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UNIFORM C1,α-REGULARITY FOR ALMOST-MINIMIZERS OF SOME
NONLOCAL PERTURBATIONS OF THE PERIMETER

M. GOLDMAN, B. MERLET, AND M. PEGON

Abstract. In this paper, we establish a C1,α-regularity theorem for almost-minimizers of a functional
Fε,γ = P −γPε, where γ ∈ (0, 1) and Pε is a nonlocal energy converging to the perimeter as ε vanishes.
Our theorem provides a criterion for C1,α-regularity at a point of the boundary, which is uniform as
the parameter ε goes to 0. Building upon previous work by the last two authors, as an application
of this theorem we obtain that volume-constrained global minimizers of Fε,γ are balls for any ε
small enough. For small ε, this minimization problem corresponds to the large mass regime for a
Gamow-type problem where the nonlocal repulsive term is given by an integrable kernel G with
sufficiently fast decay at infinity.
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1. Introduction

Motivated by the study of Gamow’s liquid drop model in the large mass regime for general kernels
which decay sufficiently fast at infinity, we are interested in the minimization problem

min
{
Fγ,ε(E) := P (E)− γPε(E) : E ⊆ Rn measurable such that |E| = |B1|

}
, (P)

where n ≥ 2, γ ∈ (0, 1), and Pε is a nonlocal perimeter functional such that Pε → P as ε→ 0. More
precisely, given a measurable radial function G : Rn 7→ (0,∞) we define the rescaled kernels Gε by
G(x) := ε−(n+1)G(ε−1x) for all x ∈ Rn and the nonlocal perimeter Pε by

Pε(E) :=
ˆ
Rn×Rn

|1E(x)− 1E(y)|Gε(x− y) dxdy = 2
ˆ
E×Ec

Gε(x− y) dx dy

for every measurable set E ⊆ Rn. We will elaborate further below on the link with Gamow’s model
when the kernel G is integrable.
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The main contribution of this paper is a C1,α-regularity theorem for almost-minimizers of Fε,γ
(whose meaning is given in Definition 1.1 just below) which is uniform as ε goes to 0, under suitable
assumptions on G. As a consequence, we obtain the following characterization of minimizers of (P) for
small ε.

Theorem A (Minimality of the unit ball). Assume n ≥ 2, γ ∈ (0, 1) and that G satisfies (H1) to (H5)
(see below). Then there exists εball = εball(n,G, γ) > 0, such that, for every ε ≤ εball, the unit ball is
the unique minimizer of (P), up to translations and Lebesgue-negligible sets.

For our C1,α-regularity theorem, we work with a classical notion of almost-minimality for Fε,γ .

Definition 1.1 (Almost-minimizers). Let γ ∈ (0, 1) and ε > 0. For any positive constants Λ and r0,
we say that E is a (Λ, r0)-minimizer of Fε,γ if for every set of finite perimeter F ⊆ Rn such that
E4F ⊂⊂ Br(x) with 0 < r ≤ r0 and x ∈ Rn, we have

Fε,γ(E) ≤ Fε,γ(F ) + Λ|E4F |.

As is standard for these types of variational problems (see e.g. [28, 17, 20, 12]) , we will see that
minimizers of (P) are (Λ, r0)-minimizers of Fε,γ for any r0 and some constant Λ, not depending on ε.

Remark 1.2. We could generalize the above definition to an open subset Ω ⊆ Rn, imposing that
competitors F differ from E only in balls Br(x) ⊆ Ω. Our arguments work just the same and yield
uniform regularity of E in Ω. This applies for instance to sets E which are prescribed outside Ω and
minimize Fε,γ locally in Ω.

For k ∈ N and a general kernel K, it will be convenient to introduce the k-th moment of K, which is
defined by

IkK :=
ˆ
Rn
|z|k|K(z)|dz. (1.1)

In this work, G always satisfies the following hypotheses:

(H1) G is a measurable, nonnegative, radial function, that is, there exists a measurable function
g : (0,∞)→ [0,∞) such that G(x) = g(|x|) for every x ∈ Rn \ {0};

(H2) x 7→ |x|G(x) ∈ L1(Rn) and the first moment is normalized by

I1
G = 1

K1,n
, (1.2)

where K1,n := −
ˆ
Sn−1
|xn|dHn−1.

We also set gε(r) := ε−(n+1)g(ε−1r) for every r > 0, so that Gε(x) = gε(|x|) for every x ∈ Rn \ {0},
and introduce the function Q : R+ → R+ defined by

Q(r) :=
ˆ
Rn\Br

|x|G(x) dx, ∀r ∈ [0,∞). (1.3)

When necessary, we may use the following extra assumptions on G:

(H3) G ∈W 1,1
loc (Rn \ {0}), I2

|∇G| <∞, and g′(r) = O(r−(n+1)) at infinity;

(H4)
ˆ
B1\Br

G(x) dx ≤ C

rs0
for every r ∈ (0, 1), for some constants C > 0 and s0 ∈ (0, 1);

(H5) Q(r) ≤ C

rn−1+p0
for every r > 0, for some constants C > 0 and p0 > 0.

Let us briefly comment on these assumptions.

(i) (H1) and (H2) are needed to ensure that Pε is well-defined on sets of finite perimeter and that it
converges to the standard perimeter. In particular, it is used to obtain existence of minimizers
for small ε and convergence to the ball as ε vanishes. The need for extra assumptions (H3),
(H4) and (H5) will be made clear further below when sketching the proof of our main result.

(ii) With (H2), one can check that assumption (H5) is equivalent to In+q0
G <∞ for some positive q0

(possibly different from p0).
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(iii) If G is a power law function near the origin, that is, G(x) = C|x|−a for some C, a > 0 in a
neighborhood of 0, then (H4) states that a ≤ n+ s0. Notice that in that particular example,
|·|2∇G is integrable near the origin, which is a part of (H3).

(iv) If G is a power law function at infinity, that is G(x) = C|x|−b whenever |x| is large enough, for
some C, b > 0, (H5) states that b ≥ 2n+ p0. In that particular example, |·|2∇G is integrable at
infinity, and g′(r) = O(r−(n+1)) when r →∞, which is the other part of (H3).

(v) From the two previous points, we readily see that the kernel G defined by

G(x) := C min(|x|−(n+s0), |x|−(2n+p0))

with s0 ∈ (0, 1), p0 > 0, and C a normalizing constant, satisfies assumptions (H1) to (H5).
Other admissible kernels are multiples of the Bessel kernels Bα,κ, defined for any α > 0 and κ > 0
as the fundamental solution of the operator (Id − κ∆)α2 . Indeed, Bessel kernels are smooth
away from zero, decay exponentially at infinity and, near the origin

Bα,κ(x) ∝


1

|x|α−n for α ∈ (0, n),
− log(|x|) for α = n,

1 for α > n.

Eventually, our paper covers the case of integrable compactly supported kernels (albeit with
the extra assumption (H3)), which was studied in [28].

To state our C1,α-regularity theorem and sketch its proof, we need to introduce the notion of
(spherical) excess, which measures the variation of the normal vector to the boundary of a set near a
point.

For a set of finite perimeter E, we will always implicitly assume that E denotes a well-chosen
representative such that its topological boundary ∂E satisfies (see e.g. [25, Proposition 12.19])

∂E = spt |D1E | =
{
x ∈ Rn : 0 < |E ∩Br(x)| < |Br(x)| for all r > 0

}
.

We denote by ∂∗E the reduced boundary of E, and by νE(x) the outer unit normal to ∂∗E at x.

Definition 1.3 (Spherical excess). For any set of finite perimeter E ⊆ Rn we define the spherical
excess (or simply excess) of E in x ∈ ∂E at scale r > 0 by

e(E, x, r) := inf
ν∈Sn−1

1
rn−1

ˆ
∂∗E∩Br(x)

|ν − νE(y)|2

2 dHn−1
y .

We can now state the main theorem.

Theorem B. Assume that G satisfies (H1) to (H5), and let γ ∈ (0, 1) and Λ > 0. Then there exist
positive constants τreg, εreg, β ∈ (0, 1), and α ∈ (0, 1) depending only on n, G and γ such that the
following holds. If E is a (Λ, r0)-minimizer of Fε,γ with ε ∈ (0, εreg) satisfying, for some x ∈ ∂E and
0 < r < r0

e(E, x0, r) + Λr ≤ τreg, and ε1−β ≤ r,
then, up to a rotation, (∂E − x0) ∩

(
Dr/2 × (− r2 ,

r
2 )
)
coincides with the graph of a function u which

satisfies

sup
x′,y′∈Dr/2

|∇u(x′)−∇u(y′)|
|x′ − y′|α

≤ C(n,G, γ,Λ).

Here Dr/2 denotes the (n− 1)-dimensional open ball of radius r/2 centered at the origin.

This theorem falls into the category of “epsilon-regularity theorems” in the sense that it gives
regularity of some object (here, the boundary of a set) in a region, provided its energy in a slightly
larger region is below a critical threshold.

To the best of our knowledge, this is the first time such a uniform regularity theorem is obtained
for a problem involving the competition of two local/nonlocal perimeters, when none of the terms is
negligible in front of the other. One may compare our regularity result with the one of [5]. Therein,
the authors establish a uniform C1,α-regularity result for local minimizers of the s-perimeter (when
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G(x) = |x|−(n+s)) which is uniform in s as s→ 1−. However, due to the lack of a competing term, the
problem and its analysis are rather different from the ones of the present work.

As stated above, the main motivation for this work is the characterization of minimizers of (P) for
small ε. The study of this problem for kernels G satisfying (H1) and (H2) was started by the last author
in [27], where the existence and convergenge of minimizers (as well as their boundaries) to the ball was
obtained. In [26], the last two authors proved Theorem A in the planar case, and in arbitrary dimension
established that the unit ball is the unique minimizer, up to translations, among so-called “nearly
spherical sets”. Nearly spherical sets are sets whose boundaries are (small) Lipschitz perturbations
of the unit sphere. Assumption (H3) is in particular required for this perturbative argument, where
a Taylor expansion of the nonlocal perimeter around the unit ball was carried out. In a standard
way, since Theorem B gives uniform C1,α-regularity estimates as ε→ 0, it can be used to bridge the
gap between the Hausdorff convergence of the boundaries of minimizers and the fact that they are
small Lipschitz perturbations of the unit sphere. Thus, by the aforementioned perturbative argument,
minimizers can only be balls for small ε, which is precisely Theorem A.

A first step for the proof of Theorem B is to observe that any (Λ, r0)-minimizer E of Fε,γ satisfies in
fact a weak quasi-minimality property of the form

P (E;Br(x)) ≤ CP (F ;Br(x))

for every set of finite F such that E4F ⊂⊂ Br(x), for every x ∈ Rn and 0 < Λr ≤ 1 − γ, where C
depends only on n, G and γ. It is well-known that this kind of quasi-minimality only gives weak
regularity properties on E (see [16, Theorem 5.6]; the original proof can be found in [7]). Namely,
it ensures that the Hn−1-density of ∂∗E (where Hn−1 is the (n− 1)-dimensional Hausdorff measure)
is bounded from below and from above (here, not depending of ε). One can notice the analogy
with the case of functions u ∈ H1

loc(Rn) satisfying, for some C ≥ 1 and some open set Ω ⊆ Rn, the
quasi-minimality property with respect to the Dirichlet functionalˆ

Ω
|∇u|2 ≤ C

ˆ
Ω
|∇v|2

for every function v ∈ H1
loc(Ω) such that spt(u − v) ⊂⊂ Ω. This type of quasi-minimality ensures

Hölder-regularity in Ω, but not better in general for n ≥ 2 (see [18, Chapter 6] and references therein).
The main point of our work is to build upon this minimal regularity and obtain higher order regularity

for (Λ, r0)-minimizers of Fε,γ . The proof of our C1,α-regularity theorem is inspired by the usual strategy
for almost-minimizers of the area functional developed in the literature by De Giorgi (see for example
[9, 29, 19]), Almgren, Allard, Bombieri, Federer, Schoen, Simon (to name only the main figures). Here
we follow the presentation of [25].

The key point in the standard strategy is to prove that if the excess in x ∈ ∂E is small enough at
some scale r0 > 0, then it decays as a power function at every scale smaller than r0, i.e.,

e(E, x, r) .
(
r

r0

)2α
e(E, x, r0), ∀r ∈ (0, r0).

Since the excess measures the oscillation of the normal to the boundary at a given scale, it is well-known
that such a power decay implies C1,α-regularity of the boundary by a Campanato-type argument.

To proceed, we distinguish between two scales, small scales when r . ε, and large scales when r � ε.
If the excess is small enough at some large scale r � ε, then Pε should be treated as the perimeter, so
that, formally Fε,γ ' (1− γ)P . In that regime, we are able to adapt the proofs in [25] to obtain power
decay of the excess down to the scale ε1−β � ε for any β > 0 arbitrarily small, that is, down to any
scale which remains much larger than ε.

Using the fact that the excess is now small at scale ε1−β , the scaling property of the excess and (H5)
allow us to jump to a smaller scale cε for an arbitrary constant c > 0.
We now know that the excess is small at a small scale cε, so we can use (H4) to treat the nonlocal

perimeter as a volume term. The classical almost-minimality with respect to the perimeter functional
then readily gives us that the excess decays as power function down to any smaller scale.

Since small scales can be treated in a standard way using the almost-minimality with respect to the
perimeter, the major part of the work consists in handling the case of large scales. We follow the usual
global strategy, but the nonlocal term needs to be treated with particular care, especially to obtain a
Caccioppoli-type inequality.
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Let us sketch the four main steps of this strategy, among which two differ substantially from the case
of the perimeter functional. We first need to introduce the cylindrical excess and some more notation.
Let

C(x, r, ν) = x+
{
y + tν : y ∈ ν⊥ such that |y| < r and t ∈ (−r, r)

}
denote the (truncated) cylinder centered at x ∈ Rn with direction ν ∈ Sn−1, basis radius r and height 2r.

Definition 1.4 (Cylindrical excess). For any set of finite perimeter E ⊆ Rn and any cylinder C(x, r, ν)
centered at x ∈ ∂E we define the cylindrical excess of E in C(x, r, ν) by

e(E, x, r, ν) := 1
rn−1

ˆ
∂∗E∩C(x,r,ν)

|ν − νE(y)|2

2 dHn−1
y .

We can now proceed with the sketch of the proof for large scales.

Step 1. We show that if the excess of a (Λ, r0)-almost minimizer E of Fε,γ is small in a cylinder
C(x, 4r, ν), then ∂E ∩C(x, 2r, ν) is almost flat and almost entirely covered by the graph of a Lipschitz
function u. The proof of this is standard. Indeed, thanks to the quasi-minimality property, E satisfies
uniform lower and upper density estimates. Thus, plugging results from [25, 10], we see that almost-
minimizers satisfy the so-called height bound property, which is the main tool needed for this step.

Step 2. We show that the function u “almost” satisfies an equation of the form (∆− γ∆Gε)u = 0 in
C(x, r, ν), where ∆Gε is a nonlocal operator converging to the Laplacian as ε→ 0. For this part, we
proceed as follows: 1. we write the Euler–Lagrange equation (actually, inequation) associated with
deformations of E in the direction of ν, 2. carefully discarding the negligible long-range interaction
terms, we “localize” the equation to the cylinder C(x, 2r, ν), 3. we pass the equation on ∂E to the
graph of u using their proximity, 4. we linearize the equation.

Eventually, since r is much larger than ε, formally (∆− γ∆Gε) ' (1− γ)∆ in C(x, r, ν), so that u is
close to a harmonic function.

Step 3. Since u is close to a harmonic function, we show that the flatness of E (see Definition 4.1) at
some smaller scale λr is much smaller than the excess at scale 4r, up to tilting the direction. This part
is standard.

Step 4. By analogy with functions, one should think of the excess of E as the Dirichlet energy of u,
and think of the flatness of E as the L2 norm of u. To transfer the smallness of the flatness at scale λr
to the excess, we prove a Caccioppoli-type inequality (or Reverse Poincaré), stating roughly

e(E, x, λr/2, ν0) . f(E, x, λr, ν0) +
( ε

λr

)θ
e(E, x, λr, ν0) + “smaller terms”

whenever λr is still much larger than ε. Our proof of the Caccioppoli inequality relies on an improved
quasi-minimality condition when the set E is already known to be sufficiently flat (see Proposition 4.2).
To obtain this improved quasi-minimality, we heavily use the 1D slicing techniques already introduced
in [26] and end up having to prove that the half-plane minimizes a quantity which can be interpreted
as the average shadow of the boundary of a set obstructing a tube (see (4.18)).

Eventually, suitably iterating Steps 3 and 4, we obtain the needed power decay of the excess down
to any scale ε1−β .

Motivation.
As mentioned at the beginning of the introduction, problem (P) is linked with Gamow’s liquid

drop model for the atomic nucleus. More precisely, if G ∈ L1(Rn), then the problem (P) actually
corresponds to the Gamow-type problem

min
{
P (F ) +

ˆ
F×F

G̃(x− y) dx dy : F ⊆ Rn measurable such that |F | = m
}
, (G)

where G̃ := 2γG and m := |B1|
εn . Indeed, using the integrability of G, we haveˆ

F×F
G̃(x− y) dx dy = 2γm‖G‖L1 − 2γ

ˆ
F×F c

G(x− y) dx dy,
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so that (G) is equivalent to

min
{
P (F )− 2γ

ˆ
F×F c

G(x− y) dxdy : F ⊆ Rn measurable such that |F | = m
}
.

