by the constant cω:

cω = 4

∫ 1

0

√
ω (s)ds, (6)

with cω = 8/3 for AT1 and cω = 2 for the AT2 models.
Fig. 1 shows the basic concept of the diffuse damage models with the analytical solutions in 1D for AT1 and AT2

representations.
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The advantage of AT1 compared to AT2 is that it has an elastic threshold before failure, whereas for AT2 models the
damage appears for any prescribed loading level. On the other hand, AT1 models require a special treatment to enforce
positive damage values and damage irreversibility. Further discussion is given in section 2.4.

2.2. Elastic problem
Damage reduces the elastic strain energy, thus weakening the resistance and the stiffness of the material. The mechan-

ical energy contribution can be written as follows:

E (u, d) =

∫
Ω

ψ (u, d) dΩ, (7)

where ψ is the strain energy density. To avoid fracturing under compression ψ is divided into two parts:

ψ (u, d) = g (d)ψ+
0 (ε (u)) + ψ−0 (ε (u)) , (8)

where g (d) is the energy degradation function:

g (d) = (1− d)
2

+ k, (9)

with k being a small number (10−12) responsible for conditioning the solution.
The subscript in eq. (8) refers to tensile (+) and compressive (−) energies. The degradation function is applied only on

the tensile part to avoid crack opening in compression. As a result, compression does not contribute to the crack driving
force. Similarly to our latest implementation [50], this study also adopts the 3D spectral decomposition technique [4].

As highlighted previously [50], this technique suffers from a vital numerical flaw, which is usually overcome by in-
troducing a small perturbation: when two eigenvalues out of three are equal, the solution becomes singular. One would
think that this occurs only in rare cases, when in fact our most common examples fall in this category, e.g., uniaxial or
equibiaxial configurations. Therefore, the present paper describes how we updated the original spectral decomposition
technique to give a more robust and faster solution.

In order to stabilize the solution, we first expressed the complete stiffness tensor in the principal directions, and then
rotated it in the direction of the original reference system:

H = T−1
σ ĤTε. (10)

Here, Ĥ is the stiffness matrix in the principal directions, Tε and Tσ are rotation matrices in Voigt notation compiled
from the original basis of the strain tensor. The details are given in Appendix A.

The stiffness matrix in the principal directions can be written as the following block matrix:

Ĥ =

[
L 0
0 S

]
, (11)

where L is the well-known [4] 3x3 matrix deduced from the potential energy:

L =
∂2ψ

∂ε̂2
=

E

1 + ν

 g (a1 · d) + g (a · d)χ g (a · d)χ g (a · d)χ
g (a2 · d) + g (a · d)χ g (a · d)χ

sym g (a3 · d) + g (a · d)χ

 . (12)

E is Young’s modulus, and ν is Poisson’s ratio. Parameter χ = ν
1−2ν takes Poisson’s ratio into account. For computa-

tional purposes, we introduced a and ai as switch variables to control the effect of the damage field [50]. In tension, their
value is 1, while in compression, they are set to 0.

As there is no shear strain in the principal directions, the shear term is mostly omitted from this description and can
therefore only be found via numerical experimentation. We discovered that for all stable cases (ε1 6= ε2 6= ε3), this block
reduced to a 3-component diagonal matrix with µ being the shear modulus:

S11 = µ
|ε1| g (a1 · d) + |ε2| g (a2 · d)

|ε1|+ |ε2|
, S22 = µ

|ε1| g (a1 · d) + |ε3| g (a3 · d)

|ε1|+ |ε3|
, S33 = µ

|ε2| g (a2 · d) + |ε3| g (a3 · d)

|ε2|+ |ε3|
. (13)

Damage affects the shear stiffness components by a linear combination of the corresponding in-plane principal strain
values. As shown in Fig. 2, this solution gives indistinguishable final results for all stiffness tensor components to the
original description for stable cases but also remains stable when eigenvalues are equal. Additionally, we gained 29 % in
computational efficiency compared to the derivative solution.
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Figure 2: (a) Maximum relative error between the decomposed and theoretical stiffness matrices (d = 0). The error is shown as a function
of the discriminant of the third-order polynomial equation to calculate principal strains [50]. (b) Normalized shear component of the stiffness
matrix determined using the differential (H55) and the rotational (S22) techniques.

2.3. Staggered time integration

Various methods were proposed to resolve the coupled mechanical and fracture problem [10, 38, 46, 65, 67]. The
present implementation solves the weakly coupled equations in a staggered manner [45, 49]. Thus, when searching for the
mechanical solution, the damage variable is kept constant and the energy of the displacement problem can thus be written
as follows:

Πu = D (u̇)− E (u, d) + Πext (14)

where Πext is the external work done by the body (γ) and boundary (t) forces:

Πext =

∫
Ω

γ · udV+

∫
∂Ω

t · udA. (15)

By taking the variation of eq. (14), the corresponding strong form can be obtained:

δΠu = 0 ∀δu→ ∇σ+γ = ρü in Ω,
σ · n = t on ΓN ,
u = u on ΓD,

(16)

where u is the prescribed displacement field on ΓD. This equation system is then solved for u, assuming a fixed d.
Similarly, the Lagrangian equation of the phase-field problem is obtained as:

Πd =

∫
Ω

[
gcγ (d,∇d) + g (d)ψ+

0

]
dΩ, (17)

where ψ+
0 is the fixed, undamaged tensile strain energy density.

Irreversibility of the damage is ensured by the bound constrained optimization algorithm. Thus, the corresponding
strong form can be expressed as:

δΠd = 0 ∀δd→ gc
lccω

(
∂ω
∂d − l

2
c∆d

)
= ∂g

∂dψ
+
0 in Ω,

∇d · n = 0 on Γ,

ḋ ≥ 0 in Ω.

