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INTRODUCTION

Dust explosion hazard appears in many industrial installations such as in coal mines or in the cereal industry. In nuclear safety analysis, one of the scenarios is the risk of graphite dust explosion that may occur during decommissioning operation of UNGG (Uranium Natural Graphite Gas) reactors [START_REF] Trélat | Dust explosion risk during graphite-moderated reactors decommissioning[END_REF] or during a loss of vacuum accident in the vessel of fusion reactors [START_REF] Denkevits | Dust explosion hazard in ITER: Explosion indices of fine graphite and tungsten dusts and their mixtures[END_REF]. In such a case, the gas-particle mixture yields a dilute and dispersed two-phase flow with particle sizes typically ranging from 1 to 100 µm and a volume fraction of particles in the order of 10 -3 [START_REF] Crowe | Multiphase flows with droplets and particles[END_REF]. The macro-scale modeling of such reactive dispersed two-phase flows is usually done through Euler-Lagrange approaches for which the continuous phase is described by a filtered Eulerian description while average ψ β and the intrinsic phase average ψ β β are defined by:

ψ β = ε β ψ β β = 1 V V β ψ β dV (5) 
where V β denotes the volume of the β-phase contained in the averaging volume V and ε β = V β /V is the β-phase volume fraction. By applying averaging theorems (e.g. [START_REF] Carbonell | Heat and mass transfer in porous media[END_REF][START_REF] Quintard | One-and two-equation models for transient diffusion processes in two-phase systems[END_REF]), the averaging of Eq. ( 1) leads to the following macro-scale heat transfer equation for the filtered temperature

T β β ∂ t ε β (ρc p ) β T β β + ∇ • ε β (ρc p ) β T β β u β β = ∇ • ε β λ * β ∇ T β β - 1 V N V k=1 Q βk ( 6 
)
where λ * β refers to some effective thermal conductivity that remains to be specified, N V is the number of particles contained in the averaging volume V and Q βk correspond to the macro-scale heat transfer between the continuous phase and the particle k defined by:

Q βk = - A k n βσ • λ β ∇T β dS (7) 
On the other hand, the Lagrangian description for the dispersed phase is usually obtained by integrating the micro-scale heat transfer equation Eq. ( 4) over the volume of each particle [START_REF] Crowe | Multiphase flows with droplets and particles[END_REF]. Making use of the boundary condition Eq. ( 2) leads to the following equation for the averaged particle temperature T k :

(mc p ) k dT k dt = Q βk (8) 
In addition, as expected, the Lagrangian description requires an equation for the location x k (t) of each particle. As mentioned in the introduction, we focus in this paper on macro-scale heat exchange. As a result, it will be assumed that the particles move with the same velocity than the continuous phase in order to facilitate the numerical experiments. We also consider that the velocity of the continuous phase is uniform. As a result, without slip between the two phases, the particle location can be viewed as fixed in the moving coordinate system attached to the continuous phase. In addition, using this simplifying assumption, the macro-scale convective term in Eq. ( 6) can be removed in this moving coordinate system. The modeling of heat transfer between the filtered continuous phase and particles is usually based on the description of heat transfer from an isolated particle [START_REF] Crowe | Multiphase flows with droplets and particles[END_REF][START_REF] Michaelides | Heat transfer from a rigid sphere in a nonuniform flow and temperature field[END_REF]. This description uses a decomposition of the surrounding phase temperature into an undisturbed thermal field and a disturbance due to the presence of the particle to solve the heat transfer problem. The undisturbed field is usually viewed as the macro-scale temperature T β β and the resulting heat exchange reads [START_REF] Ling | Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flow[END_REF][START_REF] Michaelides | Heat transfer from a rigid sphere in a nonuniform flow and temperature field[END_REF]:

Q βk = - A k n βσ • λ β ∇ T β β dS + λ β πd k Nu k T β β -T k + λ β πd 2 k Nu k t 0 d( T β β -T k ) dτ 2 π λ β (ρcp) β (t -τ) 1/2 dτ (9) 
where Nu k refers to the particle Nusselt number, defined as Nu k = h * k d k /λ β , with h * k is the heat exchange coefficient between the continuous phase and the particle k. Of the terms which appear in equation Eq. ( 9) the first term corresponds to the undisturbed heat flux seen by the particle, which represents the rate of heat that would have entered the control volume occupied by the continuous phase in the absence of the particle, the second term corresponds to the quasi-steady thermal transfer from the particle to the surrounding continuous phase and the last contribution that takes the form of a history integral accounts for unsteady thermal diffusion.

