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Towards Recognizing 3D Models Using A Single Image

H. A. Rashwan1 and S. Chambon1 and G. Morin1 and P. Gurdjos1 and V. Charvillat1

1IRIT-CNRS, University of Toulouse, France

Abstract
As 3D data is getting more popular, techniques for retrieving a particular 3D model are necessary. We want to recognize a
3D model from a single photograph; as any user can easily get an image of a model he/she would like to find, requesting by
an image is indeed simple and natural. However, a 2D intensity image is relative to viewpoint, texture and lighting condition
and thus matching with a 3D geometric model is very challenging. This paper proposes a first step towards matching a 2D
image to models, based on features repeatable in 2D images and in depth images (generated from 3D models); we show
their independence to textures and lighting. Then, the detected features are matched to recognize 3D models by combining
HOG (Histogram Of Gradients) descriptors and repeatability scores. The proposed methods reaches a recognition rate of 72%
among 12 3D objects categories, and outperforms classical feature detection techniques for recognizing 3D models using a
single image.

express the model shape independently to color or texture informa-
tion.

The second step of 2D/3D matching consists in proposing how
to match entities between these two modalities in this common rep-
resentation. It can be partial [IZFB09] or dense matching, based on
local or global characteristics [SS02]. A key requirement on these
features, as in classic 2D matching between photographs, is to be
computed with a high degree of repeatability: the probability that
key features in a photograph are found close to those extracted in
a depth image must be high. Since we suppose that an individual
photograph of an object of interest is acquired in a textured environ-
ment, we will focus on extracting features of photographs related
to the object shape and as similar as possible to features extracted
from the set of rendered images of the corresponding 3D model,
more precisely, a set of depth images. Moreover, this similarity has
to be the highest one when the rendered image is from the same
point of view as the photograph.

Many alignment methods rely on extracting features such as
points and curves of the 3D model/scene. Most of point-based
methods are based on extracting SIFT, Scale invariant Features
Transform [Low04], adapted from 2D to 3D [LVJ05, SLK11]. Due
to the differences in appearance and the different light conditions
between 2D and 3D, this kind of method can yield an inaccurate
alignment process, and suffers from low precision due to the loss of
3D scene information during rendering. In turn, other methods have
been proposed to extract a set of curves and lines whose points are
local maxima on a surface as in [JDA04, GW11]. However, these
methods often produce false edges that are not related to occlud-
ing contours, which are important for pose estimation. Recently, a
rendering technique called Average Shading Gradients (ASG) was

1. Introduction

Recognizing a 3D object consists in identifying a 3D object among 
a set of 3D models or categories of models given a request in-
put data, in our case, a single 2D photograph. Capturing or in-
dexing an image by keywords are two very easy way to describe 
a 3D shape. Therefore, requesting a 3D model from a photograph 
would be a natural way to index a repository of 3D shape. How-
ever, 2D/3D matching is a difficult t ask d ue t o o cclusions, view 
point variations, lighting and illumination changes. The type of rep-
resentation used both for 2D images and 3D models is critical for 
the choice of the object recognition strategy. For representing and 
characterizing 3D models, some approaches rely on attributes of 
the object’s 3D geometry [GBS∗14], other on attributes of its 2D 
projection [CK01, AS13] (distinction between object- vs. image-
representations).

A fist s tep i s to choose a  representation of the 3D object com-
parable to an image of this object. However, photographs and 3D 
models have very different appearance: 3D models contain only 
geometric information, and no color or texture, whereas the photo-
graph (i.e., color or gray images) is the result of a combination of 
color, texture, lighting and shape information. Thus, the first task 
for recognizing a 3D model based on a single 2D image is to find 
an appropriate representation of 3D models in which reliable fea-
tures can be extracted. 3D models can be reconstructed by a set of 
color images [AFS∗11] or range images. For reconstruction tech-
niques based on color images, the matching of a color image to a 
set of color images solves a particular 3D object recognition prob-
lem. However, these techniques rely on texture and are affected by 
lighting. In order to model a 3D shape independently of texture, we 
propose to represent the 3D model by a set of range images that
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Figure 1: To compare 2D images with 3D models, we use a collection of rendered images of the 3D models in different viewpoints, and then
we detect points of interest (ridges) with common basis definitions between depth images and intensity images.

