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When a liquid drop strikes a deep pool of a target liquid, an impact crater opens while the11
liquid of the drop decelerates and spreads on the surface of the crater. When the density of the12
drop is larger than the target liquid, we observe mushroom-shaped instabilities growing at the13
interface between the two liquids. We interpret this instability as a spherical Rayleigh-Taylor14
instability due to the deceleration of the interface, which exceeds the ambient gravity. We15
investigate experimentally the effect of the density contrast and the impact Froude number,16
which measures the importance of the impactor kinetic energy to gravitational energy, on17
the instability and the resulting mixing layer. Using backlighting and planar laser-induced18
fluorescence methods, we obtain the position of the air-liquid interface, an estimate of19
the instability wavelength and the thickness of the mixing layer. We derive a model for20
the evolution of the crater radius from an energy conservation. We then show that the21
observed dynamics of the mixing layer results from a competition between the geometrical22
expansion of the crater, which tends to thin the layer and entrainment related to the instability,23
which increases the layer thickness. The mixing caused by this instability has geophysical24
implications for the impacts that formed terrestrial planets. Extrapolating our scalings to25
planets, we estimate the mass of silicates that equilibrates with the metallic core of the26
impacting bodies.27
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1. Introduction29

Rayleigh-Taylor (RT) instability occurs at the interface between two fluids of different30
densities, when the density and pressure gradients are in opposite directions. In a gravitational31
field, an interface separating a dense fluid supported by a lighter one is unstable (Rayleigh32
1899). In this situation, which we refer as static, the average position of the interface does not33
vary with time. If the interface is accelerated in the direction from the lighter to the denser34
fluid, the configuration is also unstable (Taylor 1950). In this situation, which we refer as35
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dynamic, the average position of the interface varies over time. In both cases, infinitesimal36
perturbations at the interface will grow over time, leading to the interpenetration of the fluids37
and to the reduction of their combined potential energy.38
TheRT instabilitywas first investigated at planar interfaces using theoretical, numerical and39

experimental methods, both in the early-time linear (e.g. Emmons et al. 1960; Chandrasekhar40
1961; Tryggvason 1988) and the subsequent non-linear regimes (e.g. Linden et al. 1994;41
Dalziel et al. 1999;Dimonte 1999).However, various phenomena such as inertial confinement42
fusion experiments (e.g. Lindl 1998; Thomas & Kares 2012), supernovae explosions (e.g.43
Arnett et al. 1989; Schmidt 2006), detonation of explosive charges (e.g. Balakrishnan &44
Menon 2011) and collapsing bubbles (e.g. Prosperetti 1977; Lin et al. 2002) involve RT45
instabilities at spherical interfaces. The spherical configuration was initially investigated in46
static and dynamic cases, regarding the early-time linear stability of spherical interfaces47
between two inviscid fluids (Bell 1951; Plesset 1954; Mikaelian 1990). Viscosity effects48
responsible for energy dissipation at small-scale were also investigated in both cases49
(Chandrasekhar 1955; Prosperetti 1977; Mikaelian 2016). Turbulent mixing related to the50
late-time non-linear RT instability dynamics was also investigated for spherical interfaces51
(Youngs & Williams 2008; Thomas & Kares 2012; Lombardini et al. 2014).52
The RT instability also enters the dynamics of drop impacts. Above a given kinetic energy,53

the drop impact is followed by the formation of a liquid crown above the crater (e.g. Rein54
1993). The interface between the liquid of the crown and the air rapidly decelerates, which55
leads to the formation of fluid fingers in part interpreted as an RT instability (e.g.Allen 1975;56
Krechetnikov & Homsy 2009; Agbaglah et al. 2013).57
In our experiment, we investigate another instability that develops under the water surface58

when a denser-than-water drop impacts a deep liquid pool of water. Figure 1 shows a snapshot59
from one such experiment, at a time when the impact of the drop has produced a sizeable60
crater. We see on this picture that the liquid from the drop, which covers the crater floor, has61
developed mushroom-shaped structures penetrating radially into the water pool. We interpret62
these structures as a spherical RT instability associated with the deceleration of the crater63
floor. The dynamics of the RT instability depends crucially on the acceleration history of the64
interface (Mikaelian 1990; Dimonte & Schneider 2000).65
In the case of a drop impact, this acceleration is dictated by the dynamics of the crater,66

which depends on the impact parameters, i.e. drop radius, impact velocity, ambient gravity67
and physical properties of the fluids such as surface tension, density and viscosity. Depending68
on these impact parameters, various impact regimes such as floating, bouncing, coalescence69
and splashing may occur (e.g. Rein 1993). In this work, we focus on the splashing regime.70
Since the pioneering experiments of Worthington (1895), the splashing regime has been71
extensively investigated, regarding in particular the scaling of themaximum crater size (Engel72
1966; Leng 2001), the time evolution of the transient crater (Engel 1967; Morton et al. 2000;73
Bisighini et al. 2010), the evolution and fragmentation of the fluid crown (Okawa et al. 2006;74
Zhang et al. 2010), the formation and fragmentation of the central peak (Fedorchenko &75
Wang 2004; Ray et al. 2015) and underwater acoustic properties of the impact (Prosperetti76
& Oguz 1993). Furthermore, the effects of immiscibility (Lhuissier et al. 2013; Jain et al.77
2019), viscoplasticity (Jalaal et al. 2019), impact angles (Okawa et al. 2006; Gielen et al.78
2017) and thickness of the target layer (Berberović et al. 2009) on impact dynamics have79
been examined. Based on these experiments, several models of the crater size evolution and80
its related acceleration history were developed, using energy conservation (e.g. Engel 1966,81
1967; Leng 2001) or momentum conservation in an irrotational flow (e.g. Bisighini et al.82
2010).83
Besides providing an example of an RT instability at a spherical interface, this drop impact84

instability and the mixing related to it have geophysical implications. Terrestrial planets such85
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Figure 1: Crater produced by the vertical impact of a liquid drop onto a less dense liquid
pool. A spherical RT instability develops around the crater when it decelerates, which

results in mushroom-shaped plumes growing radially outward.

as the Earth formed 4.5 × 109 years ago by the successive accretion of increasingly massive86
bodies composed mainly of silicates and iron (Chambers 2010), the last giant impact being87
probably responsible for the formation of the Moon (Canup 2012; Cuk & Stewart 2012).88
During this process, planetary materials are heated by the kinetic energy released during the89
impacts, the reduction of gravitational potential energy as the metal of the impactors migrates90
toward the core and the decay of radioactive isotopes (Rubie et al. 2015). This energy supply91
contributes to the production of deepmagma oceans (Solomatov 2015). In addition, accretion92
models show that most of the Earth mass was accreted from differentiated bodies (Kleine93
et al. 2002; Scherstén et al. 2006), i.e. with a separate core and mantle (in contrast, it should94
be noted that we use drops made of a single liquid in our experiments). Both the impacting95
body and the planetary surface are melted by the shock waves produced by the impact,96
releasing the liquid metal core of the impactor into a fully molten magma ocean (Tonks97
& Melosh 1993). This results in a situation where the metal core of an impactor strikes a98
less dense silicate magma ocean. A spherical RT instability can therefore develop during99
crater opening, producing mixing that contributes to the thermal and chemical equilibration100
between the metal core of the impactors and the silicates of the magma ocean.101
The current dynamics of the Earth is partly inherited from its concomitant accretion and102

differentiation. Heat partitioning and chemical fractionation between the mantle and the core103
depend on the physical processes involved during differentiation (Stevenson 1990;Wood et al.104
2006), which includes in particular equilibration and dispersion occurring during planetary105
impacts (Canup 2004; Cuk & Stewart 2012; Kendall & Melosh 2016; Nakajima et al. 2021;106
Landeau et al. 2021). Heat partitioning sets the initial temperature contrast between the107
mantle and the core. It crucially determines the early thermal and magnetic evolution of the108
planet, in particular the formation and evolution of magma oceans (Labrosse et al. 2007; Sun109
et al. 2018) and the existence of an early dynamo (Williams & Nimmo 2004; Monteux et al.110
2011; Badro et al. 2018). Chemical fractionation has also major geodynamical implications,111
such as the nature and abundance of radioactive and light elements in the core (Corgne et al.112
2007; Siebert et al. 2012; Badro et al. 2015; Fischer et al. 2015). Geochemical data such as113
isotopic ratios and partitioning coefficients between metal and silicates provide constraints114
on the timing of accretion and physical conditions of core formation in terrestrial planets115
(Li & Agee 1996; Kleine et al. 2002; Righter 2011; Siebert et al. 2011). However, their116
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interpretation depends on the degree of chemical equilibration between the metal of the117
impactors’ core and the magma ocean (Rudge et al. 2010; Rubie et al. 2011). Consequently,118
an estimate of the equilibration produced by the spherical RT instability during the impact119
is required in order to properly interpret geochemical data. In this paper, we examine the120
spherical RT instability produced during an impact using fluid dynamics experiments.121
The layout of this paper is as follows. In section 2, we introduce the set of non-dimensional122

numbers used in this study and present the experimental procedure. In section 3, we describe123
the phenomenology of the cratering process and of the RT instability. In section 4, we obtain124
a model for the crater radius evolution from energy conservation. In section 5, we use the125
acceleration history of the cratering process to model the evolution of the thickness of the126
mixing layer resulting from the RT instability. In section 6, we finally apply this model to the127
differentiation of terrestrial planets.128

2. Impact cratering experiments129

2.1. Non-dimensional numbers130

The impact dynamics of a liquid drop released above a deep liquid pool with a different131
density and viscosity depends on its impact velocity *8 and radius '8 , the densities d1 and132
d2 of the drop and the pool, the dynamic viscosities `1 and `2 of the drop and the pool, the133
surface tension at the air-liquid interface f and the acceleration of gravity 6. Since these134
eight parameters contain three fundamental units, the Vaschy–Buckingham theorem dictates135
that the impact dynamics depends on a set of five independent dimensionless numbers. We136
choose the following set:137

�A =
*2
8

6'8
, ,4 =

d1*
2
8
'8

f
, '4 =

d2*8'8

`2
, d1/d2, `1/`2. (2.1)138

The Froude number �A is a measure of the relative importance of impactor inertia and gravity139
forces. It can also be interpreted as the ratio of the kinetic energy d1'

3
8
*2
8
of the impactor to140

its gravitational potential energy d16'
4
8
just before impact. TheWeber number,4 compares141

the impactor inertia and interfacial tension at the air-liquid interface. The Reynolds number142
'4 is the ratio between inertial and viscous forces. The ratios d1/d2 and `1/`2 compare,143
respectively, the density and the dynamic viscosity of the drop and the pool. Although the144
Atwood number � = (d1 − d2)/(d1 + d2) is used widely in the context of RT instabilities,145
we use instead the density ratio because it appears more naturally in the equations governing146
the crater size evolution (see section 4). Since surface tension depends on salt concentration,147
a surface tension ratio between the drop and the pool is also involved. However, we ignore148
this parameter because the Weber number is much larger than unity and the surface tension149
of the drop varies by less than 20% compared with the pool. We also use a modified Froude150
number and a Bond number,151

�A∗ =
d1

d2

*2
8

6'8
, �> =

d26'
2
8

f
, (2.2)152

which are, respectively, the ratio of the kinetic energy of the impactor d1'
3
8
*2
8
to the change153

of potential gravitational energy d26'
4
8
associated with the opening of a crater of size '8154

and the ratio of buoyancy forces to interfacial tension at the air-liquid interface. The Bond,155
Weber and modified Froude numbers are related through �> = ,4/�A∗. In the following,156
time, lengths, velocities and accelerations are made dimensionless using the drop radius and157
the impact velocity, i.e. using, respectively, '8/*8 , '8 , *8 and *2