In practice, the first and the last contributions are often neglected following scaling arguments for gas-particle mixtures and we refer to [START_REF] Michaelides | Heat transfer from a rigid sphere in a nonuniform flow and temperature field[END_REF] for a detailed discussion. In this study, the modeling of heat transfer between the filtered continuous phase and particles follows the up-scaling methodology. The up-scaling methodology based on the volume averaging method has been extensively discussed elsewhere (e.g. [START_REF] Carbonell | Heat and mass transfer in porous media[END_REF][START_REF] Davit | Ch. Theoretical analysis of transport in porous media: Multi-Equation and Hybrid Models for a Generic Transport Problem with Non-Linear Source Terms[END_REF][START_REF] Quintard | One-and two-equation models for transient diffusion processes in two-phase systems[END_REF]) and only the major steps that lead to a closed form of the macro-scale exchange Q βk will be outlined below. The first step consists in introducing the deviation T β from the averaged temperature classicaly defined as T β = T β β + T β in the macro-scale heat transfer problem. For instance, introducing the deviation in the macro-scale heat exchange defined by Eq. ( 7) leads to

Q βk = - A k n βσ • λ β ∇ T β β dS - A k n βσ • λ β ∇ T β dS (10) 
While the first term corresponds formally to the undisturbed heat flux contribution, the last term represents the contribution due to the deviation, which is due to the influence of the presence of particles in the averaging volume and this term remains to be closed. By introducing the deviation in the micro-scale heat transfer problem and by using the macro-scale transport equations, one obtains a boundary value problem for the deviations that suggests the following quasi-steady representation:

T β = - N V j=1 s j T β β -T j (11) 
where s j refers to the mapping variables that realize an approximate solution of the coupled macro micro-scale heat transfer problem. It is beyond the scope of this paper to present the developments leading to Eq. ( 11) and we refer the reader to [START_REF] Davit | Ch. Theoretical analysis of transport in porous media: Multi-Equation and Hybrid Models for a Generic Transport Problem with Non-Linear Source Terms[END_REF] for a detailed presentation. Here we just note that the proposed mapping corresponds to a quasi-steady closure in which the mapping variables are solutions of steady micro-scale boundary value problems provided that the time-scale constraint λ β t/((ρc p ) β l 2 β ) 1 is satisfied, where l β is the micro-scale characteristic length. This constraint has been discussed in details elsewhere (e.g. [START_REF] Quintard | One-and two-equation models for transient diffusion processes in two-phase systems[END_REF]) and here it will be assumed to be valid for the system under consideration. By substituting Eq. ( 11) into Eq. ( 10), the closed form of the macro-scale heat exchange reads

Q βk = - A k n βσ • λ β ∇ T β β dS + N V j=1 h kj T β β -T j (12) 
where h kj denotes the effective heat exchange coefficients that are calculated from the closure variables s j as

h kj = A k n βσ • λ β ∇s j dS (13) 
When comparing to Eq. ( 9), the proposed macro-scale heat exchange involves additional contributions coming from particles contained within the averaging volume that look like particle-particle heat exchanges. To be clear about particle-particle heat exchanges, neglecting the first contribution in the right hand side of Eq. ( 12), the macro-scale heat exchange can be rewritten as:

Q βk = h k T β β -T k - N V j=1 h kj (T j -T k ) , h k = N V j=1 h kj (14) 
In addition, history effects are absent from the proposed heat exchange but this is a direct consequence of the quasi-steady closure. It is beyond the scope of this paper to deal with an unsteady-state closure but we just mention here that following [START_REF] Moyne | Two-equation model for a diffusive process in porous media using the volume averaging method with an unsteady-state closure[END_REF], by writing the representation Eq. ( 11) as a convolution product in time leads formally to the same macro-scale heat exchange that includes history contributions.

Following [START_REF] Quintard | Local thermal equilibrium for transient heat conduction : Theory and comparison with numerical experiments[END_REF], we compare for various particle volume fraction ε σ the analytical solution obtained for Chang's unit cell with the numerical solution of the closure problems obtained for the spatially periodic unit cell. The results illustrated in Fig. [START_REF] Carbonell | Heat and mass transfer in porous media[END_REF] show a good agreement between the analytical solution and the numerical one. While this work is restricted to two-dimensional geometry, we just note here that solving Chang's unit cell in spherical coordinates and taking the limit ε σ = 0 leads to the quasi-steady heat exchange coefficient obtained in [START_REF] Michaelides | Heat transfer from a rigid sphere in a nonuniform flow and temperature field[END_REF]. 

