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ABSTRACT

In this paper, a macro-scale model is proposed to describe heat transfer in a dilute gas-particle mixture. The
continuous phase is described by a filtered Eulerian approach while the dispersed one is represented as La-
grangian particles. The filtered model, which is obtained using an up-scaling methodology, consists of a
macroscopic heat transfer model for the continuous phase with a matrix of heat exchange coefficients that
captures both particle-particle and particle-fluid interactions. The up-scaling methodology further provides
closure problems that link these coefficients to the particle scale and can be used to calculate the matrix ex-
plicitly. The validity of lumped and diagonal approximations of the matrix is studied, therefore providing a
direct link between our approach and classical models of dilute gas-particle mixtures considering that the
temperature field in the vicinity of each particle is not influenced by the presence of other particles. We also
discuss the influence of the number of particles in the REV (Representative Elementary Volume) on the so-
lution of the closure problems and compare numerical solutions of the exchange coefficients with analytical
results obtained in the case of an isolated particle. Finally, we study a model system with immobile particles
in a purely diffusive case and compare results of the macro-scale representation to those obtained from nu-
merical experiments for different volume fractions. We show good agreement of our model with the numerical
experiments and discuss the accuracy of lumped and diagonal approximations.

KEY WORDS: Two-phase/Multiphase flow; Conduction; Heat exchange; Euler-Lagrange; Volume averaging
method; Closure problem; Numerical experiments.

1. INTRODUCTION

Dust explosion hazard appears in many industrial installations such as in coal mines or in the cereal industry.
In nuclear safety analysis, one of the scenarios is the risk of graphite dust explosion that may occur during
decommissioning operation of UNGG (Uranium Natural Graphite Gas) reactors [12] or during a loss of vacuum
accident in the vessel of fusion reactors [5]. In such a case, the gas-particle mixture yields a dilute and dispersed
two-phase flow with particle sizes typically ranging from 1 to 100µm and a volume fraction of particles in the
order of 10−3[3]. The macro-scale modeling of such reactive dispersed two-phase flows is usually done through
Euler-Lagrange approaches for which the continuous phase is described by a filtered Eulerian description while
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average 〈ψβ〉 and the intrinsic phase average 〈ψβ〉β are defined by:

〈ψβ〉 = εβ〈ψβ〉β =
1

V

∫
Vβ

ψβ dV (5)

where Vβ denotes the volume of the β-phase contained in the averaging volume V and εβ = Vβ/V is the
β-phase volume fraction. By applying averaging theorems (e.g. [2, 10]), the averaging of Eq. (1) leads to the
following macro-scale heat transfer equation for the filtered temperature 〈Tβ〉β

∂t

(
εβ(ρcp)β〈Tβ〉β

)
+∇ ·

(
εβ(ρcp)β〈Tβ〉β〈uβ〉β

)
= ∇ ·

(
εβλ

∗
β∇〈Tβ〉β

)
− 1

V

NV∑
k=1

Qβk (6)

where λ∗β refers to some effective thermal conductivity that remains to be specified, NV is the number of
particles contained in the averaging volume V and Qβk correspond to the macro-scale heat transfer between
the continuous phase and the particle k defined by:

Qβk = −
∫
Ak

nβσ · λβ∇Tβ dS (7)

On the other hand, the Lagrangian description for the dispersed phase is usually obtained by integrating the
micro-scale heat transfer equation Eq. (4) over the volume of each particle [3]. Making use of the boundary
condition Eq. (2) leads to the following equation for the averaged particle temperature Tk:

(mcp)k
dTk

dt
= Qβk (8)

In addition, as expected, the Lagrangian description requires an equation for the location xk(t) of each par-
ticle. As mentioned in the introduction, we focus in this paper on macro-scale heat exchange. As a result, it
will be assumed that the particles move with the same velocity than the continuous phase in order to facili-
tate the numerical experiments. We also consider that the velocity of the continuous phase is uniform. As a
result, without slip between the two phases, the particle location can be viewed as fixed in the moving coordi-
nate system attached to the continuous phase. In addition, using this simplifying assumption, the macro-scale
convective term in Eq. (6) can be removed in this moving coordinate system. The modeling of heat transfer
between the filtered continuous phase and particles is usually based on the description of heat transfer from
an isolated particle [3, 8]. This description uses a decomposition of the surrounding phase temperature into
an undisturbed thermal field and a disturbance due to the presence of the particle to solve the heat transfer
problem. The undisturbed field is usually viewed as the macro-scale temperature 〈Tβ〉β and the resulting heat
exchange reads [7, 8]:

