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ABSTRACT

Earth’s magnetic field is generated by fluid motions in the outer core. This geodynamo has operated for over 3.4 Gyrs. However,
the mechanism that has sustained the geodynamo for over 75% of Earth’s history remains debated. In this Review, we assess
the mechanisms proposed to drive the geodynamo (convection, precession and tides) and their ability to match geomagnetic
and paleomagnetic observations. Flows driven by precession are too weak to drive the geodynamo. Flows driven by tides could
have been strong enough in the early Earth, prior to 1.5 Ga, when tidal deformation and Earth’s spin rate were larger than today.
Evidence that the thermal conductivity of Earth’s core could be as high as 250 Wm−1 K−1 questions the ability of convection
to maintain the dynamo for >3.4 Gyrs. Yet, convection can supply enough power to sustain a long-lived geodynamo if the
thermal conductivity is lower than 100 Wm−1 K−1. Exsolution of light elements from the core increases this upper conductivity
by 15% to 200%, based on the exsolution rates reported so far. Convection, possibly aided by the exsolution of light elements,
remains the mechanism most likely to have sustained the geodynamo. The light-element exsolution rate, which remains poorly
constrained, should be further investigated.

Key points:

• Numerical models of the geodynamo driven by thermo-chemical convection account for most of the observed properties
of the present geodynamo.

• The thermal conductivity in Earth’s core remains debated, with published values ranging between 20 and 250 Wm−1K−1.
With a conductivity as high as 250 Wm−1K−1, motionless heat transport prevails in the core, hence convection cannot
sustain Earth’s magnetic dynamo for 3.4 Gyrs.

• Still, thermo-chemical convection due to the slow cooling of Earth supplies enough power to the geodynamo when the
thermal conductivity is lower than 100 Wm−1K−1. The exsolution of light elements increases this limit only marginally
or by up to a factor 3 depending on the exsolution rate.

• Flows driven by precession are too weak to drive the geodynamo.

• Flows driven by tides could have been strong enough prior to 1.5 Ga, when tidal deformation and Earth’s spin rate were
larger than today. This calls for further investigation of tidally-driven dynamos.

Website summary: The mechanisms that sustain Earth’s long-lived geodynamo remain under scrutiny. This Review
assesses the potential candidates – convection, precession and tides – revealing that convection, possibly helped by the
exsolution of light elements, is the most likely scenario.

1 Introduction1

The Earth’s surface is immersed in a magnetic field that is mainly a dipole. The geomagnetic field deviates charged particles2

from the Sun, which may help to protect Earth’s atmosphere from erosion by solar winds1–3. Humans have used magnetic3

compasses to navigate the oceans and continents for thousands of years. Other animals, including sea turtles and salmons, are4

also suspected to use the magnetic field for navigation4, 5. Magnetotactic bacteria, which swim along magnetic field lines6, 7,5

rely on Earth’s magnetic field to migrate up and down in the sediment column.6

The magnetic field is hence an essential aspect of Earth. Yet, the origin of this field long remained a mystery. In 1919, it7

was hypothesised that the geomagnetic field originates from flow motions of conducting material inside the Earth through the8
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so-called dynamo effect8 (box 1). Over a century later, it is now widely accepted that the geodynamo operates in the outer core,9

which is made of flowing liquid metal (figure 1a)9.10

The most accepted scenario to drive turbulent core flows and the geodynamo is natural convection9 due to the slow cooling11

of the Earth (figure 1b). Numerical simulations of a convection-driven geodynamo produce a magnetic field that resembles that12

of the Earth10 and they are coming close to the conditions of Earth’s core11–15. Therefore, the behaviour of the geomagnetic13

field at Earth’s surface can be explained by the convective dynamics deep inside the core14, 15.14

Magnetized rocks indicate that the geodynamo is at least 3.4 Gyrs old16. Whether convection can sustain the geodynamo15

for such a long time critically depends on the thermal conductivity of the core17. However, the value of core conductivity16

is highly debated, with published values18–26 ranging between 20 and 250 Wm−1K−1. With high conductivity values of17

100−250 Wm−1K−1 found by experimental and numerical investigations23–26, much of the core heat flow would escape by18

conduction, leaving little to drive thermal convection, especially in the distant past when the core was fully molten17, 27, 28. This19

disconcerting result, coined the new core paradox17, motivated the search for other mechanisms to drive the geodynamo.20

A possible mechanism is the exsolution of light elements from the core (figure 1c). Exsolution leaves behind a denser21

liquid, which produces natural convection and helps to sustain a convective geodynamo29–31. Tides and precession are also22

alternative mechanisms32–35 that can produce turbulent flows in the outer core36–39, and hence could drive a dynamo (figure 1de).23

Advances in simulations of precession-driven dynamos since the 2000s40–43 have generated interest in a geodynamo powered24

by orbital forcing44. However, it remains debated whether the exsolution of light elements, precession or tides produce flows25

that are strong enough to solve the new core paradox.26

In this review, we compare the candidate driving mechanisms for the geodynamo - convection, precession and tides27

(figure 1bcde). We first summarise the main properties of Earth’s dynamo that are deduced from geomagnetic and paleomagnetic28

observations. For each driving mechanism, we discuss the latest simulations and evaluate their compliance with the present-day29

geomagnetic field. We then examine whether the power or kinetic energy produced by each mechanism over geological time30

can sustain the long-lasting magnetic field observed in paleomagnetic data. In the future, better understanding of the early31

geodynamo requires further investigation of the flow and magnetic fields produced by convection or tides in a fully liquid core,32

with no inner-core. Additional constraints on the rate at which light elements have exsolved from the core throughout Earth’s33

history are also needed.34

2 Geomagnetic and paleomagnetic observations35

Our understanding of Earth’s dynamo rests on the analysis of the present and past geomagnetic field. The direct observation36

of the geomagnetic field since the seventeenth century places important constraints on the working of the geodynamo on37

interannual to secular time scales. Paleomagnetic studies provide additional information on the mechanisms driving the38

geodynamo on millennial to geological time scales.39

2.1 From the Age of Sail to the present day40

Nowadays, satellites and ground-based observatories provide us with a global and time-dependent map of the Earth’s magnetic41

field45. The main field, of about 50 µT at the Earth’s surface46, is generated in the Earth’s core47. This field is dominated by a42

dipole slightly tilted with respect to the axis of rotation of the Earth, with a dipole moment of about 8×1022 A m2.43