proposed in [PR15] to register an image to its corresponding 3D
model. ASG represents 3D models by averaging shading gradients
over all lighting directions to cope with the unknown lighting con-
ditions. The 2D image representation that they match with the 3D
ASG representation is based on the image gradients and thus yields
unreliable correspondences when the 2D image contains textures
or background.

Finally, Curviness saliency (CS) [RCG∗16] is related to the cur-
vature estimation (a function of the eigenvalues derived of the Hes-
sian matrix). This representation is directly related to the disconti-
nuities of the object’s shape, and, by nature, the extracted features
should be robust to texture and light changes. Thus, in this paper,
features extracted in depth images highlight geometric characteris-
tics of an object. Regarding photographs, curviness saliency detec-
tor is able to detect the approximate shape. The proposed detector
can also reduce the influence of scale changes because it is esti-
mated over all scales and image locations in order to identify scale-
invariant interest points as shown in Figure 1. In our targeted appli-
cation, the user manually defines the Region Of Interest (ROI) (i.e.,
localizing the object projection in an image). In an image with a sin-
gle object, we assume that the object is in focus, so we could detect
the ROI using the bounding box of all points in focus. For object
recognition, we propose an algorithm to identify a 3D model given
an image and the ROI. We then compute the similarity score based
both on the HOG descriptor, Histogram Of Gradients [DT05], and
the repeatability scores between the features of the cropped image
of the object and the features of rendering depth images from mul-
tiple 3D models.

The remainder of this paper is organized as follows: section 2
presents to the curviness saliency used for extracting the features
in 2D photographs and 3D models. The recognition process of 3D
models based on histogram of curviness saliency and the repeata-
bility scores of the features between depth images and photographs
is explained in section 3. A set of retrieval experiments is described
and analyzed in section 4. Finally, section 5 provides a summary
and perspectives for future work.

2. Feature Detection in 2D Photographs and 3D Models

The features proposed in [RCG∗16] are briefly presented before
using them for the recognition step, Section 3.

2.1. Curviness Saliency Detector

The principal curvatures κ1, κ2 of a surface S at point p are approx-
imately the eigenvalues of the Hessian matrix H:

H =

[
Zxx Zxy
Zxy Zyy

]
,

where Zxx, Zxy and Zyy are the second-order partial derivatives of
a pixel of an image Z in x, and y directions. When κ1 ≥ κ2, the
pixel lies on a “curvilinear feature” in a representation common to
images (e.g., photographs or depth images). The function, called
curviness saliency (CS), computes the difference between principal
curvatures:

CS , λ1−λ2, (1)

where λ1 and λ2 are the eigenvalues of H assuming λ1 > λ2. CS is
large when λ1 � λ2, that is, distant foci, or, as well, the surface
is approximated (at second order) by a highly elongated ellipse or
a “squashed” hyperbola. This occurs when the point is located on
a ridge (either curved or straight). Otherwise, when λ1 ' λ2, the
osculating conic approaches a circle and the distance between foci
becomes very small.

We compute CS (1) at each pixel and a pixel with high CS value
can be considered as a potential keypoint. Note that the two eigen-
values λ1 , λ+ and λ2 , λ− of the scaled Hessian matrix H̃ can
be directly computed by:

λ± =
α

2

(
Zxx +Zyy±

√
(Zxx−Zyy)2 +4Z2

xy

)
. (2)

By subsititing λ1,2 of (2) in (1) and α = 1, the CS is thus given by

CS∼=
(
‖H‖2

F −2 det(H)
)
, (3)

where ‖H‖F and det(H) are respectively the Frobenius norm and



Dq and the HOG descriptors of the rendered images Din , in order
to compare Dq and every Din , a similarity score is computed as
proposed in [ARS14]:

Shog(i,n) = (Din −µsi)
T Σ−1

si Dq, (4)

where, Σsi and µsi are, respectively, the covariance matrix and the
mean over all descriptors of the n rendered depth images of the i
model. At input time, evaluating Shog can be done by computing
the probability of the inverse of the inner product between Dq and
a transformed set of descriptors. The Shog probability is then max-
imized to identify the depth image the closest to the query image.

