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Abstract. In this article, production process databases originating from environ-

mental sciences, more specifically from Life Cycle Inventory (LCI), are considered

as bipartite directed random networks. To model the observed directed hierarchical

connection patterns, we turn to recent development concerning trophic coherence. Ex-

tending the scope to include bipartite networks, we compare several LCI networks to

networks from other fields, and show empirically that they have high coherence and

belong to the loopless regime, or close to its boundary.

1. Introduction

Production processes are central to organized societies and have thus been extensively

studied in complex systems and complex networks literature from various viewpoints:

interfirm supply-chain [1, 2, 3], trade [4, 5, 6], material flow analysis [7]. Recent works use

block models to reconstruct an interfirm network [8, 9, 10, 11] from partial knowledge,

or model manufacturing process below the factory level [12].

While they give deep insight into the structure of production processes, those

works leave aside the technical details of production: inputs and outputs are usually

aggregated, and detailed production processes are not considered. Furthermore, they

neglect the ordering intrinsic to production processes and tend to focus on sectoral layers

or communities [13].

In the field of Life-cycle Inventory (LCI), at the crossroads of engineering,

environment sciences and economy, large and detailed databases of production processes

have been built up for decades, and offer a more precise description. As explained in

sec.2.2, two types of nodes are considered (processes and flows) and are typically used

to perform Life Cycle Analysis, that is computing the emissions to the environment

associated with the production of a unit of a specific product. LCI shares common

methods with Input-Output Analysis [14], which uses monetary units and operates at

the sector level.

In the LCI literature, a few articles consider complex networks tools to analyze

production: in [15], the two-mode structure is projected onto a directed monopartite
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network. Short mean path-length and power-law distribution of degrees are observed.

This is explained by the authors by the existence of a hub such as utility sectors. The

network is asymmetric ‡, and displays very low clustering and reciprocity. Furthermore,

a comparison to networks corresponding to IO data is made and shows very different

characteristics.

Similarly, several authors have analyzed IO datasets with network tools [16] or with

some interest in topology [17], but those nets are highly aggregated, which leads to dense

weighted networks where each sector seems connected to every other.

Conversely, little attention was paid to LCI databases in the complex networks

community. While complex networks methods are not likely to improve performance

of classical problems in LCI represented algebraically (see sec 2.2), they can help

tackle problems more naturally expressed in a network way, and that so far remain

unaddressed, for example: identifying central processes, probing the robustness to

attacks of a given supply chain to avoid cascading failures, or examining dynamical

phenomena such as propagation on the production network.

In the present article, we thus look at LCI databases from a network science

standpoint and describe the properties of production networks at the process level,

to propose new explanations for unexplained observations.

Firstly, the observed networks are directed: each process takes inputs and generates

outputs. Then, in LCI databases, process nodes are connected to product (or “flow”)

nodes, but are not directly connected, making the network bipartite or “two-mode”.

(As explained in sec. 2.2 some LCI databases are built in a way such that they can be

projected to monopartite networks, preserving some empirical properties).

Being directed networks, production processes share some of their properties. It

has been remarked already in the literature [18, 19] that real directed networks were

“underlooped”, that is they have less directed cycles than randomized versions of the

network. Examples provided included a power grid, food webs, a metabolic network,

the worldwide web, a neural network and a genetic transcription network.

In [20] the notion of inherent directionality is put forward, relying on a measure of

hierarchical order inspired by trophic level [21]. A model is proposed and compared to

empirical networks, and confirms the underlooped nature of empirical networks. As will

be shown in sec. 3 it turns out that this property is also present in production processes

depicted by LCI databases, which has not been reported so far, up to our knowledge.

The notion of hierarchical order was used in [2], and also in the random directed

acyclic graphs (DAG) literature, which deals with random directed graphs without

cycles. As explained in [22]: “it is the ordering of the vertices and not their acyclic

structure that is the definitive property of the network. The acyclic structure is merely

a corollary of the ordering”. Such ordering is domain-dependent and is often related to

‡ ‘the structure of the network is highly asymmetric. There are processes (transportation, electricity)

that deliver to many other processes but that do not require inputs from these other processes.

Conversely, there are processes (such as infrastructure-related processes) that have few customers,

but that have many suppliers’ [15]
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time ordering, as in citation networks. Production processes can be expected to display

significant order since processes are partially ordered: some steps of the production

process can be reversed, while others can’t. For example in food production, plants

first grow, then are processed, packed, shipped and sold in retail stores. Finding

an underlying order in DAG requires solving the topological ordering problem, used

in scheduling optimization. Strategies to randomize empirical DAG while preserving

ordering were discussed for example in [23, 24] and rely on the topological ordering. As

remarked in [24] the latter can be non-unique, which may bias the generated ensemble.