8
/'8 . These dimensionless158
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quantities are denoted with a superscript star. For example, we use a dimensionless time159
C∗ = C/('8/*8).160
Planetary impacts are generally classified between a strength regime and a gravity regime,161

depending on the resistance to deformation of the target material (e.g. Melosh 1989). When162
the yield stress of the solid planetary surface, or the viscous stress of the magma ocean, are163
negligible in comparison with the impact-induced stress, planetary impacts are in the gravity164
regime. This typically happens when the impactor is larger than a few kilometres (Holsapple165
1993). In this case, the Reynolds number, the Weber number and the Bond number are166
expected to be larger than 1010, due to kilometric impactors with impact velocities of the167
order of 10 km.s−1. This leads to extremely turbulent impact conditions where surface tension168
effects are negligible. Assuming that the impact velocity is close to the escape velocity of the169
target planet, i.e. *8 '

√
6'C with 'C the radius of the target, the modified Froude number170

scales as171

�A∗ ' d1

d2

'C

'8
. (2.3)172

�A∗is then of the order of 1 for impactors comparable in size with the target, but increases173
by several orders of magnitude for small colliding bodies, e.g. the Froude number is about174
104 for a 1 km radius body impacting an Earth-sized planet. From the perspective of the175
impactor, small impacts are thus dynamically more extreme than giant impacts. Since the176
metal core of the impactor is mainly composed of iron, the density ratio and the viscosity177
ratio are, respectively, expected to be of the order of d1/d2 ' 2 and `1/`2 ' 0.1 (Solomatov178
2015).179
Table 1 compares the value of the dimensionless parameters in our drop impact experiments180

and in planetary impacts. Since experimental Reynolds numbers ('4 & 2500) and Weber181
numbers (,4 & 60) are large, viscosity and surface tension are mostly negligible during182
crater opening (e.g.Olevson 1969;Macklin&Metaxas 1976). Although '4 and,4 aremuch183
larger during planetary impacts than in our experiments, this means that the cratering process184
is governed by inertia and buoyancy forces, in both our experiments and planetary impacts.185
We thus focus on the gravity regime (e.g. Melosh 1989), where the cratering dynamics186
depends mainly on two dimensionless parameters, the Froude number �A and the density187
ratio d1/d2.188
In order to characterise the crater geometry and the RT instability following the impact,189

we vary the drop radius, drop density and impact velocity. In our experiments, we obtain190
Froude numbers and modified Froude numbers larger than unity, in the range �A '191
60 − 1200 and �A∗ ' 60 − 2100, respectively. We focus on five density ratios d1/d2 '192
{1.0, 1.2, 1.4, 1.6, 1.8}, in comparison with a reference case without density contrast. We193
have also conducted a few experiments at d1/d2 ' 0.8 using ethanol in the drop. The194
upper limit of our experimental density ratios is close to the density ratio expected during a195
planetary impact.196

2.2. Experimental set-up197

2.2.1. Drop production, fluids and cameras198

In these experiments, we release a liquid drop in the air above a deep liquid pool contained199
in a 16 × 16 × 30 cm glass tank (figure 2). The pool level is set at the top of the tank. The200
aim is to minimise the thickness of the meniscus on the sides of the tank in order to obtain201
an image of the crater all the way to the surface.202
We generate the drop using a needle supplied with fluid by a syringe driver at a slow203

and steady pace. When the weight of the drop exceeds the surface tension forces, the drop204
comes off. We use a metallic needle with an inner diameter of 1.6 mm and a nylon plastic205
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Dimensionless number Experiments Planetary impacts

�A 60 − 1200 1 − 105

�A∗ 60 − 2100 1 − 105

,4 60 − 1300 & 1014

�> 0.7 − 1 & 1010

'4 2500 − 13500 & 1011

d1/d2 1 − 1.8 2
� 0 − 0.29 0.33

`1/`2 0.9 − 1.2 0.1

Table 1: Typical values of the main dimensionless parameters (equations 2.1 and 2.2) in
the experiments and typical planetary impacts. For planetary impacts, dimensionless
numbers are estimated with a density of 4000 kg.m−3 for molten silicates and of

8000 kg.m−3 for molten metal, a dynamic viscosity of 0.1 Pa.s for molten silicates and of
0.01 Pa.s for molten metal (Solomatov 2015). Surface tension between air and molten
silicates and between air and molten metal, are taken to be 0.3 J.m−2 (Taniguchi 1988)
and 1.8 J.m−2 (Wille et al. 2002), respectively. We assume the impact velocity to be one

to three times the escape velocity (Agnor et al. 1999; Agnor & Asphaug 2004). We
assume the impactor-to-target radius to be in the range 10−4 − 1.

Figure 2: (a) Schematic view of the experimental set-up, including backlight and LIF
configuration set-up. (b) Snapshot obtained using the backlight configuration. (c)

Snapshot obtained using the LIF configuration.
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needle with an inner diameter of 4.7 mm, generating two series of drop size with typical206
radius in the range 1.7 − 2.0 mm and 2.3 − 2.7 mm, respectively. We estimate the drop size,207
which depends on the drop density, for each experiment based on a calibration using mass208
measurements of dozens of drops, independent density measurement and assuming the drop209
is spherical. We validate this method using high-speed pictures of the drop prior to impact210
where we can directly measure the drop radius.211
Typical impact velocities are in the range 1− 5 m.s−1. We calculate the impact velocity for212

each experiment using a calibrated free-fall model for the drop, including a quadratic drag.213
We also validate this method using high-speed pictures of the drop prior to impact where we214
can directly measure the drop velocity.215
We use an aqueous solution of caesium chloride CsCl (d1 = 998 − 1800 kg.m−3, `1 =216

0.9× 10−3 − 1.2× 10−3 Pa.s) in the drop and water (d2 = 998 kg.m−3, `2 = 10−3 Pa.s) in the217
pool. In a few experiments, we also use pure ethanol (d1 = 790 kg.m−3, `1 = 1.2×10−3 Pa.s)218
in the drop. The density is measured for each experiment using an Anton Paar DMA 35 Basic219
densitometer. Since the typical measurement errors on density are less than 0.1%, we neglect220
errors on density. We obtain viscosities using data from Haynes (2016). We neglect errors221
on viscosity since the typical error is less than 0.01%. The surface tension at the air-water222
interface is f = 72.8 ± 0.4 mJ.m−2 (Haynes 2016).223
We obtain errors on the velocity and radius of the impacting drop from the variability in224

mass measurements and from error propagation in the velocity model, respectively. We then225
propagate uncertainties on fluid properties and impact parameters to uncertainties on the226
dimensionless numbers (equations 2.1 and 2.2).227
We use two imaging configurations, backlight and laser-induced fluorescence (LIF)228

configurations, most suited to determine the crater shape and characterise the mixing layer229
thickness, respectively. In both configurations, we position the camera at the same height230
as the water surface. We record images at 1400 Hz with a 2560 × 1600 pixels resolution231
(34 `m.pixel−1) and a 12 bits dynamic range, using a high-speed PhantomVEO 640L camera232
and a Tokina AT-X M100 PRO D Macro lens.233

2.2.2. Backlighting234

In the backlight configuration (figure 3a), we measure the evolution of the mean crater radius.235
The crater is illuminated from behind by a light emitting diode (LED) backlight panel and it236
appears dark owing to refraction of light at the air-water interface. Image processing involves237
spatial calibration using a sight, background removal, intensity threshold, image binarisation238
and allows us to determine the crater boundary.239
We then fit the experimental crater boundary radius 'exp

\
(\, C), which depends on the polar240

angle \ and time C, using a set of shifted Legendre polynomials %̃; up to degree ; = 5, as241
follows:242

'
exp
\
(\, C) =

5∑
;=0

0
exp
;
%̃; (cos \), (2.4)243

where 0exp
;

are the experimental fitted coefficients. The shifted Legendre polynomials are244

an affine transformation of the standard Legendre polynomials %̃; (G) = %; (2G − 1) and are245
orthogonal on [0, 1], i.e. on a half-space. We obtain the experimental mean crater radius246
from the ; = 0 coefficient, i.e. 'exp = 0

exp
0 .247

Uncertainties are dominated by the extrinsic variability between experiments in the same248
configuration.We repeat each experiment at least four times consecutively in order to estimate249
uncertainties on dimensionless parameters and target quantities. This allows us to include250
uncertainties resulting from reflections and refraction at the crater boundary. In comparison,251
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Figure 3: (a) Detection of the crater boundary. The dashed line corresponds to the fitted
crater boundary using a set of shifted Legendre polynomials up to degree ; = 5, the degree
; = 0 gives the solid line corresponding to the mean crater radius. (b) Detection of the
mixing layer. The solid line corresponds to the fitted crater boundary using a set of

Legendre polynomials up to degree ; = 5. The dashed lines correspond to the weighted
average of the mixing layer boundaries, calculated using the second moment of the LIF
intensity about the mean position of the layer. Blue arrows indicate the position of the

plumes produced by the instability.

the intrinsic uncertainties related to the spatial resolution of the camera, spatial calibration252
and image processing, are small. Spatial resolution of the camera, 30 pixel.mm−1, is adequate253
given the size of the target, allowing this uncertainty to be neglected. We also neglect spatial254
calibration errors, typically around 0.2 pixel. Finally, given the camera resolution and dynamic255
range, we obtain a good contrast on the crater and the impacting drop, which allows us to256
neglect errors related to image processing.257

2.2.3. LIF258

In the LIF configuration (figure 3b), we measure the thickness of the mixing layer and the259
number of plumes produced by the RT instability. The fluorescent dye (Rhodamine 6G,260
1.5 mg.l−1) contained in the fluid of the drop is excited by a vertical laser sheet (532 nm).261
The fluorescent dye then re-emits light between 500 nm and 700 nm. This emission signal is262
then recorded by the camera and isolated from the laser signal with a long-pass filter (> 540263
nm). We generate the laser sheet using a 10 W Nd:YAG continuous laser in combination264
with a divergent cylindrical lens and a telescope, producing a 1 mm thick sheet. We divert265
the laser sheet vertically using a 45◦ mirror beneath the tank. In order to isolate the mixing266
layer, we process images with spatial calibration using a sight, background removal and267
laser sheet corrections, removing sheet inhomogeneities. We then filter and remove artefacts268
due to reflections on the surface and on the air-water interface. In particular, we remove the269
internal reflection of the mixing layer (e.g. figure 2c). We eventually obtain a measured LIF270
intensity field from which we can identify the mixing layer. Scalar diffusion of the dense271
liquid is negligible since the diffusion length during crater opening (typically 50 ms) is272
approximately 10 `m = 0.3 pixel. During crater opening, diffusion of Rhodamine 6G is even273
more negligible.274
As for the backlight configuration, we fit the position of the experimental crater boundary275

'
exp
\
(\, C), which corresponds to the inner boundary of the mixing layer, using a set of shifted276

Legendre polynomials up to degree ; = 5. We then define a local frame of reference (e′r , e) ′),277
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where e′r is normal to the fitted crater boundary and e′) is tangent to it. For each polar position278
\ about the crater boundary, we calculate the local mean position of the mixing layer 〈A ′〉,279
using the position of the pixels in the local frame of reference (A ′, \) and the corresponding280
LIF intensity field �:281