To trace the variations of the geomagnetic field, one has to recourse to the archives of magnetic observatories, some of44

which date back to the seventeenth century. Additional information can be obtained from mariners’ logbooks, in which the45

direction of the magnetic north pole was reported during voyages48. This information is available from the end of the sixteenth46

century onward. The rate of change of the geomagnetic field, called the geomagnetic secular variation49, displays 6 yrs period47

oscillations during the last century50. These oscillations reflect the propagation of hydromagnetic waves, called Alfvén waves,48

in the outer core. As their propagation speed is proportional to the magnetic field, the field strength deep in the core can be49

estimated to ∼ 4 mT51. This value is about 10 times the field strength at the core-mantle boundary (CMB), and it corresponds50

to a magnetic energy52 of ∼ 1021 J inside the core.51

Beyond waves, flows inside the core transport magnetic field lines. This process explains most of the decadal to secular52

fluctuations of the geomagnetic signal53. These variations suggest a large-scale velocity of ∼ 3×10−4 m s−1 below the core53

surface. Assuming that this figure is representative of the flow in the bulk of the outer core yields a kinetic energy of 8×1016 J,54

about 104 times smaller than the magnetic energy51.55

2.2 Over geological time56

Prior to the sixteenth century, observations of the geodynamo rely on the remnant magnetization carried by rocks or archeological57

recorders54, 55. In the laboratory, it is possible to recover the direction or amplitude of the geomagnetic field that reigned when58

the magnetization was acquired. These indirect measurements allow geologists to determine the motion of continents over59

hundreds of millions of years56. They also open a window on the behaviour of the geodynamo over several billions of years.60
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One of the most fundamental question for paleomagnetic studies is the age of the geodynamo. Magnetic inclusions in61

extremely old minerals from South Africa provide robust evidence that the geodynamo was active 3.4 Gyrs ago16. Analyses of62

samples from Greenland suggest that the geodynamo had started 3.7 Gyrs ago57. An even older dynamo record from 4.2 Gyrs63

ago has been proposed58 but this finding remains controversial59.64

The geodynamo has evolved on multiple time scales (figure 2). Over the last millennia, the dipole strength varied between65

0.7 and 1.4 times its present-day value (figure 2a). Earth’s magnetic field has frequently reversed its polarity (figure 2b,c). The66

frequency of reversals is highly variable on time scales of a hundred million years54, 60. During the last few million years, the67

field reversed 4 times per million year, but further in the past, there were periods of several million years with no reversal68

(figure 2c). Thanks to the increase in quality and number of paleointensity measurements, it is now possible to search for69

long-term trends in the paleointensity signal over the last 3 billion years61–63 (figure 2d). Paleomagnetic data show that the70

geodynamo produced a strong, seemingly dipole-dominated field, with a moment of 5±2×1022 A m2 during more than 75%71

of Earth’s history61, 62, 64, 65.72

3 Driving mechanisms73

In this section, the possible driving mechanisms for the geodynamo are introduced. Their ability to produce a field resembling74

the present-day geomagnetic field are assessed in the light of numerical simulations.75

3.1 Cooling and inner-core growth76

The Earth is cooling down. At present, a heat flow of 46±3 TW escapes at the solid Earth’s surface66, while ∼ 18 TW are77

produced by the disintegration of radioelements within the mantle and crust67, 68 and less than 2 TW by radioelements within78

the core27.79

The cooling of the Earth is the most accepted mechanism to drive the present-day geodynamo52, 69–71. As the core slowly80

cools down, the solid inner core grows, releasing latent heat and light elements72 at the inner-core boundary (figure 1b). The81

light fluid rises to the CMB, thereby generating vigorous plumes in the outer core73 (figure 1a). Meanwhile, as heat leaves the82

core, colder fluid forms at the CMB and sinks downwards (figure 1b).83

Earth’s rotation strongly influences these convective motions, which take the form of swirling columns aligned with the84

rotation axis74–78 (figure 1a). These swirling flows are prone to dynamo action9 (box 1). The dipolar geomagnetic field, and its85

close alignment with the rotation axis, are well explained by these columnar motions79 (figure 1a).86

The first self-consistent numerical dynamo driven by convection was obtained in 199580, 81. Simulations soon could account87

for several features of the observed geomagnetic field10, 82 (figure 3a), including its dipolar dominance, patches of enhanced88

magnetic field at high latitudes (figures 3b and 3c) and polarity reversals (table in box 2). With the increase in computing89

power, a large number of simulations could be run. Parametric exploration led to the derivation of scaling laws that relate the90

power from convection to the magnetic and flow intensity83, 84. These laws predict a magnetic field intensity of ∼ 1 mT inside91

the core, in line with the estimates from geomagnetic observations (section 2.1).92

In turbulent geodynamo simulations11, 12, 15, the intensity of the magnetic field inside the core is about 10 times stronger93

than at the CMB, as inferred for the Earth51. The hierarchy of dominant forces is now the same as in Earth’s core12, 15, 85.94

Simulations also produce fast waves interacting with the slower convective motions14, 15, 86. Thanks to results from these95

simulations, abrupt changes in the surface field (termed geomagnetic jerks) are now interpreted as the arrival of waves that are96

excited by convective plumes in the core14, 15. Convective dynamos generate a time evolving field that explains most of the97

observed secular variations (table in box 2).98

3.2 The exsolution of light elements99

In addition to iron and nickel, the outer core contains lighter elements, including Si, O, S, H or Mg72. The partitioning of some100

light elements in iron increases with temperature30, 87–89. The Earth’s core experienced high temperatures > 5000 K during101

its formation, when large impacts brought new metal and silicates to the growing planet90, 91. After each collision, the newly102

brought metal sank into the mantle, where it incorporated light elements, and then merged with the Earth’s core30, 72.103

Subsequently, on geological time, the core cooled down. For each light element with a given initial concentration, there104

is a critical temperature below which exsolution starts29–31, leaving an iron-rich liquid that sinks into the deeper core. These105

convective motions can contribute to the geodynamo not only today but also in the distant past, prior to the growth of the inner106

core29–31 (figure 1c).107

Which light element exsolves from the core is still debated. Some high-pressure experiments and molecular dynamics108

simulations suggest that magnesium oxides MgO would be the first exsolved species30, 31, 92, 93 while others favour silicon109

oxides SiO2
89, 94. One study95 found that the liquid Fe-Si-O system separates into immiscible liquid alloys as the core cools110

down, instead of exsolving SiO2 oxides, but the robustness of these results has been questioned92.111
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Of paramount importance is the depth at which exsolution starts. Were it at the bottom, a dense iron-rich liquid would112

accumulate there, generating a stable stratification but no convection. Several studies88, 93 find that the exsolution of MgO starts113

at the top of the core, and hence can drive convection. For SiO2, the uncertainties on the solubility curve are still too large to114

determine the depth at which its exsolution starts89.115

The exsolution of light elements at the top of the core can drive the geodynamo through convection. Thus, the results from116

dynamo simulations driven by thermo-chemical convection (section 3.1) to some extent apply to exsolution. In a dynamo117

simulation, exsolution can be modelled by volumetric buoyancy sources that are balanced by a buoyancy flux at the CMB.118