Furthermore, DAG random models do not allow the presence of a small number of

cycles. Recent works explain low abundance of loops in directed networks by the notion

of trophic coherence, which quantifies to what extent a network can be ordered into

discrete levels [25, 26, 27, 28]. In these works, random graph ensembles are defined not

from block-like assumptions but supposing that trophic coherence is constant, set to

the empirically observed value. Some important properties of those random ensembles

can be computed approximately and compared to empirical networks, for example the

largest eigenvalue or the branching factor. Comparisons are made with life sciences

(ecological food webs, genetic and metabolic), economic (international trade, input-

output, supply-chains) [29, 30], linguistic and technical networks.

Nevertheless, trophic coherence theory concerns general unipartite directed

networks, which disregards the particularities of bipartite networks encountered in LCI

datasets. Conversely economic complexity measures such as country fitness and product

complexity in [5] are adapted to bipartite undirected networks. We show below that

some of the results of the trophic coherence theory can be extended to handle the

bipartite case, providing the necessary correction to the bias induced by bipartivity.

Then we analyze LCI datasets considered as networks, with a trophic coherence point

of view and compare them to networks studied in other domains.

Section 2 introduces some elements of the theory as well as the datasets. Section 3

discusses our results and applications, sec. 4 concludes.

2. Methods and data

2.1. Trophic level and trophic coherence theory

In this section, we give a few definitions selected in the theory by Johnson and colleagues

in [25, 27]. Let A be the adjacency of a graph G with the convention aij = 1 if there

is an edge§ from node j to node i, and kini =
∑

j aij and kouti =
∑

j aji the in and

out-degrees of node i.

A walk is a “sequence of nodes such that every consecutive pair of nodes in the

sequence is connected by an edge” [31]. A directed walk respects the direction specified

by the directed network. A path is a self-avoiding walk, that does not intersect itself.

§ the opposite convention also exists in the literature.



Production process network 4

The branching factor, whose role was evidenced in [18], is:

α =
〈kinkout〉
〈k〉

. (1)

In ecology [21], the notion of trophic level si of a node i was introduced to reveal

the hierarchical ordering of species in food webs, as illustrated in Fig. 1:

si = 1 +
1

kini

∑
j

aijsj. (2)

j1 sj1 j2 sj2

i si

l sl

aij1 aij2

Figure 1. Trophic level of node i, si has value si = 1 + 1
2 (sj1 + sj2). The trophic

difference xij1 = si − sj1 has value 1 + 1
2 (−sj1 + sj2), which equals 1 if sj1 = sj2 .

si is similar to the PageRank measure [32] defined for monopartite directed networks,

with a normalization of the sum term by kini instead of koutj . Thus si is also akin

to PageRank-related measures such as countries’ fitness and products’ complexity, as

discussed in Appendix E.

Equation (2) defines a set of linear equations that has a solution when each node

belongs to a walk starting at a “basal” node, i.e. a node such that kini = 0. Differences

between trophic levels xij = si − sj and their standard deviation q, named “trophic

coherence”, were introduced in [25]:

q = std(xij) (3)

In [27] the relationship between q and the propensity for a network to include loops

was examined. The authors introduce the “coherence ensemble”, which is the set of

random graphs with a specified number of nodes, degree sequence, and coherence q.

They compute nν the total number of walks of length ν in G, mν the total number of

cycles of length ν, and cν the expected proportion of walks of length ν that are cycles,

and their average values nν ,mν , cν in the “coherence ensemble”. The authors show that

the network ensemble belongs either to a “loopful” (resp. “loopless”) regime depending

on a parameter τ being positive (resp. negative), with the following definition:

τ = lnα +
1

2q̃2
− 1

2q2
, (4)
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where α is the branching factor defined above, and q̃ is the average value of coherence

in the “basal ensemble” associated to G. This “basal ensemble” is a restriction of the

directed configuration ensemble with the additional constraint that the proportion of

in-neighbors connected to non-basal nodes is kept fixed with value kini LB/L, where L is

the number of edges and LB is the number of edges connected to basal nodes.

Notably, in the large ν limit, the eigenvalue with leading real part noted λ1 can be

related to τ :

λ1 = eτ (5)

with x the average value of x in the ‘coherence ensemble’.

2.2. LCI, datasets and methods

In this section we discuss basic definitions and problems in the field of Life Cycle

Inventory. Performing the LCI of a unit process consists in “the compilation and

quantification of [its] inputs and outputs” [33]. Inputs and outputs are usually called

flows and each unit process is associated to a reference flow, i.e. its main output. A

product system is a collection of such processes and flows.