As already mentioned, an important property needed for pose es-
timation and recognition is repeatability. The repeatability score is
the probability that key features in the intensity image are found
close to those extracted in the depth image. So, to validate the re-
peatability of the detected features, we propose to also evaluate
a global similarity by measuring how well detected keypoints in
depth images agree with keypoints in the request photograph. More
precisely, the closest view of the 3D model seen in the photograph
should have a repeatability score higher than both depth images
on the same object from a different viewpoint and depth images
of different 3D models. If we denote Ri the repeatability scores of
n rendered views of a i model and a given image, the similarity
Srep(i,n) is defined by:

Srep(i,n) = exp

(
−(Bin −µri)

2

2 σ2
ri

)
, (5)

where Bin = 1−Rin , µri is the mean value of Bi and σri is the
standard deviation of the repeatability scores of n views of the i
model †. By combining HOG feature similarities and the similarity
based on the repeatability, the probability of the final similarity can
be computed by:

S(i,n) = Shog(i,n)�Srep(i,n), (6)

where � is the Hadamard product. Based on the computation of
S for each depth image, we select the depth image din that corre-
sponds to the highest S to identify the answer, i.e. the corresponding
3D model Mi.

4. Experiments

For indexing a 3D model using a single photograph, we assume that
an object is localized by a bounding box in the given photograph.
The cropped image is then matched with a set of candidate 3D mod-
els. For recongition task, we have developed a small database of ten
textureless 3D objects (‡), and we collected a set of 15 real images
found online for each object and then used this database in our
evaluation. To be more general, we also tested our approach on a
classical large benchmark called PASCAL3D+ [XMS14]. The PAS-
CAL3D+ dataset is used in general for object detection and pose

† In this work, σri = 0.1 is empirically chosen
‡ availableonlinehttp://tf3dm.com

the determinant of the Hessian matrix H. The relation between 
these two terms can be used to measure how much this surface 
bends in different directions at any point p. The proposed potential 
function CS can be interpreted as a scalar measurement of the cur-
vature at a local surface patch. In addition, CS is a scalar curvature 
index, commonly used in differential geometry, which quantifies 
lack of flatness of the surface at a specific point [LWU13].

2.2. Multi-Scale Curviness Saliency

Computing the curviness saliency in an image at a single-scale de-
tects points that have high curvature in a particular scale. Multi-
scale helps to detect important structures as well as small details. 
At a coarse level, the detection of edges lacks localization preci-
sion and misses small details. At a fine level, details are preserved, 
but the detection suffers greatly from clutters in textured regions. In 
consequence, we require that a keypoint of a 2D photograph (those 
with high value of CS) to appear in a multi-scale space. As we 
expected, shape-related keypoints, which appear in all the scales, 
are kept whereas texture and background-related keypoints, which 
appear in a limited number of scales, are discarded. Indeed, the 
CS values of small details and textures are high in the fine level, 
whereas these values become lower in the coarsest levels. To com-
bine the strengths of each scale, the CS value of each pixel over n 
scales is analyzed. If this value is higher than a threshold T in all 
scales, the maximum curviness saliency (MCS) value of this pixel 
over all scales is kept. This threshold is a function of n, the number 
of the smoothed image (here we took, T = e−n). And, if the CS 
value of a pixel happens to be lower than T at a particular level, we 
considered this pixel as texture (or small detail) point, thus removed 
it from the final multi-scale curviness saliency (MCS) features. The 
multi-scale curviness saliency MCS if applied to the request input 
photograph and will be compared with features extracted on the 
depth image for 2D-3D matching. Our proposal for depth images 
is to simply use curviness saliency CS: as depth discontinuities ap-
pear at all scales, it is sufficient to consider a single scale.