However, only few96–98 have investigated this configuration, which is also appropriate for thermal convection driven by the119

slow cooling of the core prior to the growth of an inner core.120

3.3 Precession and tides121

Precession and tides can also trigger flow motions and dynamo action. Precession, a slow variation of the orientation of Earth’s122

rotation axis (figure 1d), forces the fluid core to rotate along a different axis than the mantle99–101. At present, precession123

induces a diurnal differential motion of about 60 m at the CMB and a velocity up ∼ 4 mm s−1. Because the core is not perfectly124

spherical, precession also triggers a weak secondary flow102 of amplitude up fp, where fp ≈ 1/400 is the CMB ellipticity103.125

Tides produce a diurnal CMB deformation of ellipticity ft ≈ 10−7 moving around the core at speed ut = 250 m s−1 (figure 1e).126

These flows do not produce magnetic fields by themselves (box 1)41, 104. Still, instabilities near the boundary or in the bulk core127

can lead to turbulent flows and dynamo action40, 43, 105.128

Simulations of dynamos driven by precession40, 43, 105 or tides106 have yet to provide scaling laws for the intensity of the129

magnetic field. Furthermore, the magnetic field is always weak and small-scale43, 105, 106 (figure 3d), and hence very different130

from the dipolar geomagnetic field (figure 3a). In ellipsoids, simulations of large-scale magnetic fields were initially reported107,131

but their validity was subsequently questioned108. Currently, it is not known whether orbital forcings are able to produce a132

large-scale, dipolar magnetic field with an amplitude compatible with that of the geomagnetic field. Lowering viscosity in133

future simulations might answer this question.134

While low viscosity is hard to reach in simulations, it is a feature of laboratory experiments that use liquid sodium (see135

Supplementary Fig.1)109–112. No experimental dynamos driven by precession or tides have yet been published. However, all136

eyes are on the DRESDYN dynamo experiment, which is currently being built and will be driven by precession113.137

4 Sustaining a convective geodynamo138

Paleomagnetic observations indicate an active geodynamo during the last 3.4 Gyrs. In this section, the energetics of the core139

are used to assess whether convection can power such a long-lived dynamo.140

4.1 Thermal conductivity141

Mantle convection sets the heat flow that escapes from the core52, 66. A substantial portion of this heat is transported by thermal142

conduction in the core and does not participate to core convection. The higher the conducted heat flow, the lower the power143

available for the geodynamo.144

The conducted heat flow, often called isentropic heat flow, reads at the CMB

Qis =−k
∂T
∂ r

A , (1)

where the temperature gradient is

∂T
∂ r

=−α gT
CP

(2)

in an isentropic, well-mixed core114, k is the thermal conductivity, A the area of the CMB, α the coefficient of thermal145

expansion, CP the specific heat capacity, and g the acceleration of gravity at the CMB.146

The isentropic heat flow is therefore proportional to the thermal conductivity k, whose range of published values broadened147

since the early 2010s’23–25, 115. Direct experimental measurements suggest low values18–20 of k between 20 and 46 Wm−1 K−1,148

in line with older estimates21, 22, while other studies find larger values of k23–26, 116 between 90 and 250 Wm−1 K−1. This149

scatter is partly due to the relation between electrical and thermal conductivity which remains to be clarified at high pressure150

and temperature117. Adding light elements in the core lowers the thermal conductivity20, further increasing its uncertainty.151

Here, the impact of two end-member values on the geodynamo are examined: a high-conductivity k ' 100 Wm−1 K−1,152

which results in a conducted heat flow Qis ' 15 TW, and a low-conductivity k ' 40 Wm−1 K−1, which results in Qis ' 6 TW.153
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4.2 Convection can power the current geodynamo154

In the Earth’s core, the magnetic field generates electric currents, which dissipate energy by ohmic heating. Theory, numerical155

models and experiments suggest that the power lost today by ohmic dissipation is on the order of 1 TW9, 118, 119. The driving156

mechanism of the geodynamo must therefore supply enough power to balance this ohmic dissipation.157

From the energy and entropy budgets of the core, one can estimate the power originating from convection27, 28, 120–123. As158

shown in this section, a high-conductivity value does not prevent a convective dynamo at the present day. Regardless of the159

exact value of the thermal conductivity, the outer core still solidifies into an inner core, driving convection and dynamo action.160

At the CMB, thermal convection is possible when the core heat flow Qcmb exceeds the conducted heat flow Qis. The mass
anomaly flux that drives convection at this boundary is120, 121

Fo =
α

Cp
(Qcmb−Qis). (3)

At the base of the outer core, the slow solidification of the inner core drives convection with a mass anomaly flux120, 121

Fi = 4πri
2ṙi

(
∆ρ +

α ρ L
Cp

)
, (4)

where ρ is the mean density of the outer core, ∆ρ the density deficit due to the release of light elements, ri the inner-core radius
and L is the latent heat released by the freezing of the inner core. Equation (4) assumes an isentropic heat flow through the
inner-core boundary120. The two terms in equation (4) describe the flux of light elements due to inner-core growth and the flux
of latent heat. Both are proportional to the inner-core growth rate ṙi. The growth rate can be estimated from the energy balance
of the core. After the onset of inner-core growth, this balance reads124

Qcmb = ṙi P(ri) + Qr, (5)

where the function P gathers the contributions from latent heat release at the inner-core boundary, gravitational energy release,161

and cooling of the core, which are all functions of ri
124, and Qr is the radiogenic heat production term. The heat flow through162

the CMB, Qcmb, must be balanced by those contributions internal to the core. At the present day, assuming Qr = 0, the growth163

rate is ṙi ' 600± 250 km Gyr−1 27 and Fi is in the range 1× 105− 3× 105 kg s−1. Differences in the function P between164

studies propagate as an uncertainty of 30% on the age of the inner core.165

The convective power Φconv available for the dynamo is approximated by120, 121

Φconv = Fi(ψ̄−ψi)+Fo(ψo− ψ̄), (6)

where ψi and ψo are the gravitational potential at the inner-core and core-mantle boundaries, and ψ̄ is the mass-averaged166

gravitational potential in the outer core120. Equation (6) shows that the convective power originates from taking mass anomalies167

at the gravitational potential of the inner or outer boundary, and redistributing it throughout the outer core at the mean168

gravitational potential.169

Expressions (3)-(6) contain several approximations120, 121, including the assumption of a well-mixed core. The errors170

associated with these approximations are comparable to that of the Boussinesq approximation, which is ∼ 10%−15%. More171

precise expressions27, 28, 125–127 lead to conclusions similar to those drawn below.172

