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This paper addresses the problem of dynamic magnetic resonance image (DMRI) reconstruction and motion estimation jointly. Because of the inherent anatomical movements in DMRI acquisition, reconstruction of DMRI using motion estimation/compensation (ME/MC) has been explored under the compressed sensing (CS) scheme. In this paper, by embedding the intensity based optical flow (OF) constraint into the traditional CS scheme, we are able to couple the DMRI reconstruction and motion vector estimation. Moreover, the OF constraint is employed in a specific coarse resolution scale in order to reduce the computational complexity. The resulting optimization problem is then solved using a primal-dual algorithm due to its efficiency when dealing with nondifferentiable problems. Experiments on highly accelerated dynamic cardiac MRI with multiple receiver coils validate the performance of the proposed algorithm.

INTRODUCTION

Dynamic magnetic resonance imaging (DMRI) reconstruction aims at obtaining spatial-temporal MRI sequences from the measurements acquired in the k-t space. Due to the slow MRI acquisition, the trade-off between spatial and temporal resolution in DMRI reconstruction is challenging. The existing methods to deal with this issue include fast low-angle shot imaging, 1 parallel imaging 2 and compressed sensing (CS). [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF][START_REF] Lustig | Compressed sensing MRI[END_REF] In the CS based framework, prior information (regularization) is helpful to regularize the ill-posed problem. The widely used regularizations in DMRI reconstruction include sparsity in transformed domains, [START_REF] Jung | K-t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI[END_REF] total variation (TV) penalties, [START_REF] Knoll | Parallel imaging with nonlinear reconstruction using variational penalties[END_REF] low-rank property [START_REF] Miao | Accelerated cardiac cine MRI using locally low rank and finite difference constraints[END_REF] or a combination of several priors. [START_REF] Lingala | Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-t SLR[END_REF][START_REF] Majumdar | Real-time Dynamic MRI Reconstruction using Stacked Denoising Autoencoder[END_REF][START_REF] Tremoulheac | Dynamic MR image reconstructionseparation from undersampled (k,t)-Space via low-rank plus sparse prior[END_REF] In the parallel imaging, a reduced amount of data is acquired with an array of receiver coils. The corresponding coil sensitivity maps can be estimated in advance. Therefore, the parallel imaging techniques can be readily incorporated in the CS framework, see e.g. [START_REF] Asif | Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI[END_REF] Moreover, owing to the presence of anatomical motion in DMRI acquisition, combining the motion estimation with the DMRI reconstruction has been widely explored in the literature, see e.g. [START_REF] Asif | Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI[END_REF][START_REF] Usman | Motion corrected compressed sensing for free-breathing dynamic cardiac MRI[END_REF][START_REF] Otazo | Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components[END_REF][START_REF] Lingala | DC-CS ): A Novel Framework for Accelerated Dynamic MRI[END_REF] In this paper, we couple the reconstruction and motion estimation by embedding an intensity based optical (OF) constraint into the CS framework. In order to reduce the computational cost, the OF constraint is exploited at a coarse resolution scale. Moreover, an affine model is employed to model local tissue deformations. [START_REF] Sühling | Myocardial motion analysis from B-mode echocardiograms[END_REF] The resulting formulated problem is addressed using the primal-dual algorithm with linesearch, [START_REF] Malitsky | A first-order primal-dual algorithm with linesearch[END_REF] which is efficient to handle non-differentiable optimization problems. Experiments on the reconstruction of dynamic cardiac MRI are conducted to demonstrate the efficiency of the proposed framework.

The remainder of this paper is organized as follows. The problem formulation is described in section 2. Section 3 details the proposed algorithm and relevant derivations. Section 4 gives the experimental results. Conclusions and perspectives are reported in Section 5.

PROBLEM FORMULATION

Measurement model

Denoting f whose rows correspond to the voxels and columns represent the temporal frames as the DMRI sequences, the DMRI can be modelled using the following matrix form equation

b = Af + n, ( 1 
)
where b is the measurement, f is the dynamic image sequences to be estimated, n is the measurement noise and the measurement operator A = SF, where F is the partial Fourier transform at specific sampling locations and S is the coil sensitivity map, which can estimated in advance.