For example, production of electricity can be modeled as a unit process: in a

simplified way, to produce 10 kWh of electricity it uses 2 litres of fuel, and outputs 1

kg of carbon dioxide CO2 and 0.1 kg of sulphur dioxide SO2 [34].

There are several ways to represent unit processes and product systems [15]. Firstly,

a unit process can be represented as a process vector, for example p1 = (−2, 10, 1, 0.1)T

in the case of electricity production. The first dimension is associated to litres of fuel, the

second one to kWh of electricity, etc. . . Negative values stand for inputs, and positive

ones for outputs. A product system will then correspond to a set of m-dimensional

vectors with m the number of flows, assembled in a rectangular matrix P = [p1, . . . ,pn],

with n the number of processes. Secondly, an equivalent graph representation of a unit

process is given in Fig. 2. The graph is directed and bipartite, since processes are only

connected to flows, and conversely. It is weighted by the amount of inputs an outputs

necessary to produce a given quantity of reference output, but each weight has a specific

unit (for examples liters, kg, kWh, etc. . . ).

A few more definitions are needed: elementary flows go from a process to the

environment or reversely, intermediate flows (like products and wastes) are generated

by processes. Processes can take both elementary and intermediate flows as input and

output.

With the matrix representation, scaling up all inputs and outputs of process 1 by

factor s1, of process 2 by factor s2, etc. . . amounts to multiplying P by a scale vector

s = [s1, . . . , sn]T . This representation is relevant to address the inventory problem, i.e.

finding the scale vector s such that a demand flow f is met, with f ∈ Rm. For example,

if 100 kWh of electricity are necessary, then p1 should be scaled by s1 = 10. Then this

unit process will output 10 kg of CO2 and 1 kg of SO2 to the environment. Similarly

if a product system P is scaled by vector s for some reason (for example meeting the
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demand in electricity, heat, and iron) then the total amount of environmental input and

output flows can be readily computed. This constitutes Life Cycle Analysis (LCA), that

is the assessment of the environmental impacts of a product system meeting a certain

demand.

Performing LCI and LCA, requires adequate datasets, prepared by experts and

made available to process engineers. To put it simply, such datasets are large P matrices,

with additional domain-specific metadata.

fuel

production of electricity

CO2 SO2elec.

w1

w3
w4w2

Figure 2. LCI example. Simplified bipartite graph representation of electricity

production, from [34]. Reference flow is in bold case. Circles (resp. squares) represent

flows (resp. processes). w1 = 2L of fuel, w2 = 10 kWh of electricity, w3 = 1 kg of

CO2, w4 = 0.1 kg of SO2.

Then, we present briefly the common characteristics of LCI datasets and

preprocessing steps required to build bipartite and monopartite graphs from them.

Databases are selected because they’re free to download, and have the following

description taken from nexus.openlca.org:

• Agribalyse: “the French LCI database for the agriculture and food sector (. . . )

comprises LCIs for 2 500 agricultural and food products produced and/or consumed

in France”.

• ELCD: “(European reference Life Cycle Database) comprises Life Cycle Inventory

(LCI) data from EU-level business associations and other sources for key materials,

energy carriers, transport, and waste management”.

• Worldsteel: “This study contains global and regional LCI data for 16 steel products,

from hot rolled coil to plate, rebar, sections, and coated steels”.

• Bioenergiedat: “Processes for bioenergy supply chains, with German background”.

• Ozlci: “The database inventory groups cover 958 [Australasian regional] supply

chains”. It includes building products, chemicals, electric products, fabrics, farm

and forest products, metal, minerals, as well as “utilities comprising use of freight,

fuel, water and power by energy source and state grid”.

Some databases have a wide span, for example Agribalyse, which starts from the farm

and goes to the distribution. Others have a narrower scope, for example Worldsteel.

https://nexus.openlca.org/
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In several databases, there is a convention that processes have a single product

output, plus elementary flows. As in [15], we filter elementary flows since they do not

connect vertices, which can result in processes having out-degree equal to one.

We do not perform monopartite projection because it loses information and can

modify dramatically the networks’ properties [35]. In the case where process out-degree

is equal to one, some properties (e.g. in/out degree) are conserved, but this is not the

general case for other properties.

Additional preprocessing steps may be required, for example when modeling

conventions result in spurious loops. This is documented for ELCD database in the

case of transport‖, and will be dealt with below by selective node removal.