〈A ′〉(\) =
∫
A ′� (A ′, \)dA ′∫
� (A ′, \)dA ′

. (2.5)282

We then calculate the local standard deviationfA ′ about the local mean position of the mixing283
layer,284

fA ′ (\) =

√√∫
[A ′ − 〈A ′〉(\)]2 � (A ′, \)dA ′∫

� (A ′, \)dA ′
. (2.6)285

We eventually obtain the experimental mixing layer thickness ℎexp with286

ℎexp =

∫ c/2
−c/2 2fA ′ ('exp

\
)2 | sin \ |F(\)d\∫ c/2

−c/2('
exp
\
)2 | sin \ |F(\)d\

, (2.7)287

using a weighted average where F = 1/[1+ exp{: ( |\ | − \0)}] is a symmetric logistic weight288
function whose steepness is : = 30 and whose sigmoid midpoint is \0 = c/3. The logistic289
function allows us to give more weight to the bottom of the crater, between \ = 0 and \ = \0290
and less to the top of the crater, close to \ = ±c/2. The use of such a weight function is291
motivated by the polar dependency of the LIF signal quality. The crater is indeed illuminated292
from below, so that the laser sheet undergoes absorption (due to the fluorescent dye) and293
refraction (due to small scale variations of the index of refraction) as it goes through the294
mixing layer. Imaging of the mixing layer may also be perturbed directly by the air-water295
interface, causing reflection of the laser sheet. Consequently, close to the surface, i.e. at296
\ = ±c/2, imaging of the mixing layer may undergo significant perturbations, leading to a297
poor estimate of its extent. All these effects are amplified when the crater slightly deviates298
from a hemispherical shape. When the drop is denser than the pool, the crater is stretched299
downward, leading to an ellipsoidal crater centred below the surface of the pool. At low300
Weber and Froude numbers, the crater is also deformed by the propagation of a capillary301
wave which is superimposed on the density effects. The path of the laser sheet through the302
mixing layer thus increases and is more likely to cross the air-water interface.303
We also count manually the number of plumes produced by the RT instability for each304

experiment at the same dimensionless time C∗ ∼ 10 (figure 3b, inset). This time was chosen305
from visual inspections, which suggest that at this time the plumes have not yet interacted306
significantly with each other, which is relevant since this number of plumes is to be compared307
with a scaling of the early-time instability wavelength (appendix A).308
As in the backlight configuration, uncertainties are dominated by the extrinsic variability309

between experiments in the same configuration and hence, we repeat each experiment310
at least four times consecutively. We neglect intrinsic uncertainties related to the spatial311
resolution of the camera, the spatial calibration and image processing, since as in the backlight312
configuration they are still comparatively small.313

3. Phenomenology314

In our experiments, the development of the RT instability is governed by the crater315
evolution following the impact and particularly by its acceleration history. Using both316
backlight and LIF configurations, we characterise the air-water interface evolution and the317



10

mixing layer evolution. From these measurements, we describe the observed RT instability.318
We base our description on two typical experiments, with and without density contrast,319
with similar evolution of the crater radius, in the backlight (figure 4a,c) and the LIF320
configurations (figure 4b,d). Experiments without density contrast are also available as321
animations in supplementary movie 1 (backlight configuration) and supplementary movie 2322
(LIF configuration), while experiments with density contrast are available in supplementary323
movie 3 (backlight configuration) and supplementary movie 4 (LIF configuration) – available324
at https://doi.org/10.1017/jfm.2022.111.325

3.1. Crater geometry326

The impact of the drop first causes the formation of an impact crater with a flat bottom due to327
the spreading of the drop (figure 4a, i). The liquid of the drop is deformed and accumulated328
on the crater floor (figure 4b, i) on a time scale C∗ ' 2− 3, akin to previous results (e.g. Engel329
1961, 1962). As the crater grows, the cavity becomes hemispherical, on a time scale C∗ ' 10,330
as a result of the overpressure produced at the contact point between the impacting drop and331
the surface (figure 4a, ii,iii). The liquid of the drop then spreads over the crater sides toward332
the surface, producing a layer with an approximately uniform thickness at the surface of the333
crater (figure 4b, iii,iv).334
The impact also produces a cylindrical fluid crown (Fedorchenko & Wang 2004) (figure335

4a, i-iv), along with a surface wave propagating radially outward from the crater on the336
horizontal surface (Leng 2001). As can be seen from the LIF intensity field (figure 4b, i-iv),337
the fluid of the drop mostly accumulates on the surface of the crater, leaving the crown338
mainly composed of fluid from the pool. As soon as the crown decelerates, the cylindrical339
sheet produces liquid ligaments around the crown rim, which eventually fragment into drops340
(figure 4a, ii,iii) (Krechetnikov & Homsy 2009; Zhang et al. 2010; Agbaglah et al. 2013).341
When the crater reaches its maximum size, the crater is almost hemispherical (figure 4a,342

iv). When d1/d2 > 1, the crater cavity is entrained downward, which stretches vertically343
the crater (figure 4c, iv). After reaching its maximum size, the crater starts to collapse due344
to buoyancy forces (figure 4a, v). The resulting converging flow leads to the formation of a345
thick upward jet which, in view of the LIF intensity field (figure 4b, vi), appears to be made346
mostly of liquid from the drop.347

3.2. RT instability348

The presence of an instability at the interface between the drop and target fluids is particularly349
clear when comparing experiments without and with a density contrast between the two350
liquids (figure 4). We will also base our description on figure 5, which shows composite351
images obtained from sequences of LIF images from these two experiments. They are built352
by extracting from each LIF image a column of pixels centred on the crater vertical axis353
of symmetry, before juxtaposing them to show the LIF intensity as a function of vertical354
position and time. This provides a qualitative picture of the evolution of the radial dispersion355
of the liquid drop.356
The early-time evolution of the drop liquid is similar in both experiments up to C∗ ∼ 10.357

The liquid from the drop spreads over the crater floor and forms a thin layer of approximately358
uniform thickness (figure 4 (all subpanels i,ii) and figure 5). In the experiment with no density359
contrast (figure 4a,b and figure 5a), the thickness of the layer keeps decreasing with time as360
the crater grows. This is a direct consequence of the crater expansion, the liquid of the drop361
being redistributed over an increasingly large surface area.362
The behaviour of the layer is markedly different when the drop is denser than the pool.363

Figure 4c,d and figure 5b show that the thickness of the mixing layer initially decreases up364

Rapids articles must not exceed this page length
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Figure 4: Liquid drop impact onto a deep liquid pool without density contrast (d1/d2 = 1)
in the backlight (�A = 483) (a) and the LIF (�A = 481) (b) configuration. Liquid drop
impact onto a deep liquid pool with density contrast (d1/d2 = 1.8) in the backlight
(�A = 542) (c) and the LIF (�A = 572) (d) configuration. The liquid drop impact

sequences are also available as animations in supplementary movies 1 (a), 2 (b), 3 (c) and
4 (d).

to C∗ ' 10, but it then increases over time while small scale corrugations of the interface365
evolve into radially growing plumes. The fine scale structure of the layer as seen from the366
LIF intensity field (figure 4d, iii,iv) is reminiscent of the structure of mixing layers observed367
in RT experiments in planar configurations (e.g. Dalziel et al. 1999).368
These observations can be rationalised as follows. During the crater opening phase, the369

rate at which the crater grows gradually decreases with time, which results in a deceleration370
of the boundary between the mixing layer and the surrounding liquid. This situation is known371
to be unstable with respect to the RT instability when the liquid from the drop is heavier than372
the liquid from the pool (Taylor 1950). Measurements of the crater acceleration as a function373
of time (figure 7c of §4.2) shows that the deceleration of the crater boundary can be more374
than 10 times larger than the acceleration of gravity, which explains why the dense liquid375
plumes grow radially outward rather than in the vertical direction. The growth of the RT376
instability tends to increase the thickness of the mixing layer. However, the expansion of the377
crater spreads the dyed liquid over an increasing large surface area, which tends to make the378
layer thinner. The competition between these two effects explains why the thickness of the379
mixing layer first decreases as the crater expands and then increases when the RT instability380
dominates.381
The instability first goes through a stagewhere the perturbations of the interface are small in382

comparison with the radius of the crater and the wavelength of the instability (figure 4d, i,ii).383
The growth of the RT instability competes with the geometrical expansion of the crater, which384
stretches the instabilities, hence reducing the amplitude of the perturbations and increasing385
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(a)

(b)

Figure 5: Composite images showing the LIF intensity as a function of vertical position
and time, on the crater axis of symmetry (\ = 0). The two panels have been build from
experiments without (a) (d1/d2 = 1.0) and with (b) (d1/d2 = 1.8) a density contrast
between the drop and the pool. The surface of the pool prior to impact is at I = 0.

their wavelength. This initial stage is dominated by the fast vigorous crater expansion, which386
contributes to decrease the mixing layer thickness by spreading the volume of the layer over387
an increasingly large surface area. Considering the resolution of our experiments, we are not388
able to observe the small initial perturbations that could exist in spite of the vigorous crater389
expansion. We observe that the amplitude of the perturbations eventually reaches the same390
size as the instability wavelength at C∗ ' 10.391
The two fluids involved being miscible, i.e. surface tension is zero, all wavenumbers392

are expected to be unstable with respect to the RT instability (Chandrasekhar 1955). In393
addition, owing to larger velocity gradients at large wavenumbers, viscosity is responsible394
for the energy dissipation of short wavelengths. The growth rate of the instability then395
decreases as the inverse of the wavenumber (Chandrasekhar 1961). Consequently, a mode396
of maximum instability depending on the acceleration history and impact parameters is397
expected to develop. This mode likely determines the typical number of plumes and the398
corresponding wavelength. The growth rate of the instability and the wavelength selection399
are also possibly influenced by the thin layer configuration, with a stabilising effect, if the400
mixing layer thickness is much smaller than the typical instability wavelength (Keller &401
Kolodner 1954; Villermaux 2020).402
At longer times (C∗ & 10), geometrical effects produced by crater expansion loose intensity403

and become comparable with the instability. This coincides with a stage where the instability404
is strongly influenced by three-dimensional effects, leading to the formation of plumes below405
the hemispherical surface of the crater (figure 4d, iii). As the instability grows towards a406
more turbulent layer, the mode of maximum instability is modified by non-linear interactions.407
Plumes then start interacting with each other, producing a mixing layer (figure 4d, iv).408
The importance of the density ratio is apparent in figure 6, which shows the LIF intensity409

when the crater reaches its maximum size, as a function of the Froude number and density410
ratio. For density ratios smaller than unity (first column), no instability is observed. For411
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Figure 6: Snapshots of the LIF intensity field when the crater reaches its maximum size, as
a function of the Froude number and the density ratio.

density ratios about unity (second column), small corrugations are observed between the412
dyed liquid and the ambient, possibly resulting from a large-scale shear instability in the413
layer. During crater opening, the air-water interface is not exactly hemispherical and the414
velocity field is not exactly radial (Bisighini et al. 2010). This creates a velocity shear across415
the interface, which may lead to the development of a Kelvin-Helmholtz instability. For416
density ratios larger than unity (third and fourth columns), the thickness of the dyed liquid417
layer is significantly larger than in other cases, as a consequence of the development of the418
RT instability. For a given Froude number, the mixing layer thickness obtained when the419
crater reaches its maximum size increases with the density ratio. For a given density ratio,420
the mixing layer thickness does not change significantly with the Froude number (figure 6).421
A point of terminology may be in order here. The configuration of our experiments falls422

somewhat in-between the canonical Rayleigh-Taylor configuration, in which the acceleration423
is constant and incompressible Richtmyer-Meshkov instability, in which the acceleration424
changes impulsively (Richtmyer 1960; Meshkov 1969; Jacobs & Sheeley 1996). Since in our425
experiments the acceleration varies continuously during the crater opening phase, we have426
chosen to refer to it as a Rayleigh-Taylor instability, as has been done before in the literature427
(e.g. Mikaelian 1990, 2016). However, the magnitude of the acceleration decreases quite428
fast, by almost two orders of magnitude, (figure 7c of §4.2), giving it a somewhat impulsive429
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nature. This suggests that the development of the instability may share some similarities with430
the Richtmyer-Meshkov instability. .431