Setting E := εF , where ε =
(
|B1|
m

) 1
n , by Proposition 2.8 (with r = ε) we then see that (G) is indeed

equivalent to (P). This is in particular the case for Bessel kernels or integrable compactly supported
kernels.

As indicated by its name, problem (G) was introduced by Gamow in the 1920s as a simple model for
the atomic nucleus in dimension n = 3 with G̃(x) = 1

|x| (see [6] for a short overview of this problem).
This model gave a first qualitative explanation to the phenomenon a fission. Indeed, it was shown that
there are two possibly equal critical masses 0 < m1 ≤ m2 such that the problem admits a minimizer
below m1 (and it is necessary the ball, up to translations), but existence is lost above m2 (which is
interpreted as fission). This fact was rigorously proven much later and extended to arbitrary dimension
in [22, 23]. As a prototypical example of a model exhibiting a competition between short-range attractive
forces and long-range repulsive ones, this model has been extensively studied and generalized the past
decade. The case of Riesz kernels Rα(x) := 1

|x|n−α has lead to many works, where the picture is similar
to the 3-dimensional case with the Newton potential 1

|x| : for every α ∈ (0, n), there exists a critical
mass below which the ball is the unique minimizer (see [21, 4, 12]), and for every α ∈ [n− 2, n), there
exists a critical mass above which the problem admits no minimizer (see [4, 22, 23, 24, 13, 15, 14]).

If we consider a class of kernels which are integrable near the origin (to ensure that Gamow’s problem
rewrites as (P)) and with a finite first moment, the nonlocal term can be regarded as a nonlocal
perimeter. In that case, in contrast with Riesz kernels, the problem admits minimizers for any mass
large enough whenever I1

G̃
< 2

K1,n
, and after rescaling minimizers converge to the ball as the mass goes

to infinity (see [27, 26]). Our work improves this result by establishing the following, which is a direct
consequence of Theorem A. If G̃ ∈ L1(Rn), I1

G̃
< 2

K1,n
and G̃ satisfies (H1), (H3) and (H5), then there

exists m∗ > 0 such that for every m ≥ m∗, the ball of volume m is, up to translations, the unique
minimizer of (G).

It is worth mentioning that one can observe the same behavior (the ball is the unique minimizer for
large masses) in the case of Riesz kernels by consideringˆ

∂∗E

a(x) dHn−1
x

instead of the perimeter, where a is a density which grows sufficiently fast at infinity (see [1]).

Outline of the paper. The structure of the paper is as follows. In Section 2, we recall and prove a
few facts about nonlocal perimeters as well as some useful results from [27, 26] on minimizers of (P).
We then establish uniform density estimates for (Λ, r0)-minimizers of Fε,γ and show that minimizers
of (P) are almost-minimizers of Fε,γ . Eventually, we recall some basic properties of the excess and
argue that such almost-minimizers satisfy the height bound property. In Section 3 we prove the
Lipschitz approximation theorem at scales which are much larger than ε (Theorems 3.1 and 3.2), which
corresponds to the steps 2-3 sketched above. In Section 4, we establish the Caccioppoli inequality for
(Λ, r0)-minimizers of Fε,γ . Finally, building upon Sections 3 and 4, Section 5 is devoted to establishing
power decay of the excess from large scales down to arbirarily small scales and consequently Theorems A
and B.

Notation.

We write any point x ∈ Rn as x = (x′, xn). We denote by Br(x) ⊆ Rn the open ball of radius r
in Rn centered at x. When x = 0 we simply write Br for Br(0). For open balls in Rn−1, we write
Dr(x′) and simply Dr when x′ = 0. For any m ∈ N, ωm denotes the volume of the unit ball in Rm,
that is, its Lebesgue measure in Rm.
For any set E ⊆ Rn, we denote by Ec := Rn \E its complement, and write |E| for its volume whenever
E is measurable. For any m ∈ N we denote by Hm the m-dimensional Hausdorff measure in Rn. When
integrating with respect to the measure Hm in a variable x, we use the notation dHmx instead of the
standard but less compact notation dHm(x). If A is of dimension m and f is Hm-measurable, we often
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use the convention ˆ
A

f :=
ˆ
A

f(x) dHmx .

Similarly, we will sometimes use the compact notation fx := f(x).
When ν = en (the n-th vector of the canonical basis of Rn) we write Cr(x) for the cylinder C(x, r, ν)
and simply Cr if in addition x = 0. We also write en(E, x, r) for e(E, x, r, en) and for x = 0,
en(E, r) = en(E, 0, r). Moreover, when there is no risk of confusion we drop the explicit dependence
on E.

2. Preliminary

2.1. Nonlocal perimeter and first variation. In this section we recall a few basic properties of the
nonlocal perimeter depending on our assumptions on G.

The following proposition is a consequence of [8] and our choice of I1
G. It ensures that Pε is well-

defined on sets of finite perimeter and is bounded from above by the standard perimeter. We also state
it for a general K, not necessarily normalized, since we will often use it with other kernels.

Proposition 2.1 (Upper bound). Assume that K : Rn → [0,∞) satisfies (H1) and x 7→ |x|K(x) ∈
L1(Rn). Then, for every set of finite perimeter E in Rn, we have

PK(E) ≤ K1,nI
1
KP (E). (2.1)

In particular, for the kernels Gε, we have
Pε(E) ≤ P (E), ∀ε > 0. (2.2)

Let us recall that Pε is continuous with respect to the L1 topology along sequences with bounded
perimeter.

Lemma 2.2 (Continuity). Assume that G satisfies (H1) and (H2). Let Ek be a sequence of sets of
finite perimeter in Rn and E ⊆ Rn such that

sup
k

(P (Ek) + |Ek|) <∞ and Ek
L1

−−→ E.

Then, for every ε > 0, we have
lim
k
Pε(Ek) = Pε(E).

Proof. Let C := supk
(
P (Ek) + |Ek|

)
<∞. Setting

uk(z) :=
ˆ
Rn
|1Ek(x+ z)− 1Ek(x)|dx and u(z) :=

ˆ
Rn
|1E(x+ z)− 1E(x)|dx,

by the L1 convergence of Ek to E, for every z ∈ Rn, uk(z) converges to u(z). In addition, we have

Pε(Ek) =
ˆ
Rn
uk(z)Gε(z) dz

and
uk(z)Gε(z) ≤ P (Ek)|z|Gε(z) ≤ C|z|Gε(z) ∈ L1(Rn).

Hence by dominated convergence, limk Pε(Ek) = Pε(E). �

Depending on the integrability assumptions on G, we may estimate the difference Pε(E)− Pε(F )
from above by a perimeter term, a volume term, or an interpolation of the two. This type of estimates
is relatively standard in the context of nonlocal perimeters (see for instance [11, Lemma 5.3] for a
similar statement in the case of s-perimeters). The last interpolation estimate will allow us to show a
useful quasi-minimality property at small scales for (Λ, r0)-minimizers of Fε,γ (see Proposition 2.12).

Lemma 2.3. Let E,F ⊆ Rn be two measurable sets, and let ε > 0. We have:
(i) if G satisfies (H1) and (H2), then

Pε(E)− Pε(F ) ≤ P (E4F ); (2.3)
(ii) if G satisfies (H1) and G ∈ L1(Rn), then

Pε(E)− Pε(F ) ≤ 2I0
G

ε
|E4F |;
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(iii) if G satisfies (H1), (H2) and (H4), then there exists C = C(n,G) > 0 such that

Pε(E)− Pε(F ) ≤ C
(
|E4F |
ε

)1−s0

P (E4F )s0 . (2.4)

Proof. We decompose the proof in two steps.
Step 1. We establish Pε(E)− Pε(F ) ≤ Pε(E4F ). To this aim we note for A,B ⊆ Rn,

Φε(A,B) :=
ˆ
A×B

Gε(x− y) dx dy

so that Pε(E) = 2Φε(E,Ec). It is readily checked that
Φε(E,Ec)− Φε(F, F c) = Φε(E ∩ F, F\E) + Φε(E\F,Ec ∩ F c)− Φε(E ∩ F,E\F )

− Φε(F\E,F c ∩ Ec)
= Φε(E4F, (E4F )c)− 2 [Φε(E ∩ F,E\F ) + Φε(F\E,F c ∩ Ec)]
≤ Φε(E4F, (E4F )c).

This concludes the first step.
Step 2. We deduce the different cases. Case (i) is direct consequence of Step 1 and (2.2). If G ∈ L1(Rn)
then

Pε(E) ≤ 2‖Gε‖L1(Rn)|E|
which gives (ii). For (iii), let us write, for any R > 0 and any E ⊆ Rn,

Pε(E) =
ˆ
Rn\BR

Gε(z)
ˆ
Rn
|χE(x+ z)− χE(x)|dxdz +

ˆ
BR

Gε(z)
ˆ
Rn
|χE(x+ z)− χE(x)|dxdz.

Using ˆ
Rn
|χE(x+ z)− χE(x)|dx ≤ 2|E|

and ˆ
Rn
|χE(x+ z)− χE(x)|dx ≤ |z|P (E),

we deduce
Pε(E) ≤ 2|E|

ˆ
Rn\BR

Gε(z) dz + P (E)
ˆ
BR

|z|Gε(z) dz

= 2|E|
ε

ˆ
Rn\BR/ε

G(z) dz + P (E)
ˆ
BR/ε

|z|G(z) dz.
(2.5)

Next, we claim that (H4) implies ˆ
Rn\Br

G(x) dx ≤ C

rs0
, ∀r > 0 (2.6)

and ˆ
Br

|x|G(x) dx ≤ Cr1−s0 , ∀r > 0, (2.7)

for some C = C(n,G) > 0. It is of course enough to check these statements for either small or large r.
We start with (2.6). Thanks to (H4), it holds for small r. If instead r ≥ 1,

ˆ
Rn\Br

G(x) dx ≤ 1
r

ˆ
Rn\Br

|x|G(x) dx ≤ I1
G

r
≤ C

rs0
.

We now turn to (2.7). By (H2) it is enough to prove it for r ∈ (0, 1). In this case, we have
ˆ
Br

|x|G(x) dx =
∞∑
k=0

ˆ
B2−kr\B2−(k+1)r

|x|G(x) dx ≤
∞∑
k=0

r

2k

ˆ
B1\B2−(k+1)r

G(x) dx

(2.6)
≤ C

∞∑
k=0

r

2k

(
2k

r

)s0

= Cr1−s0

∞∑
k=0

1
2k(1−s0) ≤ Cr

1−s0 ,
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proving (2.7).
Plugging (2.6) and (2.7) into (2.5) yields

Pε(E) ≤ C
(
|E|
ε

( ε
R

)s0
+ P (E)

(
R

ε

)1−s0
)
.

Finally choosing R = |E|
P (E) , we get

Pε(E) ≤ C
(
|E|
ε

)1−s0

P (E)s0 .

This concludes the proof of (iii). �

We will use the following computation from [26, Lemma 2.3] to estimate the derivative of the nonlocal
perimeter under rescaling.

Lemma 2.4. Assume that G satisfies (H1), (H2) and (H3). Then for any set of finite perimeter
E ⊆ Rn, the function t 7→ Pε(tE) is locally Lipschitz continuous in (0,+∞), and for almost every t,
we have

d
dt [Pε(tE)] = n

t
Pε(tE)− 1

t
P̃ε(tE),

where P̃ε(E) is defined by

P̃ε(E) := 2
ˆ
E

ˆ
∂∗E

Gε(x− y) (y − x) · νE(y) dHn−1
y dx. (2.8)

We now compute the first variation of the energy.

Lemma 2.5. Assume that G satisfies (H1), (H2) and (H3). Let T ∈ C1
c (Rn;Rn) a compactly supported

vector field, and let us define ft := IdRn + tT . Then for any set of finite perimeter E ⊆ Rn, ε > 0,
γ ∈ (0, 1) and Λ ≥ 0, the function t 7→ Fε,γ(ft(E)) is differentiable at t = 0 with δFε,γ(E)[T ] :=[ d

dtFε,γ(ft(E))
]
|t=0 given by

δFε,γ(E)[T ] =
ˆ
∂∗E

divE T dHn−1

− 2γ
(ˆ

E×Ec
divT (x)Gε(x− y) dxdy +

ˆ
∂∗E

ˆ
E

Gε(x− y) (T (x)− T (y)) · νE(y) dxdHn−1
y

)
where divE T is the boundary divergence of T on E, defined by

divE T (x) := divT (x)− νE(x) · ∇T (x)νE(x), ∀x ∈ ∂∗E.

Proof. Since the computation of the first variation of the perimeter is standard, see e.g. [25, Theo-
rem 17.5], it is enough to compute the first variation of Pε. We will show that (recall the notation
Tx = T (x))[

d
dtPε(ft(E))

]
|t=0

= 2
ˆ
E×Ec

divT (x)Gε(x− y) dxdy

+ 2
ˆ
∂∗E

ˆ
E

Gε(x− y) (Tx − Ty) · νE(y) dxdHn−1
y .

Notice that using (2.2) and the fact that T is Lipschitz continuous, (H1) and (H2) imply that both
terms on the right-hand side are well-defined. Since ε does not play any role we may assume without
loss of generality that ε = 1. We set FG(t) := 1

2P1(ft(E)). Note that choosing t0 ≤ 1/‖∇T‖L∞ , ft is a
diffeomorphism of Rn for every t such that |t| ≤ t0. In particular ft(E) is a set of finite perimeter (see
e.g. [25, Proposition 17.1]). Thus, FG(t) is well-defined for every t ∈ (−t0, t0). We then set (for the
moment this is just a notation)

F ′G(0) :=
ˆ
E×Ec

divT (x)G(x− y) dxdy +
ˆ
∂∗E

ˆ
E

G(x− y) (Tx − Ty) · νE(y) dxdHn−1
y .

We claim that as t→ 0,
FG(t)− FG(0)− tF ′G(0) = o(t). (2.9)
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This would show that FG is differentiable in 0 with derivative F ′G(0), concluding the proof. Changing
variables, for any t small enough we have

FG(t) =
ˆ
E×Ec

G(ft(x)− ft(y)) detDft(x) detDft(y) dx dy.

Since detDft(x) = 1 + tdivT (x) +O(t2), we find

FG(t) =
ˆ
E×Ec

G(ft(x)− ft(y))(1 + tdivT (x) + tdivT (y) +O(t2)) dx dy.

Notice that by the reverse change of variables and (2.2),ˆ
E×Ec

G(ft(x)− ft(y)) dxdy ≤ C
ˆ
ft(E)×ft(E)c

G(x− y) dxdy ≤ CP (ft(E)) ≤ CP (E).

Therefore

FG(t) =
ˆ
E×Ec

G(ft(x)− ft(y))(1 + tdivT (x) + tdivT (y)) dxdy +O(t2).

Now, using that

G(ft(x)− ft(y))−G(x− y) = t

ˆ 1

0
∇G(fst(x)− fst(y)) · (Tx − Ty) ds

and the Lipschitz continuity of T , we have∣∣∣∣ˆ
E×Ec

G(ft(x)− ft(y)) divT (x) dxdy −
ˆ
E×Ec

G(x− y) divT (x) dxdy
∣∣∣∣

≤ C|t|
ˆ 1

0

ˆ
E×Ec

|∇G(fst(x)− fst(y))||x− y|dxdy ds

≤ C|t|
ˆ 1

0

ˆ
E×Ec

|∇G(fst(x)− fst(y))||fst(x)− fst(y)|dxdy ds

≤ C|t|
ˆ 1

0

ˆ
fst(E)×(fst(E))c

|∇G(x− y)||x− y|dxdy ds

≤ CI2
|∇G||t|

ˆ 1

0
P (fst(E)) ds ≤ CI2

|∇G||t|,

where we used again (2.1) but for the kernel K = | · ||∇G|. Since the same holds with divT (x) replaced
by divT (y), in order to prove (2.9) it is thus enough to showˆ

E×Ec
G(ft(x)− ft(y)) dxdy −

ˆ
E×Ec

G(x− y) dx dy

+ t

(ˆ
E×Ec

G(x− y) divT (y) dxdy −
ˆ
∂∗E

ˆ
E

G(x− y) (Tx − Ty) · νE(y) dxdHn−1
y

)
= o(t).