The inner-core growth rate ṙi, and consequently the convective forcing Fi at the inner-core boundary, do not depend on the173

thermal conductivity (equations 5 and 4). When the inner core is growing, the convective power Φconv (equation 6) therefore174

remains large regardless of the value of k. Even with a high thermal conductivity k > 100 W m−1 K−1, the convective power is175

larger than 1 TW at present (dotted lines at time 0 Gyr in Figure 4a,b). With a core heat flow Qcmb = 10 TW, the available176

convective power is 1.5 TW with k = 100 W m−1 K−1 and 2.5 TW with k = 40 W m−1 K−1 (time 0 Gyr in figure 4b). The177

power raises up to 3−4 TW when assuming a large heat flow of 15 TW escaping from the core (time 0 Gyr in figure 4a).178

4.3 The new core paradox179

Trouble comes prior to the onset of inner-core growth. At the present day, the contribution Fi (equations 4) from the solidification180

of the inner core represents more than 70% of the mass anomaly flux that drives convection. Before the nucleation of the inner181

core, the major power contributor to the current geodynamo was therefore missing. The only power source that remained182

was thermal convection due to the slow cooling of the core. The core heat flow must then exceed the conducted heat flow to183

drive convection, as shown by expressions (3) and (6). However, the core heat flow ranges within 6−17 TW128–132 while the184

conducted heat flow is larger than 15 TW when the thermal conductivity is larger than 100 Wm−1 K−1. The heat budget of the185

core is hence very tight when k & 100 Wm−1 K−1. This serious problem was termed the new core paradox17 as it comes after186
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the Higgins-Kennedy core paradox raised and solved in the 1970s133, 134. The growth of the inner core likely started less than 1187

Gyr ago27, 28, 125, 132. The new core paradox therefore impacts more than 2.4 Gyrs, hence 70% of the observed history of Earth’s188

magnetic field.189

The convective power Φconv must necessarily be positive to sustain a convective dynamo. More stringent requirements are190

obtained from paleointensity measurements61 (figure 2d) combined with scaling laws from dynamo simulations84 (details in191

Supplementary Note 1). These require the ohmic dissipation, and hence the convective power Φconv, to be in the range 0.1−10192

TW over Earth’s history (shaded region in figure 4a,b). Another condition is that the convective velocity U must be large193

enough so that the magnetic Reynolds number Rm =U D/η (box 1) exceeds about 100 83, where η is the magnetic diffusivity194

of the core and D the outer core thickness.195

Prescribing the time-evolution of the core heat flow Qcmb(t) and the radiogenic heating term Qr(t), one can integrate196

equations (3)-(6) backward in time to estimate the convective power in the past. Here, it is assumed that Qcmb(t) increases197

linearly in the past, and that Qr = 0 at all times. With the evolution of the convective power, dynamo scaling laws12, 135 are198

used to estimate the convective velocity U , and hence the magnetic Reynolds number Rm. Figure 4 shows the convective power199

and the magnetic Reynolds number from this evolutionary model.200

Assuming a low thermal conductivity k = 40 Wm−1 K−1, convection can easily provide a power larger than 0.1 TW and a201

magnetic Reynolds number Rm > 100 during the last 4 billion years (dashed lines in figure 4).202

In contrast, with a high conductivity of 100 Wm−1 K−1, the convective power and Rm match the above constraints only203

when the present-day core heat flow Qcmb & 15 TW (dotted lines in figure 4). This value is close to the upper estimates of the204

present-day Qcmb
130, 136. A thermal conductivity larger than 100 Wm−1 K−1 therefore precludes an ancient dynamo driven by205

thermal convection. These results prompt the study of auxiliary sources of power.206

4.4 The exsolution boost207

Exsolution of light elements can contribute to core convection and the geodynamo88, 89, 137. When exsolution takes place near
the CMB, exsolution releases a denser liquid with a mass anomaly flux31, 89

Fex '−αc Mc
dC
dT

dTcmb

dt
, (7)

where αc =−(∂ρ/∂C)/ρ is the chemical expansion coefficient for a given light element, C the concentration of this element208

in the liquid core measured by the total mass of the light element divided by the outer core mass Mc, and Tcmb is the CMB209

temperature. While the value of the chemical expansion coefficient αc is close to one for both MgO and SiO2
89, 137, 138, values210

of the exsolution rate dC/dT are debated. For MgO, high-pressure experiments88, 139 find rates of 0.2−0.6×10−5 K−1 while211

molecular dynamics simulations93 suggest rates 10 times larger. For SiO2, experiments89 suggest a high exsolution rate of212

4×10−5K−1.213

The exsolution rate of light elements in the core affects the power available for the dynamo, expressed as

Φconv = (Fo +Fex)(ψo− ψ̄) (8)

before the birth of the inner core. Using the exsolution rates from experiments88, 89, 139, MgO-exsolution generates an added214

power of about 0.5 TW while SiO2-exsolution yields an added power of about 3 TW (Supplementary Figure 2). When it is215

coupled with thermal convection, exsolution substantially helps driving the dynamo88, 138.216

However, to solve the new core paradox, exsolution must also loosen the restrictions on the thermal conductivity. Thermal217

convection alone can drive a dynamo with no inner core only when the thermal conductivity k . 100 Wm−1K−1. With the218

help of MgO-exsolution at a rate of 0.5×10−5 K−1, the conductivity range widens only moderately to k . 130 Wm−1K−1
219

(Supplementary Figure 3b). MgO-exsolution can drive a dynamo when the core is thermally stratified (Fo < 0 in (8)), but only220

for a narrow range of core heat flow139 (Supplementary Figure 2 and 3a). The heat budget of the core therefore remains tight221

when using the low exsolution rate proposed for MgO139, 140.222

In contrast, with the larger exsolution rate of 4× 10−5 K−1 proposed for SiO2
89, a thermal conductivity up to k '223

350 Wm−1K−1 and a core heat flow as low as Qcmb = 5 TW are compatible with a long-lived geodynamo (Supplementary224

Figures 2 & 3ab). Such a high exsolution rate would solve the new core paradox.225

4.5 Coupling with Earth’s mantle226

The heat flow Qcmb escaping from the core enters the heat budget of the mantle, which reads141, 142:

