Snowmass2021 Cosmic Frontier White Paper: Prospects for obtaining Dark Matter Constraints with DESI - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Snowmass2021 Cosmic Frontier White Paper: Prospects for obtaining Dark Matter Constraints with DESI

Monica Valluri
  • Fonction : Auteur
Solene Chabanier
  • Fonction : Auteur
Vid Irsic
  • Fonction : Auteur
Michael Walther
  • Fonction : Auteur
Connie Rockosi
  • Fonction : Auteur
Miguel A. Sanchez-Conde
  • Fonction : Auteur
Leandro Beraldo E Silva
  • Fonction : Auteur
Andrew P. Cooper
  • Fonction : Auteur
Elise Darragh-Ford
  • Fonction : Auteur
Kyle Dawson
  • Fonction : Auteur
Alis J. Deason
  • Fonction : Auteur
Simone Ferraro
Jaime E. Forero-Romero
  • Fonction : Auteur
Antonella Garzilli
  • Fonction : Auteur
Ting Li
  • Fonction : Auteur
Zarija Lukic
  • Fonction : Auteur
Christopher J. Manser
  • Fonction : Auteur
Wenting Wang
  • Fonction : Auteur
Risa Wechsler
  • Fonction : Auteur
Andreia Carrillo
  • Fonction : Auteur
Arjun Dey
  • Fonction : Auteur
Sergey E. Koposov
  • Fonction : Auteur
Yao-Yuan Mao
  • Fonction : Auteur
Paulo Montero-Camacho
  • Fonction : Auteur
Ekta Patel
  • Fonction : Auteur
Graziano Rossi
  • Fonction : Auteur
L. Arturo Urena-Lopez
  • Fonction : Auteur
Octavio Valenzuela
  • Fonction : Auteur

Résumé

Despite efforts over several decades, direct-detection experiments have not yet led to the discovery of the dark matter (DM) particle. This has led to increasing interest in alternatives to the Lambda CDM (LCDM) paradigm and alternative DM scenarios (including fuzzy DM, warm DM, self-interacting DM, etc.). In many of these scenarios, DM particles cannot be detected directly and constraints on their properties can ONLY be arrived at using astrophysical observations. The Dark Energy Spectroscopic Instrument (DESI) is currently one of the most powerful instruments for wide-field surveys. The synergy of DESI with ESA's Gaia satellite and future observing facilities will yield datasets of unprecedented size and coverage that will enable constraints on DM over a wide range of physical and mass scales and across redshifts. DESI will obtain spectra of the Lyman-alpha forest out to z~5 by detecting about 1 million QSO spectra that will put constraints on clustering of the low-density intergalactic gas and DM halos at high redshift. DESI will obtain radial velocities of 10 million stars in the Milky Way (MW) and Local Group satellites enabling us to constrain their global DM distributions, as well as the DM distribution on smaller scales. The paradigm of cosmological structure formation has been extensively tested with simulations. However, the majority of simulations to date have focused on collisionless CDM. Simulations with alternatives to CDM have recently been gaining ground but are still in their infancy. While there are numerous publicly available large-box and zoom-in simulations in the LCDM framework, there are no comparable publicly available WDM, SIDM, FDM simulations. DOE support for a public simulation suite will enable a more cohesive community effort to compare observations from DESI (and other surveys) with numerical predictions and will greatly impact DM science.

Dates et versions

hal-03623296 , version 1 (29-03-2022)

Identifiants

Citer

Monica Valluri, Solene Chabanier, Vid Irsic, Eric Armengaud, Michael Walther, et al.. Snowmass2021 Cosmic Frontier White Paper: Prospects for obtaining Dark Matter Constraints with DESI. Snowmass 2021, Jul 2022, Seattle, United States. ⟨hal-03623296⟩
39 Consultations
0 Téléchargements

Altmetric

Partager

More