Writing as above thatˆ
E×Ec

G(ft(x)− ft(y)) dxdy −
ˆ
E×Ec

G(x− y) dx dy

= t

ˆ 1

0

ˆ
E×Ec

∇G(fst(x)− fst(y)) · (Tx − Ty) dx dy ds

we reduce it further to the proof of

lim
t→0

ˆ 1

0

ˆ
E×Ec

∇G(fst(x)− fst(y)) · (Tx − Ty) dxdy ds =
ˆ
E×Ec

∇G(x− y) · (Tx − Ty) dxdy (2.10)

together with the integration by parts formulaˆ
E×Ec

∇G(x− y) · (Tx − Ty) +G(x− y) divT (y) dxdy

=
ˆ
∂∗E

ˆ
E

G(x− y) (Tx − Ty) · νE(y) dxdHn−1
y . (2.11)
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Notice that this would be easy to prove if G was a smooth kernel with compact support. However,
since our assumptions on G seem too weak to prove these directly we will argue by approximation.
Let Gk be a sequence of smooth compactly supported radial kernels with

lim
k→∞

ˆ
Rn
|z||[G−Gk](z)|dz = 0 and lim

k→∞

ˆ
Rn
|z|2|∇[G−Gk](z)|dz = 0.

Since we assumed that I1
G + I2

|∇G| <∞ it is not difficult to construct such a sequence. We start with
(2.10). For every fixed s ∈ [0, 1], we have∣∣∣∣ˆ

E×Ec
∇G(fst(x)− fst(y)) · (Tx − Ty) dxdy −

ˆ
E×Ec

∇Gk(fst(x)− fst(y)) · (Tx − Ty) dx dy
∣∣∣∣

≤ C
ˆ
E×Ec

|[∇G−∇Gk](fst(x)− fst(y))||x− y|dxdy

≤ C
ˆ
fst(E)×fst(E)c

|∇[G−Gk](x− y)||x− y|dxdy

≤ C
(ˆ

Rn
|z|2|∇[G−Gk](z)|dz

)
P (fst(E))

≤ C
ˆ
Rn
|z|2|∇[G−Gk](z)|dz,

where we used (2.1) with K = | · ||∇[G−Gk]| (which is radially symmetric). Integrating in s and using
a simple diagonal argument, this proves (2.10). We now turn to (2.11). Since

− divy(G(x− y)(Tx − Ty)) = ∇G(x− y) · (Tx − Ty) +G(x− y) divT (y),

the integration by parts formula (2.11) holds with G replaced by Gk. By the previous computations it
is therefore enough to observe that on the one hand∣∣∣∣ˆ

E×Ec
G(x− y) divT (y) dx dy −

ˆ
E×Ec

Gk(x− y) divT (y) dx dy
∣∣∣∣ ≤ CP (E)

ˆ
Rn
|z||[G−Gk](z)|dz

and on the other hand,∣∣∣∣ˆ
∂∗E

ˆ
E

G(x− y) (Tx − Ty) · νE(y) dx dHn−1
y −

ˆ
∂∗E

ˆ
E

Gk(x− y) (Tx − Ty) · νE(y) dx dHn−1
y

∣∣∣∣
≤ C

ˆ
∂∗E

ˆ
E

|x− y||[G−Gk](x− y)|dxdHn−1
y ≤ CP (E)

ˆ
Rn
|z||[G−Gk](z)|dz.

�

2.2. Perimeter quasi-minimizing properties of minimizers. We recall from [27] that if G satisfies
(H1) and (H2) minimizers of (P) exist for ε small enough (in [27] the extra hypothesis G ∈ L1(Rn) was
imposed but as pointed out in [26, Theorem 2.7] it is not used in the proof).

Proposition 2.6. Let γ ∈ (0, 1) and assume that G satisfies (H1) and (H2). Then there exists εex > 0
and a function δ : (0,+∞)→ (0,+∞) vanishing in 0, both depending only on n, G and γ such that,
for any ε ∈ (0, εex), (P) admits a minimizer, and any minimizer E satisfies, up to a translation and a
Lebesgue-negligible set,

B1−δ(ε) ⊆ Eε ⊆ B1+δ(ε).

We also recall from [27, (4.2)] that using (2.2) it readily follows that if E satisfies Fε,γ(E) ≤ Fε,γ(B1),
then

P (E) ≤ P (B1) + γ

1− γ (P (B1)− Pε(B1)) ≤ 1
1− γ P (B1). (2.12)

We now use the scaling properties given in Lemma 2.4 to prove the equivalence between (P) and the
unconstrained minimization problem

min
{
Fε,γ(E) + Λ

∣∣|E| − |B1|
∣∣ : E ⊆ Rn measurable

}
(P ′)

if Λ is large enough, not depending on ε. As a consequence, minimizers of (P) are (Λ, r0)-minimizers
of Fε,γ .
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Proposition 2.7. Assume that G satisfies (H1) and (H2) and let γ ∈ (0, 1). There exists C = C(n) > 0
such that for every γ ∈ (0, 1), ε > 0 and Λ ≥ C/(1− γ), problems (P) and (P ′) are equivalent, in the
sense that (P ′) admits a minimizer iff (P) does, and their minimizers coincide. In particular, any
minimizer of (P) is a (Λ, r0)-minimizer of Fε,γ for any Λ ≥ C/(1− γ) and any r0 > 0.

Proof. Let us set

Λ0 := 1
1− γ

(
1 +

(
n+ 2

K1,n

)) P (B1)
|B1|

.

Since
inf

|E|=|B1|
Fε,γ(E) ≥ inf

E
Fε,γ,Λ(E),

it is enough to prove that for Λ ≥ Λ0, the converse inequality holds and that any set minimizing Fε,γ,Λ
must have measure equal to ωn. This in turn is equivalent to the claim that if E is such that

|E| 6= ωn and Fε,γ,Λ(E) ≤ inf
|E|=|B1|

Fε,γ(E)

then Λ < Λ0. Let E be such a set. Recall that E satisfies (2.12). Let λ be such that |λE| = |B1|. We
then have

P (E)− γPε(E) + Λ||E| − |B1|| = Fε,γ,Λ(E) ≤ Fε,γ(λE) = λn−1P (E)− γPε(λE).
Reorganizing terms we find

Λωn|λn − 1| ≤ (λn−1 − 1)P (E) + γ|Pε(E)− Pε(λE)|. (2.13)
By Lemma 2.4 and (2.2), for any t > 0 we have∣∣∣∣ d

dt [Pε(tE)]
∣∣∣∣ ≤ 1

t

(
nPε(tE) + |P̃Gε(tE)|

)
≤ 1
t

(
nP (tE) + 2P (tE)I1

G

)
≤ tn−2

(
n+ 2

K1,n

)
,

thus
|Pε(E)− Pε(λE)| ≤

∣∣∣∣ˆ 1

λ

d
dt [Pε(tE)] dt

∣∣∣∣ ≤ C1|λn−1 − 1|P (E),

where C1 :=
(
n+ 2

K1,n

)
. Inserting this into (2.13) and using (2.12), this leads to

Λωn|λn − 1| ≤ 1
1− γ (1 + C1γ)P (B1)|λn−1 − 1|.

Since |λn−1 − 1| < |λn − 1| we conclude that Λ < Λ0.
�

To simplify the proofs, we will often rescale sets in order to assume cylinders are of unit length.
This is justified by the following elementary scaling properties, which is given by a simple change of
variables.

Proposition 2.8. For any set of finite perimeter E, any ε > 0 and any r > 0 we have
Fε,γ(E) = rn−1Fε/r,γ(E/r).

In particular E is a (Λ, r0)-minimizer of Fε,γ if and only if E/r is a (Λ, r0
r )-minimizer of Fε/r,γ .

We now prove that (Λ, r0)-minimizers of Fε,γ are quasi-minimizers of the perimeter and thus have
density bounds which are uniform in ε.

Proposition 2.9 (Weak quasi-minimality). Assume that G satisfies (H1) and (H2) and let γ ∈ (0, 1),
ε > 0, Λ > 0 and r0 > 0 with Λr0 ≤ 1− γ. Then, for any (Λ, r0)-minimizer E of Fε,γ and every set F
with E4F ⊂⊂ Br(x) with 0 < r ≤ r0 we have

P (E;Br(x)) ≤ 4
1− γ P (F ;Br(x)). (2.14)

As a consequence, there exists C = C(n) > 0 such that for every x ∈ ∂E and every 0 < r ≤ r0,(
1− γ

4

)n
≤ |E ∩Br(x)|

rn
≤ 1−

(
1− γ

4

)n
and (1− γ)n−1

C
≤ P (E;Br(x))

rn−1 ≤ C

1− γ . (2.15)

In particular, we have
Hn−1(∂E \ ∂∗E) = 0. (2.16)
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Proof. We only prove (2.14) since it is standard that weak quasi-minimality implies density upper and
lower bounds, which then imply (2.16). To obtain the correct scaling in γ, one can repeat the proof in
[25, Theorem 21.11]. By scaling and translation, we may assume that r = 1 and x = 0. Testing the
(Λ, r0)-minimality of E against F , we have

P (E;B1) ≤ P (F ;B1) + γ (Pε(E)− Pε(F )) + Λ|E4F |
(2.3)&(2.2)
≤ P (F ;B1) + γP (E4F ) + Λ|E4F |.

We now argue as in [25, Remark 21.7],and use the isoperimetric inequality to infer

|E4F | = |E4F | 1
n |E4F |1− 1

n ≤ 1
n
P (E4F ).

We thus find

P (E;B1) ≤ P (F ;B1) +
(
γ + Λ

n

)
P (E4F ) ≤ P (F ;B1) +

(
γ + Λ

n

)
(P (E;B1) + P (F ;B1)).

Rearranging terms and using that Λ/n ≤ (1− γ)/2 yields (2.14). �

Remark 2.10. By Proposition 2.7 we can choose e.g. Λ := C/(1 − γ) and r0 := (1 − γ)2/C, so that
minimizers of (P) are (Λ, r0)-minimizers of Fε,γ with Λr0 ≤ 1− γ.

Remark 2.11. Thanks to (2.16) if E is a (Λ, r0)-minimizer of Fε,γ with Λr0 ≤ 1 − γ, we will not
distinguish anymore between ∂E and ∂∗E when integrating.

Under hypothesis (H4) we prove that minimizers of (P ′) are also almost-minimizers at scales which
are small compared to ε.

Proposition 2.12. Assume that G satisfies (H1), (H2) and (H4). Then there exists C = C(n,G, γ) > 0
such that for every γ ∈ (0, 1), ε > 0, Λ > 0 and r0 > 0 with Λr0 ≤ 1− γ, every (Λ, r0)-minimizer E of
Fε,γ and every set F with E4F ⊂⊂ Br(x) and r ≤ r0, we have

P (E;Br(x)) ≤ P (F ;Br(x)) +
(

C

ε1−s0

)
rn−s0 + Λ|E4F |. (2.17)

Proof. We may assume that P (F ;Br(x)) ≤ P (E;Br(x)) otherwise there is nothing to prove. Arguing
as above using the (Λ, r0)-minimality of E we have

P (E;Br(x)) ≤ P (F ;Br(x)) + γ
(
Pε(E)− Pε(F )

)
+ Λ|E4F |

(2.4)
≤ P (F ;Br(x)) + Cγ

(
|E4F |
ε

)1−s0

P (E4F )s0 + Λ|E4F |

(2.15)
≤ P (F ;Br(x)) +

(
C

ε1−s0

)
rn−s0 + Λ|E4F |.

�

Remark 2.13. Proposition 2.12 indeed yields classical almost-minimality for the perimeter at scales
smaller than ε since letting r = εr̂ and E = x+ εÊ, we find for every F̂4Ê ⊂⊂ Br̂,

P (Ê;Br̂) ≤ P (F̂ ;Br̂) + Cr̂n−s0 + Λε|Ê4F̂ |.

2.3. Basic properties of the excess. We recall two basic properties of the excess that we use
extensively in the rest of the paper. The cylindrical excess and spherical excess are respectively defined
in Definition 1.3 and Definition 1.4. We refer to [25, Chapter 22.1] for more details on the excess.

Proposition 2.14 (Scaling properties). Let E ⊆ Rn be a set of finite perimeter, x ∈ ∂E, ν ∈ Sn−1

and 0 < r < R. Then we have

e(E, x, r, ν) ≤
(
R

r

)n−1
e(E, x,R, ν) and

In addition, setting Ex,r := (E−x)
r we have

e(Ex,r, 0, 1, ν) = e(E, x,R, ν).

Note that this property holds for the spherical excess as well.
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Proposition 2.15 (Changes of direction). Let γ ∈ (0, 1) and ε > 0. There exists C = C(n, γ) > 0
such that for every (Λ, r0)-minimizer E of Fε,γ with Λr0 ≤ 1− γ, every ν, ν0 ∈ Sn−1, x ∈ ∂E and r > 0
such that

√
2r ≤ r0, we have

e(E, x, r, ν) ≤ C
(

e(E, x,
√

2r, ν0) + |ν − ν0|2
)
.

The proof is identical to the one in [25, Proposition 22.5] and relies only on the density estimates for
minimizers. Since it is very short, we write it for the reader’s convenience.

Proof. Using the inequality |ν − νE(y)|2 ≤ 2|ν − ν0|2 + 2|ν0 − νE(y)|2, and the facts that C(x, r, ν) ⊆
C(x,

√
2r, ν0) and C(x, r, ν) ⊆ B√2r(x), we have

e(E, x, r, ν) ≤ 2
rn−1

ˆ
∂E∩C(x,

√
2r,ν0)

|ν0 − νE(y)|2

2 dHn−1
y +

P (E;B√2r(x))
rn−1 |ν − ν0|2.

The results follows from (2.15). �

2.4. The height bound. Thanks to the density estimates of Proposition 2.9, (Λ, r0)-minimizers of Fε,γ
satisfy the same “height bound” property as quasi-minimizers of the perimeter (see [25, Theorem 22.8]).
This property is a crucial tool that we shall use very often to prove the Lipschitz approximation theorem
and the Caccioppoli inequality.

Proposition 2.16 (The height bound). Let ε > 0, γ ∈ (0, 1), Λ > 0 and r0 > 0 with Λr0 ≤ 1−γ. There
exist positive constants c(n, γ) and C(n, γ) such that the following holds. For every (Λ, r0)-minimizer
E of Fε,γ , every x ∈ ∂E, ν ∈ Sn−1 and r > 0 with 2r ≤ r0, if

en(x, 2r) < c,

then
sup

{
|xn − yn| : (y′, yn) ∈ ∂E ∩Cr(x)

}
≤ Cren(x, 2r)

1
2(n−1) .

Proof. As recalled by F. Maggi, the only step where the almost-minimality with respect to the perimeter
is used in the proof of [25, Theorem 22.8] is to obtain the “small-excess position” of Lemma 22.10
therein. In fact, this lemma holds as long as we have density estimates on the perimeter for E, as is
shown in [10, Lemma 7.2]. Hence, thanks to (2.15), the same height bound holds for (Λ, r0)-minimizers
of Fε,γ , whenever Λr0 ≤ 1− γ and 2r ≤ r0. �

3. Lipschitz approximation theorem

This section is devoted to the proof of the Lipschitz approximation theorem for (Λ, r0)-minimizers
of Fε,γ , which can be divided into two parts. A first part states that a small excess of such an
almost-minimizer E in a cylinder implies that the boundary of E in that cylinder is almost entirely
covered by the graph of a Lipschitz function u. This part relies only on density estimates and on the
height bound. A second step states that the aforementioned function u is close to a harmonic function
as long as the scale is much larger than ε.

3.1. Lipschitz approximation and harmonic comparison. Since the first part of the Lipschitz
approximation theorem relies only on standard properties on the excess, the density estimates and the
height bound, by Propositions 2.9 and 2.16, the proof can be reproduced almost verbatim from Steps 1
to 4 of the proof of [25, Theorem 23.7]. Without loss of generality we state this first part for x = 0.

Theorem 3.1 (Lipschitz approximation I). Assume that G satisfies (H1), (H2) and (H3). Let ε > 0,
γ ∈ (0, 1), Λ > 0 and r0 > 0 with Λr0 ≤ 1 − γ. There exist positive constants τlip = τlip(n, γ),
δ0 = δ0(n, γ) and C = C(n, γ) such that the following holds. If E is a (Λ, r0)-minimizer of Fε,γ with
0 ∈ ∂E and, for some r such that 4Λr ≤ r0,

en(4r) ≤ τlip,

then, setting
M := ∂E ∩C2r,

and there exists a 1
2 -Lipschitz function u : Rn−1 → R such that:
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(i) ‖u‖L∞ ≤ Cren(4r)
1

2(n−1) < r
4 ;

(ii) Hn−1(M4Γu) ≤ Cen(4r)rn−1;
(iii) 1

rn−1

ˆ
D2r

|∇u|2 ≤ Cen(4r).

We show that the function u in the conclusion of Theorem 3.1 is “almost” a solution to a nonlocal
linear equation of the form (∆− γ∆Gε)u = 0 in Dr.

Theorem 3.2 (Lipschitz approximation II). There exists C = C(n, γ, I2
∇G) > 0 such that under the

same assumptions as Theorem 3.1, the function u satisfies for every ϕ ∈ C1
c (Dr).

1
rn−1

(ˆ
Dr

∇u · ∇ϕ− γ
ˆ
D2r×D2r

(u(x′)− u(y′))(ϕ(x′)− ϕ(y′))Gε(x′ − y′, 0) dx′ dy′
)

≤ C‖∇ϕ‖L∞
(

en(4r) +Q
( r

4ε

)
+ Λr

)
.