(18)

Further details about the mathematical theory of the phase-field formulation can be found in Ref. [45] and in our
recent papers [49, 50].
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2.4. Bound constrained optimization

One of the standard approaches to enforce the irreversibility constraint (ḋ ≥ 0) in AT2 models is to replace the
crack-driving function (elastic tensile strain energy) in eq. (17) with a history field [45]:

H (x, t) = max
s∈[0,t]

ψ+
0 (x, s) . (19)

This variable corresponds to the maximum elastic energy over the full temporal history. While there is no mathematical
proof that the approximation really enforces the irreversibility of the damage, it is the most widely used technique due
to its simplicity. Even in our previous Abaqus implementations [49, 50], we promoted Miehe’s technique. However, it
has to be noted that if the gradient term in eq. (17) increases, d has to decrease for a constant H, which violates the
irreversibility condition locally.

On the other hand, this method is not applicable for AT1 models. Without elastic energy, when H = 0, the damage
field becomes negative. Therefore, Wu and Huang [67] introduced a modification to the energy history calculation:

H (x, t) = max
s∈[0,t]

{
ψ̂0, ψ

+
0 (x, s)

}
, (20)

where ψ̂0 is an initial elastic energy threshold. The main advantage of this modification is that it suppresses the
negative damage values and makes the history approach capable of obtaining the correct homogeneous solution. However,
it overestimates the damage topology, and consequently, with a gradient present in the damage field, Wu’s and Huang’s
method underestimates the resistance of non-homogeneous problems when the crack is defined as a Dirichlet boundary
condition. Further explanation is given in section 3.2 and 4.1.

In this paper, we therefore enforced a positive damage increment with Lagrange multipliers. Recently, Wheeler et
al. [64] proposed an augmented-Lagrangian method to solve the bound constrained optimization of the phase-field problem.
This approach was later used to approximate cracks under dynamic and cohesive fracture [18]. Due to the Abaqus/UEL
framework’s limitations, particularly that we have no access to the global residue and stiffness arrays, the computationally
slightly more expensive Lagrange multiplier technique was applied [39]. A detailed comparison of the computational cost
of each method is presented in Appendix C. An interesting future project would be to test other possibilities, such as
Intel MKL options or the work of Papazafeiropoulos et al. [54].

To introduce the Lagrange multipliers, the original Lagrangian equation was modified as follows:

Ld = Πd +
∑

λjfj (d)
j={dn>dn+1}

(21)

where functions fj contain the inequalities responsible for enforcing the lower bound of the nodal damage values:

f (dn+1) = −dn+1 + dn ≤ 0. (22)

In eq. (21), the index j denotes the active constraints (where dn > dn+1) and λ is the Lagrange multiplier.
Fig. 3 shows the gradual convergence of the phase-field topology within one load step.

2.5. ABAQUS implementation

Due to the limitations of the UEL option in Abaqus/Standard the two problems were solved at the same time but
independently. The damage variable and the elastic strain energy were updated at the beginning of the step, and then kept
constant. Fig. 4(a) shows the schematic concept of the staggered solution, while part (b) illustrates the time integration
in Abaqus. The two horizontal arrows represent the two staggered problems in time. In each step, the information was
exchanged between the elements only in the first. This information contained the elastic strain energy and the damage from
the previous equilibrium state. Two finite element layers were used: one for the mechanical problem with a constitutive
model programmed in a UMAT, and one for the phase-field element included as a UEL subroutine. The basic concept is
depicted in Fig 5 and recommendations for developing a model in Abaqus are given in Appendix C.

The solution for for both displacements, damage phase-field and Lagrange multipliers was obtained with the following
Newton–Raphson iteration:

Ku
(
u

(i)
n+1,dn

)
0 0

0 Kd
(
d

(i)
n+1, ψ

+
0,n

)
AT

0 A Λ


 du

(i+1)
n+1

dd
(i+1)
n+1

dλ
(i+1)
n+1

 = −


ru
(
u

(i)
n+1

)
rd
(
d

(i)
n+1, λ

(i)
n+1

)
rλ
(
d

(i)
n+1, λ

(i)
n+1

)
,

 (23)
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Figure 3: (a) Crack topology in a single load step as a function of inside iterations. (b) The values of Lagrange multipliers for each iteration.
When λ > 0 the irreversibility constraints are active.

Figure 4: Flowchart of the staggered solution used to solve the coupled mechanical and fracture problem in Abaqus.

Figure 5: 2D representation of the layered finite element structure in Abaqus. In the case of the AT1 approximation, all nodes have four degrees
of freedom (DOF): two translational (ux, uy), damage (d), and the Lagrange multiplier (λ). The first (UEL) element contributes to the damage
problem with the additional of the Lagrange multipliers enforcing the inequality conditions. The the second (UMAT) element, on the other
hand, solves the mechanical problem.
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Figure 6: Homogeneous solution for problem AT1 and AT2: (a) and (b) failure surfaces in the space of principal stresses; (c) meridian slices
for different Lode angles; (d) deviatoric slices at zero hydrostatic stress; (e) AT1 model for in-plane stress conditions and different values of
Poisson’s ratio.

Here, n is the time step, and i is the Newton–Raphson iteration number. The solution for each degree of freedom is
gradually added up: e.g., dn+1 = dn +

∑
i

ddin+1. For dynamic cases, the default Hilber–Hughes–Taylor (HHT) [23] time

integration scheme was used. Details of the elementary matrices are presented in Appendix B.

3. Effect of numerical parameters

3.1. Homogeneous solution

The simplest way to analyze the phenomenological effect of gc and lc is by calculating the homogeneous solution of
eq. (18). When the gradient term is neglected, the solution becomes relatively simple, and the damage can be expressed
directly as a function of the elastic strain energy. The most frequently shown result is the stress-strain curve under uniaxial
tension [49, 29]. However, as demonstrated earlier [47], the maximum stress achievable during deformation is affected by
the ratio of the principal stresses.

Recent atomic-scale simulations exhibited [48] that the response of a brittle material (e.g., silica) subjected to tension
might depend not only on the hydrostatic stress state but also on the Lode angle. Therefore, the resistance of a material
should be described with a three-dimensional failure/yield surface.