4. Evolution of the crater size432

Experiments in the backlight configuration provide the time evolution and the maximum of433
the mean crater radius, a required step in the understanding of the RT instability. We derive434
an energy model for the evolution of the crater radius, velocity and acceleration and compare435
it with experiments, from which we obtain scaling laws for the maximum crater radius and436
the crater opening time.437

4.1. Energy conservation model438

We use an energy conservation model (Engel 1966, 1967; Leng 2001) accounting for the439
density difference between the impacting drop and the targeted pool. We assume the crater440
shape to be hemispherical and the flow around the crater to be incompressible and irrotational.441
Since the crater opening dynamics is mainly driven by impactor inertia ('4 & 2500) and442
gravity forces, viscous dissipation is not included in the model. The formation of the crown443
and the surface wave during the impact, in particular their potential, kinetic and surface444
energies, are not explicitly included in the model.445
On the basis of these assumptions, the sum of the crater potential energy �?, the crater446

surface energy �f and the crater kinetic energy �: , at any instant of time is equal to the447
impacting drop kinetic energy �8 just before the impact. The potential energy of the crater is448

�? =

∭
d26Id+ =

∫ '

0
d26c

(
'2 − I2

)
IdI =

1
4
cd26'

4, (4.1)449

where ' is the mean crater radius (section 2) and I is the depth. The crater surface450
energy corresponds to the formation of new surface due to crater opening. It is equal to451
the difference of surface energy between the initially planar surface area of the pool c'2 and452
the hemispherical surface area of the cavity 2c'2, i.e.453

�f = f

(
2c'2 − c'2

)
= fc'2. (4.2)454

The crater kinetic energy corresponds to the kinetic energy of the pool fluid below the initial455
surface and is related to the flow velocity potential. A radial velocity potential of the form456
Φ = −�/A, the solution of the Laplace equation ∇2Φ = 0, is able to satisfy the boundary457
conditions at A = '. At the crater boundary, the radial velocity is DA (A = ') = (mΦ/mA)A=' =458
¤', giving � = ¤''2 and459

Φ = −
¤''2

A
. (4.3)460

The radial velocity, the tangential velocity and the resulting velocity are, respectively461 
DA =

¤''2

A2 ,

D\ = 0,
| |u | | =

√
D2
A + D2

\
=
¤''2

A2 .

(4.4)462

The crater kinetic energy is then463

�: =

∫
1
2
d2 | |u | |2d+ =

∫ +∞

'

cd2 ¤'2'4 1
A2 dA = cd2'

3 ¤'2. (4.5)464
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The impacting drop kinetic energy is465

�8 =
2
3
cd1'

3
8*

2
8 . (4.6)466

Energy conservation between �?, �f , �: and �8 gives467

1
4
d26'

4 + f'2 + bd2'
3 ¤'2 =

2
3
qd1'

3
8*

2
8 , (4.7)468

where q and b are fitted parameters. The coefficient q corresponds to a correction parameter469
accounting for the terms not included in the model, i.e. viscous dissipation and crown energy470
terms. The coefficient b is a correction parameter accounting for the difference between the471
deliberately simplified velocity field used in the model and the true flow.472
Normalising the crater radius and opening velocity by the impacting drop radius '8 and473

velocity*8 , respectively, energy conservation becomes474

1
4

1
�A∗

'∗4 + 1
�A∗�>

'∗2 + b
(
d1

d2

)−1
'∗3 ¤'∗2 = 2

3
q, (4.8)475

where '∗ = '/'8 and ¤'∗ = ¤'/*8 are dimensionless.476
For each experiment, we calculate q as follows. Assuming that the velocity field vanishes477

simultaneously in the pool (Prosperetti & Oguz 1993), the crater kinetic energy vanishes478
when the crater reaches its maximum size, which, taking '∗ = '∗exp

<0G and ¤'∗ = 0 in equation479
4.8, gives480

q =
3
2

1
�A∗

(
'∗

exp

<0G

)2
[
1
4

(
'∗

exp

<0G

)2
+ 1
�>

]
. (4.9)481

Knowing q, we then fit the time evolution of the mean crater radius to the experiments with482
equation 4.8 using a least square method, the kinetic energy correction parameter b being483
a fit parameter. Fitting q and b for each experiment shows that both parameters depend on484
the Froude number (see appendix B for details). Knowing q and b, we solve the ordinary485
differential equation 4.8 using the boundary condition '∗(1) = 1. This assumes that the486
crater radius is initially the same as the drop radius, at C = '8/*8 .487

4.2. Time evolution488

Figure 7 shows the evolution of the mean crater radius (figure 7a), the mean crater velocity489
(figure 7b) and themean crater acceleration (figure 7c). This figure compares the fitted energy490
model with experimental data, in two reference cases, with and without density difference491
between the impacting drop and the pool. In both cases, the fitted mean crater radius, opening492
velocity and acceleration are in close agreement with the experimental data. In the d1/d2 = 1493
case, q = 0.40 and b = 0.35. In the d1/d2 = 1.8 case, q = 0.39 and b = 0.34. Experimental494
data are consistent with the qualitative observations of section 3. The crater first opens, before495
it reaches its maximum size and eventually starts to collapse.496
At early times, the crater potential and surface energies are negligible in comparison with497

the crater kinetic energy. This implies that the kinetic energy of the impactor is converted498
exclusively into kinetic energy of the flow around the crater. We thus neglect the two first499
terms on the left-hand side of equation 4.8, which in this limit gives500 

'∗ = [&(C∗ − 1) + 1]2/5
¤'∗ = 2

5& [&(C
∗ − 1) + 1]−3/5

¥'∗ = − 6
25&

2 [&(C∗ − 1) + 1]−8/5
, (4.10)501
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Figure 7: Time evolution of the normalised mean crater radius '∗ (a), the normalised mean
crater velocity ¤'∗ (b) and the mean crater acceleration ¥' normalised by the acceleration of
gravity 6 (c), for two impact parameters. Circles and solid lines correspond, respectively,
to experimental data and fitted energy model (equation 4.8). Dashed lines and dash-dotted

lines correspond, respectively, to early-time power-law solution (equation 4.10) and
late-time quadratic solution (equations 4.12) with d1/d2 = 1.8 and �A = 542.

where& =

(
25
6
q

b

d1
d2

)1/2
. This consistently verifies the imposed boundary condition '∗(1) = 1502

and depends on the density ratio d1/d2 and on the correction parameters q and b. It is in503
agreement with experimental data at early times (figure 7, dashed lines) and similar scaling504
laws from previous works (Leng 2001; Bisighini et al. 2010).505
At late times, the crater velocity becomes very small. If surface tension can be neglected,506

taking the time derivative of equation 4.8 and then making the assumption ¤'∗ = 0 gives507

¥'∗ = −1
2

1
�Ab

. (4.11)508

Using '∗(C∗<0G) = '∗<0G and ¤'∗(C∗<0G) = 0 as boundary conditions, we obtain a quadratic509
solution510 

¥'∗ = − 1
2

1
�A b

¤'∗ = − 1
2

1
�A b
(C∗ − C∗<0G)

'∗ = '∗<0G − 1
4

1
�A b
(C∗ − C∗<0G)2

. (4.12)511

This is in good agreement with experimental data at late times using the experimentally512
determined values of '∗<0G and C∗<0G (figure 7, dash-dotted lines). Using scaling laws for513
'∗<0G and C∗<0G (to be obtained in section 4.3), the late-time quadratic evolution of the mean514
crater radius can be fully predicted as function of q and b.515

4.3. Maximum crater radius and opening time516

We first consider the limit of no surface tension (�> → +∞), which amounts to neglecting517
the second term on the left-hand side of equation 4.8. The maximum size of the crater is then518
obtained by taking ¤'∗ = 0 in equation 4.8, before solving for '∗ to obtain519

'∗
<0G |�>→+∞ =

(
8
3

)1/4
q1/4�A∗

1/4
. (4.13)520

Figure 8a shows the maximum crater size in our experiments as a function of a least square521
best-fit power law scaling in the form522

'∗
lsq

<0G = 21�A
∗22
. (4.14)523
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Figure 8: (a) Experimental normalised maximum crater radius '∗
exp
<0G , as a function of the

least squares best-fit power-law scaling '∗
lsq
<0G (equation 4.14). (b) Experimental

normalised crater opening time C∗
exp
<0G , as a function of the least squares best-fit power-law

scaling C∗
lsq
<0G (equation 4.17). Colours scale as the density ratio d1/d2. Circles and crosses

correspond, respectively, to large and small drop size series.

The exponent 22 = 0.23± 0.004 for �A∗ is close to the theoretical 1/4 prediction of equation524
4.13 and is in agreement with previous works on liquids (Prosperetti & Oguz 1993; Leng525
2001; Bisighini et al. 2010) and granular materials (Walsh et al. 2003; Takita & Sumita526
2013). The prefactor 21 = 1.07 ± 0.03 is close to the value predicted by the model (equation527
4.13): since q = 0.38 ± 0.04 in our experiments, the predicted model prefactor is indeed528
equal to 1.0± 0.03. The prefactor 21 is also consistent with those obtained in previous works529
(e.g. 21 = 1.1 in Leng (2001)).530
We now turn to estimating the crater opening time, defined as the time C∗<0G at which the531

maximum crater size is reached. Having neglected surface tension, we integrate equation 4.8532
between C∗ = 0 and C∗ = C∗

<0G |�>→+∞ to obtain533

C∗
<0G |�>→+∞ = b

1/2
(
d1

d2

)−1/2 ∫ '∗
<0G |�>→+∞

0

'∗3/2(
2
3q −

1
4
'∗4

�A∗

)1/2 d'∗. (4.15)534

Using equation 4.13 for '∗
<0G |�>→+∞ and integrating, we obtain535

C∗
<0G |�>→+∞ =

1
2

(
8
3

)1/8
B

(
1
2
,

5
8

) (
d1

d2

)−1/2
q1/8b1/2�A∗

5/8
, (4.16)536

where B is the beta function.537
Figure 8b shows the opening time in our experiments as a function of a least square best-fit538

power law scaling in the form539

C∗
lsq

<0G = 23(d1/d2)24�A∗
25
. (4.17)540
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The exponent 24 = −0.53 ± 0.03 for d1/d2 agrees with the theoretical −1/2 prediction of541
equation 4.16. The exponent 25 = 0.61 ± 0.01 for �A∗ is also close to the 5/8 = 0.625542
prediction of equation 4.16 and agrees with previous works at d1/d2 = 1 (Leng 2001;543
Bisighini et al. 2010). The prefactor 23 = 0.87 ± 0.06 is close to the value predicted by544
equation 4.16: Since q = 0.38 ± 0.04 and b = 0.34 ± 0.03 in our experiments, the prefactor545
predicted by the model is indeed equal to 0.79 ± 0.04. The prefactor 23 is also consistent546
with prefactors obtained in previous works (e.g. 23 = 0.59 in Leng (2001)).547
In the above paragraphs, we develop a leading-order model that neglects surface tension.548

We now consider the effect of surface tension on the maximum crater size and crater opening549
time. With only the kinetic energy term set to zero in equation 4.8, we obtain the maximum550
crater radius including surface tension551

'∗<0G = '
∗
<0G |�>→+∞

[√
1 + 3

2
(
√
�A∗q�>)−2 −

√
6

2
(
√
�A∗q�>)−1

]1/2

. (4.18)552

This scaling depends on the dimensionless parameter (
√
�A∗q�>)−1, which brings in553

the effect of surface tension on the cratering dynamics. When �> → +∞, we have554
(
√
�A∗q�>)−1 → 0 and we retrieve the scaling without surface tension (equation 4.13).555
Figure 9a shows the maximum crater radius normalised by the maximum crater radius556

scaling without surface tension '∗exp
<0G/'∗<0G |�>→+∞, as a function of (

√
�A∗q�>)−1. This557

corresponds to the ratio between the experimental data and the scaling law without surface558
tension (equation 4.13). As expected, the scaling without surface tension overestimates the559
experimental maximum crater radius because it neglects surface energy. This overestimate560
decreases with (