3. Recognition

The goal of recognition is to identify which 3D object is repre-
sented by a (request) photograph q. For that purpose, we identify 
the closest model M among Mi models, i = 1 . . .k, where k the num-
ber of 3D models in the database. Moreover, each model is repre-
sented by a set of depth images din , n the number of rendered depth 
images, from approximately uniformly distributed viewing angles 
around a sphere by changing elevation h and azimuth a angles (the 
choices for a and h are discussed in section 4).

To describe the features, we naturally expand the famous clas-
sical HOG, widely used in the literature (e.g. [ARS14, PR15]), to 
work on curviness saliency. Indeed, both in rendered depth images 
and in photographs, the orientation of the curvature and the value of 
the curviness saliency is used for building the descriptors. For that, 
the direction of the curviness saliency is considered as the direc-
tion of the eigenvector e1 corresponding to the largest eigenvalue 
of the Hessian matrix in depth images or the structure tensor in a 
photograph. Then, in the same way as HOG, the curviness saliency 
features are detected for an image and are binned into sparse per-
pixel histograms. Given the HOG descriptor from a 2D query image

available online http://tf3dm.com


estimation but we use it for object recognition. The PASCAL3D+
database contains real images corresponding to 12 object cate-
gories; each category contains around 1000 real images acquired
under different conditions (e.g., lighting, complex background, low
contrast) and (at least) 3 reference 3D models; each color image is
associated to the bounding box around the object, the 3D pose and
the name of the corresponding reference 3D model. A single image
is selected from the category to index the corresponding 3D model
among all reference models in the database. In our context, we thus
take an image and the bounding box information for PASCAL3D+,
we output the closest view among rendering images from the 36
models (3 per categories). We use the name of the corresponding
3D model category as a ground truth for our algorithm.

We rendered the depth images from the 3D CAD models from
different viewpoints by using MATLAB 3D Model Renderer§. Ac-
tually, a large number of depth images (60 in our experiments) is
necessary to completely represent a 3D model. This yields a signif-
icant execution time of the matching process. Thus, we orthograph-
ically render N = 60 depth images per model from approximately
uniformly distributed viewing angles h and a (i.e., in these experi-
ments, h is increased by a step of 45o, and the azimuth angle, 45o).

In addition, in this paper, the HOG descriptor is quantized into 9
bins, as proposed in [DT05]. The photograph and each depth image
are divided into a grid of square cells (i.e., in this work, the image is
divided into 8×8¶. For each cell, the curviness saliency histograms
are aggregated by weighting them with their respective magnitude.

For each category of objects, we compute the average recog-
nition rate of finding the correct model for the input single im-
age. Only non-occluded and non-truncated objects in the real im-
ages of the PASCAL+3D were used for the evaluation (i.e., around
600 images per category). We compare CS and two concurrent
3D representations: Average Shading Gradients (ASG) [PR15] and
Apparent Ridges (AR) [JDA04] against MCS and four classical
feature detectors on intensity image (i.e., Principle Curvature Im-
age (PCI) [DZM∗07], MinEig [ST94], Canny Edge detection, and
SIFT [Low04]) by testing the matching on every possible pairs.

As shown in Table 1, with the PASCAL+3D database, the cor-
rect recognition rate achieved between the proposed CS represen-
tation of the 3D models with MCS of photograph representation
outperforms all other variations of the different methods. This con-
firms that curviness saliency representation computed on the depth
images of a 3D model can properly capture the discontinuities of
surfaces. In addition, MCS can reduce the influence of texture and
background components and it can also approximately extract the
edges related to the object shape in intensity images. Furthermore,
the recognition rate drops by more than 50% when combining AR
on 3D depth images and Canny edge detection on intensity im-
ages. Apparent Ridges rendering yields the smallest recognition
rate accuracy with the three image representations among 3D mod-
els representation techniques. However, using ASG on textureless

§ http://www.openu.ac.il/home/hassner/projects/
poses/
¶ Different grids (4× 4, 8× 8 and 16× 16) were tested, and a 8× 8 grid
yields the best precision rate.