Fig. 6(a,b) display the surface of failure in the space of all three principal stresses for AT1 and AT2 models for the same
phase-field parameters. Fig. 6(c-e) depict slices of the meridian planes (constant Lode angle), deviatoric planes (constant
hydrostatic stress), and in plane stress (σ3 = 0) conditions. The plotted surfaces resembled a Rankine criterion [60] with
rounded corners. Indeed, when ν = 0, the phase-field solution recovered a Rankine-type surface with circularly rounded
edges in the tensile domains.

Since the AT2 model had no elastic threshold, it was consistently inferior in strength to the AT1 formulation. Moreover,
the tensile meridians were weaker than their compression counterparts.

The algorithm calculating the maximum stress as a function of Poisson’s ratio and the principal stress state is available
as a Supplementary File. The homogeneous solution can be used to give an initial approximation for lc as a function of
the measured material strength [47].

3.2. Unidirectional damage topology

To demonstrate the validity of the bound constrained optimization scheme, Fig. 7 displays the AT1 phase-field solution
of a 1D boundary problem. The regularization length was fixed at lc = 3 mm and a Dirichlet condition of d̂ = 1 was
enforced at x = 0, while the elements remained undeformed (ψ+

0 (x) = 0). Since the crack-driving force became negative
when no elastic energy was applied for AT1 models, negative damage values could appear without the specialized treatment.
This phenomenon is a violation of phase-field principles and although Wu’s [67] idea (with the initial crack driving force
shown in eq. 20) solves this problem, it introduces a d 6= 0 condition everywhere in the model. Therefore, the second
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Figure 7: Equilibrium phase-field topology with d̂ = 1 at x = 0 mm. Each symbol represent a nodal value of the finite element calculation.

description generates more fracture energy than the theoretical value, thereby significantly underestimating the resistance
of the sample significantly (see later in section 4.1).

The bound constrained optimization scheme adapted in this paper, however, converges to the analytical solution. Ergo,
values of the damage field vary according to a second-order polynomial function until x = 2lc, and then maintain the
value of zero for the rest of the model.

To avoid instability and to satisfy the Ladyzhenskaya–Babuška–Brezzi condition, we paid particular attention to the
fact that there were fewer Lagrange multipliers active in the model than other degrees of freedom [20, 12]. As the energy
field is fixed, we have always experienced a monotonous convergence in the multiplier space to the final solution. Hence,
we did not encounter instabilities.

3.3. Effective fracture toughness

The finite element approximation of the phase-field solution used to model problems in fracture mechanics suffers from
two major types of errors. The loading history has to be divided into sub-steps [61], and the simulation space has to be
meshed with finite-size elements. Therefore, both the temporal and spatial discretization affect the final results. In our
previous papers [50, 47], we tackled the issue of the time step control to minimize the error introduced by the staggered
algorithm. Here, we elaborate on the second type of error introduced by the spatial tessellation.

The inaccuracies originating from the spatial discretization can further be divided into two categories: (i) approximation
and (ii) localization errors. To demonstrate these cases, we prepared a simple unidirectional test with finite elements in

a single row. In the first step, a phase-field value of d̂ = 1 was defined at x = 0. Then, the sample was extended in the
x direction to analyze the evolution of the damage topology. The analytical solution of the theoretical crack surface is
well-known. Depending on the symmetry of the localization, it can be approximated with finite elements by calculating
W in eq. (4). This section compares the analytical and the approximated crack surfaces to obtain the error.

Fig. 8(a) depicts the difference between the analytical solution and a crude finite element approximation for an AT1
topological solution. No deformation was applied and a finite element mesh size of lc was used to magnify the difference
shown in light blue. Fig. 8(b) and (c) show the increment in crack surface introduced by the localization for symmetric
boundary conditions and for a complete model, respectively.

The phase-field values were calculated as nodal degrees of freedom, but were taken into account phenomenologically at
the integration points. Consequently, with the topological solution shown in part (a), the crack could not open freely as
the element itself still retained most of its stiffness and could carry a load. As a consequence, when further deformation
was applied, the phase-field created a region where the crack could localize. This only took place when the phase-field
was constant in the element and all of its nodal damage values were close to 1. However, at this stage the crack surface
was increased by a well-defined, mesh-dependent amount.

It is clearly visible from Fig. 9 that the localization dominated the error introduced by the finite element approximation.
To quantify the ratio between the two problems, Fig. 9 shows the relative difference between the analytical crack surface
and the finite element approximation.
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Figure 8: Damage profiles for different cases. Part (a) highlights the difference in blue between the numerical approximation and the analytic
solution for the AT1 model. In part (a), for demonstration purposes, we show the case with lc/h = 1. In parts (b) and (c), the increase in
damage is depicted due to strain localization with a symmetry boundary condition and for full models, respectively. The size of the finite
elements is shown by h, and lc/h = 2.

Figure 9: Error introduced by the finite element implementation for both AT1 and AT2 models. Part (a) shows the error introduced by the

discrete approximation. The numerical data was fitted with the function ζ0
(

lc
h

)−2
, where ζ0 = 3.1129 for AT1, and ζ0 = 4.0892 for the AT2

models. Part (b) depicts the error generated by the strain localization in a single element. The numerical results are fitted using function (25)
with α = 1 for the full model and α = 2 for the models with symmetry boundary conditions.
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Even if the approximation error increased with a second-order polynomial, up to lc/h = 1 the localization error is
several orders of magnitude higher than the approximation error.