2.3. Other datasets

Because of bipartivity, we can’t directly compare our results to those in [27]. For

comparison purposes, a list of repositories of empirical networks was explored (see

detailed list in Appendix D). Among all examined empirical networks tagged as directed

and bipartite (2-mode), most have a trivial trophic structure. This is mostly because

in those cases all edges from mode A to mode B have the same direction (for example

in a plant/pollinator foodweb, all edges go from plants to pollinators). Those networks

were thus excluded from our comparison basis. On the contrary, metabolic networks

from the BiGG database [37] that represent chemical reactions on one hand and

metabolites on the other, are bipartite and directed and don’t have a trivial trophic

structure. Instead of considering the whole set of reactions and metabolites which

would not correspond to a physiological phenomenon, we follow the standard practice

in flux balance analysis (FBA) which consists in maximizing an objective function

(for example biomass production), which can be provided with the BiGG dataset.

Optimizing the objective function leads to turning off some reactions, and getting rid of

metabolites not involved at the selected operating point. After this preprocessing step,

a bipartite network can be built from the remaining reactions and metabolites. Further

preprocessing is added optionally, for comparison: thermodynamically infeasible cycles

are removed using CycleFreeFlux [38], whose authors define cycles as “sets of reactions

that together carry a flux that does not influence on the exchange reactions of the model

(. . . ). These are metabolic ‘perpetual motion machines’ and do not occur in biological

reality”.

Lastly we mention the topic of finite size random graph samplers, that usually

serve as a point of comparison in network science. Two of them are of interest in

our case. Firstly, sampling from the basal ensemble in sec. 2.1 can be realized

approximately using an off-the-shelf edge-rewiring algorithm, using a specific network

g0 as a seed (for example an empirically observed network, or a random graph with a

degree sequence sampled from a specific distribution, such as the power law). Indeed,

ensemble equivalence was exemplified in the monopartite case by [27, SI Appendix §1.3]

‖ e.g. ”cargo” appears as both an input and an output to transport processes [36].
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with finite size Erdös-Rényi and scale-free random graphs. When network size increases,

this leads to 〈q〉samp = q̃, where 〈.〉samp is the average under random sampling. Thus

τ = lnα, from eq.(4). Hence τ in the initial graph g0 is not preserved in general by such

a random rewiring algorithm. The same can be observed in the bipartite case, with

a rewiring algorithm that preserves both direction an bipartiteness, such as graph-tool

[39]. Secondly, a sampler was proposed in [26] that allows to generate a random graph

with a fixed value for q. But this sampler does not take a seed graph as an input,

nor any degree sequence. Thus is does not allow to generate a random graph with

specified q and degree sequence, which would allow to control α, and τ . Further, it has

not been extended to the bipartite case. To conclude, random graph generators with

a controllable degree sequence and trophic parameters at the same time do no exist in

the literature so far, up to our knowledge, and this constitutes an interesting research

direction.

3. Results

In this section, we adapt to the bipartite case the results of [27], partly summed-up in

sec. 2.1, more particularly eq.(4-5).

3.1. Bipartite directed configuration model

In this section, we express mν and nν in the bipartite case, more specifically their average

value m̂ν and n̂ν in the directed configuration model. Following the convention in [27],

m̂ν does not concern simple cycles but includes multiple counts with different starting

points in loops. Only the results are shown, and the full derivation is in Appendix A.

Using the properties of adjacency matrices of bipartite networks, and the bipartite

version of a directed configuration model, with an expected number of directed edges

pij =
kini k

out
j

L
from node j to node i, we put A in the form:

A =

(
0 yvT

uxT 0

)
(6)

and derive the average number of walks of length 2ν:

n̂2ν = (αxyαuv)
ν

(
Lxy
αxy

+
Luv
αuv

)
(7)

with xTy = αxy, vTu = αuv, Lxy =
∑

ij yixj and Luv
∑

ij uivj. It can be compared to

the expression of the monopartite directed configuration model in [27]:

n̂monoν = Lαν−1 (8)

Then the average number of cycles of length 2ν is:

m̂2ν = 2(αxyαuv)
ν (9)
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which is the counterpart of the following expression in the monopartite case:

m̂mono
ν = αν (10)

Interestingly m̂2ν is even: this is because it does not count the number of simple cycles

but includes the same loops at different starting points, and each loop contains an even

number of vertices.

Following [27] we finally define:

ĉ2ν =
m̂2ν

n̂2ν

=
2

Lxy
αxy

+ Luv
αuv

(11)

3.2. Basal ensemble

Adapting eq.(4) in the bipartite case requires an expression for q̃, the coherence in the

basal ensemble. In short, we show that the expression found in [27] q̃ =
√

L
LB
− 1 is

only slightly modified, and the leading term is still
√

L
LB

in the common situation in

which L is much larger than LB.