Qβk = −
∫
Ak

nβσ · λβ∇〈Tβ〉β dS + λβπdkNuk

(
〈Tβ〉β − Tk

)
+ λβπd

2
kNuk

t∫
0

d(〈Tβ〉β−Tk)
dτ

2
(
π

λβ
(ρcp)β

(t− τ)
)1/2 dτ

(9)

where Nuk refers to the particle Nusselt number, defined as Nuk = h∗kdk/λβ, with h∗k is the heat exchange
coefficient between the continuous phase and the particle k. Of the terms which appear in equation Eq. (9) the
first term corresponds to the undisturbed heat flux seen by the particle, which represents the rate of heat that
would have entered the control volume occupied by the continuous phase in the absence of the particle, the
second term corresponds to the quasi-steady thermal transfer from the particle to the surrounding continuous
phase and the last contribution that takes the form of a history integral accounts for unsteady thermal diffusion.



In practice, the first and the last contributions are often neglected following scaling arguments for gas-particle
mixtures and we refer to [8] for a detailed discussion. In this study, the modeling of heat transfer between the
filtered continuous phase and particles follows the up-scaling methodology. The up-scaling methodology based
on the volume averaging method has been extensively discussed elsewhere (e.g. [2, 4, 10]) and only the major
steps that lead to a closed form of the macro-scale exchange Qβk will be outlined below. The first step consists
in introducing the deviation T̃β from the averaged temperature classicaly defined as Tβ = 〈Tβ〉β + T̃β in the
macro-scale heat transfer problem. For instance, introducing the deviation in the macro-scale heat exchange
defined by Eq. (7) leads to

Qβk = −
∫
Ak

nβσ · λβ∇〈Tβ〉β dS −
∫
Ak

nβσ · λβ∇T̃β dS (10)

While the first term corresponds formally to the undisturbed heat flux contribution, the last term represents the
contribution due to the deviation, which is due to the influence of the presence of particles in the averaging
volume and this term remains to be closed. By introducing the deviation in the micro-scale heat transfer prob-
lem and by using the macro-scale transport equations, one obtains a boundary value problem for the deviations
that suggests the following quasi-steady representation:

T̃β = −
NV∑
j=1

sj

(
〈Tβ〉β − Tj

)
(11)

where sj refers to the mapping variables that realize an approximate solution of the coupled macro micro-scale
heat transfer problem. It is beyond the scope of this paper to present the developments leading to Eq. (11) and
we refer the reader to [4] for a detailed presentation. Here we just note that the proposed mapping corresponds
to a quasi-steady closure in which the mapping variables are solutions of steady micro-scale boundary value
problems provided that the time-scale constraint λβt/((ρcp)βl2β) � 1 is satisfied, where lβ is the micro-scale
characteristic length. This constraint has been discussed in details elsewhere (e.g. [10]) and here it will be
assumed to be valid for the system under consideration. By substituting Eq. (11) into Eq. (10), the closed form
of the macro-scale heat exchange reads

Qβk = −
∫
Ak

nβσ · λβ∇〈Tβ〉β dS +

NV∑
j=1

hkj

(
〈Tβ〉β − Tj

)
(12)

where hkj denotes the effective heat exchange coefficients that are calculated from the closure variables sj as

hkj =

∫
Ak

nβσ · λβ∇sj dS (13)

When comparing to Eq. (9), the proposed macro-scale heat exchange involves additional contributions coming
from particles contained within the averaging volume that look like particle-particle heat exchanges. To be
clear about particle-particle heat exchanges, neglecting the first contribution in the right hand side of Eq. (12),
the macro-scale heat exchange can be rewritten as:

Qβk = hk

(
〈Tβ〉β − Tk

)
−

NV∑
j=1

hkj (Tj − Tk) , hk =

NV∑
j=1

hkj (14)

In addition, history effects are absent from the proposed heat exchange but this is a direct consequence of the
quasi-steady closure. It is beyond the scope of this paper to deal with an unsteady-state closure but we just
mention here that following [9], by writing the representation Eq. (11) as a convolution product in time leads
formally to the same macro-scale heat exchange that includes history contributions.