√
�A∗q�>)−1, i.e. when surface tension effects become negligible in561

comparison with impactor inertia and gravity forces. The difference between experimental562
data and the scaling law without surface tension is properly accounted for by equation 4.18.563
We finally obtain an expression for the crater opening time by integrating equation 4.8564

between C∗ = 0 and C∗ = C∗<0G :565

C∗<0G = b
1/2

(
d1

d2

)−1/2 ∫ '∗<0G

0

'∗3/2(
2
3q −

'∗2

�A∗�> −
1
4
'∗4

�A∗

)1/2 d'∗. (4.19)566

Writing R = '∗/'∗<0G , this gives567

C∗<0G = C
∗
<0G |�>→+∞

4

B
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1
2 ,

5
8

) ∫ 1

0

5 (G)5/4R3/2[
1 − R4 + 2G 5 (G) (R4 − R2)

]1/2 dR, (4.20)568

where 5 (G) =
√

1 + G2 − G and G =
(
2�A∗q�>2/3

)−1/2. Using a first-order Taylor expansion569

in (
√
�A∗q�>)−1, we obtain570
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Figure 9b shows the crater opening time normalised by the crater opening time scaling572
without surface tension C∗exp

<0G/C∗<0G |�>→+∞, as a function of (
√
�A∗q�>)−1. This corresponds573

to the ratio between experimental data and the scaling law without surface tension (equation574
4.16). Although this scaling law without surface tension is close to the experimental opening575
time, it increasingly overestimates experiments as (

√
�A∗q�>)−1 increases, i.e.when surface576
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Figure 9: (a) Experimental maximum crater radius normalised by the maximum crater
radius scaling without surface tension '∗

exp
<0G/'∗<0G |�>→+∞ (equation 4.13), as a function

of 1/(
√
q�A∗�>). The solid line corresponds to the surface tension correction of equation

4.18. (b) Experimental crater opening time normalised by the crater opening time scaling
without surface tension C∗

exp
<0G/C∗<0G |�>→+∞ (equation 4.16), as a function of

1/(
√
q�A∗�>). The solid line corresponds to the surface tension correction of equation
4.21. Colours scale as the density ratio d1/d2. Circles and crosses correspond,

respectively, to large and small drop size series.

tension effects become significant. When surface energy is significant, we indeed expect the577
crater to open at a slower rate. The difference between experimental data and the scaling578
law without surface tension is corrected in part by equation 4.21, which is in reasonable579
agreement with the experimental data (the relative error is ±10%). The residual differences580
between experimental and predicted crater opening time may come from our assumption581
that the correction parameters q and b are independent of time. This also explains why582
residual differences of the maximum crater radius are smaller. Since we obtain the maximum583
crater radius assuming that the kinetic energy term of equation 4.8 vanishes, we predict the584
maximum crater radius without time integration.585

These scaling laws, with and without surface tension, are now discussed by normalising586
the time evolution of the crater radius for all experiments (figure 10). Figure 10a shows the587
crater radius normalised by scaling laws neglecting surface tension (equations 4.13 and 4.16).588
With this normalisation, we expect the experimental crater radius to collapse on the case589
without surface tension (figure 10a, red line). However, we obtain a residual dependency on590
the dimensionless parameter related to surface tension (

√
�A∗q�>)−1. Figure 10b shows the591

crater radius normalised by scaling laws including surface tension (equations 4.18 and 4.21).592
We find that the experimental crater radius collapses better when accounting for surface593
tension effects (figure 10b).594

Although the maximum crater radius collapses in figure 10b, there is a residual dispersion595
on the crater radius evolution at early times when surface tension effects are significant.596
This is explained by renormalising the crater radius as '̃ = '∗/'∗

<0G |�>→+∞ and time as597
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Figure 10: (a) Experimental mean crater radius normalised by the maximum crater radius
scaling '∗

exp/'∗
<0G |�>→+∞, as a function of time normalised by the crater opening time

scaling C∗/C∗
<0G |�>→+∞, with scaling laws neglecting surface tension. (b) Experimental

mean crater radius normalised by the maximum crater radius scaling '∗
exp/'∗<0G , as a

function of time normalised by the crater opening time scaling C∗/C∗<0G , with scaling laws
including surface tension. The thick solid line corresponds to the solution of equation 4.8
when 1/(

√
q�A∗�>) = 0, i.e. without surface tension. Colours scale as 1/(

√
q�A∗�>).

C̃ = C∗/C∗
<0G |�>→+∞ in equation 4.8. This gives598

'̃4 +
√

6
√
�A∗q�>

'̃2 + 16

B
(

1
2 ,

5
8

)2 '̃
3
(

d'̃
dC̃

)2

= 1. (4.22)599

The surface tension term depends on (
√
�A∗q�>)−1, which results in a residual dispersion600

of experimental curves at early times. This remains correct when we normalise equation 4.8601
with scaling laws including surface tension, although the surface tension term depends on602
(
√
�A∗q�>)−1 in a different way. We also obtain a residual dispersion of the crater radius603

at late times (figure 10b). Since the energy model (equation 4.8) applies only during the604
opening of the crater, we expect the experimental curves to collapse only when C∗ < C∗exp

<0G .605

5. Evolution of the RT instability606

Experiments in the LIF configuration allow us to describe quantitatively the evolution of the607
thickness of the mixing layer. Using the energy conservation model (section 4), we derive608
a model for the mixing layer thickness evolution, from which we obtain scaling laws for609
the maximum mixing layer thickness. We also obtain a theoretical scaling for the early-time610
instability wavelength, which we compare with experiments (appendix A).611

5.1. Buoyancy–drag model612

In addition to the energy conservation model assumptions (section 4), we assume the mixing613
layer to be uniform with a constant thickness around the crater boundary. We first consider614
the situation where no instability develops. In this situation, the volume of the layer remains615
constant. As the crater radius increases, the drop liquid spreads over an increasingly large616
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surface area and the mean layer thickness ℎ thus decreases with time (figure 5a). Denoting617
by D̄(A, C) the laterally averaged velocity field associated with the opening of the crater, the618
time derivative of ℎ is then given by619

¤ℎ = D̄(' + ℎ) − D̄('). (5.1)620

Since D̄ = ¤'('/A)2 corresponds to the radial potential flow of equation 4.4, this gives621

¤ℎ = ¤'
[

'2

(' + ℎ)2
− 1

]
, (5.2)622

where the right-hand side will be referred to as a geometrical thinning term. This equation623
originates from the mass conservation of the layer in the absence of instability.624
We now consider the effect of the RT instability (figures 5b and 11), which we model625

as an entrainment process. Assuming that the ambient liquid is gradually incorporated into626
the mixing layer at a rate D′(C) (a volumetric flux), the time derivative of ℎ is then the sum627
of the geometrical thinning term (equation 5.2) and entrainment rate D′ (figure 11c). The628
velocity D′ and length scale ℎ also correspond to the velocity and integral length scale of a629
mixing-length turbulent model describing the mixing layer. After non-dimensionalization,630
this writes as631

¤ℎ∗ = ¤'∗
[

'∗
2

('∗ + ℎ∗)2
− 1

]
+ D′∗. (5.3)632

Now D′ can also be seen as the velocity the tip of the RT plumes would have in the absence633
of geometrical thinning. With this interpretation in mind, we describe the evolution of D′634
using a buoyancy–drag model of the mixing layer (Dimonte 2000; Oron et al. 2001; Zhou635
2017). We consider that the RT plumes with a density d̄ = d2 + Δd penetrate into the less636
dense surrounding liquid with a density d2. The equation of motion then reads as637

d̄
dD′∗

dC∗
= −VΔd ¥'∗ − �d2

D′∗
2

ℎ∗
, (5.4)638

where V and � are the RT buoyancy prefactor and the drag coefficient, respectively. This639
equation corresponds to a balance between the fluid inertia on the left-hand side, buoyancy640
in the first term on the right-hand side and inertial drag in the second term on the right-hand641
side. The acceleration of the crater boundary ¥' being significantly larger than 6 (figure 7),642
we neglect Earth’s gravity in the buoyancy term.643
Using mass conservation in the uniform, hemispherical and thin mixing layer, the644

dimensionless density difference is645

Δd

d̄
=

1
1 + 3

2'
∗2ℎ∗ d2

Δd0

, (5.5)646

where Δd0 is the initial density difference between the impacting drop and the pool.647
Inserting the density excess (equation 5.5) into the equation of motion (equation 5.4) made648
dimensionless, we obtain649

dD′∗

dC∗
= −V

¥'∗

1 + 3
2'
∗2ℎ∗ d2

Δd0

− � 1
1 + 2

3
1

'∗2ℎ∗
Δd0
d2

D′∗
2

ℎ∗
. (5.6)650

Together with the crater radius evolution (equation 4.8), equations 5.3 and 5.6 are coupled651
ordinary differential equations. We solve this initial value problem numerically using fixed652
initial conditions at C∗ = 1. As in section 4, we choose '∗(1) = 1, which means that the crater653
radius is initially the same as the drop radius. We choose the initial mixing layer thickness654
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Figure 11: Mixing layer evolution. After having spread quickly on the crater boundary to
become a thick layer (a), the liquid layer of the drop gradually gets thinner as the crater
grows (b). At some point, crater expansion becomes weak enough, allowing for the RT
instability to develop (c). We decompose the velocity field into a velocity component D̄
produced by crater opening and velocity fluctuations D′ produced by the RT instability.

ℎ∗(1) by fitting the experiments without density contrast (d1/d2 = 1) with the system of655
differential equations without entrainment (equations 4.8 and 5.2). Parameter ℎ∗(1) is a fitting656
parameter, as well as the energy partitioning coefficient q and the kinetic energy correction657
coefficient b (section 4). We experimentally obtain ℎ∗(1) = ℎ∗0 = 0.62 ± 0.15. This value658

is larger than the theoretical ℎ∗(1) = 31/3 − 1 ' 0.44 obtained when the liquid of the drop659
is distributed uniformly around a hemispherical crater with a radius '∗(1) = 1. This may660
be explained by the non-hemispherical cavity at the beginning of crater opening, the initial661
accumulation of the fluid of the drop on the crater floor and possible initial interpenetration662
between the drop and the ambient fluid. We also choose D′∗(1) = 0, assuming that the663
amplitude of the velocity fluctuations in the layer are initially small. For each experiment,664
using these fixed initial conditions, we use the experimentally measured crater radius '∗exp

665
and mixing layer thickness ℎ∗exp to determine the best value for the fitting parameters of the666
system of differential equations. This includes the energy partitioning coefficient q and the667
kinetic energy correction coefficient b (equation 4.8), as well as the buoyancy prefactor V668
and the drag coefficient � (equation 5.6). Fitting V and � for each experiment, we find that �669
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Figure 12: Time evolution of the normalised mixing layer thickness ℎ∗ (a), the normalised
mixing layer growth rate ¤ℎ∗/ℎ∗ (b) and the normalised inward flux due to entrainment D′∗

(estimated from equation 5.3) (c), for two impact parameters with and without initial
density difference. Circles and solid lines correspond, respectively, to experimental data
and fitted buoyancy–drag model (equations 4.8, 5.3 and 5.6). Dashed lines and dotted
lines correspond, respectively, to the complete early-time power-law analytical solution
(equation 5.7) and the approximate early-time power-law analytical solution (equation

5.9), calculated for the d1/d2 = 1.0 and �A = 481 experiment. Dash-dotted lines
correspond to the late-time power-law analytical solution (equation 5.13 with ℎ0 = 0.62,
¤ℎ0 = −1.14 and � = 0.71), calculated for the d1/d2 = 1.8 and �A = 732 experiment.