To see that, we keep the setting with N nodes, L edges and LB basal edges, and

add bipartiteness. Left nodes include NL
b basal and NL

nb non-basal nodes. Right nodes

are exclusively non-basal and can connect only to left nodes, either basal or non-basal,

as represented in Fig.3. Basal edges go only from left basal nodes to right non-basal

nodes. Non-basal edges are established between left non-basal and right nodes, in both

directions. For consistency, left non-basal nodes must have in-degree greater than 1,

which writes:

k̃in,Lnb =
L− LB

2NL
nb

≥ 1 (12)

In the basal ensemble, the proportion of in-neighbors connected to right nodes is

kept fixed with value kini LB/L. Right nodes receive a total of L−LB
2

+LB = L+LB
2

edges.

Noting s̃R the average trophic level of right nodes, and s̃Lb (resp. s̃Lnb) the average trophic

level of left basal (resp. non-basal) nodes, we get from the definition in eq.(2):

s̃Lb = 1 (13)

s̃R = 1 +
2LB

L+ LB
+
L− LB
L+ LB

s̃Lnb (14)

Similarly, non-basal left nodes receive edges from right nodes only and we get:

s̃Lnb = 1 + s̃R (15)

This yields:

s̃R =
L

LB
+ 1 (16)

s̃Lnb =
L

LB
+ 2 (17)



Production process network 10

Left Right

basal

non-basal

Figure 3. Bipartite basal ensemble network.

We remark that s̃R has the same value as s̃nb in the monopartite case [27], which explains

why q̃b is to leading order close to
√

L
LB

when L is much larger than LB. This is treated

in detail in Appendix B, and compared to numerical simulations.

Lastly, we explored the possibility that the numbers of edges leaving non-basal left

layer and leaving the right layer are unbalanced, to reflect what is observed empirically

with the LCI dataset. We report that indeed this modulates measured values for q.

However, we were not able to find a simple yet accurate enough model for the observed

behavior. Therefore in first approximation, we keep the balanced model below.

3.3. Leading eigenvalue

From eq.(9) we have an expression for m̂2ν the average number of cycles of length 2ν in

the bipartite directed configuration model. In sec. 3.2 we noticed that q̃ the coherence

in the bipartite ensemble had approximately the same expression as in the monopartite

case.

Following [27], and taking only loops with even length into account, we derive an

expression similar to that in the monopartite case eq.(4-5) λ1 = maxi{Re(λi)}:

λ1 = eτ (18)

τ = log
√
αxyαuv +

1

2q̃2
− 1

2q2
(19)

The full derivation can be found in Appendix C. As noted in sec. 3.1,
√
αxyαuv has

values that can be directly related to the monopartite branching factor α in certain

particular cases, but not in general. As remarked in sec. 3.2 the bipartite definition

q̃ can be well approximated by the usual monopartite value, in the particular case of

balanced left and right layers.

3.4. Application to empirical graphs

In this section, the datasets presented in sec.2.2-2.3 are analyzed using the tools depicted

in sec. 3.1-3.3, adapted to the bipartite setting.

Tab. 1 shows that LCI networks are coherent, with an average q much lower than

for other considered datasets, and are more likely in the loopless regime than other
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q τ

LCI 0.37 -1.5

Metabolic 10 1.8

Table 1. Bipartite network median characteristics, by dataset category.

datasets. This leaves room for fluctuation inside the LCI category. For example, the

Ozlci dataset has a trivial structure, since it occupies only 2 layers, and hence q = 0.

Fig. 4 presents two LCI networks embedded in 2d space¶, with differing behaviors: the

ELCD network is very coherent (q = 0.21), and more coherent than the corresponding

average randomized networks (q/q̃ = 0.03). The Bioenergiedat network is less coherent

with value q = 0.99, and q/q̃ ratio just above 1.

(a) (b)

Figure 4. LCI networks embedded in 2d space. y-axis represents trophic level with

inverted axis, low si at the top. x-axis. (left) ELCD; (right) Bioenergiedat.

From the LCI literature, we expect a large number of feedback loops in the examined

databases. Citing [34]: “Feedback loops occur frequently in industrial systems. For

instance, mining of coal needs electricity, while production of electricity needs coal”.

However, the majority of datasets are acyclic. Only Agribalyse and ELCD contain a

small number of cycles compared to the edge number. In Agribalyse their occurrence

is mostly related to seeds, which are both an input and output in plant growing. In

ELCD, loops are associated with a few nodes, and filtering them is enough to remove

all cycles, as explained in sec. 2.2.