By scaling it is enough to prove Theorem 3.2 for r = 1. Since the proof is quite long, we postpone it
to the next section and show first how it leads to a harmonic approximation result.

Proposition 3.3 (Harmonic approximation). Let γ ∈ (0, 1) and assume that G satisfies (H1) and (H2).
There exists εharm ∈ (0, 1) such that for every τ > 0, there exists σ = σ(n,G, γ, τ) > 0 with the following
property. If for some ε ∈ (0, εharm), u ∈ H1(D2) satisfiesˆ

D2

|∇u|2 ≤ 1

and, for all ϕ ∈ C1
c (D1),∣∣∣∣ˆ

D1

∇u · ∇ϕ− 2γ
ˆ
D2×D2

(u(x′)− u(y′))(ϕ(x′)− ϕ(y′))Gε(x′ − y′, 0) dx′ dy′
∣∣∣∣ ≤ ‖∇ϕ‖L∞σ,

then there exists a harmonic function v on D1 such thatˆ
D1

|∇v|2 ≤ 1 and
ˆ
D1

|u− v|2 ≤ τ.

Proof. As there is no risk for confusion, to simplify the notation we use x, y instead of x′, y′ for points
in Rn−1, and write Gε(x) instead of Gε(x′, 0). Arguing by contradiction, let us assume that there
exist vanishing sequences (εk) ⊆ (0, 1) and (σk) ⊆ (0, 1), a positive constant τ > 0 and a sequence
(uk) ⊆ H1(D2) such that the following holds:

(i)
ˆ
D2

|∇uk|2 ≤ 1 for all k ∈ N;

(ii) for every ϕ ∈ C∞c (D1) we have∣∣∣∣ˆ
D1

∇uk · ∇ϕ− 2γ
ˆ
D2×D2

(uk(x)− uk(y))(ϕ(x)− ϕ(y))Gεk(x− y) dx dy
∣∣∣∣ ≤ σk‖∇ϕ‖L∞ ;

(iii) there is no harmonic function u on D1 such thatˆ
D1

|∇u|2 ≤ 1 and
ˆ
D1

|uk − u|2 ≤ τ.

Without loss of generality, up to adding a constant to each uk, one may assume that
´
D2
uk = 0, so

that by Poincaré–Wirtinger inequality, we haveˆ
D2

|uk|2 ≤ C
ˆ
D2

|∇uk|2 ≤ C, ∀k ∈ N. (3.1)

In particular, (uk) is bounded in H1(D2). Thus, up to extraction of a subsequence (not relabeled),
there exists u ∈ H1(D2) such that uk converges strongly to u in L2(D2) and ∇uk converges weakly
to ∇u in L2(D2;Rn−1). We claim that for every ϕ ∈ C∞c (D1),

lim
k

ˆ
D2×D2

(uk(x)− uk(y))(ϕ(x)− ϕ(y))Gεk(x− y) dx dy = 1
2

ˆ
D1

∇u · ∇ϕ, (3.2)
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which we prove further below. By the weak convergence of ∇uk to ∇u, the fact that γ 6= 1 and (ii),
this implies ˆ

D1

∇u · ∇ϕ = 0, ∀ϕ ∈ C∞c (D1);

in other words, u is harmonic. By (i) and lower semicontinuity with respect to the weak H1 convergence,
we have ˆ

D1

|∇u|2 ≤ 1, (3.3)

and since uk converges to u in L2(D1), for any k large enough, we have
ˆ
D1

|uk − u|2 ≤ τ.

With (3.3), this contradicts (iii).
We now prove (3.2). Using the change of variable z = x− y, we have
ˆ
D2×D2

(uk(x)− uk(y))(ϕ(x)− ϕ(y))Gεk(x− y) dxdy

=
ˆ 1

0

ˆ 1

0

ˆ
D2×D2

(
∇uk(x+ t(y − x)) · (x− y)

)(
∇ϕ(x+ s(y − x)) · (x− y)

)
Gεk(x− y) dxdy dsdt

=
ˆ 1

0

ˆ 1

0

ˆ
Rn−1

ˆ
D2

1D2(x+ z) (∇uk(x+ tz) · z) (∇ϕ(x+ sz) · z)Gεk(z) dxdz dsdt.

(3.4)
For each s, t ∈ (0, 1) and x ∈ D2, using polar coordinates, we have

ˆ
Rn−1

1D2(x+ z) (∇uk(x+ tz) · z) (∇ϕ(x+ sz) · z)Gεk(z) dz

=
ˆ 4

0
rngεk(r)

ˆ
Sn−2

1D2(x+ rσ)
(
∇uk(x+ trσ) · σ

)(
∇ϕ(x+ srσ) · σ

)
dHn−2

σ dr.
(3.5)

Using the fact that for every s, t ∈ (0, 1) we have |∇ϕ(x + srσ) − ∇ϕ(x + trσ)| ≤ r‖D2ϕ‖L∞ and
Cauchy–Schwarz inequality, we deduce that for every s, t ∈ (0, 1) and every σ ∈ Sn−2,∣∣∣∣ˆ 4

0
rngεk(r)

ˆ
D2

1D2(x+ rσ)
(
∇uk(x+ trσ) · σ

)(
∇ϕ(x+ srσ) · σ

)
dxdr

−
ˆ 4

0
rngεk(r)

ˆ
D2

1D2(x+ rσ)
(
∇uk(x+ trσ) · σ

)(
∇ϕ(x+ trσ) · σ

)
dxdr

∣∣∣∣
≤ C‖D2ϕ‖L∞

(ˆ 4

0
rn+1gεk(r) dr

)(ˆ
D2

|∇u|2
) 1

2

.

Notice that

lim
k→∞

ˆ 4

0
rn+1gεk(r) dr = 0

since r 7→ rng(r) ∈ L1(R) and
ˆ 4

0
rn+1gεk(r) dr =

ˆ 4
εk

0
(εkr)rng(r) dr

=
ˆ 4√

εk

0
(εkr)rng(r) dr +

ˆ 4
εk

4√
εk

(εkr)rng(r) dr

≤ 4
√
εk

ˆ ∞
0

rng(r) dr + 4
ˆ ∞

4√
εk

rng(r) dr.
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Therefore, in view of (3.4) and (3.5), in order to prove (3.2), we only need to compute the limit of
ˆ 1

0

ˆ 4

0
rngεk(r)

ˆ
Sn−2

ˆ
D2

1D2(x+ rσ)
(
∇uk(x+ trσ) · σ

)(
∇ϕ(x+ trσ) · σ

)
dx dHn−2

σ dr dt

=
ˆ 1

0

ˆ 4

0
rngεk(r)

ˆ
Sn−2

ˆ
Rn−1

1D2(y − trσ)1D2(y + (1− t)rσ)
(
∇uk(y) · σ

)(
∇ϕ(y) · σ

)
dy dHn−2

σ dr dt

=
ˆ 1

0

ˆ 4
εk

0
rng(r)

ˆ
Sn−2

ˆ
D1

1D2(y − tεkrσ)1D2(y + (1− t)εkrσ)
(
∇uk(y) · σ

)(
∇ϕ(y) · σ

)
dy dHn−2

σ dr dt,
(3.6)

where we used a change of variables and the fact that ϕ ∈ C∞c (D1). By the weak convergence of ∇uk
to ∇u, for any r > 0, t ∈ (0, 1) and σ ∈ Sn−2, we have

lim
k

ˆ
D1

(
∇uk · σ

)(
∇ϕ · σ

)
=
ˆ
D1

(
∇u · σ)

(
∇ϕ · σ)

and ∣∣∣∣ˆ
D1

1D2(y − tεkrσ)1D2(y + (1− t)εkrσ)
(
∇uk(y) · σ

)(
∇ϕ(y) · σ

)
dy −

ˆ
D1

(
∇uk · σ

)(
∇ϕ · σ

)∣∣∣∣
≤
ˆ
D1\
(
D2(tεkr)∪D2((1−t)εkr

)|∇uk||∇ϕ|
≤ ‖∇uk‖L2(D1)

(ˆ
D1\
(
D2(tεkr)∪D2((1−t)εkr

)|∇ϕ|2)
1
2
k→∞−−−−→ 0,

where we used the inequality ‖∇uk‖L2(D1) ≤ 1 to pass to the limit. Thus, for any r > 0, t ∈ (0, 1)
and σ ∈ Sn−2, we have

lim
k

ˆ
D1

1D2(y − tεkrσ)1D2(y + (1− t)εkrσ)
(
∇uk(y) · σ

)(
∇ϕ(y) · σ

)
dy =

ˆ
D1

(
∇u · σ

)(
∇ϕ · σ

)
.

Hence, using once more ‖∇uk‖L2(D1) ≤ 1 and Cauchy–Schwarz inequality, applying the dominated
convergence theorem yields

lim
k

ˆ 1

0

ˆ 4
εk

0
rng(r)

ˆ
Sn−2

ˆ
D1

1D2(y−tεkrσ)1D2(y+(1−t)εkrσ)
(
∇uk(y)·σ

)(
∇ϕ(y)·σ

)
dy dHn−2

σ dr dt

=
ˆ ∞

0
rng(r)

ˆ
Sn−2

ˆ
D1

(
∇u(y) · σ

)(
∇ϕ(y) · σ

)
dy dHn−2

σ dr. (3.7)

This concludes the proof of (3.2) in view of the normalization (1.2) and the fact that for every
x, y ∈ Rn−1,
ˆ
Sn−2

(x · σ)(y · σ) dHn−2
σ = x ·

(ˆ
Sn−2

σ ⊗ σ dHn−2
σ

)
y =

(ˆ
Sn−2
|σ1|2 dHn−2

σ

)
x · y

= 1
2

(ˆ
Sn−1
|σ1|dHn−1

σ

)
x · y, (3.8)

where the last equality comes from a direct computation (see [27, Lemma 3.13]). �

3.2. Proof of Theorem 3.2. We start by “localizing” the Euler–Lagrange inequation implied by the
(Λ, r0)-minimality condition and the first variation of Fε,γ given by Lemma 2.5.
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Lemma 3.4. Under the assumptions of Theorem 3.1, there exists C = C(n, γ) > 0 such that for every
ϕ ∈ C1

c (D1) we have (with a slight abuse of notation we identify ϕ with a function of Rn)∣∣∣∣∣
ˆ
∂E∩C2

(∇ϕ · νE)(νE · en) + 2γ
ˆ
∂E∩C2

ˆ
E∩C2

Gε(x− y)(ϕ(x)− ϕ(y))(νE(y) · en) dxdHn−1
y

∣∣∣∣∣
≤ C

(
Q

(
1
4ε

)
+ Λ

)
‖∇ϕ‖L∞ . (3.9)

Proof. By Proposition 2.16 we may choose τlip = τlip(n, γ) small enough so that{
xn < −

1
4

}
∩C2 ⊆ E ∩C2 ⊆

{
xn <

1
4

}
∩C2. (3.10)

To simplify notation we write ν for νE and recall the convention Tx for T (x). We may assume without
loss of generality that ‖∇ϕ‖L∞ = 1. We start with the following simple observation. For every
measure µ and every sets A,B such that A×B ⊆ {(x, y) ∈ Rn × Rn : |x− y| > 1/4},

ˆ
A×B

Gε(x− y)dµ(x) dy ≤ 4µ(A)
ˆ
Rn\B 1

4

|z|Gε(z) dz = 4µ(A)Q
(

1
4ε

)
. (3.11)

Let now α ∈ C1
c ((−1, 1); [0, 1]) be such that α ≡ 1 in (− 1

2 ,
1
2 ) and ‖α′‖L∞ ≤ 4. We then consider the

vector field T ∈ C1
c (C1) defined by T (x) = ϕ(x′)α(xn)en for all x ∈ Rn. We first claim that∣∣∣∣∣

ˆ
∂E

ν · (∇Tν) + 2γ
ˆ
∂E∩C2

ˆ
E∩C2

Gε(x− y)(Tx − Ty) · νy dxdHn−1
y

∣∣∣∣∣ ≤ C
(
Q

(
1
4ε

)
+ Λ

)
. (3.12)

This would conclude the proof of (3.9) since T (x) = ϕ(x′)en in D2 × (− 1
2 ,

1
2 ) and∣∣∣∣∣

ˆ
∂E∩C2

ˆ
E∩
(

C2\(D2×(− 1
2 ,

1
2 ))
)Gε(x− y)(Tx − ϕx′en) · νy dxdHn−1

y

∣∣∣∣∣
≤ C

ˆ
∂E∩C2

ˆ
E∩
(

C2\(D2×(− 1
2 ,

1
2 ))
)Gε(x− y) dxdHn−1

y

(3.11)
≤ CQ

(
1
4ε

)
,

where we used (3.11) with µ = Hn−1 ∂E and the fact that P (E; C2) ≤ C by (2.15).
We thus prove (3.12). Notice that divT (x) = ϕ(x′)α′(xn). In particular, by (3.10), divT vanishes in

(∂E ∩C1) ∪
(
E ∩ {xn ≤ −1 or xn ≥ −

1
2}
)
.

By (Λ, r0)-minimality of E, setting ft(x) = x+ tT (x) we have

Fε,γ(E) ≤ Fε,γ(ft(E)) + Λ|E4ft(E)|. (3.13)

One the one hand, it is standard that for any |t| small enough

|E4ft(E)| ≤ 2|t|
∣∣∣∣ˆ
∂E

T · ν
∣∣∣∣(2.15)
≤ C|t|.

On the other hand, for any |t| small enough, we have

Fε,γ(ft(E)) ≤ Fε,γ(E) + t
(
δFε,γ(E)[T ]

)
+ o(t).

Hence, by Lemma 2.5, (3.13) implies, for any |t| small enough

− t
[ˆ

∂∗E

divE T dHn−1 − 2γ
(ˆ

E×Ec
divT (x)Gε(x− y) dxdy

+
ˆ
∂∗E

ˆ
E

Gε(x− y) (T (x)− T (y)) · νE(y) dxdHn−1
y

)]
≤ C|t|(Λ + o(1)).
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Since this holds for ±t and for arbitrary small |t|, in terms of T this gives∣∣∣∣∣
ˆ
∂E

ν · (∇Tν) + 2γ
(ˆ

E∩C1∩{xn≤− 1
2}

ˆ
Ec

divT (x)Gε(x− y) dy dx

+
ˆ
∂E

ˆ
E

Gε(x− y)(Tx − Ty) · νy dxdHn−1
y

)∣∣∣∣ ≤ CΛ. (3.14)

Using again that P (E; C2) ≤ C by (2.15) and (3.11) with A = E ∩C1 ∩{xn ≤ − 1
2}, B = Ec and µ the

Lebesgue measure (recall that Ec ∩C2 ⊆ {(x′, xn) : xn ≥ − 1
4}) we see that in order to prove (3.12) it

is enough to show that∣∣∣∣ˆ
∂E

ˆ
E

Gε(x− y)(Tx − Ty) · νy dxdHn−1
y

−
ˆ
∂E∩C2

ˆ
E∩C2

Gε(x− y)(Tx − Ty) · νy dxdHn−1
y

∣∣∣∣ ≤ CQ( 1
4ε

)
. (3.15)

Recalling that T = 0 in Cc
1 we write

ˆ
∂E

ˆ
E

Gε(x− y)(Tx − Ty) · νy dxdHn−1
y −

ˆ
∂E∩C2

ˆ
E∩C2

Gε(x− y)(Tx − Ty) · νy dxdHn−1
y

= −
ˆ
∂E∩C1

ˆ
E\C2

Gε(x− y)Ty · νy dxdHn−1
y +

ˆ
∂E\C2

ˆ
E∩C1

Gε(x− y)Tx · νy dxdHn−1
y .

Considering the last term on the right-hand side and using integration by parts we have
ˆ
∂E\C2

ˆ
E∩C1

Gε(x− y)Tx · νy dxdHn−1
y

=
ˆ
E∩∂C2

ˆ
E∩C1

Gε(x− y)Tx · νC2(y) dx dHn−1
y −

ˆ
E\C2

ˆ
E∩C1

∇Gε(x− y) · Tx dxdy.

Using Fubini’s theorem and integration by parts again leads to
ˆ
E\C2

ˆ
E∩C1

∇Gε(x− y) · Tx dxdy

=
ˆ
E∩C1

ˆ
E\C2

∇Gε(x− y) · Tx dy dx

=
ˆ
∂E∩C1

ˆ
E\C2

Gε(x− y)Tx · νx dy dHn−1
x −

ˆ
E∩C1

ˆ
E\C2

Gε(x− y) divT (x) dy dx.

Putting everything together we find
ˆ
∂E

ˆ
E

Gε(x− y)(Tx − Ty) · νy dxdHn−1
y −

ˆ
∂E∩C2

ˆ
E∩C2

Gε(x− y)(Tx − Ty) · νy dx dHn−1
y

= −2
ˆ
∂E∩C1

ˆ
E\C2

Gε(x− y)Ty · νy dxdHn−1
y +

ˆ
E∩∂C2

ˆ
E∩C1

Gε(x− y)Tx · νC2(y) dxdHn−1
y

+
ˆ
E∩C1

ˆ
E\C2

Gε(x− y) divT (x) dy dx.