The existence of the approximation [46] and the localization [7, 36, 62] errors is well-known in the literature. To the
best of our knowledge, a graphical explanation for the solution is still missing. For the most part, two solutions are
employed: (i) to reduce the effect of the approximation error, the finite element size should be smaller than lc/2 [46]; (ii)
to account for the localization an effective (numeric) fracture toughness (gc) is introduced [7, 62]:

gc = gmat

(
1 + α

h

cωlc

)−1

=
gmat
1 + ζ

. (24)

Here, ζ accounts for the surplus fracture energy:

ζ = α
h

cωlc
, (25)

and gmat is the material’s real fracture toughness. Furthermore, α = 1 for a full model and 2 for a geometry with
symmetry boundary conditions, and h is the characteristic size of the finite element perpendicular to the crack propagation.
This approximation results in an equivalent crack surface (Γ̂) through the following normalization:

Γ̂ =
Γ

1 + ζ
(26)

4. Benchmark tests and numerical examples

In order to verify the newly implemented model, this section presents well-known benchmark tests with increasing
complexity. First, section 4.1 illustrates through a simple extension (mode I) test how the critical loading converges to
the theoretical solution of Griffith [21]. Next, section 4.2 shows the capabilities of the damage-gradient approach to model
mixed-mode fracture in 3D (mode I+III). Our third example in section 4.3 is meant to display that the modified energy
decomposition produces symmetric results in dynamic instabilities despite the randomized mesh. Finally, in section 4.4, the
last case demonstrates how close a phase-field simulation can reproduce experimental crack patterns in a Kalthoff–Winkler
test.

4.1. Mode I tensile opening

This elementary case was recently studied in connection with the coupled criterion [47], where a theoretical explanation
was provided for the regularization parameter lc with a connection to the material’s tensile strength. In that paper, we
demonstrated that if lc tends to zero in an AT2 model, the critical loading slightly overestimates (≈10%) the model’s
resistance compared with Griffith’s theoretical solution [21]:

σ0,G
y =

√
8gmatµ

(κ+ 1) a0π
, (27)

where µ is the shear modulus and κ = 3− 4ν for the plane strain case.
On the other hand, Kristensen et al. [29] demonstrated that AT1 models with the energy threshold criterion had a

tendency to underestimate this value. To tackle this elementary conundrum, a finite element model (FEM) depicted in
Fig. 10 was developed. Only one quarter of the space was modeled with symmetric boundary conditions on the middle
lines. The sample’s overall length (L) was taken as 50a0 to minimize the effect of the finite size. Dirichlet boundary
conditions were prescribed on the edges as displacements and a d = 1 phase-field value on the crack surface. Young’s
modulus was set to 3 GPa with a Poisson’s ratio of 0.37 and a critical energy release rate of gc = 300 J/m2. The
regularization parameter and the finite element mesh were varied throughout the study.

The automatic time integration scheme was applied to identify the maximum reaction force with an energy constraint
of η = 50 % [50, 47]. The maximum reaction force on the top edge was then divided by the length of the model (L) to
obtain σ0,c

y .
Fig. 11 presents the critical loading values as a function of lc/h with and without correction (eq. 24) for both the

AT1 and AT2 models. It is visible that without the energy correction, the ratio lc/h should be at least 5-6. This is in
good correspondence to cohesive zone models [29] and other phase-field simulations [44]. The results demonstrate that the
effective fracture toughness (see eq. 24) showed great potential for improving the localization error. Even with a relatively
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Figure 10: Mode I tensile opening: (a) schematic problem; (b) finite element model with double symmetry: a0 = 2 mm and L = 100 mm.

Figure 11: Critical stress as a function of the finite element size. The length scale parameter was kept constant at lc = 0.2 mm. The stress
values were normalized by Griffith’s solution (eq. 27). Empty symbols show the results with ζ correction (eq. 24), whereas, in case of the
transparent filled ones, gc = gmat. The curves present a hyperbolic fit on the uncorrected results, with convergence to respectively 0.9537 and
0.9076 for AT1 and AT2 when lc/h→ ∞.

coarse mesh (lc/h = 1), the difference was less than 3 % (for AT1) and 1 % (for AT2) compared to the convergence limit
(without correction). The remaining difference can be accounted for by the approximation error discussed in section 3.3.

Equation (27) suggests that the critical load should depend on the toughness via a square root function. In the inset
of Fig. 12, we plotted σ0,c

y calculated by phase-field simulations as a function of gc. It can be seen, that a square root
function fit the obtained results perfectly. With this in mind, the critical loading could be plotted as a function of lc.
Fig. 12 shows that both the thermodynamically consistent AT1 (present implementation) and AT2 models converged to
the theoretical solution, while the AT1 solution with the energy threshold underestimated the resistance of the model
≈10 %.

Assigning a physical meaning to lc is still an ongoing debate. Recently, we used a long-known size effect [3] to study the
impact of lc on the tensile strength of the material. We observed that when a large initial crack was present, the reduction
of lc let us converge to the finite value proposed by Griffith. If the defect size was reduced to zero, the homogeneous
solution, presented in section 3.1 resulted in an infinite strength value. Fig. 13 shows this particular transition as a
function of a0. It can be seen that both models corresponded well to their homogeneous solutions for very small a0.
Conversely, they converged to Griffith’s theory (dashed line) when a0 was much larger than lc.
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Figure 12: Normalized critical loading as a function of 1/lc for different models. At lc → 0 the functions tended to ζ∞.

Figure 13: Critical loading as a function of the initial crack length for the AT1 and AT2 models. The regularization length scale (lc) was set
to 0.2 mm.
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Figure 14: Mixed mode crack propagation in extension and torsion. The problem was modeled at two scales: (a) at a large scale with mixed
mode fracture; (b) at the crack tip to test the elementary initiation process.

4.2. Mixed mode I and III

Cracks subjected to extension and perpendicular shear (mode I+III) initiate and propagate in a complex multi-scale
manner [31]. At the small scale, near the crack tip, the mother crack fragments into numerous daughter cracks (known
as echelon cracks) [32, 56, 57]. At the large scale, on the other hand, these daughter cracks coalesce [59, 11] and
the primary crack front starts to rotate around its original axis [32]. This problem was studied comprehensively in
both experiments [27, 34, 32, 56, 57], theoretical calculations [33, 35], and numerical simulations [32, 11, 58]. While
the coalescence and the macroscopic rotation seemed easy to reproduce with the phase-field approach, the microscopic
initiation was hard to induce without a fairly inhomogeneous model [58].