Qsurf = Qcmb +Hm−Cm
dTm

dt
, (9)
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where Qsurf is the heat flow at Earth’s surface, Hm is the internal heat produced by radiogenic elements in the mantle, Cm is the227

heat capacity of the mantle, and Tm its average temperature. The thermal evolution of the core is therefore coupled with that of228

the mantle126, 127.229

At present, Qsurf ' 46 TW while geochemical models67 imply Hm ' 18 TW. The difference must be balanced by the mantle230

cooling and the heat Qcmb escaping from the core in equation (9). For Qcmb < 10 TW, thermal evolution models142 predict231

a cooling rate of more than 200KGyr−1, three times larger than estimated from petrological observations143, 144, implying232

massive melting of the mantle as recently as 2 Gyrs ago. This conundrum is known as the mantle thermal catastrophe.233

The large Qcmb values needed to sustain the geodynamo at ancient times therefore help in avoiding the mantle thermal234

catastrophe126, 127.235

However, a high core heat flow also implies a fast cooling rate of the core, and hence can lead to a core thermal catastrophe236

with a temperature exceeding 5500K below the core-mantle boundary 3 Gyrs ago27. With such high core temperatures, the237

lower mantle was molten, forming a basal magma ocean145. This scenario of a hot early core and a basal magma ocean is238

acceptable as long as the upper mantle remains solid for the last 3.5 Gyrs.239

Some proposed that convection in the basal magma ocean could generate Earth’s magnetic field in the early Earth146–148.240

Using an electrical conductivity of 2×104 S m−1 147 and the same dynamo scaling as in figure 4cd, with a convective power of241

∼ 1 TW in a 300 km thick ocean148, yields a magnetic Reynolds number Rm≈ 12. Such a value of the magnetic Reynolds242

number is too small to drive dynamo action (box 1). In addition, it remains uncertain whether the basal ocean convects or is243

chemically stratified149.244

5 Sustaining a mechanical geodynamo245

The new core paradox motivates the assessment of precession or tides as alternative driving mechanisms44, 101, 103. In this246

section, the orbital history of the Earth-Moon system is combined with the latest results on the flows driven by precession and247

tides to determine whether these mechanisms could have powered the ancient geodynamo.248

5.1 An elusive power estimate249

Precession and tides tap into the rotational and gravitational energy reservoir stored into the spinning Earth and its orbiting250

Moon, of which 1029 J are left today101. In contrast with the convective case, the orbital power that is converted into turbulent251

flows and available to the dynamo is much harder to estimate.252

Still, an upper bound can be obtained from orbital observations, which are the recession of the Moon and the increase in253

Earth’s length-of-day. The total dissipation of the Earth-Moon system Φorb varies from 1 TW to 15 TW during Earth’s history,254

with an average value of 2 to 3 TW (Supplementary Figure 4). Current models assume that this power is dissipated in ocean255

tides through Earth’s history150. Yet, a fraction of this dissipation could have occurred in the Earth’s core. Today, for a total256

tidal dissipation of 2.2 TW about 0.1 TW is dissipated in the core and mantle151. The fraction dissipated in the core could have257

been larger in the past when the Moon was closer to the Earth. The total dissipated power Φorb can be seen as the analogue for258

the total heat flow out of the Earth, from which only a small fraction might contribute to the geodynamo. This upper bound is259

larger than the minimum power of 0.1 TW needed to drive the ancient geodynamo (section 4.3). Thus, the orbital history of the260

Earth-Moon system leaves room for an orbitally-driven dynamo in the past, but not with an ample margin.261

Whether the flow excited by precession or tides can convert part of this power into the geomagnetic field is an unsettled262

question. The power drawn by laminar34, 35 and turbulent105 flows due to the strong shear at the boundaries is at least two orders263

of magnitude too low to feed the ohmic dissipation of the geodynamo. These conclusions do not change when including the264

dissipation in the boundary layer near the inner core, or by considering a CMB topography < 10 km (details in Supplementary265

Note 2).266

Flow instabilities and turbulence in the bulk core could drain notably more power from Earth’s orbital evolution, with a267

theoretical upper bound for the dissipation152 of 109 TW. This value implies that the total energy of 1029 J contained in the268

Earth-Moon would be dissipated in a few years. This upper bound is therefore too large to be useful.269

The above arguments demonstrate that turbulence in the bulk core is a necessary condition to sustain an orbitally-driven270

geodynamo. In the following section, we examine whether turbulent bulk flows can be triggered by precession and tides in271

Earth’s core and whether they are strong enough to produce a dynamo.272

5.2 Turbulence in the bulk core273

Bulk turbulence requires the laminar flow to be unstable, which happens when the strain rate is larger than the viscous damping
rate, that is

ξ u f > K
√

νΩ, (10)
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where ν is the kinematic viscosity, Ω the Earth’s rotation rate, K & 2.62 a damping coefficient36, 153, ξ a numerical prefactor274

(ξ . 9/16 for tides154, and ξ . 5
√

15/32 for precession153). For precession, u = up is the differential velocity between the275

outer core and the mantle and f = fp the polar ellipticity. For tides, u = ut is the speed of the tidal bulge at the CMB as it276

rotates around the core and f = ft the diurnal tidal ellipticity.277

While a convective geodynamo highly depends on the value of core thermal conductivity (section 4.3), condition (10) shows278

that core viscosity is the key parameter for a dynamo driven by precession or tides. The current Earth’s core is marginally279

stable to bulk instabilities for both precession103, 153, 155 and tides156. Whether turbulent bulk flows can develop is therefore280

very sensitive to the value of core viscosity, estimates of which range from157 3×10−7 to 5×10−6 m2/s.281

Using the most accepted scenario for the evolution of orbital parameters over time158, 159 yields a past obliquity lower than282

the current 23.5◦ value (orange curve in figure 5a). With this scenario, precession meets condition (10) only for a low viscosity283

of ν ∼ 10−7 m2 s−1 and prior to 3 Gyrs ago (figure 5a). Even in the high-obliquity scenario, a viscosity of ν = 10−6 m2 s−1 is284

not low enough for instabilities to grow (Supplementary Figures 5). Core-filling turbulence driven by precession is therefore285

unlikely in Earth’s core.286

Because the Earth and Moon were closer in the past, the diurnal tidal ellipticity increases when going back in time287

(orange curve in figure 5b). With this evolution, tides can easily meet condition (10). With a viscosity of 10−6 m2 s−1 or288

3×10−6 m2 s−1, tidal instabilities occur prior to 1.5 Gyrs or 3 Gyrs ago, respectively.289

The growth of instabilities is not the only condition to power a dynamo. In addition, the vigour of the bulk flow, as measured290

by the magnetic Reynolds number Rm, must be high enough (box 1). Results obtained for tides, both experimentally160
291

and numerically161, suggest that inertial instabilities can sustain a turbulent flow of the order u f . From this scaling for the292

vigour of bulk flows, and criterion (10) for their emergence, the evolution of orbital parameters over time158, 159 (detailed in293