Using (3.11) with either A = ∂E ∩C1, B = E\C2, µ = Hn−1 ∂E (and P (E; C1) ≤ C), A = E ∩ ∂C2,
B = E ∩C1, µ = Hn−1 ∂C2 or A = E ∩C1, B = E\C2 and µ the Lebesgue measure we conclude the
proof of (3.15). �

We now pass transfer this information to the graph of u.
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Lemma 3.5. Under the assumptions of Theorem 3.1, there exists C = C(n, γ) > 0 such that for every
ϕ ∈ C1

c (D1) we have∣∣∣∣∣
ˆ

Γu
(∇ϕ · νEu)(νEu · en) + 2γ

ˆ
Γu

ˆ
Eu

Gε(x− y)(ϕ(x)− ϕ(y))(νEu(y) · en) dxdHn−1
y

∣∣∣∣∣
≤ C

(
en(4) +Q

(
1
4ε

))
,

(3.16)

where

Eu :=
{

(x′, xn) : x′ ∈ D2 and xn < u(x′)
}
.

Proof. As above we may assume without loss of generality that ‖∇ϕ‖L∞ = 1. To simplify notation we
write ν for νE and νu for νEu and will use the convention Tx = T (x). We recall that M = ∂E ∩C2.
Since it is classical (see e.g. the proof of [25, Theorem 23.7]) that∣∣∣∣∣

ˆ
Γu

(∇ϕ · νEu)(νEu · en)−
ˆ
M

(∇ϕ · νE)(νE · en)

∣∣∣∣∣ ≤ Cen(4),

from (3.9) it is enough to prove that∣∣∣∣∣
ˆ

Γu

ˆ
Eu

Gε(x− y)(ϕx − ϕy)(νuy · en) dxdHn−1
y −

ˆ
M

ˆ
E∩C2

Gε(x− y)(ϕx − ϕy)(νy · en) dxdHn−1
y

∣∣∣∣∣
≤ Cen(4)‖∇ϕ‖L∞ .

(3.17)
To this aim we write
ˆ

Γu

ˆ
Eu

Gε(x− y)(ϕx − ϕy)(νuy · en) dxdHn−1
y −

ˆ
M

ˆ
E∩C2

Gε(x− y)(ϕx − ϕy)(νy · en) dxdHn−1
y

=
ˆ

Γu

(ˆ
Eu

Gε(x− y)(ϕx − ϕy) dx−
ˆ
E∩C2

Gε(x− y)(ϕx − ϕy) dx
)

(νuy · en) dHn−1
y

+
ˆ

Γu

ˆ
E∩C2

Gε(x− y)(ϕx − ϕy)(νuy · en) dxdHn−1
y

−
ˆ
M

ˆ
E∩C2

Gε(x− y)(ϕx − ϕy)(νy · en) dxdHn−1
y .

We claim that ˆ
Γu

ˆ
Eu4(E∩C2)

Gε(x− y)|ϕx − ϕy|dxdHn−1
y ≤ Cen(4) (3.18)

and∣∣∣∣ˆ
Γu

ˆ
E∩C2

Gε(x− y)(ϕx − ϕy)(νuy · en) dxdHn−1
y

−
ˆ
M

ˆ
E∩C2

Gε(x− y)(ϕx − ϕy)(νy · en) dx dHn−1
y

∣∣∣∣ ≤ Cen(4), (3.19)

from which (3.17) would follow. We start with (3.18).
By (ii) of Theorem 3.1, there exists a set A ⊆ D2 such that Hn−1(A) ≤ Cen(4) and

E ∩
{

(x′, t) : t ∈ (−2, 2)
}

= Eu ∩
{

(x′, t) : t ∈ (−2, 2)
}
, ∀x′ ∈ D2 \A,

since {
y′ ∈ D2 : Π−1

n ({y′}) ∩ E ∩C2 6= Π−1
n ({y′}) ∩ Γ−u ∩C2

}
= Πn(M4Γu),
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where Πn : (y′, yn) 7→ yn. Thus, since ϕ and u are Lipschitz continuous we find
ˆ

Γu

ˆ
Eu4(E∩C2)

Gε(x− y)|ϕx − ϕy|dxdHn−1
y

≤
ˆ

Γu

ˆ
A

ˆ 2

−2
Gε((x′, t)− y)|(x′, t)− y|dtdx′ dHn−1

y

≤ C
ˆ
A

ˆ
D2

ˆ
R
Gε((x′, t)− uy′)|(x′, t)− uy′ |dtdy′ dx′

≤ CHn−1(A)
ˆ
Rn
|z|G(z) dz ≤ CHn−1(A).

We now turn to (3.19). Notice that Hn−1-a.e. on Γu ∩M we have νu = ±ν. Moreover, setting
Γ1 := Γu∩M ∩{νu = ν} and arguing exactly as in [25, (23.51)], we have Hn−1((M ∩Γu)\Γ1) ≤ Cen(4).
Recalling that by (ii) of Theorem 3.1, Hn−1(M4Γu) ≤ Cen(4), we find∣∣∣∣ˆ

Γu

ˆ
E∩C2

Gε(x− y)(ϕx − ϕy)(νuy · en) dx dHn−1
y

−
ˆ
M

ˆ
E∩C2

Gε(x− y)(ϕx − ϕy)(νy · en) dxdHn−1
y

∣∣∣∣
≤
ˆ

(M4Γu)∪((M∩Γu)\Γ1)

ˆ
E∩C2

Gε(x− y)|x− y|dxdHn−1
y

≤ Cen(4)
ˆ
Rn
|z|Gε(z) dz ≤ Cen(4).

�

In order to conclude the proof of Theorem 3.2, we are left with the linearization of (3.16).

Proof of Theorem 3.2. Since arguing verbatim as in [25, Theorem 23.7] we have∣∣∣∣ˆ
D1

∇u · ∇ϕ−
ˆ

Γu
(∇ϕ · νEu)(νEu · en)

∣∣∣∣ ≤ Cen(4),

by Lemma 3.5 it is enough to prove that (recall the notation ux′ = u(x′))

∣∣∣∣ˆ
D2

ˆ
D2

ˆ ux′

−2
Gε(x′ − y′, t− uy′)(ϕx′ − ϕy′) dtdx′ dy′

−
ˆ
D2×D2

(ux′ − uy′)(ϕx′ − ϕy′)Gε(x′ − y′, 0) dx′ dy′
∣∣∣∣ ≤ C (en(4) +Q

(
1
4ε

))
. (3.20)

For x′ 6= y′ we have

ˆ ux′

−2
Gε(x′ − y′, t− uy′) dt =

ˆ ux′−uy′

−2−uy′
Gε(x′ − y′, s) ds

=
ˆ −1

−2−uy′
Gε(x′ − y′, s) ds+

ˆ 0

−1
Gε(x′ − y′, s) ds+

ˆ ux′−uy′

0
Gε(x′ − y′, s) ds. (3.21)

On the one hand we observe that
ˆ
D2×D2

(ϕx′ − ϕy′)
ˆ 0

−1
Gε(x′ − y′, s) dsdx′ dy′ = 0. (3.22)
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On the other hand, since ‖u‖L∞ ≤ 1, for any y′ we have −2− uy′ < −1. Thus, using the fact that ϕ is
1-Lipschitz, we compute∣∣∣∣∣

ˆ
D2

ˆ
D2

ˆ −1

−2−uy′
Gε(x′ − y′, s)(ϕx′ − ϕy′) dtdx′ dy′

∣∣∣∣∣
≤
ˆ
D2

ˆ −1

−2−uy′

ˆ
D2

|x′ − y′|Gε(x′ − y′, s) dx′ dsdy′

≤
ˆ
D2

ˆ
Rn\B1

|z|Gε(z) dz dy′ ≤ CQ
(

1
4ε

)
.

(3.23)

Combining (3.21), (3.22) and (3.23) yields∣∣∣∣ˆ
D2

ˆ
D2

ˆ ux′

−2
Gε(x′ − y′, t− uy′)(ϕx′ − ϕy′) dtdx′ dy′

−
ˆ
D2×D2

ˆ ux′−uy′

0
Gε(x′ − y′, t)(ϕx′ − ϕy′) dtdx′ dy′

∣∣∣∣ ≤ CQ( 1
4ε

)
. (3.24)

Using again that ϕ is 1-Lipschitz and Fubini’s theorem, we estimate∣∣∣∣ˆ
D2×D2

ˆ ux′−uy′

0
(Gε(x′ − y′, t)−Gε(x′ − y′, 0))(ϕx′ − ϕy′) dtdx′ dy′

∣∣∣∣
≤
ˆ 1

0

ˆ
D2×D2

ˆ |ux′−uy′ |
0

t |x′ − y′||∇Gε(x′ − y′, st)|dtdx′ dy′ ds

=
ˆ 1

0

ˆ 1

0
t

ˆ
D2×D2

|ux′ − uy′ |2 |x′ − y′||∇Gε(x′ − y′, st|ux′ − uy′ |)|dx′ dy′ dtds

≤
ˆ 1

0

ˆ 1

0

ˆ
D2×D2

|ux′ − uy′ |2 |x′ − y′||∇Gε(x′ − y′, st|ux′ − uy′ |)|dx′ dy′ dtds.

(3.25)

Set G̃ε := ε−(n+1)G̃(·/ε) where G̃ := | · ||∇G| and Φstu(x′, y′) := (x′ − y′, st(ux′ − uy′)). Observing that
|Φstu(x′, y′)| ≥ |x′ − y′| we have for every fixed s, t,
ˆ
D2×D2

|ux′ − uy′ |2 |x′ − y′||∇Gε(x′ − y′, st|ux′ − uy′ |)|dx′ dy′

≤
ˆ
D2×D2

|ux′ − uy′ |2G̃ε(|Φstu(x′, y′)|) dx′ dy′.

Observing that I1
G̃

= I2
|∇G|, Lemma 3.6 below yields

ˆ
D2×D2

|ux′ − uy′ |2G̃ε(|Φstu(x′, y′)|) dx′ dy′ ≤ CI2
|∇G|

ˆ
D2

|∇u|2 ≤ CI2
|∇G|en(14),

where we used that by (iii) of Theorem 3.1,
´
D2
|∇u|2 ≤ Cen(4). Combining this with (3.25) and (3.24)

concludes the proof of (3.20).
�

In the proof of Theorem 3.2 above, we used the following technical lemma.

Lemma 3.6. Let G : Rn 7→ R+ be a radial kernel such that (recall definition (1.1)) I1
G < ∞. For

u ∈ Lip(D2), we define the map Φu : D2 ×D2 → Rn−1 × R by

Φu(x′, y′) = (x′ − y′, u(x′)− u(y′)). (3.26)

There exists a constant C = C(n) > 0 such that if ‖∇u‖L∞(D2) ≤ 1
2 then

ˆ
D2×D2

(u(x′)− u(y′))2G(Φu(x′, y′)) dx′ dy′ ≤ CI1
G

ˆ
D2

|∇u|2. (3.27)
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Proof. We start by estimatingˆ
D2×D2

(u(x′)− u(y′))2G(Φu(x′, y′)) dx′ dy′

≤
ˆ 1

0

ˆ
Rn−1×Rn−1

1D2(x′)1D2(y′)|∇u(x′ + t(y′ − x′))|2|x′ − y′|2G(Φu(x′, y′)) dx′ dy′ dt

=
ˆ 1

0

ˆ
Rn−1×Rn−1

1D2(x̂′ − tz′)1D2(x̂′ + (1− t)z′)|∇u(x̂)|2|z′|2G(Φu(x̂′ − tz′, x̂′ + (1− t)z′))

dx̂′ dz′ dt

≤
ˆ 1

0

ˆ
D2

|∇u(x′)|2
[ˆ

Rn−1
|z′|2G(Φu(x′ − tz′, x′ + (1− t)z′)) dz′

]
dx′ dt,

where we made the change of variables z′ = y′ − x′, x̂′ = x′ + tz′, and used that by convexity of D2,
D2(tz′) ∩D2(−(1− t)z′) ⊆ D2. We finally claim that for every fixed t ∈ [0, 1] and x′ ∈ D2,ˆ

Rn−1
|z′|2G(Φu(x′ − tz′, x′ + (1− t)z′)) dz′ ≤ CI1

G, (3.28)

which would conclude the proof of (3.27). For this we set G(z) = g(|z|) for some g : R+ 7→ R+. and
write using polar coordinatesˆ

Rn−1
|z′|2G(Φu(x′ − tz′, x′ + (1− t)z′)) dz′

=
ˆ
Sn−2

ˆ ∞
0

rng
(√

r2 + |u(x′ − trσ)− u(x′ + (1− t)rσ)|2
)

dr dHn−2
σ . (3.29)

We finally notice that for every fixed t ∈ [0, 1], x′ ∈ D2 and σ ∈ Sn−2, the function Ψ(r) :=√
r2 + |u(x′ − trσ)− u(x′ + (1− t)rσ)|2 is Lipschitz continuous with

√
5

2 r ≥ Ψ(r) ≥ r and 5
4 ≥ Ψ′(r) ≥ 3

2
√

5
so that making the change of variables s = Ψ(r) we findˆ

Rn−1
|z′|2G(Φu(x′ − tz′, x′ + (1− t)z′)) dz′ ≤ C

ˆ ∞
0

sng(s) ds = CI1
G.

This concludes the proof of (3.28).
�

4. Caccioppoli inequality

Let us first introduce the standard notion of flatness for sets of finite perimeter.

Definition 4.1 (Flatness). For any set of finite perimeter E ⊆ Rn we define the flatness of E in x ∈ ∂E
at scale r > 0 with respect to the direction ν ∈ Sn−1 by

f(E, x, r, ν) := inf
c∈R

1
rn−1

ˆ
∂∗E∩C(x,r,ν)

|(y − x) · ν − c|2

r2 dHn−1
y .

When ν = en, we write fn(E, x, r) for f(E, x, r, en).

Using the harmonic approximation result given by Proposition 3.3, we will be able to show that
f(E, x, αr, ν) . α2e(E, x, r, ν) for (Λ, r0)-minimizers of Fε,γ , as long as r is much larger than ε. To
pass this estimate to the excess at scale αr/2, we prove in this section a Caccioppoli-type (or Reverse
Poincaré) inequality. The key argument is to prove first that for sets which are sufficiently flat, the
quasi-minimality condition (2.14) can be upgraded.

To that effect, we need to introduce some notation. For any t > 0 and z ∈ Rn−1, we define
Kt(z) := Dt(z) × (−1, 1), and we simply write Kt when z = 0. For any cylinder Kt(z), any set of
locally finite perimeter E, and any constant c ∈ R, we define the quantities

F (E,Kt(z), c) :=
ˆ

Kt(z)∩∂∗E

(xn − c)2

t2
dHn−1 (4.1)
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and
E (E,Kt(z)) := P (E; Kt(z))−Hn−1(Dt(z)). (4.2)

When z = 0, we make the abuse of notation E (E, t) = E (E,Kt(z)) and F (E, t, c) = E (E,Kt(z), c).
Let us point out that these two quantities are respectively linked with the (non-scale-invariant) flatness
and excess of E at scale t in the direction en. Indeed, if 0 ∈ E and if for some h ∈ (0, t)

{(x′, xn) ∈ Kt : xn < −h} ⊆ E ∩Ct ⊆ {(x′, xn) ∈ Kt : xn < h} ,
then

fn(E, 0, t) = inf
c∈R

1
tn−1 F (E, t, c),

and
Hn−1(Dt) =

ˆ
∂∗E∩Ct

νE · en

(see [25, Lemma 22.11]), thus, for any t ∈ (0, 1),

E (E, t) =
ˆ
∂∗E∩Ct

(1− νE · en) dHn−1 = 1
2

ˆ
∂∗E∩Ct

|νE − en|2 dHn−1 =
(
tn−1

2

)
en(E, t). (4.3)

In particular, notice that E (E, ·) is increasing in (0, 1).
Eventually, recalling the definition of the functionQ in (1.3), for any θ ∈ [0, 1] we define the functionQ1−θ
by

Q1−θ(t) := Q(t1−θ), ∀t > 0. (4.4)

4.1. A refined quasi-minimality condition. We improve the quasi-minimality condition (2.14) for
sets which are sufficiently flat. For any ε > 0, let us define the “critical” energy functional

Fε(E) := F1,ε(E) = (P − Pε)(E).