In this benchmark example, we tackled the two scales with two different models. To study the effect of a crack at an
angle, the model depicted in Fig. 14(a) was developed. The size of the sample was taken to be L = 40 mm, T = 20 mm
and H = 60 mm. The crack was initially placed at a 45◦ angle with an initial length of a0 = 5 mm and the loading was
applied in the x direction. The random finite element mesh of 1 250 000 tetrahedrons was generated with an average size
of 0.5 mm.

To study the initiation of the echelon cracks, the model shown in Fig. 14(b) was created. The radius of the sample
was R = 0.5 mm, while the length was l = 2 mm. The random mesh of 130 000 linear brick elements was generated with
an average size of 0.025 mm. The analytical displacements (ūz) were prescribed on the mantle and on both sides of the
cylinder [24]:

ūz (x, y) =
τ0
yz

µ

√
r1r2 sin

(
θ1 + θ2

2

)
, (28)

where r1 =
√
x2 + y2, r2 =

√
(x+ 2a0)

2
+ y2, θ1 = tan−1

(
y
x

)
and θ2 = tan−1

(
y

x+2a0

)
, while the damage field was

kept periodic in the z direction at all times.
In all models the initial crack was represented geometrically and with a predefined Dirichlet boundary condition in the

phase-field. For both models, a Young’s modulus of 3 GPa, a Poisson’s ratio of 0.37 and a gc of 300 J/m2 were used. The
regularization length (lc) was varied: : a value of 1 mm was set in the large scale model, and a value of 0.025 mm in the
small scale model. The time step was controlled automatically.

Fig. 15 shows the results obtained at the large scale at various loading stages. The crack at a 45◦ angle was initially
loaded in both tension (mode I) and out-of-plane shear (mode III). Therefore, the crack gradually twisted around the y
axis to reach the perfect tensile mode, as it was energetically more favorable. As shown by experiments [32], the crack
always initiated at the sides with pointy crack faces. This was clearly visible in our phase-field simulation as well, as
can be seen in the first and second frames of Fig. 15. At this scale, due to the regularization, the small daughter cracks
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Figure 15: Crack pattern for the large scale model (isosurface at d = 0.8) as a function of deformation.

Figure 16: Crack pattern for the small scale model (isosurface at d = 0.8) at different views.

were not visible. However, according to Fig. 16, the localized crack planes for a pure Mode III deformation showed the
elementary initiation process.

As reported by Pham and Ravi-Chandar [58], the deviation from the volumetric damage propagation in phase-field
in Mode III is complicated. Particularly when there are no initial imperfections, the phase-field simulation produces a
concentric (volumetric) damage field. To find the inclined planar cracks (as seen in experiments), Ref. [58] introduced
a large number of small, randomly distributed damaged zones throughout the sample. They showed that these initial
imperfections had a significant effect on the crack patterns. We were able to confirm the insufficiency of only a few
initial defects. Therefore, this paper emphasizes the importance of the constraint damage evolution (e.g., inhomogeneous
toughness, unequal boundary conditions) and we hence we created a model where the prescribed displacements were
enforced not only on the mantle of the cylinder, but also on the sides. As the analytical (singular) displacement field
deviated slightly close to the regularized one, the damage evolution was disturbed near the sides at the crack tip. This
gave us just enough perturbation in the phase-field to induce the localization as seen in experiments and such an initial
localization was enough for the helical daughter cracks to initiate and propagate gradually in a periodic manner.

However, we emphasize that the present model was only proof of concept to demonstrate the feasibility of this inclined
localization in phase-field simulations. It would be crucial to come up with a physically sound idea to study these
instabilities, e.g., with the randomly varying fracture toughness. However, this study exceeds the scope of the present
article.

4.3. Dynamic branching

The geometry of the dynamic tensile sample is depicted in Fig. 17(a). The finite element mesh was created with a
randomly generated 313 000 elements with a maximum size of 0.125 mm. Young’s modulus was set to 32 GPa with a
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Figure 17: Rectangular plate subjected to uniform unidirectional dynamic traction: (a) Geometry with dimensions in mm; (b) Crack pattern
at 75 µs for AT1 and AT2 models; (c) Crack tip velocity as a function of time.

Poisson’s ratio of 0.2 and a density of 2 450 kg/m2. The fracture parameters were gc =3 J/m2 and lc =0.5 mm. A fixed
time step size of ∆t = 10−8 s was defined with the default αHHT = −0.05 damping parameter. The applied tension on
the top and bottom sides were uniformly σy = 1 MPa.

The two crack patterns in Fig. 17(b) indicate that the branches appeared symmetrically with both AT1 and AT2
models. It can be seen that the AT1 model confined the damage in a smaller region, however to dissipate the same
amount of energy, the peak where d≈1 was much wider. This result was a correction to the previous implementation,
where a small perturbation was used to stabilize the energy decomposition scheme. Interestingly, when a structured mesh
was applied, the branches remained symmetric. Therefore, we attributed this instability to the irregularity of the mesh.
However, the present results revealed that the energy decomposition with a small perturbation could cause artificial results
in sensitive cases. It is therefore crucial to use a numerically stable energy decomposition scheme. Furthermore, the added
damage diffusion is intrinsically related to the localization error and mesh anisotropy effects [50]. However, the detailed
analysis would be essential but it exceeds the aims of present article.

For quantitative comparison, the crack tip velocity is shown in Fig. 17(c) for both models. The position of the crack
tip was calculated as the largest extension of the phase-field where its value was larger than 0.9. The maximum velocity
is in good corresponded well with the theoretical limit [17].

4.4. Kalthoff–Winkler test

We finally investigated the test proposed by Kalthoff and Winkler [26], but with slight modifications to the geometry
and the material to avoid shear banding. The geometry of the specimen is depicted in Fig. 18(a).In the phase-field
simulation, only one-half of the plate was modeled with symmetric boundary conditions at the middle line. An impact
velocity of 25 m/s was chosen, and in the FEM, the velocity imposed on the impact surface was constant after an initial
linear increase of 10−6 s. The material properties E = 6 GPa, ν = 0.35, ρ = 1180 kg/m3, lc = 0.4 mm, and gc = 600 J/m2

were independent of the deformation rate and the mesh was refined with a maximum size of 0.2 mm in the area where
the crack was expected to evolve. This way, a model of 83 000 finite elements was generated. The time step was fixed at
10−8 s.