is a decreasing function of the density ratio, with no resolvable effect of the Froude number.670
Also, V shows no resolvable trend with either the Froude number or the density ratio (see671
appendix C for details).672

5.2. Time evolution673

Figure 12 shows the evolution of the mixing layer thickness (figure 12a), growth rate (figure674
12b) and of the estimated inward flux due to entrainment (figure 12c). This figure compares675
the fitted mixing layer evolution model with experimental data, in two reference cases, with676
or without a difference of density between the impacting drop and the pool. Experimental677
data are consistent with the qualitative observations of section 3. The mixing layer starts to678
thin due to crater expansion, with a negative growth rate. Then, when the density of the drop679
is larger than the target liquid, it thickens owing to the RT instability, with a positive growth680
rate.681
In figure 12c, we estimate D′∗ from equation 5.3 based on experimental measurements of '∗682

and ℎ∗, i.e. D′∗ is the difference between the measured time derivative of ℎ∗ and the prediction683
of the model in the absence of entrainment. The model underestimates D′∗ for dimensionless684
times typically smaller than 10, for experiments with and without density difference. This685
underestimate may be explained by shear instabilities at the interface between the mixing686
layer and its surroundings (e.g. figure 6, d1/d2 = 1.0). These instabilities increase the growth687
rate of the layer and are neglected in the buoyancy–drag model, explaining why the model688
underestimates the inward flux D′∗. Furthermore, the liquid of the drop initially accumulates689
at the crater floor. Since the weighted average of the mixing layer thickness ℎ∗ gives more690
weight to the bottom of the crater (equation 2.7), the initial mean thickness is then larger in691
the experiments than in the model, where the layer thickness is uniform. The liquid of the692
drop then flows on the crater sides. For a given volume of the mixing layer, the measured693
layer velocity ¤ℎ∗ is then larger than the early-time velocity predicted with a uniform mixing694
layer (equation 5.1). This also explains why the uniform model underestimates the inward695
flux D′∗ in comparison with experimental data.696
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Figure 13: Time evolution of the experimental normalised mixing layer thickness ℎ∗
exp

(a),
the experimental mixing layer growth rate ¤ℎ∗exp/ℎ∗exp

(b) and the normalised inward flux
due to entrainment D′∗ (c) (estimated from equation 5.3). Experiments are clustered by
density ratio group, the extent of which is defined by the standard deviation of the

experiments in that group. Colours scale as the density ratio d1/d2.

Figure 13 shows the mixing layer thickness ℎ∗exp (figure 13a), growth rate ¤ℎ∗exp/ℎ∗exp
697

(figure 13b) and the estimated entrainment term D′∗ (figure 13c) as a function of time, for all698
experiments, grouped by density ratio. As suggested by figure 6, the mixing layer evolution,699
due to the RT instability, is mainly dictated by the density ratio between the drop and its700
surroundings. In the entrainment stage (typically C∗ > 15), a larger initial density difference701
promotes entrainment by the RT instability through an increased entrainment term D′∗ (figure702
13c), leading to an increased mixing layer growth rate (figure 13a,b). The local Reynolds703
number in the mixing layer depends on the density ratio and decreases with time, but is704
typically in the range 1 − 200.705

5.3. Thinning stage, entrainment stage and transition time scale706

We now focus on the numerical solution of the coupled ordinary differential equations 4.8,707
5.3 and 5.6. Figure 14 shows the geometrical thinning term and the entrainment term in708
equation 5.3, as well as the buoyancy term and the drag term in equation 5.6, as a function709
of time. Based on this figure, we identify two stages in the evolution of the mixing layer.710
The first stage, referred to as the thinning stage, is defined by a negative growth rate of the711

mixing layer, i.e. ¤ℎ∗ < 0 in figure 14a. Its dynamics is controlled by the geometrical evolution712
of the crater, with the geometrical thinning term much larger than the RT entrainment term713
in equation 5.3 (figure 14a). Since the crater deceleration is large at early times, the buoyancy714
term prevails over the drag term in the buoyancy–drag equation 5.6 (figure 14b). However,715
this does not influence the evolution of the mixing layer since the geometrical thinning term716
dominates.717
Neglecting the entrainment term D′∗ and assuming ℎ∗(1) = ℎ∗0 = 0.62 as initial condition718

for the thickness of the mixing layer, the solution of the differential equation 5.3 is719

ℎ∗ =
(
'∗3 − 1 + (ℎ∗0 + 1)3

)1/3
− '∗. (5.7)720

Using the power-law solution of '∗ (equation 4.10), we obtain an analytical solution for ℎ∗721
in the geometrical phase (figure 12, dashed lines). Assuming ℎ∗ � '∗, which is reasonable722
after a few time units (e.g. figure 4), equation 5.3 simplifies as723

¤ℎ∗ = −2 ¤'∗ ℎ
∗

'∗
. (5.8)724
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Figure 14: (a) Geometrical thinning term (first term on the right-hand side), entrainment
term (second term on the right-hand side) and ¤ℎ∗ (left-hand side) in equation 5.3, as a

function of time. (b) Buoyancy term (first term on the right-hand side), drag term (second
term on the right-hand side) and ¤D′∗ (left-hand side) in equation 5.6, as a function of time.

In this numerical solution, d1/d2 = 1.8, �A = 572, q = 0.39, b = 0.47, V = 0.33 and
� = 1.34.

The solution then takes the form725

ℎ∗ =
ℎ∗0
'∗2

. (5.9)726

These solutions correspond to the conservation of the initial volume of the impactor, i.e. a727
sphere of unit dimensionless radius. Using the power-law solution of equation 4.10, equation728
5.9 also gives a power-law solution for the mixing layer thickness, velocity and acceleration729 

ℎ∗ = ℎ∗0 [&(C
∗ − 1) + 1]−4/5

¤ℎ∗ = −4
5 ℎ
∗
0& [&(C

∗ − 1) + 1]−9/5

¥ℎ∗ = 36
25 ℎ
∗
0&

2 [&(C∗ − 1) + 1]−14/5
, (5.10)730

where& =

(
25
6
q

b

d1
d2

)1/2
. Consequently, a power-law solution for the mixing layer growth rate731

is732
¤ℎ∗
ℎ∗
= −4

5
& [&(C∗ − 1) + 1]−1

. (5.11)733

These solutions (figure 12, dotted lines) depend on the density ratio d1/d2 and on the734
correction parameters q and b, through &. They explain the early-time evolution of the735
mixing layer thickness.736
The second stage, referred to as the entrainment stage, is defined by a positive growth rate of737

the mixing layer, i.e. ¤ℎ∗ > 0 in figure 14a. In this stage, spreading and entrainment are similar738
in magnitude. The dynamics is then governed by a balance between residual geometrical739
effects and entrainment produced by the RT instability. In this stage, the crater deceleration740
slows down and hence the buoyancy term quickly decreases. The rate of entrainment is741
therefore limited by the drag term (figure 14b). At late times, when the crater size is close742
to reaching its maximum, the geometrical thinning term vanishes and the dynamics is only743
controlled by the entrainment term (figure 14a).744
In this stage, we use the approximation 5.8 for the geometrical term to simplify equation745
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5.3. We also neglect the buoyancy in equation 5.6 assuming 2
3
Δd0
d2
/('∗2ℎ∗) � 1. These746

assumptions, respectively, correspond to the vanishing crater deceleration and Δd � d2747
during the entrainment stage. With these assumptions, equations 5.3 and 5.6 become748 {

¤ℎ∗ = −2 ¤'
∗

'∗ ℎ
∗ + D′∗

¤D′∗ = −� D′∗
2

ℎ∗

. (5.12)749

Assuming a 2/5 power-law solution for '∗ (equation 4.10) and using ℎ∗(1) = ℎ∗0 and750
¤ℎ∗(1) = ¤ℎ∗0 as initial conditions, the solution to equation 5.12 is751

ℎ∗ = ℎ∗0 [1 +&(C
∗ − 1)]−4/5

{
1 +  

[
[1 +&(C∗ − 1)]9/5 − 1

]} 1
1+�

, (5.13)752

where  = 1
9 (� + 1) (4 + 5

&

¤ℎ∗0
ℎ∗0
) (figure 12, dash-dotted lines). The value � = 0.71 required753

to fit experimental data is smaller than the value obtained by fitting experimental data with754
the full numerical model (equations 4.10, 5.3 and 5.6). We explain this difference with755
the assumptions made to obtain the analytical solution, i.e. approximated geometrical term,756
neglected buoyancy term, Δd � d2 and 2/5 power-law for '∗. Using a larger value of � in757
the analytical solution results in an underestimate of the layer thickness in the entrainment758
stage.759
The transition time C2 between the thinning stage and the entrainment stage is the time at760

which the growth rate changes sign and the mixing layer thickness reaches a local minimum761
(figure 15a). This corresponds to the time at which geometrical effects exactly balance the762
entrainment produced by the RT instability.763
We measure the transition time in experiments and in figure 15b we compare the764

experimental values with the transition time obtained from the numerical model. Although765
uncertainties on the transition time are significant due to the extrinsic variability of766
experiments, the numerical model is rather consistent with experimental data.767
We now derive an approximate power-law for the transition time. We assume that ℎ∗ � '∗768

and hence we use the approximation 5.8 for the geometrical term to solve equation 5.3. We769

also simplify equation 5.6 assuming 2
3
Δd0
d2
/('∗2ℎ∗) � 1. These assumptions correspond to770

Δd � d2, which is a reasonable assumption at the transition time. With these assumptions,771
equations 5.3 and 5.6 can be combined to give772

¥ℎ∗ + 2(2� + 1)
¤'∗
'∗
¤ℎ∗ + 2(2� − 1)

¤'∗2

'∗2
ℎ∗ + �

¤ℎ∗2

ℎ∗
+ 2ℎ∗

¥'∗
'∗
+ V2

3
Δd0

d2

¥'∗

'∗2ℎ∗
= 0. (5.14)773

At the critical transition time C2 , ¤ℎ∗(C = C2) = 0. Using the power-law solutions for '∗774
(equation 4.10) and ℎ∗ (equation 5.10) in the thinning stage, we obtain from equation 5.14 a775
scaling for the dimensionless transition time C∗2 ,776

C∗
lsq

2 = 26

1 + 1
&

©«4ℎ∗0
2� + 1
V
Δd0
d2

ª®¬
5/6

− 1

 , (5.15)777

where 26 = 1.36 ± 0.07 is a least squares best-fit prefactor obtained from experimental data778
(figure 15c). As observed experimentally in figure 13, the predicted transition time (equation779
5.15) decreases with the density contrast between the fluid of the impacting drop and the780
pool. The larger the density contrast, the quicker entrainment effects become comparable to781
geometrical effects.782
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Figure 15: (a) Experimental mixing layer thickness ℎ∗
exp

as a function of time, for a single
experiment. The experimental transition time C∗

exp
2 between the thinning stage and the

entrainment stage is defined as the time at which the mixing layer thickness reaches a local
minimum. (b) Experimental transition time scale C∗

exp
2 as a function of the transition time

C∗2 predicted by the buoyancy–drag model (equations 4.8, 5.3 and 5.6). (c) Experimental
transition time scale C∗

exp
2 as a function of the transition time scaling C∗

lsq
2 (equation 5.15).

Colours scale as the density ratio d1/d2.