Proposition 4.2. Assume that G satisfies (H1) and (H2), and let ε ∈ (0, 1), γ ∈ (0, 1), θ ∈ (0, 1] and
Λ > 0 with 4Λ ≤ 1− γ. There exists C = C(n) > 0 such that if E is a (Λ, 4)-minimizer of Fε,γ with{

xn < −
1
4

}
∩K3 ⊆ E ∩K3 ⊆

{
xn <

1
4

}
∩K3,

then the following holds. If t ∈ (0, 2) is such that Hn−1(∂Kt ∩ ∂E) = 0 then for any set F of finite
perimeter such that E4F ⊆ Kt and any set of and{

xn < −
1
4

}
∩Kt ⊆ F ∩Kt ⊆

{
xn <

1
4

}
∩Kt,

we have

E (E, t) ≤
(

1 + γ

1− γ

)
E (F, t) + 2γ

(1− γ)
[
E (E, t+ εθ)− E (E, t)

]
+ C

(1− γ)Q1−θ

(
1
ε

)
+ Λ

(1− γ) |E4F |+
1 + 3γ
(1− γ)H

n−1(∂∗F ∩ ∂Kt). (4.5)

Proof. To simplify a bit notation set η := Hn−1(∂∗F∩∂Kt). SinceHn−1(∂Kt∩∂E) = 0 and E4F ⊆ Kt

we have
P (E)− P (F ) = P (E; Kt)− P (F ; Kt)− η. (4.6)

By (Λ, 4)-minimality of E we find
(1− γ)P (E; Kt) ≤ (1− γ)P (F ; Kt) + γ

[
Fε(F )−Fε(E)

]
+ Λ|E4F |+ (1− γ)η. (4.7)

In the next two steps we prove that

Fε(F )−Fε(E) ≤ 2E (F, t+ εθ) + CQ1−θ

(
1
ε

)
. (4.8)

Step 1. In this first step we localize the estimate. Setting for simplicity
D̃t := Dt+εθ , K̃t := Kt+εθ

and defining the “localized” functional

F loc
ε (E) := P (E; K̃t)−

ˆ
(E∩K̃t)×(Ec∩K̃t)

Gε(x− y) dx dy,
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we claim that
Fε(F )−Fε(E) ≤ F loc

ε (F )−F loc
ε (E) + CQ1−θ(ε−1). (4.9)

Since E4F ⊆ Kt ⊂⊂ K̃t, P (E) − P (F ) = P (E; K̃t) − P (F ; K̃t) and thus in order to prove (4.9),
we just need to consider the nonlocal part. Setting Φ(A,B) =

´
A×B Gε(x− y) dxdy and using that

E4F ⊆ Kt we have
Pε(E)− Pε(F ) = Φ(E,Ec)− Φ(F, F c)

=
[
Φ(E ∩ K̃t, E

c ∩ K̃t)− Φ(F ∩ K̃t, F
c ∩ K̃t)

]
+ Φ(E ∩Kt, E

c\K̃t)− Φ(F ∩Kt, E
c\K̃t)

+ Φ(E\K̃t, E
c ∩Kt)− Φ(E\K̃t, F

c ∩Kt)

≤
[
Φ(E ∩ K̃t, E

c ∩ K̃t)− Φ(F ∩ K̃t, F
c ∩ K̃t)

]
+ Φ(E ∩Kt, E

c\K̃t) + Φ(E\K̃t, E
c ∩Kt)

≤
[
Φ(E ∩ K̃t, E

c ∩ K̃t)− Φ(F ∩ K̃t, F
c ∩ K̃t)

]
+ 2Φ(Kt, (K̃t)c).

In order to prove (4.9) it is thus enough to estimate Φ(Kt, (K̃t)c). For this we write that

Φ(Kt, (K̃t)c) =
ˆ

Kt×(K̃t)c
Gε(x− y) dxdy

=
ˆ
Rn×Rn

1Kt(x)1K̃
c

t
(x+ z)Gε(z) dxdz

=
ˆ
Rn×Rn

1Kt(x)1K̃
c

t
(x+ z)1Rn\B

εθ
(z)Gε(z) dx dz

≤
ˆ
Rn×Rn

1Kt
(x)1Kc

t
(x+ z)1Rn\B

εθ
(z)Gε(z) dx dz

≤ 1
2

(ˆ
Rn\B

εθ

|z|Gε(z) dz
)
P (Kt)

≤ CQ1−θ(ε−1),

where we used (2.1) with K = 1Rn\B
εθ
Gε.

Step 2. In this step we show
F loc
ε (F )−F loc

ε (E) ≤ 2E (F, t+ εθ) + CQ1−θ(ε−1). (4.10)
Together with (4.9) this would conclude the proof of (4.8).

In this step, we will use the slicing techniques introduced in [26, Section 3], rewriting P and Pε
as an average over 1-dimensional slices. Let us set ρ(t) := ωn−1|t|n−1g(|t|) and ρε(t) := ε−2ρ(ε−1t)
for t ∈ R \ {0}. For every line segment L ⊆ Rn, we define the one-dimensional nonlocal perimeter
functional in L

P 1D
ε (E;L) :=

ˆ
L×L
|1E(x)− 1E(y)|ρε(x− y) dH1

x dH1
y = 2

ˆ
(E∩L)×(Ec∩L)

ρε(x− y) dH1
x dH1

y

and the one-dimensional critical energy in L by
F1D
ε (E;L) := H0(∂∗E ∩ L)− P 1D(E;L).

Proceeding as in [26, Proposition 3.1 & Corollary 3.3] (the only difference is the restriction to K̃t) we
have

F loc
ε (E) = 1

2ωn−1

ˆ
Sn−1

ˆ
{σ}⊥

F1D
ε (E; L̃σ,x) dHn−1

x dHn−1
σ ,

where we set
Lσ,x := x+ Rσ, and L̃σ,x := Lσ,x ∩ K̃t.

In particular

F loc
ε (F )−F loc

ε (E) = 1
2ωn−1

ˆ
Sn−1

ˆ
{σ}⊥

(F1D
ε (F ; L̃σ,x)−F1D

ε (E; L̃σ,x)) dxdHn−1
σ . (4.11)

Step 2.1. We claim that for every σ ∈ Sn−1 and Hn−1-a.e x ∈ {σ}⊥, we have
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F1D
ε (F ; L̃σ,x)−F1D

ε (E; L̃σ,x)

≤

{
0 it ∂∗F ∩ L̃σ,x = ∅,
2
(
H0(∂∗F ∩ L̃σ,x)− 1

)
+ CQ1−θ(ε−1) otherwise. (4.12)

By the standard properties of one-dimensional restrictions of sets of finite perimeter (see e.g. [3]), it is
enough to prove (4.12) for E,F ⊆ R and L̃σ,x = L = (0, a) for some a > 0. Notice that since E and F
are of finite perimeter in L, they are just a finite union of disjoint intervals.
By [26, Remark 3.2], for any set of finite perimeter E ⊆ R, we have P 1D

ε (E;R) ≤ H0(∂E), which
implies F1D

ε (E;L) ≥ F1D
ε (E;R) ≥ 0. Thus, if H0(∂F ∩L) = 0 (that is, ∂F ∩L = ∅), then F1D

ε (F ;L)−
F1D
ε (E;L) ≤ F1D

ε (F ;L) ≤ −P 1D
ε (E;L) ≤ 0. If H0(∂F ∩ L) ≥ 2, then

F1D
ε (F ;L)−F1D

ε (E;L) ≤ F1D
ε (F ;L) ≤ H0(∂F ∩ L) ≤ 2

(
H0(∂F ∩ L)− 1

)
.

There remains to focus on the case where H0(∂F ∩ L) = 1. In this case we claim that

F1D
ε (F ;L)−F1D

ε (E;L) ≤ CQ1−θ(ε−1). (4.13)
Let tF be such that L∩ ∂F = {tF } then either F ∩L = (0, tF ) or F ∩L = (tF , a). Since both cases are
similar, we treat only the case F ∩ L = (0, tF ). We distinguish two sub-cases.

Case 1: d(tF , Lc) ≥ εθ. In this case we argue somewhat similarly to (4.9). Using the fact that

2
ˆ c

−∞

ˆ ∞
c

ρε(s− t) dsdt = 2
ˆ ∞

0
tρε(t) dt = 1, ∀c ∈ R, (4.14)

we compute

F1D
ε (F ;L) = 1− 2

ˆ tF

0

ˆ a

tF

ρε(s− t) dsdt

= 2
ˆ tF

−∞

ˆ ∞
tF

ρε(s− t) dsdt− 2
ˆ tF

0

ˆ a

tF

ρε(s− t) dsdt

= 2
ˆ tF

−∞

ˆ ∞
a

ρε(s− t) dsdt+ 2
ˆ 0

−∞

ˆ a

tF

ρε(s− t) dsdt

≤ 2
ˆ 0

−∞

(ˆ ∞
a−tF

ρε(s− t) dsdt+
ˆ ∞
tF

ρε(s− t) ds
)

dt

≤ 4
ˆ 0

−∞

ˆ ∞
εθ

ρε(s− t) dsdt

= 4
ˆ ∞
εθ

(t− εθ)ρε(t) dt,

thus
F1D
ε (F ;L) ≤ C

ˆ
Rn\B

εθ

|z|Gε(z) dz = CQ1−θ(ε−1),

proving (4.13) in this case.
Case 2: d(tF , Lc) < εθ. Either 0 < tF < εθ < a or 0 < a− εθ < tF < a. Since both cases are similar,
we treat only the case 0 < a− εθ < tF < a.

Notice that E4F ⊆ Kt implies tF ∈ ∂E and
F c ∩ (a− εθ, a) = Ec ∩ (a− εθ, a) = (a− εθ, a). (4.15)

Let us write E ∩ (0, a) =
⋃k
j=1 Ij , where k ≥ 1 and Ij ⊆ (0, a) are open intervals. Then let

{s1, . . . , sk1 , t1, . . . , tk2} be the elements of ∂E ∩ (0, a) such that
• s1 < s2 < . . . < sk1 and t1 < t2 < . . . < tk2 = tF ;
• for each j, sj is a left endpoint of some Ii, and tj is a right endpoint of some Ii.

Note that s1 may not be the left endpoint of I1 (if I1 = (0, t1)), so that k1 may be different from k2
(see Figure 1). The fact that tk2 = tF is due to (4.15).

For 1 ≤ j ≤ k1, we denote by Aj the connected component of Ec ∩ L which is immediately on the
left side of sj (that is, its right endpoint is sj), and by B̃j the union of all the connected components of
E ∩ L on the right side of sj . Similarly, for 1 ≤ j ≤ k2, we denote by Bj the connected component of
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0 t1 s1 t2 s2 εθ tF = t3 a 0 t1s1 t2s2 εθs3 tF = t3 a

Figure 1. Two examples of the situation in Step 2.1, Case 2 in the proof of Propo-
sition 4.2. On the left, k1 = 2 and k2 = 3, and on the right, k1 = k2 = 3. The thick
segments represent the set E ∩ (0, a).

E ∩L which is immediately on the left side of tj , and by Ãj the union of all the connected components
of Ec ∩ L on the right side of tj . See Figure 2.

0 t1 s1 t2 s2 εθ tF = t3 a

B1 A1 B2 A2 B3

B̃1 :

B̃2 :

Ã1 :

Ã2 :

Ã3 :

Figure 2. An example of the situation in Step 2.1, Case 2 in the proof of Proposi-
tion 4.2, when k1 = 2 and k2 = 3, with the representation of the Ãj and the B̃j .

Then using that H0(∂E ∩L) = k1 + k2 and decomposing the domain of integration of P 1D
ε (E;L) we

see that

F1D
ε (E;L) =

k1∑
j=1

[
1− 2

ˆ
Aj×B̃j

ρε(s− t) dsdt
]

+
k2∑
j=1

[
1− 2

ˆ
Bj×Ãj

ρε(s− t) dsdt
]
.

Each term of each sum is nonnegative by (4.14), and since Ãk2 = (tF , a) by (4.15) and Bk2 ⊆ (0, tF )
this implies in particular

F1D
ε (E;L) ≥ 1− 2

ˆ
(0,tF )×(tF ,a)

ρε(s− t) dsdt = F1D
ε (F ;L),

concluding the proof of (4.13) in this case as well.

Step 2.2. For σ ∈ Sn−1 we define πσ as the projection on {σ}⊥. We then set

Sh(F ; K̃t) :=
ˆ
Sn−1
Hn−1(πσ⊥(∂∗F ∩ K̃t)) dHn−1

σ

=
ˆ
Sn−1

ˆ
{σ}⊥

1{L̃σ,x∩∂∗F 6=∅} dHn−1
x dHn−1

σ .

Since
P (F ; Ω) = 1

2ωn−1

ˆ
Sn−1

ˆ
{σ}⊥

H0(∂∗F ∩ Lσ,x ∩ Ω) dHn−1
x dHn−1

σ .

we have
P (F ; K̃t) =

ˆ
Sn−1

ˆ
{σ}⊥

H0(∂∗F ∩ L̃σ,x) dHn−1
x dHn−1

σ

≥
ˆ
Sn−1

ˆ
{σ}⊥

1{L̃σ,x∩∂∗F 6=∅} dHn−1
x dHn−1

σ .

(4.16)
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Thus, inserting (4.12) into (4.11) and using the fact thatˆ
Sn−1

ˆ
{σ}⊥

1{L̃σ,x 6=∅} dHn−1
x dHn−1

σ ≤ C

gives
F loc
ε (F )−F loc

ε (E) ≤ 2(P (F ; K̃t)− Sh(F ; K̃t)) + CQ1−θ(ε−1). (4.17)
By Lemma 4.3 below, Sh is minimal when F ∩ K̃t = Rn+ ∩ K̃t, which gives

Sh(F ; K̃t) ≥ Hn−1(D̃t).
In view of (4.17), this concludes the proof of (4.10).

Step 3. We may now conclude the proof of (4.5). By (4.8) and (4.7), we find
(1− γ)P (E; Kt) ≤ (1− γ)P (F ; Kt) + γ

[
2E (F, t+ εθ) + CQ1−θ(ε−1)

]
+ Λ|E4F |+ (1− γ)η.

Subtracting (1− γ)Hn−1(Dt) from the previous inequality and using that by (4.6)
E (F, t+ εθ)− E (F, t) = E (E, t+ εθ)− E (E, t) + η,

yields
(1− γ)E (E, t) ≤ (1− γ)E (F, t) + 2γE (F, t+ εθ) + CγQ1−θ(ε−1) + Λ|E4F |+ (1 + γ)η

= (1 + γ)E (F, t) + 2γ
[
E (F, t+ εθ)− E (F, t)

]
+ Λ|E4F |+ (1 + γ)η

= (1 + γ)E (F, t) + 2γ
[
E (E, t+ εθ)− E (E, t)

]
+ Λ|E4F |+ (1 + 3γ)η.

Dividing by (1− γ) concludes the proof of (4.5). �

Let πV denote the orthogonal projection on a vector space V ⊆ Rn. We now prove that among
sufficiently flat sets, the quantity

Sh(E; Kt) = 1
2ωn−1

ˆ
Sn−1
Hn−1(πσ⊥(∂∗E ∩Kt)) dHn−1

σ (4.18)

is minimal when E is flat.

Lemma 4.3. For any t > 0, and any set of finite perimeter E ⊆ Rn such that
{xn < −1/4} ∩Kt ⊆ E ∩Kt ⊆ {xn < 1/4} ∩Kt, (4.19)

we have
Sh(E; Kt) ≥ Sh(Dt × (−1, 0); Kt) = Hn−1(Dt). (4.20)

Notice that the equality Sh(Dt × (−1, 0); Kt) = Hn−1(Dt) follows arguing as for (4.16).

Proof of Lemma 4.3. We start by fixing some notation. We denote by S : Rn → Rn the symmetry
with respect to the vertical line {0Rn−1} × R, that is, for ξ = (ξ′, ξn),

Sξ := (−ξ′, ξn).
We write

Sh(E; Kt) = 1
4ωn−1

ˆ
Sn−1

[
Hn−1(πσ⊥(∂∗E ∩Kt)) +Hn−1(π(Sσ)⊥(∂∗E ∩Kt))

]
dHn−1

σ . (4.21)

We claim that for every σ ∈ Sn−1, the integrand is minimal when ∂∗E is horizontal in Kt, that is,
Hn−1(πσ⊥(∂∗E ∩Kt)) +Hn−1(π(Sσ)⊥(∂∗E ∩Kt)) ≥ Hn−1(πσ⊥(Dt)) +Hn−1(π(Sσ)⊥(Dt)). (4.22)

After integration this would conclude the proof of (4.20). The proof of (4.22) is done in two steps. In
the first step we prove it for n = 2 and in the second step we use slicing to reduce ourselves to the
two-dimensional situation.
Step 1. We first prove (4.22) for n = 2.

Step 1.1. By [2], we may decompose the set of finite perimeter Ẽ := E ∩ Kt into its (measure
theoretic) connected components. By assumption (4.19) one of these components denoted Ẽ1 contains
(−t, t)× (−1,− 1

4 ). Its external boundary is a Jordan curve γ ∈ C0([0, 1), [−t, t]× [−1, 1
4 ]) and we have

γ([0, 1)) ⊆ ∂M Ẽ1 ⊆ ∂E up to a H1-negligible set, where ∂M Ẽ1 is the essential boundary and ∂Ẽ1 the
usual topological boundary of Ẽ1. Moreover, by (4.19) we may assume up to a reparameterization that
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γ|[0, 1
2 ] is a parameterization of the broken line made of the three oriented segments joining (−t,− 1

4 ) to
(−t,−1), then (−t,−1) to (t,−1) and (t,−1) to (t,− 1

4 ).
Denoting

s1 := max{s ∈ [ 1
2 , 1) : γ(s) ∈ {t} × R},

s2 := min{s ∈ (s1, 1) : γ(s) ∈ {−t} × R},

we obtain the parameterization of an arc γ : [s1, s2]→ [−t, t]× [− 1
4 ,

1
4 ] with

γ(s1) ∈ {t} × R, γ(s2) ∈ {−t} × R, γ((s1, s2)) ⊆ (−t, t)× [− 1
4 ,

1
4 ].