Supplementary Note 2) allows to estimate the magnetic Reynolds number Rm for precession-driven and tidal flows (figure 5294

and Supplementary Figure 5). Bulk flows driven by precession yield Rm . 60 at all times (fig. 5a), which is hardly enough for295

a dynamo. In contrast, Rm & 100 for the tidal flow in the core, reaching Rm' 700 for the early Earth (figure 5b).296

Thus, even in the unlikely event that precession triggers bulk instabilities, the resulting flows are not strong enough to297

generate a magnetic field. In contrast, tides can excite strong flows filling the entire core. These could drive a dynamo, especially298

in the early stages of Earth’s history.299

6 Implications300

The long-term evolution of the geodynamo is inherently connected with the thermal history of the core and mantle, the evolution301

of stratified layers in the core and the observed paleomagnetic field.302

6.1 Thermal history of the core and mantle303

With a high or moderate thermal conductivity, the current core heat flow Qcmb must exceed ∼ 10 TW to drive a convective304

geodynamo. Such a high core heat flow is compatible with global mantle convection models132 and could avert the mantle305

thermal catastrophe126, 127 (equation (9)).306

Only a few investigations couple the thermal evolution of the core and mantle. They solve simultaneously the energy budget307

for both layers126, 127, 137. When the lower mantle is about 5 times more viscous than the upper mantle, these models produce a308

current CMB heat flow of about 13 TW, which reaches up to 40−80 TW in the distant past. These values allow for a long-lived309

convective dynamo while avoiding the mantle thermal catastrophe126, 127. A current CMB heat flow larger than 13 TW implies310

that the inner core is less than 700 million year old and that the lower mantle was molten before 2±1 Gyr ago27, 28.311

It has been hypothesized that the core is cooling too slowly to power a convective dynamo44. This scenario relies on the312

early mantle be fully molten. A fully-molten mantle would cool down the core in less than 100 Myrs and hence would leave no313

heat to drive the geodynamo by convection during the subsequent billion years162. However, it is plausible that only a fraction314

of Earth’s mantle was molten during the last giant impact that formed the Earth91. With a partially-solid, hence viscous, mantle315

above it, the core likely retained enough heat to power a convective dynamo.316

6.2 Stratification in the early core317

During the accretion of the Earth, giant impacts brought metal into contact with liquid silicates at very high temperature,318

facilitating the dissolution of light elements into the core30, 31, 72, 87, 163. The metal added by each giant impact was enriched in319

light elements164 and hence formed stratified layers at the top of the core165. The mixing during a giant impact was too small to320

destroy this stratification166, 167. The early core was therefore likely stratified in composition over hundreds of kilometers, with321

a stratification strength, as measured by the buoyancy frequency N, 2 to 10 times the Earth’s rotation rate Ω165–167.322

Such a strong stratification would prevent the generation of magnetic fields by tides168. Similarly, convection would have a323

hard time to overcome this stratification unless the latter is localised at the top or bottom of the core.324
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Geodynamo simulations indicate that, at the present day, the stratified layer atop Earth’s core must be thinner than325

about 100−300 km with a stratification not stronger than N ∼Ω to be compatible with geomagnetic observations169–171. A326

mechanism therefore destroyed or partially mixed the primordial stratification. Yet, numerical simulations167 suggest that327

thermal convection cannot erode more than 10 km of primordial stratification. Tidal flows or chemical convection due to the328

exsolution of light elements are possible mixing mechanisms that deserve further studies.329

6.3 Paleomagnetic field330

The driving mechanism of the geodynamo controls the strength and morphology of the paleomagnetic field. Paleomagnetic331

data hence provide clues about the dynamo mechanism and its evolution through time61, 63, 64, 70.332

The nucleation of the inner core was a major transition for the dynamo mechanism. In the presence of a growing inner core,333

a light fluid is released at the inner-core boundary and drives convection (section 4.2). This driving mechanism was missing334

prior to the growth of an inner core (section 4.3), irrespective of whether tides or convection drove the ancient dynamo. The335

nucleation of the inner-core therefore coincided with a strong increase in the power available to the dynamo (section 4.3).336

Theory has long predicted that this increase in power left footprints in the paleointensity record70, 141. However, paleointen-337

sity does not vary substantially over Earth’s history61 (figure 2d). Dynamo simulations linked with thermal evolution of the338

core allow to investigate the signature of inner-core growth on a convective geodynamo97, 98. Such simulations suggest that the339

nucleation of the inner core caused an increase in magnetic field strength inside the core, but no resolvable change in the field340

intensity at Earth’s surface97. This result reconciles the absence of long-term trends in the paleointensity record with theoretical341

predictions. It also suggests that long-term paleointensity trends are unlikely to constrain the age of the inner core.342

Still, these evolutionary dynamo simulations indicate that, during short time intervals, the magnetic field can be weak and343

multipolar prior to inner-core growth97, 98. A multipolar field could have caused short-lasting paleomagnetic anomalies. Such344

anomalies have been reported in the paleomagnetic record172, 173 for ages ∼ 375 Ma and ∼ 580 Ma. Further paleomagnetic345

investigations are needed to know whether these anomalies could be a signature of the absence of an inner core.346

A geodynamo driven by convection is therefore compatible with paleomagnetic data. However, only a few dynamo347

simulations with no inner core have been published84, 96, 97. More simulations, especially in a turbulent regime, are needed to348

better understand the ancient geodynamo and its paleomagnetic signature.349

7 Summary and future directions350

Unlike mechanical dynamos, a geodynamo driven by thermo-chemical convection accounts for most of the properties of the351

geomagnetic field (table in box 2). Convection also produces enough power to generate a magnetic field over the last 3.4 Gyrs,352

as inferred from paleomagnetic data. Convection therefore remains the most likely driving mechanism for the geodynamo.353

Yet, convective dynamo models almost all assume that composition and temperature have the same diffusivity, while light354

elements released at the inner-core boundary diffuse several orders of magnitude slower than temperature. The effect of double355

diffusion, when temperature and composition diffuse at different rates, on the geodynamo has been little studied174–178. Further356

examination of double diffusion could open new avenues for exploring the dynamics of Earth’s core.357

Whether the exsolution of light elements solves the new core paradox strongly depends on the value of the exsolution rate,358

which is debated88, 89, 93, 139. More precise estimates of the exsolution rate from high-pressure experiments and calculations are359

therefore needed. In addition, whether MgO88, 139, or SiO289, or other components94, 138 exsolve, and when their exsolution360

started, is an unsettled issue. It remains unknown whether the early core contained sufficient amounts of magnesium for the361

exsolution mechanism to start prior to 3 Gyrs ago and power the early geodynamo94, 138, 179. Similarly, SiO2 might not start362

exsolving at temperatures larger than 4000 K179, which are expected in the ancient core. Oxides are extracted from the core at a363

rate set by mantle convection138. This interaction with the mantle notably affects the nature of the exsolved species and the364

time at which exsolution starts138, and therefore deserves further investigation.365