Fig. 18(b) depicts the crack (with d > 0.95) in the undeformed configuration for the AT1 and AT2 models. Fig. 18(c)
shows the experimental crack pattern obtained by Rian Seghir and Julien Réthoré at École Centrale de Nantes (unpublished
results). For the test, 10 mm thick PMMA samples were used with an impactor arriving at a speed of 25 m/s. This paper
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Figure 18: Kalthoff–Winkler test: (a) geometry with dimensions in mm; (b) crack pattern after 150 µs (elements with d > 0.95 are not shown);
(c) ex situ experimental crack pattern on PMMA.

focused only on the ex situ crack pattern in comparison to the simulations, so the detailed analysis of the test will be part
of a separate paper.

There were three distinct characteristics of the post-experimental crack pattern, which appeared consistently: (a) the
initiation angle; (b) the position of the branching; and (c) the secondary crack initiating from the tensile (bottom-left)
side. It can be seen from the numerical comparison that the initiation angle in the phase-field simulations was comparable
to the experimental measurement. Only a few degrees of difference can be observed. The branching appeared slightly
later in the simulations, which might indicate a somewhat lower gmat in reality. High-speed recordings confirmed that
the secondary crack indeed initiated from the left side and propagated in the direction of the main crack, as seen in the
simulations. In conclusion, all three observations were in agreement with the experimental tests.

The secondary branching observed in the AT2 simulation was an instability, which required studying, as there were
some experimental samples where the main crack branched a second time on the left, but this phenomenon was not
reproduced in every case.

5. Discussion

One of the most significant advantages of the phase-field formulation for brittle fracture is that the method does not
need any primary crack definition. However, while localization can appear automatically, without an initial Dirichlet
boundary condition, the critical load is overestimated compared with the analytical (singular) solution. Without an
initially damaged zone, an energy cost is associated with the initiation process. Simply put, to create an equivalent crack
length in an undamaged solid, we need energy, and therefore more loading can be applied. This phenomenon was shown
to overestimate the resistance by more than 20% [29].

On the other hand, the energy threshold solution underestimates the critical loading due to the larger crack surface.
Interestingly, these two effects were shown to counteract each other and give results relatively close to the analytical
formulation [29]. Therefore, by omitting the Dirichlet boundaries in the phase-field, a computationally simplified solution
would be well equipped in some practical cases.

The present research showed that initial defects and a small perturbation in the phase-field could also experimentally
reproduce the observed results. This gives rise to the issue of how to introduce instabilities in the crack front to deviate
from the volumetric phase-field solution and localize the crack front in a plane, as seen in the mixed mode I+III tests.
Maybe introducing a spatially varying toughness field or an initial damage distribution [58] would solve the problem.

Recently, Kumar [30] proposed the addition of a phenomenological crack driving force, which can replace lc in represent-
ing the strength of the material. This method would be promising to solve both nucleation and localization problems.The
only issue is that it introduces another set of material-dependent parameters, which need to be calibrated experimentally.
Therefore, it is crucial to experimentally study damage nucleation, crack initiation, and propagation and to compare local
results to phase-field calculations.
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This leads us to the essential question, whether to use AT1 or AT2 models (or other types of mixed implemen-
tations [66]). Initially, AT2 models were proposed due to their simplicity. However, since more advanced numerical
formulations have appeared, it seems that AT2 models are inferior to their counterparts with elastic thresholds. We argue
that this is only a matter of scale and material: it was for instance shown in microscopic samples [40] that even for
materials as brittle as silica, it was hard to define a pure, elastic regime.

6. Conclusion

This paper presents the first thermodynamically consistent Abaqus implementation of the linear gradient damage
model. To this aim, we used a bound constraint optimization scheme with Lagrange multipliers to enforce positive
damage fields and damage irreversibility. The code was implemented in a combined UEL and UMAT structure and could
solve both 2D and 3D problems, as well as static and dynamic ones. We updated the spectral decomposition scheme of
Bernard et al. [4] to remain stable even in originally unstable cases. Furthermore, we presented a graphical explanation
of the spatial errors manifesting in the phase-field fracture approximation.

We observed that both the AT1 and AT2 models were consistent with the analytical predictions of Griffith. In
particular, when lc approached 0, the critical loading converged to the singular solution. The stabilization of the energy
decomposition scheme allowed us to obtain symmetric results in dynamic instabilities even with random finite element
meshes. Finally, we found good correspondence between simulation results and experiments in both static and dynamic
examples even if some examples can exhibit second order differences (like the Kalthoff–Winkler test).

AT1 models provide an initial elastic threshold and for this reason the engineering community is very eager to see
their implementation. However, special treatment is required to treat negative damage values. The Lagrange multiplier
technique makes it possible to solve complex optimization problems in Abaqus by adding a new degree of freedom.
Combining the bound constraint optimization scheme and the AT1 representation makes it possible for the end-user to
efficiently solve complex fracture problems.

Despite their usefulness, the results presented in this paper raise multiple questions, which need to be answered in the
future, such as crack initiation in mixed mode deformation, the rate-dependent nature of the dynamic fracture, or the
microscopic meaning of lc.
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[13] Cui, C., Ma, R., Mart́ınez-Pañeda, E., 2021. A phase field formulation for dissolution-driven stress corrosion cracking.
Journal of the Mechanics and Physics of Solids 147, 104254.

[14] der Waals, J. D. V., 1873. On the continuity of the gaseous and liquid states. Ph.D. thesis, Leiden.

[15] Fang, J., Wu, C., Rabczuk, T., Wu, C., Ma, C., Sun, G., Li, Q., 2019. Phase field fracture in elasto-plastic solids:
Abaqus implementation and case studies. Theoretical and Applied Fracture Mechanics 103, 102252.

[16] Francfort, G., Marigo, J.-J., 1998. Revisiting brittle fracture as an energy minimization problem. Journal of the
Mechanics and Physics of Solids 46 (8), 1319 – 1342.