This low number of loops has not been reported so far, up to our knowledge. It

may arise from modeling bias, restricted scope, or from dataset selection bias. Also,

¶ this is done using ForceAtlas2 [40]
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N NB 〈k〉 q q̃ α q/q̃ τ cycle λ1

Agribalyse 31698 1630 6.9 1.28 8.15 2.46 0.16 0.60 117 1.52

ELCD 894 104 11.5 0.21 6.72 3.42 0.03 -9.91 62 3.00

ELCD filtered 883 99 11.4 0.14 6.80 3.29 0.02 -23.46 0 0.03

Worldsteel 63 5 12.7 0.53 1.32 0.99 0.40 -1.51 0 8.8e−4

Bioenergiedat 457 112 5.1 0.99 0.92 1.42 1.08 0.43 0 0.22

Ozlci 1914 957 1.0 0.00 -∞ 0 1.9e−1

Table 2. Bipartite network trophic characteristics, LCI datasets. ‘Cycle’ is the

number of unique elementary directed cycles, computed with graph-tool [39].

recurring loops challenge numerical solvers in Life Cycle Analysis not relying on matrix

inversion. In the complex network literature, arguments of improved dynamic stability

[18, 19] and transport [18] have been put forward to explain the lack of loops. In [20]

the authors hypothesize that “instead the absence of feedback loops is a byproduct of

a more inherent feature of networks: the existence of a preferred directionality”. In

comparison, non-LCI networks introduced in sec.2.3, contain a large number of cycles,

not reported in Tab. 3 because of prohibitive computational cost.

Also the consistency of formulas in sec.3.3, adapted from [27], that relate τ and

λ1, can be discussed. In Fig. 5, the leading eigenvalue λ1 is plotted as a function of τ ,

for both datasets (LCI and non-LCI). Circles representing non-LCI data are well fitted

by the dashed curve. Crosses representing LCI datasets are close to the exponential,

except for the outlier value at (τ , λ1) = (−10, 3) which represents the ELCD dataset,

and seems inconsistent with the curve. After filtering as explained in sec. 2.2 it is

mapped to (τ , λ1) = (−23, 0.03), which gives a satisfactory fit. This case is reminiscent

of a remark in [20]: “typically loops are not independent as they can share some nodes.

In particular, hubs are statistically more likely than other nodes to take part in loops”.

Indeed removing just a few nodes changed dramatically the behavior from a coherence

point of view. However such cycle-removing is of course not relevant for acyclic datasets,

while in Agribalyse cycles are scattered across the dataset rather than concentrated.

This raises the question of the robustness of coherence measures and will be discussed

in sec.4.

In sec.2.2 the topic of monopartite projection was evoked as it is easier to use off-

the-shelf tools than to extend a theory to the bipartite case. This is the approach taken

for example in [15], that may be justified by the particular nature of LCI databases,

as noted in sec.2.2. Several numerical experiments were run to try to find patterns in

the effect of monopartite projection. First, this imposes the constraint that basal nodes

must all belong to the same layer, more specifically to the layer chosen for projection.

This problem may be mitigated using the new definitions of coherence in [29]. In the

easier case where kout = 1 for processes and projection is done on the flow layer, we

were not able to evidence a predictable behavior for coherence quantities. Sometimes
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N NB 〈k〉 q q̃ α q/q̃ τ λ1

iJR904 657 13 4.72 11.65 10.87 5.97 1.07 1.79 5.87

iJR904* 733 15 4.63 9.06 10.59 6.43 0.86 1.86 6.49

iSB619 623 12 4.70 11.90 11.00 5.92 1.08 1.78 6.04

iSB619* 658 17 4.70 8.46 9.48 6.27 0.89 1.83 6.54

iAF692 744 10 4.54 16.11 12.96 6.18 1.24 1.82 5.56

iAF692* 781 16 4.56 7.77 10.51 6.46 0.74 1.86 6.03

iND750 718 8 4.45 8.16 13.28 5.23 0.61 1.65 5.95

iND750* 824 20 4.42 10.70 9.49 5.53 1.13 1.71 6.47

iYO844 700 12 4.78 11.82 11.77 6.30 1.00 1.84 6.30

iYO844* 741 17 4.77 9.02 10.15 6.60 0.89 1.89 6.56

iAB RBC 283 168 12 2.95 3.75 4.43 2.32 0.85 0.83 3.10

iAB RBC 283* 285 21 3.39 3.79 4.69 3.68 0.81 1.29 4.42

iIT341 637 14 4.57 14.79 10.15 5.87 1.46 1.77 5.52

iIT341* 643 15 4.61 14.19 9.89 5.98 1.43 1.79 5.66

iNJ661 845 7 5.09 12.97 17.49 7.47 0.74 2.01 7.27

iNJ661* 925 19 5.04 10.07 11.03 7.99 0.91 2.08 7.89

Table 3. Bipartite network trophic characteristics, other datasets. The number of

cycles is not reported for this dataset because it is very high, and too time-consuming

to compute exhaustively. Asterisks identify CycleFreeFlux preprocessing as explained

in sec. 2.3

the projected network has only 2 trophic values, which results in qmono = 0, although

q was nonzero in the bipartite network. The case where kout can take any value for

processes is even harder to deal with.