In the Earth’s core, precession requires an unlikely low viscosity to trigger bulk turbulence together with an unlikely high366

obliquity (figure 5a and Supplementary Figure 5). Even under such favourable circumstances, the predicted flow velocity is367

hardly sufficient for magnetic induction to overcome ohmic dissipation (figure 5a). In addition, the magnetic field obtained in368

precession-driven dynamos does not match the properties of the modern geomagnetic field (figure 3d and table in box 2).369

Unlike precession, tides can generate vigourous bulk flows in the early Earth. However, the flows and magnetic fields driven370

by tides are poorly known. Numerical simulations of tide-driven dynamos are in their infancy in deformed spheres, with a371

single proof-of-concept kinematic dynamo106. A dynamo driven by tides in the past would require a substantial fraction of the372

power currently attributed to the oceans150 to be dissipated in the core.373
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Figure 1. The Earth’s dynamo requires turbulent motion of liquid iron in Earth’s core. a| The three-layer structure of
Earth’s interior. The rocky mantle overlays a metallic core. The core, which is essentially made of iron, is divided into a liquid
outer core and a solid inner core. The flow of liquid metal sustains dynamo action. The magnetic field lines (red to yellow lines)
and the velocity field strength (blue to yellow) are taken from a direct numerical simulation of the dynamo driven by turbulent
convection11.
b-e| Candidate mechanisms to drive the geodynamo in the outer core. b| Convection driven by core cooling and inner-core
growth. The heat Qcmb leaving the core leads to the solidification of the inner-core, releasing light elements at the base of the
outer core. At the outer edge of the core, cooling releases a cool, denser fluid that sinks into the deeper core. c| Convection
driven by the exsolution of light oxides such as MgO or SiO2. The iron-rich liquid released at the top of the core sinks into the
core. d| Precession makes the fluid rotate along an axis (blue) that is different from the mantle rotation axis (red); a secondary
circulation (teal arrows) is induced by the non-spherical shape. e| Tides induce a deformation that rotates around the liquid core
in about 1 day, inducing a recirculation.
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Figure 2. Earth’s dynamo operates on a broad range of time scales. a| Evolution of the geomagnetic axial dipole (the g0
1

Gauss coefficient) according to four reconstructions: SHADIF14k180, GGF100k181, GMAG.9k182, and pfm9k1b183, with the
standard deviation uncertainty for the latter two. The axial dipole coefficient is given in µT. b| Fluctuation of the signed relative
paleointensity of the magnetic field according to the SINT-2000 model184, with its uncertainty, and the PADM2M model185. To
normalise, the average virtual axial dipole moment mref = 7.46×1022 A m2 since the last reversal is used. c| Geomagnetic
polarity186, showing the variability of reversal frequency. Intervals of normal (present-day) polarity are in teal. d| Virtual dipole
moment from the PINT database61, normalised by mref = 7.46×1022 A m2. The coordinates of a symbol are the median value
of the age interval and the median value of the dipole moment of the dataset selected for the time interval of interest. The
horizontal bar spans the corresponding time interval, and the vertical bar covers the values found in the dataset. Historical
geomagnetism and paleomagnetism provide key constraints on the operation of the geodynamo.
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(a) Earth (IGRF-13, 2020)
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(b) Coupled-Earth convection
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(c) Turbulent convection

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
mT

(d) Precession
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Figure 3. The morphology of the Earth’s magnetic field is best reproduced by convection-driven dynamos. Snapshots
of the radial component of the magnetic field at the core surface (Mollweide projection). Only the largest scales (spherical
harmonic degree ` < 13) that are resolved for the Earth’s core are shown. a| Earth’s magnetic field in 2020, according to the
International Geomagnetic Reference Field model46. b| Coupled Earth direct dynamo model12, 187 (Ek = 3×10−5, Rm = 930,
Pm = 2.5, see Box 2 for definitions), rescaled using dynamo scaling laws187. c| Direct numerical simulation11, (Ek = 10−7,
Rm = 514, Pm = 0.1), rescaled so that the average axial dipole moment matches mre f

184 (see Figure 2). d| Low-viscosity
turbulent precession dynamo105, aligned on the fluid rotation axis (Ek = 10−5, Rm' 1900, Pm = 0.3). Not all candidate
driving mechanisms yield a magnetic field that complies with the observed field.
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Figure 4. Convection can power the geodynamo in the distant past when thermal conductivity is lower than 100
Wm−1K−1. a| Convective power (teal) and inner-core radius (orange, % of its present-day value) generated by convection as a
function of time. The shaded teal band delineates the range of admissible convective power for the geodynamo. A reduced
model121 was computed using three different thermal conductivities k = 40 (dashed), 70 (plain) and 100 Wm−1K−1 (dotted)
corresponding to present-day conducted heat flows27 Qis = 6 TW, 10 TW and 15 TW, respectively. The assumed present-day
core heat flow is Qcmb = 15 TW. b| Same as a| with Qcmb = 10 TW. c| Magnetic Reynolds number Rm (see Box 1 and Box 2)
generated by convection as a function of time for the same models as in a| (Qcmb = 15 TW). Dynamo action is expected only
for Rm≥ 100 (shaded teal band). d| Same as c| with Qcmb = 10 TW. The core heat flow Qcmb is arbitrarily assumed to increase
at 2.9 TW Gyr−1, which is close to the lowest estimates from models that couple the thermal evolution of the core and
mantle127. To compute the past evolution of the conducted heat flow Qis(t) equations (1-2) and the evolution of core
temperature from the energy budget of the core120, 121 are used. Rm =U D/η is deduced from dynamo scaling law12, 135, where
U ' 2ΩD p4/9 is the convective velocity, p = Φconv/(ρ Ω3 D2 V ) the dimensionless convective power84, Ω the time-varying
Earth’s rotation rate158, V the outer core volume and D the evolving thickness of the outer core. The electric conductivity is
assumed to depend on the thermal conductivity through the Wiedemann–Franz law. Convection provides enough power and
kinetic energy to power the geodynamo over geological times.
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b Tides