5.4. Maximum mixing layer thickness783

The maximum mixing layer thickness ℎ∗<0G first depends on the growth rate of the RT784
instability in the entrainment stage, an increased initial density difference leading to an785
increased mixing layer growth rate (figure 13). The maximum thickness also depends on786
the time window available for the mixing layer to actually grow without being affected by787
geometrical effects. The transition time C∗2 and the maximum opening time C∗<0G correspond,788
respectively, to the lower and upper limits of the available timewindow. Since C∗2 and C∗<0G are,789
respectively, a decreasing function (equation 5.15) and an increasing function (equation 4.16)790
of the density ratio, we expect an increased density ratio to expand the time window available791
for entrainment, leading to an increased maximum mixing layer thickness, consistent with792
figure 13a. Since C∗<0G also increases with the Froude number, we also expect the available793
time window and the maximum layer thickness to increase with the Froude number.794

We first compare the experimental maximum mixing layer thickness ℎ∗exp
<0G with the795

maximum thickness ℎ∗<0G obtained from themodel (figure 16a).We obtain a good agreement.796
We then fit experimental data with the power-law scaling797

ℎ∗
lsq

<0G = 27

(
d1

d2

)28

�A29 , (5.16)798

where 27 = 0.04±0.02, 28 = 2.3±0.2 and 29 = 0.21±0.06 (figure 16b). We search a scaling799
law as a function of d1/d2 because C∗<0G and C∗2 are strong functions of d1/d2 (equations800
4.16 and 5.15). Scaling 5.16 is consistent with the predicted influence of the density ratio801
and the Froude number on the mixing layer growth rate and the time window available for802
entrainment. We indeed obtain a maximum mixing layer thickness increasing with both the803
initial density ratio (28 > 0) and the Froude number (29 > 0). The fact that 28 is significantly804
larger than 29 is also consistent with the qualitative observations of figure 6, i.e. a maximum805
mixing layer thickness increasing mainly with the initial density ratio.806
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Figure 16: (a) Experimental normalised maximum mixing layer thickness ℎ∗
exp
<0G as a

function of the maximum thickness ℎ∗<0G predicted by the buoyancy–drag model
(equations 4.8, 5.3 and 5.6). (b) Experimental normalised maximum mixing layer

thickness ℎ∗
exp
<0G as a function of the least square best-fit power-law scaling ℎ∗

lsq
<0G (equation

5.16). Colours scale as the density ratio d1/d2.

6. Geophysical implications807

We now apply our results to obtain a prediction of the amount of metal–silicate equilibration808
following an impact on a magma ocean. After the impact, the metal core of the colliding body809
migrates toward the planetary core due to the density contrast with the surrounding silicates810
(Rubie et al. 2015). Part of the migration occurs in a fully molten magma ocean where the811
metal is expected to descend as a turbulent thermal and equilibrate with silicates (Deguen812
et al. 2011, 2014). The metal phase then undergoes a vigorous stirring (Lherm & Deguen813
2018), leading to its fragmentation (Landeau et al. 2014; Wacheul et al. 2014; Wacheul &814
Le Bars 2018) into centimetric drops (Stevenson 1990; Karato & Murthy 1997; Rubie et al.815
2003; Ichikawa et al. 2010). However, these turbulent thermal models assume that the metal816
cores are released as a compact volume in the magma ocean. In contrast, recent investigations817
show that the impactor core equilibrates with silicates during the impact stage, prior to the818
fall in the magma ocean (Kendall & Melosh 2016; Landeau et al. 2021). Our experiments819
confirm this result and show that an RT instability develops during the opening of the crater,820
possibly equilibrating metal and silicates.821
In order to estimate the equilibration produced by theRT instability, we estimate themass of822

ambient silicates entrained by the RT instability that is likely to equilibrate with the impacting823
metal core. For the sake of simplicity, we assume that the mass of entrained silicates fully824
equilibrates, i.e.mixes, with the metal of the impactor. When an impactor with a radius '8 , a825
volume fraction of metal 5<, a metal core density d< and a silicate mantle density dB, impacts826
a planetary target, the dimensionless mass of equilibrated silicates is Δ = "B/"<, where827
"< = 5<d<(4/3)c'3

8
is the mass of the metal core and"B = dB [2c'2

<0Gℎ<0G− (4/3)c'3
8
]828

is the mass of entrained silicates (Deguen et al. 2014). After non-dimensionalization, the829
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Figure 17: (a) Experimental mass of equilibrated silicates Δexp, as a function of the mass
of equilibrated silicates scaling Δlsq (equation 6.2), using 5< = 1. Colours scale as the

modified Froude number �A∗. (b) Mass of equilibrated silicates scaling Δlsq as a function
of the target-to-impactor radius 'C/'8 (equation 6.3), for several impact velocities*8 and
using 5< = 0.16 and d</dB = 2. Symbols and lines: triangle, impactor of 10 km in radius
onto a Earth-sized target; circle, impactor of 100 km in radius onto a Earth-sized target;
square, canonical Moon-forming impact with a Mars-sized impactor (Canup 2004);
diamond, fast-spinning Earth Moon-forming impact with a fast (*8 = 2*4) and small

('8/'C = 0.3) impactor (Cuk & Stewart 2012); dashed lines correspond to an extrapolated
range of Froude number, i.e. �A < 200, which is outside of the experimental Froude

number range.

mass of silicates equilibrated with metal during crater opening is830

Δ =
dB

d<

(
3
2

1
5<
'∗

2

<0Gℎ
∗
<0G − 1

)
. (6.1)831

Using scaling laws for '∗<0G (equation 4.14) and ℎ∗<0G (equation 5.16), we obtain the832
following scaling law for the mass of equilibrated silicates833

Δlsq =
dB

d<

(
1
5<
210

(
d̄

dB

)211

�A212 − 1
)

(6.2)834

where 210 = 0.07 ± 0.03, 211 = 2.8 ± 0.2 and 212 = 0.67 ± 0.06. In this scaling, the density835
ratio is defined with d̄/dB, where d̄ = d< 5< + dB (1 − 5<) is the mean density ratio of the836
impactor, because this scaling derives from the crater size and the maximum mixing layer837
thickness scaling laws (equations 4.14 and 5.16, respectively), which indeed use the mean838
density of the impactor. We validate this scaling law against experimental data in figure 17a,839
using 5< = 1 since the drop is a one-phase fluid. The predicted values of the dimensionless840
mass of equilibrated silicates Δlsq are indeed close to the experimental values Δexp. Relatively841

large error bars of Δlsq mainly result from the uncertainty on the prefactor coefficient of ℎ∗lsq
<0G842

(equation 5.16). This means that the following geophysical applications have to be considered843
carefully given the uncertainties on the scaling law coefficients.844
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In the context of planetary impacts, the Froude number is given by845

�A = 2
'C

'8

*2
8

*2
4

(6.3)846

where *4 =
√

26'C is the escape velocity and 'C is the radius of the target planet. The847
impact velocity of colliding bodies during accretion is typically one to three times the escape848
velocity (Agnor et al. 1999; Agnor & Asphaug 2004), which means that the Froude number849
depends mainly on the target-to-impactor radius.850
Using equations 6.2 and 6.3, we calculate the estimated mass of silicates equilibrated with851

the impacting core during crater opening Δlsq as a function of the target-to-impactor radius852
'C/'8 (figure 17b). We use 5< = 0.16 and d</dB = 2 to match the internal structure of a853
differentiated impactor (Canup 2004). Since the Froude number increases with the target-854
to-impactor radius, it means that smaller colliding bodies will produce more equilibration,855
relative to their size, than giant impactors. For example, impactors with a 10 km and 100 km856
radius (figure 17b, triangle and circle, respectively) will then equilibrate with 35.5 and 7.2857
times its own mass, respectively.858
Several giant impact scenarios have been proposed to explain the formation of the Moon859

(e.g. Canup 2004; Cuk & Stewart 2012). We expect the canonical impact scenario with a860
Mars-sized impactor (Canup 2004) to equilibrate with 0.2 times its own mass during this861
crater opening stage (figure 17b, square). In contrast, we predict that the fast-spinning and862
smaller impactor proposed by Cuk & Stewart (2012) equilibrates with 1.8 times its own863
mass (figure 17b, diamond). These giant impacts scenarios involve small target-to-impactor864
radius, corresponding to an extrapolated range of Froude number, i.e. �A < 200 (figure 17b,865
dashed lines), which is outside of the experimental Froude number range used to constrain the866
scaling. In addition, this small target-to-impactor radius is very sensitive to the uncertainty on867
the scaling law coefficients. The mass of equilibrated silicates extrapolated for large impactor868
thus has to be considered carefully.869
Recent experiments estimate the mass of equilibrated silicates during the impact, con-870

sidering both the crater formation, its collapse into an upward jet and the collapse of the871
jet (Landeau et al. 2021). The 10 km impactor, the 100 km radius impactor, the canonical872
Moon-forming impactor and the fast-spinning Earth impactor, respectively, equilibrate with873
1155, 74, 1.5 and 12 times the impactor mass. This means that the fraction of silicates874
equilibrated during the opening stage of the crater, in comparison with the whole cratering875
process including the jet formation and collapse, are 3%, 10%, 13% and 15%, respectively.876
This is in agreement with an impact-induced equilibration mostly dominated by the collapse877
of the jet (Landeau et al. 2021).878
Experiments including the formation and collapse of the jet (Landeau et al. 2021) have879

been done with relatively small density contrasts (d1/d2 < 1.1) and the effect of the RT880
instability was not as important as in the present experiments. At a given Froude number,881
e.g. �A = 300, the fluid of the impactor equilibrates with 4.8 and 13.3 times its own mass882
of ambient fluid, if d1/d2 = 1.1 and d1/d2 = 1.8, respectively (equation 6.2). This means883
that the mass of ambient fluid likely to equilibrate with the impactor is 2.8 times larger in884
our experiments close to the metal–silicate density ratio than in the experiments of Landeau885
et al. (2021). We thus implicitly assume that equilibration produced by the RT instability and886
the jet are independent, whereas the equilibration produced by the jet is actually promoted by887
the RT instability and the dispersion of the impactor during crater opening. In other words,888
we assume that equilibration produced by the RT instability and the jet is combined in an889
additive way, whereas it is likely to be a multiplicative process. This means that we probably890
underestimate the influence of the jet on the overall equilibration for the large density ratios.891
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7. Conclusion892

In this paper, we use a backlighting method and LIF to visualise the crater boundary and the893
mixing layer produced around the cavity after the impact of a drop on a deep liquid pool.894
We show that crater deceleration after impact is responsible for a density-driven perturbation895
at the drop–pool interface. We interpret these perturbations as a spherical RT instability.896
We derive an energy conservation model for the crater radius evolution (equation 4.8) and897
compare it with backlight experiments. In particular, we obtain scaling laws for the maximum898
crater radius (equations 4.13 and 4.18) and the crater opening time (equations 4.16 and 4.21).899
We also derive a mixing layer evolution model (equations 5.3 and 5.6) involving two stages.900
The mixing layer dynamics is first controlled by the geometrical evolution of the crater,901
then by the balance between residual geometrical effects and entrainment produced by the902
RT instability. We obtain scaling laws for the transition time scale between stages (equation903
5.15) and the maximum mixing layer thickness (equation 5.16). From our results, we derive904
scaling laws for equilibration between metal and silicates during a planetary impact onto a905
magma ocean.906