4. Conclusion

Starting from the observation that little work had been devoted to production processes

at the fine-grain level depicted by LCI in the complex networks community, we proposed

a first original contribution in that direction. First, unlike earlier works, we proposed

i) to keep the bipartite structure to avoid loss of information, ii) to look for a random

model, iii) able to reproduce hierarchical features of the datasets.

This was done by building on existing theory by Johnson and colleagues, upon

extending some of their tools to the bipartite case. We report that:

• the studied empirical networks built from LCI databases have high coherence

compared to other existing datasets and low loop number.

• the random “coherence ensemble” satisfactorily reproduces an important property

of empirical dataset (the largest real part of the set of eigenvalues), which it closely

related to other important aspects such as behavior of dynamical systems defined

on networks as shown by several contributions in the literature.
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Figure 5. Leading eigenvalue λ1 as a function of τ , λ1 = f(τ) in the bipartite case.

The outlier value at (τ , λ1) = (−10, 3) represents the ELCD dataset before filtering.

After filtering it is mapped to (τ , λ1) = (−23, 0.03).

In further work we plan to extend the number of studied LCI databases, to consider

how these observations can extend to other classical properties (such as clustering,

diameter, . . . ). Unbalanced bipartite basal model will be explored, as well as potential

useful applications for LCI that can be derived from those findings. Furthermore, the

new definitions of trophic coherence in [29] will be tested in the particular case of LCI

networks.

Appendix A. Loop count in the bipartite directed configuration model

Two properties of adjacency matrices of bipartite networks are used below. Let A

be the adjacency matrix of a directed bipartite network G, and Bl, Br the associated

biadjacency matrices:

A =

(
0 Br

Bl 0

)
Following [41], we notice that even and odd powers of A have different expressions.



Production process network 15

Since odd cycles are absent in a bipartite network, we focus on even powers of A:

A2ν =

(
(BrBl)

ν 0

0 (BlBr)
ν

)
(A.1)

Further, in the monopartite directed configuration model, the expected number of

directed edges from node j to node i has the following form:

pij =
kini k

out
j

L
(A.2)

Being rank 1 matrices, the biadjacency matrices Bl and Br can be written as outer

products of vectors: Bl = uxT and Br = yvT .

A and its even powers can thus be written:

A =

(
0 yvT

uxT 0

)
(A.3)

A2ν =

(
(yvTuxT )ν 0

0 (uxTyvT )ν

)
(A.4)

Summing all terms in eq.(A.4) we get the total number of walks of length 2ν :

n2ν = (vTu)ν(xTy)ν
(∑

ij yixj

xTy
+

∑
ij uivj

vTu

)
= (αxyαuv)

ν

(
Lxy
αxy

+
Luv
αuv

)
(A.5)

with xTy = αxy, vTu = αuv, Lxy =
∑

ij yixj and Luv =
∑

ij uivj.

Summing all diagonal terms in eq.(A.4) we get the total number of cycles of length 2ν:

m2ν = (vTu)ν(xTy)ν
(∑

i yixi
xTy

+

∑
i uivi

vTu

)
= 2(αxyαuv)

ν (A.6)

Appendix B. Basal ensemble

In this section, we compute q̃ in the bipartite case. From sec. 3.2 we have:

s̃R =
L

LB
+ 1

s̃Lnb =
L

LB
+ 2

Three types of edges will be observed in the bipartite basal ensemble:

• from basal left nodes to right nodes: there are LB such edges, with xij = sRnb− 1 =
L
LB

.

• from non-basal left nodes to right nodes: there are L−LB
2

such edges, with xij = −1

• from right nodes to non-basal left nodes: there are L−LB
2

such edges, with xij = 1
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From those values, the variance q̃2 is:

q̃2 =
LB
L

( L

LB
− 1
)2

+
L− LB

2L

(
− 1− 1

)2
(B.1)

Which yields:

q̃ =

√
L

LB
− LB

L
(B.2)

Appendix C. Leading eigenvalue

We replicate the steps in [27] to get an expression for τ in the bipartite case. In the

coherence ensemble with coherence q, the sum S =
∑

k xk along a cycle is equal to zero.