[17] Gao, H., 1996. A theory of local limiting speed in dynamic fracture. Journal of the Mechanics and Physics of Solids
44 (9), 1453–1474.

[18] Geelen, R. J. M., Liu, Y., Hu, T., Tupek, M. R., Dolbow, J. E., 2019. A phase-field formulation for dynamic cohesive
fracture. Computer Methods in Applied Mechanics and Engineering 348, 680–711.

[19] Ginzburg, V. L., Landau, L. D., 1950. On the theory of superconductivity. J. Exptl. Theoret. Phys. (U.S.S.R) 20,
1064.

[20] Gravouil, A., Pierres, E., Baietto, M. C., 2011. Stabilized global–local X-FEM for 3D non-planar frictional crack
using relevant meshes. International Journal for Numerical Methods in Engineering 88 (13), 1449–1475.

[21] Griffith, A., 1924. The theory of rupture. In: First Int. Cong. Appl. Mech. pp. 55–63.

[22] Griffith, A. A., 1921. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences 221 (582-593), 163–198.

[23] Hilber, H. M., Hughes, T. J. R., Taylor, R. L., 1977. Improved numerical dissipation for time integration algorithms
in structural dynamics. Earthquake Engineering & Structural Dynamics 5 (3), 283–292.

[24] Jin, Z., Sun, C.-T., 2011. Fracture Mechanics. Elsevier.

[25] Kachanov, L. M., 1958. Rupture time under creep conditions.

[26] Kalthoff, J. F., Winkler, S., 1988. Failure mode transition at high rates of shear loading. DGM Informationsgesellschaft
mbH, Impact Loading and Dynamic Behavior of Materials 1, 185–195.

[27] Knauss, W. G., 1970. An observation of crack propagation in anti-plane shear. International Journal of Fracture
Mechanics 6 (2), 183–187.
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Appendix A. Rotation matrices

The strain tensor (ε) is a symmetric second-order tensor and can always be represented by a 3 by 3 matrix. This
tensor has three eigenvalues (εi) and 3 mutually perpendicular eigenvectors (vi). The principal strain components can be
placed in the diagonal matrix (ε̂) so that

ε = Qε̂QT , (A.1)

where Q is a rotation matrix with the eigenvectors in the same order as the eigenvalues: Q = [v1,v3,v3].
However, in the implemented algorithm we use Voigt’s notation, where the stress and strain tensors are represented

by 6 component vectors. Consequently, to execute the rotation of the stiffness matrix, the following two rotation matrices
are defined:

Tε =


Q2

11 Q2
21 Q2

31 Q21Q11 Q31Q11 Q21Q31

Q2
12 Q2

22 Q2
32 Q22Q12 Q32Q12 Q22Q32

Q2
13 Q2

23 Q2
33 Q23Q13 Q33Q13 Q23Q33

2Q12Q11 2Q22Q21 2Q32Q31 Q22Q11 +Q12Q21 Q31Q12 +Q11Q32 Q22Q31 +Q32Q21

2Q13Q11 2Q23Q21 2Q33Q31 Q11Q23 +Q21Q13 Q31Q13 +Q11Q33 Q23Q31 +Q33Q21

2Q13Q12 2Q23Q22 2Q33Q32 Q22Q13 +Q23Q12 Q13Q32 +Q12Q33 Q23Q32 +Q33Q22,

 (A.2)

and

T−1
σ =


Q2

11 Q2
12 Q2

13 2Q12Q11 2Q13Q11 2Q13Q12

Q2
21 Q2

22 Q2
23 2Q22Q21 2Q23Q21 2Q23Q22

Q2
31 Q2

32 Q2
33 2Q32Q31 2Q33Q31 2Q33Q32

Q21Q11 Q22Q12 Q23Q13 Q22Q11 +Q12Q21 Q21Q13 +Q11Q23 Q22Q13 +Q23Q12

Q31Q11 Q32Q12 Q33Q13 Q11Q32 +Q12Q31 Q31Q13 +Q11Q33 Q32Q13 +Q33Q12

Q21Q31 Q22Q32 Q23Q33 Q22Q31 +Q21Q32 Q31Q23 +Q21Q33 Q23Q32 +Q33Q22.

 (A.3)

It is important to note that Tε 6= Tσ due to the engineering shear strain components.

Appendix B. Elementary matrices and residues

To solve the phase-field fracture problem, a split scheme operator is applied. Equation system (23) is solved iteratively
using the Newton-Raphson method, where both the residue and the stiffness matrix are recalculated in each iteration.

The classic matrices are given in previous papers [49, 50]:

ruj =
∂L
∂uj

,Ku
jk =

∂L
∂uj∂uk

,Kd
jk =

∂L
∂dj∂dk

, (B.1)

where ruj is the residue of the mechanical problem for the jth degree of freedom. Similarly, Ku
jk and Kd

jk belong to the

jth and kth degree of freedom of the mechanical and phase-field problems, respectively.
This paper details only the modifications necessary to enforce irreversibility with the Lagrangian multipliers. The

modified residue vectors are calculated by differentiation of the modified Lagrangian function in eq. (21):

rdj = ∂L
∂dj

=


∂Πd

(
d
(i)
n+1

)
∂dj

− λ(i)
j,n+1

∂Πd
(
d
(i)
n+1

)
∂dj

if
otherwise,

d
(i)
j,n+1 ≤ dj,n or λ

(i)
j,n+1 ≥ 0,

rλj = ∂L
∂λj

=

{
−d(i)

j,n+1 + dj,n
0

if
otherwise.

d
(i)
j,n+1 ≤ dj,n or λ

(i)
j,n+1 ≥ 0,

(B.2)

While the elementary stiffness components are obtained by taking the second derivatives:
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Ajj = ∂2L
∂dj∂λj

=

{
−1
0

if
otherwise,

d
(i)
j,n+1 ≤ dj,n or λ

(i)
j,n+1 ≥ 0,

Ajk = ∂2L
∂dj∂λk

= 0,

Λjj =

{
∂2L
∂λ

2
j

= 0 if d
(i)
j,n+1 ≤ dj,n or λ

(i)
j,n+1 ≥ 0,

1 otherwise,

Λjk = ∂2L
∂λj∂λk

= 0.