Prerequisite

Optical flow constraint Denoting f (x, t) as the tth frame MRI sequences at the location x = (x, y) (only 2D cases are considered in this work), the brightness constancy constraint in DMRI is expressed by

f (x, t) = f (x -d(x, t), t 0 ), (2) 
where d(x, t) = [u(x, t), v(x, t)] T is the displacement field. Under the small displacement assumption, we have

f (x -d(x, t), t 0 ) ≈ f (x, t 0 ) -∂ x f (x, t 0 )u(x, t) -∂ y f (x, t 0 )v(x, t). (3) 
Thus, the OF constraint equation is given by

f (x, t) -f (x, t 0 ) + ∂ x f (x, t 0 )u(x, t) + ∂ y f (x, t 0 )v(x, t) = 0. (4) 
In addition, since the motion patterns in DMRI can be very complicated, e.g., rotation, expansion and shear, the affine model for the motion vectors [u, v] T has been introduced [START_REF] Sühling | Myocardial motion analysis from B-mode echocardiograms[END_REF][START_REF] Alessandrini | Myocardial Motion Estimation from Medical Images Using the Monogenic Signal[END_REF] as following

u(x, t) = u 0 (x, t) + u 1 (x, t)x + u 2 (x, t)y (5) v(x, t) = v 0 (x, t) + v 1 (x, t)x + v 2 (x, t)y, (6) 
where u 0 , u 1 , u 2 and v 0 , v 1 , v 2 are the affine parameters defining the deformation field of pixels at position (x, y) in frame t w.r.t. the reference frame f (x, t 0 ).

Moreover, the weighted OF equation expressed in (7) has been exploited to estimate the motion vectors in different resolution scale, see e.g.,. [START_REF] Sühling | Myocardial motion analysis from B-mode echocardiograms[END_REF][START_REF] Alessandrini | Myocardial Motion Estimation from Medical Images Using the Monogenic Signal[END_REF] x

w(x -x 0 ) [f (x, t) -f (x, t 0 ) + ∂ x f (x, t 0 )u(x, t) + ∂ y f (x, t 0 )v(x, t)] dx, (7) 
where w is a window function centered at x 0 . In this work, B-spline based function has been used to build the window function. Varying the B-spline degree changes the size of w. Dilating and shifting the window function leads to an OF equation at different spatial scale. Specifically, at a coarse scale j, the window function is given by

w (j) (x -x 0 ) = w x -2 j x 0 2 j . ( 8 
)

Proximal operator

The proximal operator of function g (lower semicontinuous) is defined as

prox sg (p) = arg min x g(x) + 1 2s x -p 2 . ( 9 
)
Note that the proximal operator calculation always has a unique solution.

Primal dual algorithm

Given an optimization problem as below min y g(Cy) + h(y), (10) where h and g are proper, convex and lower semicontinuous functions, C is a continuous linear operator. The primal dual algorithm (PDA) to deal with the problem ( 10) is given by For k = 1, . . .

y k = prox σh y k-1 -σC * z k-1 z k = prox sg * l (z k-1 + sC(2y k -y k-1 )) (11) 
where C * represents the adjoint of matrix C and g * is the conjugate of function g. Note that the stepsize parameters in PDA need to satisfy the relationship sσ C ≤ 1 to ensure the convergence. More details about the PDA can turn to the literatures, see e.g. [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] 

Problem formulation

We denote the DMRI acquired at instance t 0 , i.e., f (x, t 0 ) as the reference frame. Note that a reference frame can be obtained from a fully-sampled data. Moreover, by replicating the f (x, t 0 ) and stack them into a cube of the same size as the image sequences to be estimated, we obtain a reference cube, denoted as f0 .