Modeling the xk as random variables, the authors notice that S has approximately a

Gaussian distribution, and Pr(S = 0) is proportional to cν . In the bipartite case we

consider closed walks with length 2ν, since odd cycles are not allowed. The random

variable along such a walks S has mean 2ν and variance 2νq2. It follows that:

c2ν = B2ν
1
√
qν

exp

(
−ν
q2

)
(C.1)

where B2ν is unknown. Taking the particular case of the basal ensemble, and supposing

as in [27] that ĉ2ν = c̄2ν we get:

c2ν = ĉ2ν
q̃

q
exp

(
ν
( 1

q̃2
− 1

q2

))
(C.2)

Since c2ν = m2ν

n2ν
and supposing that n̂2ν ≈ n2ν we have:

m2ν = 2(αxyαuv)
ν q̃

q
exp

(
ν
( 1

q̃2
− 1

q2

))
= 2

q̃

q
exp

(
2ν
(

log
√
αxyαuv +

1

2q̃2
− 1

2q2

))
= 2

q̃

q
exp(2ντ) (C.3)

with τ defined as in eq.(19).

In parallel the trace of the 2n-th power of the adjacency matrix still can be expressed:

Tr(A2ν) =
∑
i

λ2νi = m2ν (C.4)

Taking the expectation in the coherence ensemble:

m2ν =
∑
i

λ
2ν

i

Taking to the power 1/ν then the large ν limit as in [27]:

lim
+∞

(∑
i

λ
2ν

i

) 1
ν

= λ
2

1 = exp(2τ) (C.5)

And the same form λ1 = exp(τ) as in the monopartite case is recovered.
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Appendix D. Data and code availability

The repositories evoked in sec.2.3 are the Stanford Large Network Dataset Collection

[42], ICON [43], and Netzschleuder [44]. They were selected because of their coverage

and ability to filter by directedness and bipartiteness. The BiGG database [37] was also

used for metabolic networks.

Several software packages were used in this work: Python, graph-tool [39], Igraph

[45], Scikit-network [46], NetworkX [47], Cobrapy [48].

LCI datasets are freely available from nexus.openlca.org.

Code will we made available on gitlab.

Appendix E. Comparison between trophic level and economic complexity

measure

In this section we propose a quick comparison between trophic level in eq.(2) and

economic complexity measures introduced for example in [5].

Suppose the starting point is a country/product network, bipartite and undirected.

Then economic complexity measures such as country fitness or product complexity [5]

can be computed. The trophic levels, however, are not defined because there are no basal

nodes in the corresponding network (see sec. 2.1. Also note that another definition of

trophic levels that does not require basal nodes was proposed in [29]). To sum up, in

that case, si and measures of economic complexity can’t be compared.

Conversely, if the starting point is a bipartite directed network with basal nodes,

then the trophic levels are defined and can be computed. Further, upon transforming

this network into an undirected one (which discards important information), economic

complexity measures can also be computed.

For example we focus on simple directed bipartite 3-motifs in see Fig.E1. First we

compute the trophic levels si using eq.(2) and write them next to each node, with basal

node trophic levels set to 1.

Then, following [5], we compute Fc the fitness of a country c and the complexity

Qp of a product p, as indicated by the following equations: F̃
(n)
c =

∑
p′ Mcp′Q

(n−1)
p′ with 1 ≤ c ≤ C

Q̃
(n)
p =

(∑
c′ Mc′p/F

(n−1)
c′

)−1
with 1 ≤ p ≤ P ,

(E.1)

with C the total number of countries and P the total number of products. Moreover: F
(n)
c = F̃

(n)
c

〈F̃ (n)
c 〉c

Q
(n)
p =

Q̃
(n)
p

〈Q̃(n)
p 〉p

(E.2)

with initial values F̃
(0)
c = Q̃

(0)
p = 1,∀ c, p.

We notice that upon transforming the directed bipartite motifs into undirected

networks, motifs A and C are mapped to the same motif. Then the recursions for motifs

A and B lead to a fixed point that can be easily found by hand: F
(∞)
c = 1, Q

(∞)
p = 1.

https://nexus.openlca.org/
https://gitlab.com/hazaa/network_lci
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To summarize, in this simple case it appears that from the point of view of the

economic complexity measures, the three motifs look the same, whereas the trophic

levels preserve hierarchicalness.

A broader range of behaviors is expected if sa and sb are distinct. Also, a similar

study could be conducted with 4-motifs, but this is left for further works.

a 1

b 2c 2

A

a 1 b 1

c 2

B

a 1

b 2

c 3

C

Figure E1. Example of directed bipartite 3-motifs, trophic level si is given next to

each node.
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