Figure 5. Precession cannot drive a dynamo but tides generated strong flows that could drive a dynamo in the early
Earth. a| Magnetic Reynolds number Rm (teal lines, see Box 1) generated by precession as a function of time for three
values157 of the kinematic viscosity in the outer core. The Rm jump at −3 Ga for ν = 10−7 m2/s is due to the triggering of
bulk instabilities (instability onset is reached at this point). Dynamo action is expected only for Rm≥ 100 (shaded teal band).
On the right vertical axis, the precession angle (obliquity) used for the calculation is shown. b| Same as a| for flows produced by
tides but showing the equatorial ellipticity f used for the calculation on the right vertical axis. The estimates of Rm in b| are all
associated with bulk instabilities, and the curves start at their respective onset for each viscosity. Criterion (10), with K = 2.62,
is used to predict whether bulk instabilities are triggered. Rm =Urc/η , where rc is the core radius, is estimated using the
following assumptions for the velocity, U. For times when bulk instabilities are excited, U = f u is assumed, where u is
respectively the differential velocity between the outer core and the mantle for precession and the speed of the tidal bulge at the
core-mantle boundary for tides, and f is respectively the polar or tidal ellipticity160, 161, 188. For precession a|, for times −3
Gyrs to 0 when bulk instabilities are not excited, the flow velocity U = 0.15Ωrc Ro3/2 is used for precession viscosity-driven
instabilities105, where Ro is the Rossby number Ro = u/(Ωrc). Although precession could not have driven a dynamo in the
Earth’s history, tides could have driven a dynamo prior to 1.5 Gyrs ago.
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Box 1: Basics of dynamo action744

A dynamo converts mechanical energy into electromagnetic energy and produces a self-excited magnetic field8, 189, 190. The
induction equation governs the evolution of the magnetic field BBB given the velocity field uuu of an electrically conducting but
neutral fluid:

∂tBBB = ∇× (uuu×BBB)+
1

µσ
∇

2BBB, (11)

with µ the magnetic permeability and σ the electrical conductivity. The above equation shows that the rate of change of
the magnetic field results from the induction term (first term on the right-hand side), which involves the fluid motion and is
responsible for the production of magnetic field, and the magnetic diffusion (second term on the right-hand side) related to
ohmic dissipation. When induction is much larger than magnetic diffusion, a runaway growth of the magnetic field is possible.
Comparing the order of magnitude of these two terms yields the dimensionless magnetic Reynolds number

Rm = µσLU =
UL
η

, (12)

with L the system length scale, U the typical fluid velocity, and η = 1/µσ the magnetic diffusivity. A necessary condition745

to self-generate a magnetic field is Rm� 1. With U the maximum fluid velocity, the search for an optimal dynamo suggests746

Rm & 44 in the sphere191. Another condition is that the velocity field is sufficiently complex and its topology adequate. For747

example, a solid-body rotation or strictly two-dimensional flows are incapable of dynamo action192. In contrast, helical flows748

are prone to dynamo action9, 191.749

Such a dynamo process is different from the magnetic field produced by the motion of charged matter for which the field750

is simply proportional to the velocity and charge. In the case of a dynamo process, motions of a neutral fluid can lead to751

spontaneous generation of electric currents and magnetic field.752

Box 2: Hard-to-reach dynamos753

Multiple time scales control the Earth dynamo. The ordering of these time scales controls the regime in which the dynamo754

operates. When evaluated at the largest length scale, typical time scales range from a day for the rotational time to 105 years for755

magnetic diffusion.756

The most relevant time scales are the rotation time tΩ = 1 day, the time tB = D
√

ρµ/B∼ 3 yr of the hydromagnetic waves757

called Alfvén waves, the fluid overturn time tU ∼ 300 yr, the magnetic diffusion time tη = D2/η ∼ 105 yrs and the viscous758

diffusion time tν = D2/ν ∼ 1011 yr, where D is the outer core thickness, ρ the outer core density and ν the kinematic viscosity.759

Numerical simulations cannot cover such a range, but relevant regimes are reached when the ordering of these time-scales is760

preserved.761

Dimensionless numbers evaluate the ratios between these times. These numbers are important to isolate the dominant762

physical processes. They are also necessary to properly compare numerical simulations, analogue experiments and Earth’s763

dynamo (Supplementary Figure 1).764

The magnetic Reynolds number introduced in Box 1 Rm = tη/tU measures the importance of magnetic field production to765

magnetic diffusion.766

The Ekman number Ek = tΩ/tν expresses the relative importance of viscous stress to the Coriolis force.767

The Rossby number Ro = tΩ/tU quantifies the relative magnitude of inertial forces against the Coriolis force.768

The magnetic Prandtl number Pm = tη/tν , is the ratio of kinematic viscosity ν to magnetic diffusivity η .769

The Reynolds number Re = tν/tU = Rm/Pm = Ro/Ek measures the degree of turbulence, that is the importance of inertial770

to viscous forces.771

Estimates of these numbers for Earth’s core are Rm∼ 103, Ek ∼ 10−15, Ro∼ 10−6, Pm∼ 10−6 and Re∼ 109. The values772

of Ro and Ek reflect the importance of planetary rotation on the dynamics. That of Pm is thought to be responsible for the scale773

separation between the large-scale magnetic field and the small-scale, turbulent velocity field.774

The best way to assess whether a simulation is in the Earth’s dynamo regime is to check that it does reproduce observed775

features of the Earth’s magnetic field. The following table lists the current ability (marked with a 3), or inability, (marked776

with a 7), of convection-driven simulations, precession-driven simulations, and analogue experiments to account for selected777

properties of Earth’s dynamo.778
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Convecting Precessing dynamo
Feature simulationsa simulationsa experiments

laminar/turbulent laminar/turbulent (turbulent)
dipole-dominated fieldb 3/3 3/7 3
surface morphologyc 3/3 7/7 ?
fast dynamicsd 7/3 ? ?
slow dynamicsd 3/3 ? ?
reversalse 3/? 7/7 3

strong-field f 3/3 3/7 7
scale separationg 7/3 7/7 3

779

a The simulations are separated into two classes, laminar and turbulent, which correspond to a ratio of inertial to viscous780

forces smaller or larger than ∼ 103, respectively. b Dipole-dominated refers to a dynamo field whose main component is dipolar.781

c Surface morphology refers to the large-scale morphology of the geomagnetic field at the core surface, which is well-known782

down to a scale of 1500 km. d Fast dynamics refers to the presence of waves operating on the magnetic time scale tB, which is783

substantially lower than the advective timescale tU characterizing the slow dynamics of core flow. e Reversals refers to the784

capacity for the field to reverse its polarity in an irregular fashion over geological time scales. f Strong-field refers to a dynamo785

operating with a magnetic energy larger by several orders of magnitude than the kinetic energy. g Scale separation implies that786

the flow energy spectrum peaks at a scale much smaller than the dominant magnetic scale. For further details the reader can787

consult previous studies15, 105, 193.788
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