(B.3)

In equation (21), (B.2) and (B.3), i represents the ith Newton-Raphson iteration in the same time step.

The Lagrangian multipliers are activated in two cases: (i) when λ
(i)
j,n+1 is positive, thus the damage would be negative

without the enforcing equations, or (ii) when the predicted damage increment is negative. Finally, all Lagrangian equations
are suppressed on nodes where the phase-field is prescribed as boundary conditions: d̄j → Ajj = 0,Λjj = 1.

Appendix C. Recommendations for the use of the UEL/UMAT

With the gradual increase in options, the FORTRAN subroutine is getting more complex. Therefore, the conversion
of an already existing Abaqus model to a phase-field simulation requires more attention.

Similar to the earlier implementations [49, 50], the phase-field and the displacement elements are arranged in a parallel
structure. The difference is that we only need to define two layers in the present case instead of three. First, the phase-field
UEL then the displacement UMAT elements are created using the same nodes. The phase-field is set as the 6th, and the
Lagrange multipliers as the 7th degree of freedom.

The Lagrange multipliers are added at the element level in each phase-field UEL, wherefore, the subroutine needs to
have access to the connectivity table of the elements. More precisely, a separate file should be created containing the
unique node numbers for each element. The present paper contains a supplementary MATLAB script that executes the
conversion from an input file generated by Abaqus. Essentially it needs to identify the elements involved in the phase-field
calculation using sets named with the prefix “uel ”. All nodes where boundary conditions in the phase-field are defined
get a value of -1. Thus, for example, for a finite element mesh with two elements defined at nodes (1,2,4,3) and (3,4,6,5),
and with a Dirichlet boundary condition at node 6, the following connectivity file is created:

1, 2, 4, 3

0, 0, -1, 5

This file should be named the same as the job but with an extension of “ connec.dat”. It is recommended to turn off
extrapolation between time steps. Furthermore, due to the iterative convergence in the Lagrange multipliers when the
phase-field increases significantly, the integration control is slightly modified by increasing the following parameters:

– the number of equilibrium iterations after which the convergence check is carried out to determine whether the
residuals are increasing in two consecutive iterations (I0);

– the number of consecutive equilibrium iterations at which the logarithmic rate the of convergence check begins (IR);

– the upper limit for the number of consecutive equilibrium iterations (IC);

– the maximum number of attempts allowed for an increment (IA).

An example model is included as Supplementary Material.

Appendix D. Computational efficiency

The section discusses the additional computational cost added by the Lagrange multipliers. There are three main
differences, which might increase the time compared to the already existing energy threshold solutions: (i) the additional
iterations needed to obtain convergence; (ii) the added degrees of freedom; and (iii) the longer elastic deformation stage
due to the higher strength. The latter reason originates from the difference in normalization, as explained in Fig. 12.
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Figure D.19: (a) Number of iterations necessary to obtain equilibrium for the different methods. (b) Crack length as a function of pseudo-time.

Therefore, we will focus on only the first two causes in this section. In order to exclude the effect of the automatic time
step control and focus on the effect of the Lagrange multipliers, the time steps were fixed in advance.

First, the number of iterations is analyzed using the single edge notched specimen. The geometry and the simulation
details can be found in Ref. [49]. The only difference is the first stage, where we define the Dirichlet boundary condition
in the phase-field to create the initial crack. This step is divided into four steps. In the first two, the boundary condition
is applied. The rest of the steps are used to pass the information securely to the displacement element. The mesh size
was also reduced to lc/5 around the propagation zone.

Fig. D.19(a) shows the number of iterations necessary to obtain equilibrium. It is visible that the Newton–Raphson
method needs a significant number of iterations for the initial Dirichlet boundary because the multipliers have to be
deactivated (as shown in Fig. 3). For the AT1 solution, this usually takes 2lc/h iterations in total. In this case, this
number is around 12, which is close to the prediction. However, for the AT2, as the damage value is larger than 0
everywhere, it took a staggering amount of 25 in total. While with the history variable, this takes only one iteration
independently of the geometric function. However, it is worth noting that the crack length obtained using the AT1 energy
threshold solution is significantly higher therefore the sample breaks at a much lower force. Furthermore, it is shown in
Fig. D.19(b) that when the unstable crack propagation starts, the number of iterations is almost equal independently of
the method chosen. This signifies that the change in the Lagrange multiplier is small. Thus, the crack propagates only
a few element lengths. Therefore, the number of iterations necessary to obtain the mechanical equilibrium (due to the
nonlinearity in the asymmetric energy degradation) is more significant.

The dynamic case presented in section 4.3 was used to compare the time necessary to execute a simulation. The mesh
was structured, and its size was increased to 0.25 mm. The larger elements allowed us to use 2 · 10−8 s for the fixed time
increment. The results are presented in Fig. D.20 as a function of the number of CPUs. The simulations were done using
an Intel(R) Xeon(R) Gold 5220R CPU (2.20GHz).

It is visible that using the Lagrange multiplier technique for the AT2 geometric function is not useful and increases
the computation cost significantly without any major advantage. However, for the AT1 model, this increment for a single
core is only 7%, and vanishes at 8 CPUs. In our experience, the computation cost in Abaqus can be attributed to two
major variables: (i) the definition of the residues and stiffness matrices; (ii) compilation and solution of the linear equation
system. Thanks to the efficiency of Abaqus, the second is usually significantly inferior compared to the first one. The
Lagrange multipliers are added in only 30 lines out of around 1500. Therefore, the cost in the FORTRAN subroutine is
negligible. Additionally, in the AT1 threshold solution, the damage is larger than 0 in the whole model, which increases
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Figure D.20: Computation time as a function of the number of CPUs for the different implementations.

the necessary time to treat their convergence. While, in the present model, this is mostly enforced by the Lagrange
multipliers.
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