3D models against MCS yields acceptable recognition rate. Which
indicates that ASG computed from the normal map of an untextured
geometry is a good rendering technique. However, since image gra-
dients are affected by texture, they do not perform well.

2D Representation
MCS PCI MinEig SIFT Canny

3D Representation
CS 0.72 0.61 0.45 0.41 0.40

ASG 0.63 0.52 0.43 0.36 0.35
AR 0.59 0.50 0.41 0.34 0.33

Table 1: Average Correct Recognition rate of 12 categories of the
Pascal+3D dataset with all the combination of representations.
Only non-occluded and non-truncated objects in the real images
of the PASCAL+3D (i.e., around 600 images per category) were
used for the evaluation.

Figure 2 shows three examples (photographs and the identified
3D models) from our developed database, in turn Figure 3 shows
two examples from the PASCAL3D+ dataset. As shown in the two
figures, we see that both MCS and PCI methods are able to de-
tect the edges belonging to occluded contours of the 3D objects.
However, MCS better filters edges due to texture and background
regions; thus, MCS properly identifies the object shape in inten-
sity images and so, yields a better matching between the request
intensity and the 3D representation (i.e., the rendered depth images
of the 3D model). In turn, regarding 3D model representation, CS
and ASG properly detect the surface variations in depth images.
However, CS properly detects the silhouette of the object, as well
as the contours related to the surface discontinuities. The detected
contours with CS are very important to get accurate matching with
photographs. In turn, ASG is affected with the normal map discon-
tinuities, but it also detects a lot of edges that are not related to the
shape of the objects.

In the second experiment, Figure 4 shows the average recogni-
tion rate over the 12 object categories of the PASCAL+3D of im-
ages among the top r similarities (i.e., ranks 1, 3, 5, 10 and 20).
That similarity is ranked based on the highest r correspondences of
S The corresponding 3D object is searched within this set of ren-
dered images. Of course, the average recognition rate is improved
when the number of images/ranks increases with all three methods
used for 3D models and MCS for image representation. In fact,
AR/MCS yields the smallest precision value, because AR often
produces false edges that are not related to occluding contours.

5. Conclusion and Future Work

We proposed a first step towards a simple indexation of 3D reposi-
tories by a request using a single photograph, that can be captured
in arbitrary conditions, and the object may be textured. 3D mod-
els are represented by a set of depth images invariant to lighting
and texture. Curviness saliency estimation is used and we estimate
features of the photograph by using multi-scale. The similarity be-
tween the features of a photograph and depth images is computed
by both the HOG descriptor and the repeatability scores. The results
show high recognition rate on a set of natural request photographs
for 12 models and thus highlight the feasibility of indexing 3D by
a natural image thanks to the fact that the extracted keypoints are
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(a) (b)

Figure 2: Three examples of our developed database: (a) (Col 1) Request photograph and extracted features with (Col 2) MCS, (Col 3)
PCI [DZM∗07], both with 5 scales, and (b) (Col 1) depth images (3D representation) and extracted features with (Col 2) CS and (Col 3)
ASG [PR15].

(a) (b)

Figure 3: Two examples of the PASCAL3D+ dataset: (a) (Col 1) Request photograph and extracted features with (Col 2) MCS, (Col 3)
PCI [DZM∗07], both with 5 scales, and (b) (Col 1) depth images (3D representation) and extracted features with (Col 2) CS and (Col 3)
ASG [PR15].

more repeatable than classical detectors. Future work will first deal
with more models and second, to introduce deep learning system
based on the proposed curviness saliency estimation to get more
accurate recognition rate.
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