The problem of jointly reconstructing the DMRI and estimating the motion vectors can then be formulated as blow min

f ,d Af -b 2 2 + η 1 f * + η 2 ∇f 1 + τ M w (j) (f , f0 , d) 1 + ψ(d), (12) 
where • * and • 1 represent the nuclear norm and 1 norm of variables, η 1 f * +η 2 ∇f 1 is a joint regularization term for the DMRI (low rank plus TV), M w (j) (f , f0 , d) is the weighted OF equation at scale j given by

M w (j) (f , f0 , d) = f -f0 w (j) + ∂ x f0 w (j) u + ∂ y f0 w (j) v = f -f0 w (j) + ∂ x f0 w (j) u 0 + x∂ x f0 w (j) u 1 + y∂ x f0 w (j) u 2 + ∂ y f0 w (j) v 0 + x∂ y f0 w (j) v 1 + y∂ y f0 w (j) v 2 (13) 
where r w (j) is the weighted average of variable r ∈ {f -f0 , ∂ x f0 , x∂ x f0 , y∂ x f0 , ∂ y f0 , x∂ y f0 , y∂ y f0 } at scale j, which is written as

r w (j) = x w (j) (x -x 0 )r(x)dx. (14) 
ψ(d) is the regularization for the motion vector. We consider the isotropic TV prior to smooth the displacement field. Thus, we have

ψ(d) = γ 2 i=0 ∇u i 1 + γ 2 i=0 ∇v i 1 . (15) 

METHODOLOGY

The formulated problem is addressed using the primal dual algorithm with linesearch (PDAL), [START_REF] Malitsky | A first-order primal-dual algorithm with linesearch[END_REF] known to be efficient in handling non-differentiable convex optimization problems. In order to use PDAL to address (12), we rewrite it as blow min y g(Cy) = 

where

y = [f , u 0 , u 1 , u 2 , v 0 , v 1 , v 2 ]
T is the variable to be estimated, Ω l = C l y, the matrix C is expressed by

C =                 C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10                 =                 A 0 0 0 0 0 0 • w (j) ∂ x f0 w (j) x∂ x f0 w (j) y∂ x f0 w (j) ∂ y f0 w (j) x∂ y f0 w (j) y∂ y f0 w (j) I 0 0 0 0 0 0 T 0 0 0 0 0 0 0 ∇ 0 0 0 0 0 0 0 ∇ 0 0 0 0 0 0 0 ∇ 0 0 0 0 0 0 0 ∇ 0 0 0 0 0 0 0 ∇ 0 0 0 0 0 0 0 ∇                 (17) 
The ten functions are expressed as

               g 1 (Ω 1 ) = 1 2 Ω 1 -b 2 2 , g 2 (Ω 2 ) = τ Ω 2 -f0 w (j) 1 , g 3 (Ω 3 ) = η Ω 3 * , g 4 (Ω 4 ) = η Ω 3 1 , g l (Ω d ) = γ Ω d 1 , for d = 5, . . . , 10, (18) 
By introducing the dual variables z = [z 1 , . . . , z 10 ] T , the PDA to solve problem ( 16) is given by For k = 1, . . .

y k = y k-1 -σ 10 l=1 C * l z k-1 l z k l = prox sg * l (z k-1 l + sC l (2y k -y k-1 )) (19) 
In order to accelerate (19), we use the PDA with linesearch to address (16), which is summarized as below Algorithm 1 Joint MRI reconstruction and motion estimation using PDAL (J-PDAL)

Require: y 0 = [f 0 , u 0 0 , u 0 1 , u 0 2 , v 0 0 , v 0 1 , v 0 2 ], z 0 l , l ∈ {1 • • • 10}, σ 0 > 0, α > 0, ∈ (0, 1), ρ ∈ (0, 1) 1: Set θ 0 = 1 2: for k = 1 . . . do Update y = [f , u 0 , u 1 , u 2 , v 0 , v 1 , v 2 ]
3:

y k = y k-1 -σ k-1 10 l=1 C T l z k-1 l 4:
Choose any

σ k ∈ [σ k-1 , σ k-1 √ 1 + θ k-1 ] 5: Linesearch Start linesearch 6: ȳk = y k + θ k (y k -y k-1 ) 7:
for l=1, . . ., 10 do 8:

z k l = prox ασ k g * l (z k-1 l + sC l ȳk )
Update z l by calculating the proximal operator of g * l (•)

9: if √ ασ k C T z k -C T z k-1 ≤ z k -z k-1 then 10:
break the linesearch Break linesearch Until stopping criterion is satisfied.