Let I be the segment [γ(s1), γ(s2)]. Obviously, any straight line intersecting I also intersects the arc
γ([s1, s2]), hence for every σ ∈ S1, πσ⊥(γ([s1, s2])) contains πσ⊥(I), so that

H1(πσ⊥(I)) ≤ H1(πσ⊥(γ([s1, s2]))) ≤ H1(πσ⊥(∂ME ∩Kt))= H1(πσ⊥(∂∗E ∩Kt)). (4.23)
Step 1.2. For σ ∈ S1, let θ ∈ [0, π2 ] be such that

{Rσ,R(Sσ)} =
{
R
(

cos θ
sin θ

)
,R
(
− cos θ
sin θ

)}
and ϕ ∈ (−π2 ,

π
2 ) be such that I has direction

(cosϕ
sinϕ

)
. We compute

H1(πσ⊥(I)) +H1(π(Sσ)⊥(I)) = 2t
cosϕ (| sin(θ − ϕ)|+ | sin(θ + ϕ)|)

=
{

4t| tanϕ| cos θ if 0 ≤ θ ≤ |ϕ| < π
2 ,

4t sin θ if |ϕ| < θ ≤ π
2 .

Since tanϕ is increasing in (θ, π2 ) we have | tanϕ| cos θ ≥ sin θ if θ ≤ |ϕ| < π
2 and thus

H1(πσ⊥(I)) +H1(π(Sσ)⊥(I)) ≥ 4t sin θ = H1(πσ⊥(It)) +H1(π(Sσ)⊥(It)).

Together with (4.23) applied both to σ and Sσ, this proves the (4.22) when n = 2.

Step 2. The case n > 2. There exists e ∈ Sn−1 ∩ [Rn−1 × {0}] ∼ Sn−2 such that
σ = (σ · e)e+ σnen, Sσ = −(σ · e)e+ σnen.

Denoting P := Span{e, en}, V := P⊥ and Py := y + P for y ∈ V , we have

Hn−1(πσ⊥(∂∗E ∩Kt)) =
ˆ
V ∩Bt

H1(πσ⊥(∂∗E ∩Kt ∩ Py)) dHn−2
y , (4.24)

Hn−1(π(Sσ)⊥(∂∗E ∩Kt)) =
ˆ
V ∩Bt

H1(π(Sσ)⊥(∂∗E ∩Kt ∩ Py)) dHn−2
y . (4.25)

Next, for almost every y ∈ V , E ∩ Py is a set with finite perimeter in the plane Py and up to a
H1-negligible set, ∂∗Py (E ∩ Py) = (∂∗RnE) ∩ Py.

Noticing that for |y| ≥ t, Kt ∩ Py = ∅ and that for |y| < t, Kt ∩ Py = y + {x1e + x2en : |x1| <√
t2 − |y|2, |x2| < 1} ∼ (−

√
t2 − |y|2,

√
t2 − |y|2)× (−1, 1) and using Step 1 in Kt ∩ Py concludes the

proof. �

Remark 4.4. In Proposition 4.2, we introduced a parameter θ ∈ (0, 1] to find a proper balance between
the terms [

E (E, t+ εθ)− E (E, t)
]

and Q1−θ

(
1
ε

)
.

As we will see, through an averaging argument, we can roughly estimate[
E (E, t+ εθ)− E (E, t)

]
. εθe(E, 2t) (4.26)

se the first quantity gets smaller the closer θ is to 1. However, Q1−θ(ε−1) gets larger as θ goes to 1.
In particular when θ = 1, Q1−θ(r/ε) = Q(1) is a constant (non-zero unless G is compactly supported
in B1), which would prevent us to obtain a decay of the excess through iteration. We can choose later θ
small enough so that Q1−θ(r/ε) stays sufficiently small down to any scale ε1−β with β ∈ (0, 1). As long
as θ is non-zero, (4.26) will be sufficient to proceed with the iteration.
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4.2. A Caccioppoli-type inequality. From the improved quasi-minimality condition given by
Proposition 4.2, we first obtain an intermediate weaker form of a Caccioppoli inequality. We refer to
(4.1), (4.2) and (4.4) for the definitions of F , E and Q1−θ.

Proposition 4.5. Assume that G satisfies (H1) and (H2), and let ε ∈ (0, 1), γ ∈ (0, 1), θ ∈ (0, 1] and
Λ > 0 such that εθ ∈ (0, 1

4 ) and 4Λ ≤ 1− γ. Then for every (Λ, 4)-minimizer E of Fε,γ with{
xn < −

1
8

}
∩K3 ⊆ E ∩K3 ⊆

{
xn <

1
8

}
∩K3,

the following holds. For every c ∈ R such that |c| < 1
4 and every t ∈ (4εθ, 1), we have

E (E, t/2) ≤ C
((

E (E, t)F (E, t, c)
) 1

2 +
(
εθ

t

)
E (E, t) +Q1−θ(ε−1) + Λtn−1

)
, (4.27)

where C depends only on n and γ.

Proof. For almost every t ∈ (4εθ, 1), we have

Hn−1(∂Kt ∩ ∂E) = 0. (4.28)

Let us fix such a t. If F (E, t, c) ≥ 1
16E (E, t), then using the fact that E (E, ·) is nondecreasing, we have

E (E, t/2) ≤ E (E, t) ≤
√

E (E, t)
√

E (E, t) ≤ 4
(
E (E, t)F (E, t, c)

) 1
2

thus (4.27) holds. Hence, we now assume F (E, t, c) < 1
16E (E, t), and set λ :=

√
F(E,t,c)
E (E,t) ∈ (0, 1

4 ). As
in [25, Lemma 24.9] we want to use for s ∈ (0, 1) the construction of [25, Lemma 24.6] as competitor
inside Kst for Proposition 4.2. To this aim using for instance [25, Theorem 13.8], we approximate E by
smooth sets Ek with |E4Ek| → 0, P (Ek)→ P (E) and{

xn < −
1
4

}
∩K3 ⊆ Ek ∩K3 ⊆

{
xn <

1
4

}
∩K3. (4.29)

By the Morse–Sard lemma, for almost every s ∈ (0, 1),

∂Kst ∩ ∂Ek is a (n− 2)-dimensional hypersurface. (4.30)

For every such s we may apply [25, Lemma 24.6] with a = (1−λ)st and b = st, and use the inequalities√
1 + t2 ≤ 1 + t2 and 1− (1− λ)n−1 ≤ (n− 1)λ, to construct an open set of finite perimeter Fs such

that (4.29) holds for Fs,
Fs ∩ ∂Kst = Ek ∩ ∂Kst, (4.31)

and

E (Fs, st) ≤ C
(
λstVE (st) + 1

λst
VF (st)

)
, (4.32)

where we have set

VE (a) := d
da (E (Ek, a)) = Hn−2(∂Ka ∩ ∂Ek)−Hn−2(∂Da)

and
VF (a) := d

da (a2F (Ek, a, c)) =
ˆ
∂Ka∩∂Ek

(xn − c)2 dHn−2.

Applying Proposition 4.2 with, F = (Fs ∩ Kst) ∪ (E\Kst) and noticing that by (4.31) and [25,
Theorem 16.16], for a.e. s, Hn−1(∂∗Fs ∩ ∂Kst) = Hn−1((E4Ek) ∩ ∂Kst) we find for such s,

E (E, st) ≤ C
(
E (Fs, st) +

[
E (E, st+ εθ)− E (E, st)

]
+ Λ|Kst|+Q1−θ(ε−1)

+Hn−1((E4Ek) ∩ ∂Kst)
)

(4.32)
≤ C

(
λstVE (st) + 1

λst
VF (st) +

[
E (E, st+ εθ)− E (E, st)

]
+ Λtn−1 +Q1−θ(ε−1)

+Hn−1((E4Ek) ∩ ∂Kst)
)
.

(4.33)
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We now integrate (4.33) for s between 1/2 and 3/4. First, since E (E, ·) is nondecreasing, we have

1
4E (E, t/2) ≤

ˆ 3
4

1
2

E (E, st) ds. (4.34)

Second, we compute
ˆ 3

4

1
2

[E (E, st+ ε)− E (E, st)] ds = 1
t

ˆ 3t
4

t
2

[E (E, a+ εθ)− E (E, a)] da

= 1
t

(ˆ 3t
4 +εθ

t
2 +εθ

E (E, a) da−
ˆ 3t

4

t
2

E (E, a) da
)
≤ 1
t

ˆ 3t
4 +εθ

3t
4

E (E, a) da ≤
(
εθ

t

)
E (E, t), (4.35)

where we used the fact that E (E, ·) is nondecreasing for the last inequality. Third,
ˆ 3

4

1
2

stVE (st) ds ≤ 3
4

ˆ 3t
4

t
2

VE (a) da = 3
4

(
E

(
Ek,

3t
4

)
− E

(
Ek,

t

2

))
≤ 3

4E (Ek, t). (4.36)

Finally, with a similar argument using that a 7→ a2F (Ek, a, c) is nondecreasing, we have
ˆ 3

4

1
2

1
st
VF (st) ds ≤ 2F (Ek, t, c). (4.37)

Inserting (4.34), (4.35), (4.36) and (4.37) into (4.33) yields

E (E, t/2) ≤ C
[
λE (Ek, t) + 1

λ
F (Ek, t, c) +

(
εθ

t

)
E (E, t) + Λtn−1 +Q1−θ(ε−1) + |E4Ek|

]
. (4.38)

By (4.28) we can send k →∞ to obtain

E (E, t/2) ≤ C
[
λE (E, t) + 1

λ
F (E, t, c) +

(
εθ

t

)
E (E, t) + Λtn−1 +Q1−θ(ε−1)

]
.

Recalling that λ =
√

F(E,t,c)
E (E,t) concludes the proof of (4.27) for a.e. t ∈ (4εθ, 1). By the left-continuity

of E (E, ·) and F (E, ·, c) this actually holds for every t ∈ (4εθ, 1). �

We now postprocess (4.27) to obtain the desired stronger Caccioppoli inequality. The main difference
with [25, Theorem 24.1] is that in our case we cannot apply (4.27) at scales which are smaller than εθ.

Proposition 4.6 (Caccioppoli inequality). Assume that G satisfies (H1) and (H2), and let ε ∈ (0, 1),
γ ∈ (0, 1), Λ > 0 and r0 > 0 with Λr0 ≤ 1− γ. There exist a constant τcac = τcac(n) > 0 and universal
constants σcac > 0 and Mcac > 1 such that the following holds. If E is a (Λ, r0)-minimizer of Fε,γ
satisfying, for some x ∈ ∂E, ν ∈ Sn−1, r > 0 and θ ∈ (0, 1],

e(E, x,Mcacr, ν) ≤ τcac, Mcacr < r0,
(ε
r

)θ
≤ σcac,

then
e(E, x, r/2, ν) ≤ C

(
f(E, x, r, ν) +

(ε
r

)θ
e(E, x, r, ν) + Λr +Q1−θ

(r
ε

))
, (4.39)

where C = C(n,G, γ).

Proof. Up to a translation and a rotation, we assume x = 0 and ν = en. Up to rescaling, we may
assume that r = 1, εθ ≤ σcac and E is a (Λ, r0

r )-minimizer of Fε,γ with Λ
(
r0
r

)
≤ 1− γ. Up to choosing

Mcac large enough and σcac small enough, we may assume that E is a (Λ, 4)-minimizer of Fε,γ with
4Λ ≤ 1− γ and 16εθ < 1. Thus, (4.39) amounts to proving

en(E, 1
2 ) ≤ C

(
fn(E, 1) + εθen(E, 1) + Λ +Q1−θ

(
1
ε

))
. (4.40)

By Proposition 2.16, choosing Mcac even larger if necessary and τcac = τcac(n) small enough, we have{
(x′, xn) ∈ C4 : xn < −

1
8

}
⊆ E ∩C4 ⊆

{
(x′, xn) ∈ C4 : xn <

1
8

}
. (4.41)
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Thus for every z ∈ D1, we have{
(x′, xn) ∈ K3(z) : xn < −

1
8

}
⊆ E ∩K3(z) ⊆

{
(x′, xn) ∈ K3(z) : xn <

1
8

}
,

so we can apply Proposition 4.5 to E + (z, 0) with 2s for every s ∈ (2εθ, 1
2 ). Thus, for every s ∈ (2εθ, 1

2 )
such that D2s(z) ⊆ D1, we have

E (E,Ks(z)) ≤ C
((

E (E,K2s(z))F (E,K2s(z), c)
) 1

2 +
(ε
s

)θ
E (E,K2s(z)) +Q1−θ

(
1
ε

)
+ Λsn−1

)
.

(4.42)
Setting

h := inf
|c|< 1

4

ˆ
C1∩∂∗E

(xn − c)2 dHn−1

multiplying (4.42) by s2 and taking the infimum over |c| < 1
4 , using the fact that

s2F (E,K2s(z), c) ≤
F (E,K1, c)

4 ≤ h

4
for every s ∈ (2εθ, 1

2 ) with D2s(z) ⊆ D1, we find

s2E (E,Ks(z)) ≤ C
((
s2E (E,K2s(z))h

) 1
2 + εθE (E,K2s(z)) + s2Q1−θ

(
1
ε

)
+ Λ

)
. (4.43)

Set
Ψ := sup

{
s2E (E,Ks(z)) : D2s(z) ⊆ D1 and s ∈

(
4εθ, 1

2

)}
.

If
Ψ = sup

{
s2E (E,Ks(z)) : D2s(z) ⊆ D1 and s ∈

(
4εθ, 8εθ

)}
then (4.40) holds. Indeed, using the left-continuity of t 7→ E (E,Kt) and the fact that E (E,Ks(z)) ≤
E (E,K1) whenever D2s(z) ⊆ D1, in that case we find

E (E,K 1
2
) ≤ Ψ

4 ≤ Cε
2θE (E,K1),

which gives (4.40) recalling that en(E, 1
2 ) = 2E (E,K 1

2
) (see (4.3)). We can thus take the supremum

over s > 4εθ or s > 8εθ for Ψ. For any z and s such that D2s(z) ⊆ D1 and s ∈ (8εθ, 1
2 ), we cover Ds(z)

by N = N(n) balls D s
4
(zk) with centers zk ∈ Ds(z). Then since s

4 > 2εθ and D s
2
(zk) ⊆ D1, we can

apply (4.43) to each
(
s
4
)2

E (E,K s
4
(zk)). Thus, by the subadditivity of E , and by definition of Ψ, for

such z and s ∈ (8εθ, 1
2 ), we deduce

s2E (E,Ks(z)) ≤
1
16

N∑
k=1

(s
4

)2
E (E,K s

4
(zk))

≤ C
N∑
k=1

((
s2E (E,K s

2
(zk))h

) 1
2 + εθE (E,K s

2
(zk)) + s2Q1−θ

(
1
ε

)
+ Λ

)
≤ C

(√
Ψh+ εθΨ +Q1−θ

(
1
ε

)
+ Λ

)
.

(4.44)

Recall that Ψ is in fact obtained by taking the supremum over the s, z such that D2s(z) ⊆ D1 and
s ∈ (8εθ, 1

2 ) by the above discussion, thus, (4.44) yields

Ψ ≤ C
(√

Ψh+ εθΨ +Q1−θ

(
1
ε

)
+ Λ

)
. (4.45)

If
εθΨ +Q1−θ

(
1
ε

)
+ Λ <

√
Ψh,

then (4.45) implies Ψ ≤ Ch. Otherwise, (4.45) implies

Ψ ≤ C
(
εθΨ +Q1−θ

(
1
ε

)
+ Λ

)
≤ C

(
εθE (E,K1) +Q1−θ

(
1
ε

)
+ Λ

)
.
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Recalling en(E, 1
2 ) = 2E (E,K 1

2
), the left-continuity of t 7→ E (E,Kt) and the definition of h, combining

the different cases yields (4.40). This concludes the proof. �

5. Uniform regularity

5.1. Excess decay for r ... ε. If G satisfies assumptions (H1), (H2) and (H4), by Proposition 2.12
and Remark 2.13, it is standard to obtain power decay of the excess starting from a scale comparable
to ε. One can for example apply the regularity theory of [29] for sets E satisfying the almost-minimality
property

P (E;Br(x)) ≤ P (F ;Br(x)) + ω(r), with ω(r) := Λrn−1+s0 ,

for any competitor F such that E4F ⊂⊂ Br(x) with r < r0 and x ∈ Rn.
As a consequence, we have the following power decay of the excess for small scales.