NUMERICAL EXPERIMENTS

The main purpose of this section is to assess the validity of the proposed macro-scale description together with two simplified models that correspond to the lumped and the diagonal approximation of the heat exchange coefficients h kj . When looking at the macro-scale heat exchange Eq. ( 14), these two simplified models consist roughly in neglecting particle-particle heat exchange and read formally as the classical model. In this regard, the results of the macro-scale models are compared with those obtained by averaging the numerical solution of the 2D micro-scale problem obtained from an unstructured finite volume solver [START_REF]CALIF 3 S, A software components library for the computation of reactive turbulent flows[END_REF]. In order to focus on the macro-scale heat exchange, we assume here that the system illustrated in Fig. [START_REF]CALIF 3 S, A software components library for the computation of reactive turbulent flows[END_REF] is infinite in all direction so that there is no averaged temperature gradient. The homogeneous source term is assumed to be zero in all particles except for the particle 1. Calculations have been carried out for typical parameters of dust explosion scenarios in nuclear safety analysis. These parameters are given in Tab.

(2) where T 0 is the initial temperature for both phases and Da is the Damköhler number defined as Da = ω 1 d 2 /(T 0 λ σ ), where ω 1 is the heat energy generated in the particle 1.

Parameter

λ σ λ β (ρc p ) σ (ρc p ) β ε σ N V T 0 Da Value 10 3 10 3 10 -3 7 300 0.1

Table 2 Model parameters

The average temperature T β β and the temperatures of particles 1, 2, 3, and 4 obtained from direct micro-scale simulations are compared with those obtained from the macro-scale Eulerian-Lagragian description using the heat exchange coefficients given in the previous section (Tab. [START_REF]CALIF 3 S, A software components library for the computation of reactive turbulent flows[END_REF] with N V = 7). The results are reported in Fig. (3) where T * and t * refer respectively to the dimensionless temperature T /T 0 and the dimensionless time tλ β /((ρc p ) β l 2 β ). These results show that the values obtained by the model are found to be in good agreement with the numerical experiments values for a time greater than 5. One must remember that the closure problems are taken to be quasi-steady by imposing the time scale constraints t * 1. Regarding the lumped and the diagonal approximations, the results are reported in Fig. [START_REF] Davit | Ch. Theoretical analysis of transport in porous media: Multi-Equation and Hybrid Models for a Generic Transport Problem with Non-Linear Source Terms[END_REF]. Here again, a good agreement between numerical experiments and the macro-scale is observed for the averaged β-phase temperature T β β for both the lumped and the diagonal approximations. However, both approximations predict the same temperature for particles 2, 3 and 4 close to the average temperature T β β and this is in clear contradiction with numerical experiments results. Moving to the particle 1 for which the homogeneous source term is non zero, the diagonal approximation seems to be more attractive than the lumped one.

β -experiments T 1 -experiments T 2 -experiments T 3 -experiments T 4 -experiments T β -model T 1 -model T 2 -model T 3 -model T 4 -model

CONCLUSION

In this study, an Eulerian-Lagrangian macro-scale model has been proposed following an up-scaling methodology to describe heat transfer in a dilute gas-particle mixture. The major difference between the proposed model and the classical one is the presence of additional terms that involves particle-particle heat exchanges. The up-scaling methodology provides closure problems to determine the macro-scale heat exchange coefficients. These coefficients have been computed for a two-dimensional micro-scale geometry and different numbers of particles contained within the averaging volume and different particle volume fraction. In addition, two approximations have been proposed to establish a link with the classical model. In order to assess the validity of the proposed model and its approximate versions, the macro-scale predictions have been compared with a numerical experiments of the micro-scale problem. The predictions of the macro-scale model with the averaged solution of the micro-scale problem are in very good agreement. The proposed lumped and diagonal approximations are still capable of predicting correctly the continuous phase averaged temperature whereas it fails to estimate accurately the particles temperature.
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 2 Fig. 2 Comparison of Chang's unit cell with a spatially periodic cell
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 3 Fig. 3 Comparison of numerical experiments with the macro-scale model for ε σ = 10 -3
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 4 Fig. 4 Comparison of numerical experiments with the lumped (left) and diagonal (right) approximation

Appendix A. CLOSURE PROBLEMS

The closure problems for the mapping variable s j reads

h kj = 0 , in the β-phase s j = 1 , at A j s j = 0 , at A p , with p = j s j β = 0