Stopping criterion

Note that the calculations of the proximal operators of g * l are given as following

           prox sg * 1 (z 1 ) = z1-sb 1+s , prox sg * 2 (z 2 ) = Proj τ P z2 -s Ī0 w (j) , prox sg * d (z d ) = Proj γP (z l ), for l = 4, . . . , 9, prox sg * 10 (z 10 ) = Proj λP (z 10 ), (20) 
where Proj τ P is a projector onto the convex set (Euclidean 2 -ball) τ P = { p ∞ ≤ τ }, where p ∞ = max i,j |p i,j |.

In practice, this projector can be computed using the straightforward formula

Proj τ P (p) = p max{τ, |p|} . (21) 

EXPERIMENTAL RESULTS

In this section, We conducted experiments on in vivo cardiac perfusion (without parallel imaging) and cardiac cine (with parallel imaging) data. The proposed algorithm was also compared with the L+S algorithm. [START_REF] Otazo | Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components[END_REF] The myocardial perfusion MRI data * was acquired using a saturation recovery FLASH sequence at the University of Utah, courtesy of Dr. Edward DiBella. [START_REF] Lingala | Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-t SLR[END_REF] The radial sampling trajectory was employed in this simulation with a decimation factor 6. The data is of size 90 × 190 × 70. Fig. 1 displays the fully sampled data and the reconstructed image sequences for the cardiac perfusion data using the proposed J-PDAL and the algorithm L+S † . The RMSEs of the two algorithms for each frame are also shown in Fig. 1. The proposed algorithm outperforms the L+S algorithm in terms of the RMSEs.

The cardiac cine data was acquired in a healthy adult volunteer with a modified TurboFLASH pulse sequence on a whole-body 3T scanner (Tim Trio, Siemens Healthcare, Erlangen, Germany) using a 12-element matrix coil array. [START_REF] Otazo | Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components[END_REF] This data is of size 256 × 256 × 24. The Cartesian downsampling trajectory was employed with a decimation factor 6. Fig. 2 shows the reconstructed images for the cardiac cine data using the J-PDAL and L+S. More clearly boundaries can be observed in the reconstructed image sequences using the proposed J-PDAL. Due to the absence of groundtruth of the cardiac cine data, the resolution gain (RG) [START_REF] Zhao | Joint segmentation and deconvolution of ultrasound images using a hierarchical Bayesian model based on generalized Gaussian priors[END_REF] is employed for the quantitative evaluation of the reconstruction performance. RG is the ratio of the normalized autocorrelation (higher than -3 dB) of the initial MRI sequences (i.e., A T b) to the normalized autocorrelation (higher than -3 dB) of the restored MRI sequences. Fig. 3 displays the RGs using the two algorithms for each frame of the cardiac cine data. Note that the RGs are calculated for the region of interest (ROI), shown in the blue box in Fig. 2. 

CONCLUSIONS

The proposed algorithm is able to integrate the image reconstruction and motion estimation. The joint low rank plus total variation regularization is an appropriate prior for the dynamic cardiac dataset explored in this paper. From the experimental results, the DMRI reconstruction quality on the in vivo cardiac data using the proposed J-PDAL outperforms the performance of the L+S algorithm. Future works include the estimation of the reference image and multi-resolution strategies for motion estimation.
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 12 Figure 1. Left: fully sampled (top) and reconstructed cardiac perfusion data using L+S (middle) and J-PDAL (bottom); Right: RMSEs calculated for different temporal frames using L+S (blue) and J-PDAL (red).
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 3 Figure 3. Resolution gain (RG) of the reconstruction of cardiac cine image sequences using L+S (blue) and the proposed J+PDAL (red).

Acknowledgements

This work has been supported by NIH grant R01CA188300.