In order to validate the extrapolation of our experimental scaling laws to giant impacts,907
experiments at lower Froude number involving large volume impactors (e.g. Landeau908
et al. 2021) are required. This would allow us to investigate the possible effect of the909
Reynolds number on the mixing layer. Furthermore, several physical aspects neglected in910
our experiments have to be investigated experimentally or numerically, in order to examine911
their effect on the cratering and equilibration dynamics. Immiscibility effects may change the912
equilibration dynamics, in particular with the fragmentation of the metal phase. Furthermore,913
the viscosity and diffusivity contrasts may influence thermal and chemical transfers between914
phases, as well as the RT instability wavelength. Compressibility effects are significant915
during the opening stage of the crater, with a Mach number larger than unity (Kendall916
& Melosh 2016). They include the propagation of an impact shock wave and melting917
processes. Experiments neglect these effects with a Mach number much smaller than unity.918
Compressibility may influence the crater evolution and equilibration dynamics following the919
impact, in particular the evolution of the mixing layer during crater opening. Nonetheless,920
the flow velocity becomes very rapidly subsonic because the kinetic energy of the impactor921
is quickly distributed over an increasingly large volume and because this kinetic energy is922
converted into gravitational potential energy. Oblique impact effects are also expected since923
the probability of a vertical impact is less than the likelihood of an oblique impact, with924
a maximum probability for a 45◦ angle (Shoemaker 1961). The asymmetry caused by an925
oblique impactmodifies the dynamics of themixing layerwith the growth of a shear instability926
around the cavity. The crater then collapses, producing an oblique jet with an angle similar to927
the impact angle, but in the opposite direction. These features modifying the dynamics of the928
mixing layer during crater opening and the properties of the jet following the collapse of the929
crater crucially affect the overall equilibration of the metal phase. Differentiated impactors930
effects are also expected since most of the Earth mass was accreted from differentiated bodies931
(Kleine et al. 2002; Scherstén et al. 2006). Experiments currently fail to reproduce an impactor932
with a differentiated fluid core. The existence of a mantle around the impactor’s core may933
influence the mixing layer dynamics by changing the distribution of the metal phase around934
the crater and the dynamics of theRT instability during crater opening. Depending onwhether935
the impactor core directly descends in the magma ocean or is entrained into the upward jet,936
the equilibration of the metal phase may be modified. The role of impactor differentiation937
may be investigated numerically, or experimentally using compound drops (e.g. Blanken938
et al. 2021). However, since the compound drop experiments involve immiscible water–oil939
drops, it will be challenging to study the mixing properties following the impact. Finally,940
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pressure and temperature effects are expected during the impact, in particular regarding941
large energetic impacts such as the Moon-forming giant impact. These effects neglected in942
experiments may result in an increased miscibility of metal and silicate phases (Morard943
& Katsura 2010), with potential consequences on the fragmentation of the metal phase.944
This may affect chemical equilibration and increase the iron content in the magma ocean.945
Temperature contrasts may also slightly influence the buoyancy of the metal phase, which946
may affect the impact dynamics in a minor way.947

Supplementary data. Supplementary movies are available at948
https://doi.org/10.1017/jfm.2019...949
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Appendix A. Early-time wavelength966

We convert the experimental instability wavelength into an equivalent spherical harmonic967
degree and we compare with an experimental scaling law. From the number of plumes =,968
counted on the hemispherical section of the density interface at C∗ = 10, we estimate the969
instability wavelength as _ = c'/=. We then obtain the corresponding spherical harmonics970
degree of maximum instability ;<0G using the Jeans relation (Jeans 1923)971 √

;<0G (;<0G + 1) = 2c'
_
. (A 1)972

In a thin layer configuration with no surface tension, the preferred instability wavelength973
is the minimum of the layer thickness and of a length scale obtained by balancing buoyancy,974
inertia and viscous forces. In the following, we assume that the instability wavelength depends975
on the buoyancy–inertia–viscosity balance. On the one hand, the balance between buoyancy976
and inertia is valid at small harmonic degrees ;, with an instability growth rate scaling977
as ;1/2 (Rayleigh 1899; Taylor 1950). On the other hand, the balance between buoyancy978
and viscosity is valid at large harmonic degrees ;, with an instability growth rate scaling979
as 1/; (Chandrasekhar 1961). The instability growth rate thus reaches a maximum when980
inertia, buoyancy and viscous forces are of the same order of magnitude. The corresponding981
instability wavelength is _ ∼ {a2

2/[(Δd0/d2) ¥']}1/3, which after non-dimensionalization982
gives983

_∗ ∼
(
Δd0

d2
¥'∗

)−1/3
'4−2/3. (A 2)984
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Figure 18: Experimental harmonic degree of maximum instability ;exp
<0G , as a function of

the harmonic degree of maximum instability scaling ;lsq
<0G (equation A 3). Colours scale

as the Reynolds number '4.

Assuming that ¥'∗ and '∗ scale, respectively, as '∗
<0G |�>→∞/C

∗2
<0G |�>→∞ and '∗

<0G |�>→∞985

(see equations 4.13 and 4.16) and using the Jeans relation (equation A 1), equation A 2 gives986
a scaling for the degree of maximum instability987

;
lsq
<0G = 213q

1/4b−1/3�A−1/12
(
d1

d2

)1/4 (
Δd0

d2

)1/3
'42/3, (A 3)988

where 213 = 0.177 ± 0.005 is a least squares best-fit prefactor obtained from experimental989
data (figure 18).990
Figure 18 shows the harmonic degrees ofmaximum instabilitymeasured in all experiments,991

as a function of scaling A 3 for ;<0G . Experimental data agree with this scaling, except for992
Froude numbers smaller than 100. This corresponds to Reynolds numbers smaller than993
4000. In this case, the crater differs from the hemispherical shape and from the purely radial994
acceleration assumed in the scaling. Furthermore, the fact that experimental data scale with995
the buoyancy–inertia–viscosity scaling (equation A 3) indicates that the preferred wavelength996
is indeed set by the buoyancy–inertia–viscosity balance rather than by the layer thickness.997

Appendix B. Energy partitioning and kinetic energy correction998

Figure 19a shows the correction parameter q as a function of the Froude number. Since999
several energy sinks such as crown energy and viscous dissipation are neglected in the1000
model, we expect q to be smaller than unity. In our experiments, we find q = 0.38 ± 0.04,1001
in agreement with previous works where experimental data are fitted using a partitioning1002
coefficient in the range 0.2 − −0.6, depending on the Froude number (Engel 1966; Olevson1003
1969; Leng 2001).1004
In our experiments, �A and ,4 are highly correlated since �> does not vary by a large1005

amount. The coefficient q is found to be a decreasing function of both �A and ,4, which1006
scales in particular as1007

q = �A−0.156±0.001, (B 1)1008

and is relatively independent of the density ratio and the drop size. This implies that as1009
the impactor inertia increases, the relative importance of the neglected energy sink terms1010
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Figure 19: Energy partitioning parameter q (a) and crater kinetic energy correction
parameter b (b), as a function of the Froude number �A. The solid line gives the best-fit
power-law scaling (equation B 1). Colours scale as the density ratio d1/d2. Circles and

crosses correspond, respectively, to large and small drop size series.

increases. This may be explained by a change in the energy balance between the crater1011
energy and the crown energy (Olevson 1969). As the impactor inertia increases, the relative1012
importance of the surface energy of the crater and the crown decreases, while the potential1013
energy of the crater and the kinetic energy of the crown increases, resulting in a global1014
increase of the crown energy to the expense of the crater. According to Olevson (1969), the1015
energy within the crown increases with �A faster than the energy within the crater, which1016
would imply that q is a decreasing function of �A . The drop deformation upon impact may1017
also increase with impactor inertia and with it the energy required for this deformation,1018
decreasing to this extent the energy delivered to the pool.1019
Figure 19b shows the kinetic energy correction parameter b, as a function of the Froude1020

number. It accounts for the difference between the deliberately simplified velocity potential1021
used in the model 4.3 and the true flow. Since the crater boundary is not hemispherical and1022
the crown is necessarily generated by a tangential velocity field, the true velocity potential1023
cannot be purely radial (Engel 1967; Bisighini et al. 2010). Parameter b is very likely a1024
function of time, but we assume it to be constant. In our experiments, the kinetic energy1025
correction parameter is smaller than unity with b = 0.34± 0.03. This means that the velocity1026
model overestimates the crater kinetic energy in the energy balance. We do not observe any1027
resolvable trend between b, �A and d1/d2.1028

Appendix C. Buoyancy prefactor and drag coefficient1029

Figure 20 shows the fitted buoyancy prefactor V and drag coefficient � for each experiment.1030
The mean value of the buoyancy prefactor is V = 0.32 ± 0.17. This is smaller than the1031

value V = 1 found by Dimonte (2000) for plane layer experiments. This difference may come1032
from the hemispherical shape or the finite thickness of the dense layer in our experiments.1033
Given error bars, we find that V shows no resolvable trend with the density ratio or the Froude1034
number. However, variations may exist and require further investigations.1035
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Figure 20: Buoyancy prefactor V (a) and drag coefficient � (b), as a function of the Froude
number �A. Colours scale as the density ratio d1/d2.

The mean value of the drag coefficient is � = 1.9 ± 1.1. This value agrees with the value1036
� = 2.5 ± 0.6 obtained for constant, variable and impulsive accelerations of a plane mixing1037
layer (Dimonte 2000). We find that � decreases when the density ratio increases (figure1038
20b). The mean value of the drag coefficient at d1/d2 = 1.2 and d1/d2 = 1.8 is, respectively,1039
� = 3.1± 1.1 and � = 1.1± 0.4. As for the buoyancy prefactor, � shows no resolvable trend1040
with the Froude number.1041
In order to further compare the values of V and � with the results of (Dimonte 2000), we1042

now consider two simplified end-member acceleration histories: a constant acceleration and1043
an impulsive acceleration.1044
In the case of a plane layer under constant acceleration ¥', the solution to the buoyancy–1045

drag equation 5.4 is ℎ = U(Δd/d̄) ¥'C2 (e.g.Dimonte 2000), where U is an empirical prefactor1046
and d̄ = (d1 + d2)/2. The parameter U can be expressed as a function of the parameters V1047
and � by looking for a solution of equation 5.4. Taking D′ = ¤ℎ, as appropriate for a plane1048
layer, solving gives1049

U =
V

2 + 8� d2
d1+d2

. (C 1)1050

Figure 21a shows U, calculated for each experiment and compares the results to the1051
homogeneous buoyancy–drag model of Dimonte (2000) for � = 1, � = 2 and � = 3. The1052
mean valueU = 0.04±0.01 in our experiments is smaller than the valuesU = 0.05−−0.07 that1053
are obtained at the same density ratio with immiscible fluids and under constant acceleration1054
(Dimonte & Schneider 2000). The observed values of U are also smaller than the predictions1055
from the homogeneous model of Dimonte (2000), in particular at large density ratios. For1056
example, at d1/d2 = 1.8 the drag coefficient found in our experiments is approximately1057
� = 1 (figure 20b), which leads to an overestimate of U by a factor 2 in figure 21a. This may1058
be a consequence of the variable acceleration, but also of the spherical interface, miscibility1059
and the finite thickness of the dense layer.1060
In the case of an impulsive acceleration, the buoyancy term in equation 5.4 is negligible1061
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Figure 21: Constant acceleration prefactor U (a) and impulsive acceleration exponent \ (b)
as a function of the density ratio d1/d2. Colours scale as the experimental drag coefficient

�. Solid lines, dashed lines and dotted lines correspond to the homogeneous
buoyancy–drag model of Dimonte (2000) for � = 1, � = 2 and � = 3, respectively.

since ¥' = 0. Neglecting geometrical effects, i.e. D′ = ¤ℎ and assuming that d̄ = (d1 + d2)/2,1062
the solution is then given by ℎ = ℎ0g

\ , where g = D′0C/\ℎ0+1 and ℎ0 and D′0 are initial values1063
(e.g. Dimonte 2000). The exponent is then1064

\ =
1

1 + 2� d2
d1+d2

. (C 2)1065

Figure 21b shows \, calculated for each experiments and compares the results to the1066
buoyancy–drag model of Dimonte (2000). The mean value \ = 0.4 ± 0.1 is close to the1067
values \ = 0.2−0.3 that are obtained at the same density ratio between immiscible fluids and1068
under an impulsive acceleration (Dimonte & Schneider 2000). The exponent \ increases with1069
the density ratio, consistently with the homogeneous model of Dimonte (2000) estimated at1070
consistent values of the drag coefficient � (figure 20b). Since the acceleration of the crater1071
evolves as C−8/5, the acceleration is relatively close to be impulsive, explaining the good1072
agreement between our experiments and the impulsive acceleration model.1073
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