Proposition 5.1 (Excess decay at small scales). Assume that G satisfies (H1), (H2) and (H4), and
let γ ∈ (0, 1), ε > 0, Λ > 0 and r0 > 0 with Λr0 ≤ 1 − γ. Then for every α ∈ (0, 1−s0

2 ), there exist
positive constants τ s

dec = τ s
dec(n,G, γ, α) and C = C(n,G, γ, α) such that the following holds. If E is a

(Λ, r0)-minimizer of Fε,γ which satisfies, for some x ∈ ∂E, R > 0 with 4R < r0 and ν ∈ Sn−1,

e(E, x, 4R, ν) + Λ
(
R

ε

)
≤ τ s

dec, (5.1)

then we have
e(E, x, r) ≤ C

( r
R

)2α
e(E, x, 4R, ν), ∀r ∈ (0, R).

5.2. Excess decay for r � ε. Starting with a small excess at a given scale much larger than ε, we
show that the excess is smaller at a smaller scale, up to tilting the direction.

Lemma 5.2 (Tilt lemma). Assume that G satisfies (H1), (H2) and (H3), and let γ ∈ (0, 1), ε > 0,
Λ > 0 and r0 > 0 with Λr0 ≤ 1 − γ. Then there exists a positive constant λtilt such that for every
λ ∈ (0, λtilt), there exists τtilt depending only on n, G, γ and λ such that the following holds. If E is a
(Λ, r0)-minimizer of Fε,γ which satisfies, for some x ∈ ∂E, ν ∈ Sn−1, 0 < r < r0 and θ ∈ (0, 1],

e(E, x, r, ν) + Λr +
(ε
r

)θ
≤ τtilt,

then there exists ν0 ∈ Sn−1 such that

e(E, x, λr, ν0) ≤ C
(
λ2e(E, x, r, ν) + λΛr

)
+ CQ1−θ

(
λr

ε

)
, (5.2)

where C = C(n,G, γ).

Proof. We follow relatively closely the proof of [25, Theorem 25.3]. Let λ ∈ (0, λtilt), with λtilt and τtilt
to be chosen later. Up to a translation and a rotation, we assume x = 0 and ν = en. Up to rescaling,
we may assume that r = 4, en(E, 4) + 4Λ ≤ τtilt, εθ ≤ τtilt and E is a (Λ, 4r0

r )-minimizer of Fε,γ with
Λ
( 4r0
r

)
≤ 1− γ. In particular E is a (Λ, 4)-minimizer of Fε,γ with 4Λ ≤ 1− γ. In the rest of the proof,

we shall write en(r) for en(E, 0, r) and f(r, ν) for f(E, 0, r, ν).
Assuming that τtilt < τlip, we can apply Theorem 3.1 with r = 1. Let C1 = C1(n,G, γ) be a large

constant, and set

L := C1

(
en(4) +Q

(
1
ε

)
+ Λ

)
.

We proceed in two steps.
Step 1. We claim that if

L ≤ min(λ(n−1)(n+3), σ2), (5.3)
where σ(n,G, γ, λ) is the constant given by Proposition 3.3 with τ = λn+3, then there exists ν0 ∈ Sn−1

such that
f(λ, ν0) ≤ Cλ2L, (5.4)

where C = C(n,G, γ). Let us assume that (5.3) holds, and let us set u0 := u√
L
. By Theorem 3.1, u0

satisfies ˆ
D2

|∇u0|2 ≤ 1
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and, choosing C1 large enough, for all ϕ ∈ C∞c (D1),ˆ
D1

∇u0 · ∇ϕ− γ
ˆ
D2×D2

(u0(x′)− u0(y′))(ϕ(x′)− ϕ(y′))Gε(x′ − y′, 0) dx′ dy′ ≤
√
L‖∇ϕ‖L∞ .

Assuming τtilt ≤ εharm, then since
√
L ≤ σ by assumption, Proposition 3.3 gives that there exists a

harmonic function v0 ∈ H1(D1) such thatˆ
D1

|∇v0|2 ≤ 1 and
ˆ
D1

|u0 − v0|2 ≤ λn+3.

Setting v :=
√
Lv0, v is a harmonic function in D1 such thatˆ

D1

|∇v|2 ≤ L and
ˆ
D1

|u− v|2 ≤ λn+3L. (5.5)

Consider w(z) := v(0) +∇v(0) · z the tangent map of v at the origin. Then since v is harmonic, up to
choosing λtilt small enough we have

‖v − w‖2L∞(Dλ) ≤ C(n)λ4‖∇v‖2L2(D1) ≤ C(n)λ4L,

thus with (5.5), this implies
1

λn+1

ˆ
Dλ

|u− w|2 ≤ C(n)λ2L. (5.6)

Defining the new direction

ν0 := (−∇v(0), 1)√
1 + |∇v(0)|2

,

using (5.5) and (5.6) and the consequences of Theorem 3.1, proceeding exactly as in Step 1 of the proof
of [25, Theorem 25.3, pp 343], we obtain the claim (5.4).
Step 2. For λ fixed, we can assume that τtilt is chosen small enough depending on n, G, γ and λ to
enforce (5.3). Then, a key observation is that with that choice of ν0, we have

|ν0 − en|2 ≤ C(n)
ˆ
D1

|∇v|2 ≤ C(n)L.

Thus, since C(0, r, ν) ⊆ C(0,
√

2r, en), by Propositions 2.14 and 2.15, if λtilt is small enough so that
Mcac

√
2λ < 4,

e(Mcacλ, ν0) ≤ C(n)
(

en(Mcac
√

2λ) + |ν0 − en|2
)
≤ C(n)

(
1

λn−1 en(4) + L

)
(5.7)

Whence, by (5.3), up to choosing λtilt even smaller if necessary

e(Mcacλ, ν0) ≤ C(n)λ(n−1)(n+2) ≤ τcac.

As a consequence, we can apply Proposition 4.6, which yields

e(λ/2, ν0) ≤ C2

(
f(λ, ν0) +

( ε
λ

)θ
e(λ, ν0) + λΛ +Q1−θ

(
λ

ε

))
, (5.8)

where C2 = C2(n,G, γ). Since εθ ≤ τtilt, up to choosing τtilt even smaller if necessary depending on λ,
we have

C2

( ε
λ

)θ
e(λ, ν0) ≤ C

( ε
λ

)θ
e(Mcacλ, ν0)

(5.7)
≤ Lτtilt

λn−1+θ ≤ λ
2L.

Thus, for λtilt small enough, (5.4) and (5.8) give

e(λ/2, ν0) ≤ Cλ2L+ CλΛ + CQ1−θ

(
λ

ε

)
.

Since Q is nonincreasing, this gives (5.2) with r = 4 and λ/2 in place of λ, which concludes the
proof. �

As a corollary, iterating properly Lemma 5.2, we get the following power decay of the excess down
to scales ε1−β for any arbitrary small β > 0.
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Proposition 5.3. Assume that G satisfies (H1), (H2), (H3) and (H5), and let γ ∈ (0, 1), Λ > 0
and r0 > 0 with Λr0 ≤ 1 − γ. Given any α ∈ (0, 1

2 ), θ ∈ (0, 1) and β ∈ (0, 1), there exist positive
constants τ `dec = τ `dec(n,G, γ, α) and ε∗ = ε∗(n,G, γ, α, β, θ) > 0 such that the following holds. If E is
a (Λ, r0)-minimizer of Fε,γ with ε ∈ (0, ε∗) satisfying, for some x ∈ ∂E and 0 < R < r0,

e(E, x,R) + ΛR ≤ τ `dec and ε1−β ≤ R,

then, for all r ∈ [ε1−β , R], we have

e(E, x, r) ≤ C
[( r
R

)2α (
e(E, x,R) + ΛR

)
+Q1−θ

( r
λε

)]
≤ C

[( r
R

)2α (
e(E, x,R) + ΛR

)
+ r(n−1+p0)(1−θ)

(
β

1−β

)] (5.9)

where λ and C depend only on n,G, γ, α.

Proof. Let λ = λ(n,G, γ, α) to be chosen later small enough, and τtilt = τtilt(n,G, γ, λ) given by
Lemma 5.2. Then let ε ∈ (0, ε∗) with ε∗ = ε∗(n,G, γ, λ, θ, β) to be chosen later as well. First, notice
that by Proposition 2.14

e(E, x, r) ≤ 2n−1e(E, x,R) ≤ C(n, α)
( r
R

)2α
e(E, x,R), ∀r ∈ (R2 , R).

Thus (5.9) holds for any r ∈ (R2 , R) and we may focus on r ∈ [ε1−β , R2 ]. By definition of the spherical
excess, using the fact that C(x,R/2, ν0) ⊆ BR(x) and Proposition 2.14, there exists ν0 ∈ Sn−1 such
that

e(E, x,R/2, ν0) ≤ C(n)e(E, x,R) ≤ C(n)τ `dec.

Hence, up to redefining R and τ `dec, we shall now assume

e(E, x,R, ν0) ≤ τ `dec (5.10)

and are lead to proving (5.9) for r ∈ [ε1−β , R]. Let us choose τ `dec := τtilt
4 . Next, we choose ε∗ =

ε∗(n,G, γ, λ, β, θ) small enough so that

Q1−θ

(r
ε

)
≤ Q1−θ

(
ε−β∗

)
≤ τtilt

4C1
, ∀r ∈ [ε1−β , R], (5.11)

where C1 = C1(n,G, γ) ≥ 1 is chosen larger than the constant C of Lemma 5.2. Let k0 ∈ N be the
largest integer so that

λk0R ≥ ε1−β .

Thus by (5.11),

Q1−θ

(
λkR

ε

)
≤ τtilt

4C1
, ∀k ∈ {0, . . . , k0}, (5.12)

and up to choosing ε∗ smaller if necessary, we also have( ε

λkR

)θ
≤ εβθ∗ ≤

τtilt
4 , ∀k ∈ {0, . . . , k0}. (5.13)

Combining (5.10), (5.12) and (5.13) we have in particular

e(E, x,R, ν0) + ΛR+
( ε
R

)θ
≤ τtilt,

so we can apply Lemma 5.2 to obtain that there exists ν1 ∈ S such that

e(E, x, λR, ν1) ≤ C1
(
λ2e(E, x,R, ν0) + λΛR

)
+ C1Q1−θ

(
λR

ε

)
. (5.14)

Defining the quantity

ẽ(t) :=
(

inf
ν∈Sn−1

e(E, x, t, ν)
)

+ Λt,

since α ∈ (0, 1
2 ) we can now choose λ small enough depending on C1 and α so that (5.14) implies

ẽ(λR) ≤ λ2α (e(E, x,R, ν0) + ΛR) + C1Q1−θ

(
λR

ε

)
. (5.15)
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If k0 = 0, then λR < ε1−β ≤ R and by scaling of the excess, we have

e(E, x, r) ≤ 1
λn−1+2α

( r
R

)2α
e(E, x,R), ∀r ∈ [ε1−β , R],

thus we now assume k0 ≥ 1. With (5.10), (5.11) and (5.13), by (5.15) we have ẽ(λR) +
(
ε
λR

)θ ≤ ( 3
4
)
τtilt,

so we can find yet another direction to apply Lemma 5.2. In fact, we see that we can apply Lemma 5.2
repeatedly k0-times. We find the induction formula

ẽ(λkR) ≤ λ2kαẽ(λk−1R) + C1Q1−θ

(
λkR

ε

)
, ∀k ∈ {1, . . . , k0}.

Iterating, using the fact that Q is nonincreasing we get, for all k ∈ {1, . . . , k0},

ẽ(λkR) ≤ Cλ2kα (e(E, x,R) + ΛR) + C1

k−1∑
j=0

λ2jαQ1−θ
(
λj+1Rε−1)

≤ Cλ2kα (e(E, x,R) + ΛR) + 2C1Q1−θ
(
λkRε−1) . (5.16)

Consider an arbitrary r ∈ [ε1−β , R]. By definition of k0, there exists k ∈ {0, . . . , k0} such that
λk+1R ≤ r ≤ λkR. By scaling of the excess, from (5.16) we deduce

ẽ(r) ≤ 1
λn−1 ẽ(λkR) ≤ C

λn−1+2α

[( r
R

)2α (
e(E, x,R) + ΛR

)
+Q1−θ

( r
λε

)]
(5.17)

where C = C(n,G, γ). Recalling that λ = λ(n,G, γ, α), the fact that e(E, x, r) ≤ ẽ(E, x,R) and
assumption (H5), this gives (5.9) and concludes the proof. �

5.3. C1,α-regularity. Eventually, combining Propositions 5.1 and 5.3 we obtain power decay of the
excess down to arbitrary small scales.

Theorem 5.4. Assume that G satisfies (H1) to (H5), and let γ ∈ (0, 1), Λ > 0 and r0 > 0 with
Λr0 ≤ 1−γ. Then for every α ∈ min( 1−s0

2 , p0
n+p0

), there exist β = β(n,G, α), τdec = τdec(n,G, γ, α) and
ε∗ = ε∗(n,G, γ, α,Λ) such that the following holds. If E is a (Λ, r0)-minimizer of Fε,γ with ε ∈ (0, ε∗)
satisfying, for some x ∈ ∂E and 0 < R < r0,

e(E, x,R) + ΛR ≤ τdec and ε1−β ≤ R,

then
e(E, x, r) ≤ C

( r
R

)2α
, ∀r ∈ (0, R), (5.18)

where C = C(n,G, γ,Λ, α).

Proof. Let α ∈ min( 1−s0
2 , p0

n+p0
). Given p ∈ (0, p0) to be chosen later, we choose θ = θ(n,G, p) such

that
(n− 1 + p0)(1− θ) = (n− 1 + p).

Then notice that for every β < 1
n+p , we have α̃ := (n− 1 + p)

(
β

1−β
)
/2 < 1

2 . Let β to be chosen later as
such and consider the corresponding α̃. Eventually let ε∗ and τ `dec given by Proposition 5.3, depending
on n, G, γ, α̃ and θ, and set τdec := τ `dec. By Proposition 5.3, we thus have

e(E, x, r) ≤ C
[( r
R

)2α̃
+ r(n−1+p)

(
β

1−β

)]
≤ C

( r
R

)(n−1+p)
(

β
1−β

)
, ∀r ∈ [ε1−β , R], (5.19)

where C = C(n,G, γ,Λ, α̃) and the last inequality comes from our choice of α̃. In particular, for r = ε1−β

we find
e(E, x, ε1−β) ≤ Cε(n−1+p)β (5.20)

where C = C(n,G, γ,Λ, α̃). Let τ s
dec = τ s

dec(n,G, γ, α) given by Proposition 5.1. By scaling of the
excess (see Proposition 2.14), (5.20) implies

e(E, x,
(

4τs
dec
Λ

)
ε, ν0) ≤ C

εβ(n−1) e(E, x, ε1−β) ≤ Cεpβ ≤ τ s
dec,
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where for the last inequality we took ε∗ = ε∗(n,G, γ, α, β,Λ) even smaller if necessary. We can thus
apply Proposition 5.1 with R =

(
τs

dec
Λ

)
ε so that

e(E, x, r) ≤ C
(r
ε

)2α
e(E, x,

(
4τs

dec
Λ

)
ε, ν0) ≤ C

( r
R

)2α
εpβ−2α ∀r ∈

(
0,
( τs

dec
Λ
)
ε
)
. (5.21)

Recall that we can choose β arbitrarily close to 1/(n+ p), making pβ arbitrarily close to p
n+p . Since

2α < p0
n+p0

, choosing p close enough to p0, we have 2α ≤ pβ. Hence (5.21) gives

e(E, x, r) ≤ C
( r
R

)2α
∀r ∈

(
0,
( τs

dec
Λ
)
ε
)
. (5.22)

Then, for any r ∈ [
( τs

dec
Λ
)
ε, ε1−β), by scaling of the excess once again and using (5.20) we estimate

e(E, x, r) ≤ C
(
ε1−β

r

)n−1

e(E, x, ε1−β , ν0) ≤ Cεpβ ≤ C
( r
R

)pβ
, (5.23)

Since (n− 1 + p)
(

β
1−β

)
> pβ ≥ 2α, combining (5.19), (5.22) and (5.23) yields (5.18). �

Proof of Theorem B. Using that the spherical excess of a (Λ, r0)-minimizer E of Fε,γ decays as a power
function, it is then standard (we refer to [25] for this argument) to see that starting from a small
cylindrical excess in a cylinder C(x, r, ν), the boundary of E in fact coincides with the graph of a
1-Lipschitz function u in a smaller cylinder C(x, r/2, ν(x)) (notice the possible tilt of direction), and
the cylindrical excess with respect to ν(x) decays as a power function. Rewriting the cylindrical excess
in terms of u, this power decay implies that ∇u meets Campanato’s criterion for Hölder-continuous
functions. In the end, we obtain the C1,α-regularity theorem, that is, Theorem B. �

Proof of Theorem A. Together with the lower semicontinuity of the excess, the uniform regularity
criterion of Theorem B can be used in a standard way (see e.g. [25, Theorem 26.6]) to improve the
Hausdorff convergence of ∂E to ∂B1, which is given by Proposition 2.6, and obtain uniform convergence
of the outer unit normals. We deduce that E is a nearly spherical set, that is, its boundary is a Lipschitz
perturbation of ∂B1 which vanishes as ε→ 0. Then, Theorem A is an immediate consequence of [26,
Theorem 2]. �
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