Following [11], we compare for various particle volume fraction εσ the analytical solution obtained for Chang’s 
unit cell with the numerical solution of the closure problems obtained for the spatially periodic unit cell. The 
results illustrated in Fig. (2) show a good agreement between the analytical solution and the numerical one. 
While this work is restricted to two-dimensional geometry, we just note here that solving Chang’s unit cell in 
spherical coordinates and taking the limit εσ = 0 leads to the quasi-steady heat exchange coefficient obtained 
in [8].
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Fig. 2 Comparison of Chang’s unit cell with a spatially periodic cell

5. NUMERICAL EXPERIMENTS

The main purpose of this section is to assess the validity of the proposed macro-scale description together with
two simplified models that correspond to the lumped and the diagonal approximation of the heat exchange
coefficients hkj . When looking at the macro-scale heat exchange Eq. (14), these two simplified models consist
roughly in neglecting particle-particle heat exchange and read formally as the classical model. In this regard,
the results of the macro-scale models are compared with those obtained by averaging the numerical solution
of the 2D micro-scale problem obtained from an unstructured finite volume solver [1]. In order to focus on
the macro-scale heat exchange, we assume here that the system illustrated in Fig. (1) is infinite in all direction
so that there is no averaged temperature gradient. The homogeneous source term is assumed to be zero in all
particles except for the particle 1. Calculations have been carried out for typical parameters of dust explosion
scenarios in nuclear safety analysis. These parameters are given in Tab. (2) where T0 is the initial temperature
for both phases and Da is the Damköhler number defined as Da = ω1d

2/(T0λσ), whereω1 is the heat energy
generated in the particle 1.

Parameter
λσ

λβ

(ρcp)σ
(ρcp)β

εσ NV T0 Da

Value 103 103 10−3 7 300 0.1

Table 2 Model parameters

The average temperature 〈Tβ〉β and the temperatures of particles 1, 2, 3, and 4 obtained from direct micro-scale
simulations are compared with those obtained from the macro-scale Eulerian-Lagragian description using the
heat exchange coefficients given in the previous section (Tab. (1) with NV = 7). The results are reported in
Fig. (3) where T ∗ and t∗ refer respectively to the dimensionless temperature T/T0 and the dimensionless time
tλβ/((ρcp)βl

2
β). These results show that the values obtained by the model are found to be in good agreement

with the numerical experiments values for a time greater than 5. One must remember that the closure problems
are taken to be quasi-steady by imposing the time scale constraints t∗ � 1.
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Fig. 3 Comparison of numerical experiments with the macro-scale model for εσ = 10−3
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Fig. 4 Comparison of numerical experiments with the lumped (left) and diagonal (right) approximation

Regarding the lumped and the diagonal approximations, the results are reported in Fig. (4). Here again, a good
agreement between numerical experiments and the macro-scale is observed for the averaged β-phase temper-
ature 〈Tβ〉β for both the lumped and the diagonal approximations. However, both approximations predict the
same temperature for particles 2, 3 and 4 close to the average temperature 〈Tβ〉β and this is in clear contradic-
tion with numerical experiments results. Moving to the particle 1 for which the homogeneous source term is
non zero, the diagonal approximation seems to be more attractive than the lumped one.

6. CONCLUSION

In this study, an Eulerian-Lagrangian macro-scale model has been proposed following an up-scaling method-
ology to describe heat transfer in a dilute gas-particle mixture. The major difference between the proposed
model and the classical one is the presence of additional terms that involves particle-particle heat exchanges.
The up-scaling methodology provides closure problems to determine the macro-scale heat exchange coef-
ficients. These coefficients have been computed for a two-dimensional micro-scale geometry and different
numbers of particles contained within the averaging volume and different particle volume fraction. In addition,
two approximations have been proposed to establish a link with the classical model. In order to assess the
validity of the proposed model and its approximate versions, the macro-scale predictions have been compared
with a numerical experiments of the micro-scale problem. The predictions of the macro-scale model with the
averaged solution of the micro-scale problem are in very good agreement. The proposed lumped and diagonal
approximations are still capable of predicting correctly the continuous phase averaged temperature whereas it
fails to estimate accurately the particles temperature.



Appendix A. CLOSURE PROBLEMS

The closure problems for the mapping variable sj reads

λβ∇2sj − ε−1β
1

V

N∑
k=1

hkj = 0 , in the β-phase

sj = 1 , at Aj

sj = 0 , at Ap , with p 6= j

〈sj〉β = 0
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