
HAL Id: hal-03623130
https://hal.science/hal-03623130

Submitted on 29 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Performance Prediction Focused on Summarized
Letor Features

Adrian-Gabriel Chifu, Léa Laporte, Josiane Mothe, Md Zia Ullah

To cite this version:
Adrian-Gabriel Chifu, Léa Laporte, Josiane Mothe, Md Zia Ullah. Query Performance Prediction
Focused on Summarized Letor Features. 41st International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2018), Jul 2018, Ann-Arbor, MI, United States.
pp.1177-1180, �10.1145/3209978.3210121�. �hal-03623130�

https://hal.science/hal-03623130
https://hal.archives-ouvertes.fr


Any correspondence concerning this service should be sent 
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: 
http://oatao.univ-toulouse.fr/22398 

Official URL 

DOI : https://doi.org/10.1145/3209978.3210121 

Open  Archive  Toulouse  Archive  Ouverte 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

To cite this version: Chifu, Adrian-Gabriel and Laporte, Léa and 
Mothe, Josiane and Ullah, Md Zia Query Performance Prediction 
Focused on Summarized Letor Features. (2018) In: 41st 
International ACM SIGIR Conference on Research and 
Development in Information Retrieval (SIGIR 2018), 8 July 2018 - 
12 July 2018 (Ann-Arbor, MI, United States). 



!ery Performance Prediction Focused
on Summarized Letor Features

Adrian-Gabriel Chifu
Aix Marseille Univ, Université de Toulon, CNRS, LIS

Marseille, France
adrian.chifu@univ-amu.fr

Léa Laporte
INSA Lyon, LIRIS, UMR 5205 CNRS

Lyon, France
lea.laporte@insa-lyon.fr

Josiane Mothe
ESPE, Université de Toulouse, IRIT, UMR5505 CNRS

Toulouse, France
Josiane.Mothe@irit.fr

Md Zia Ullah
UPS, Université de Toulouse, IRIT, UMR5505 CNRS

Toulouse, France
mdzia.ullah@irit.fr

ABSTRACT

Query performance prediction (QPP) aims at automatically estimat-
ing the information retrieval system effectiveness for any user’s 
query. Previous work has investigated several types of pre- and 
post-retrieval query performance predictors; the latter has been 
shown to be more effective. In this paper we investigate the use 
of features that were initially defined for learning to rank in the 
task of QPP. While these features have been shown to be useful for 
learning to rank documents, they have never been studied as query 
performance predictors. We developed more than 350 variants of 
them based on summary functions. Conducting experiments on 
four TREC standard collections, we found that Letor-based features 
appear to be better QPP than predictors from the literature. More-
over, we show that combining the best Letor features outperforms 
the state of the art query performance predictors. This is the first 
study that considers such an amount and variety of Letor features 
for QPP and that demonstrates they are appropriate for this task.
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1 INTRODUCTION

While Information Retrieval system e"ectiveness is usually mea-
sured as an average e"ectiveness over queries, it is well-known that
a system performs di"erently on each individual queries. Query
performance prediction (QPP) aims at automatically estimating the
information retrieval system e"ectiveness for any user’s query
di$culty without relevance judgement [7]. Predicting query perfor-
mance is a #rst mandatory step to be able to adapt query processing
when the query is detected as di$cult. System adaptation can con-
sist in selective query expansion [2], or selecting the best system
con#gurations depending on the query features [9], for instance.
Thus, having accurate predictors is a hot and very important topic.

The literature of the #eld has investigated the use of various
types of predictors. Pre-retrieval features can be calculated from
the query itself. IDF is an example of a pre-retrieval feature which
is calculated by extracting the IDF of each query term from the in-
verted #le and then aggregating the values over the query terms [11].
Some pre-retrieval features need external resources to be calculated
as for example the number of query term senses based on Word-
Net [15]. On the other hand, calculating post-retrieval features
requires evaluating the query over the whole collection of docu-
ments. They are usually based on functions applied to the document
scores or retrieved document lists. For example, Query Feedback
(QF) measures the overlap between two retrieved document lists
for the original query and the expanded query [22]. Although post-
retrieval features are based on retrieved document scores, they are
not Letor features strictly speaking. Indeed, Letor features have
been #rst used in learning to rank applications where they have
been shown to be e"ective [4, 6, 17, 19]. Letor features have also
been used in other applications such as learning to rank system
con#gurations [9] or reducing verbose textual queries [3], but have
never been used as QPP. A systematic review does not yet exist in
the context of QPP; this is the purpose of this short paper.

Recent work has focused on ways of combining predictors rather
than #nding better predictors [10, 18, 22]. Although combining fea-
tures has been shown to be e"ective, we believe that the better the
features, the better the QPP. Our paper revisits this perspective by
evaluating more than 350 post-retrieval features (based on variants
of Letor-based features) as QPP features. The paper focuses on
the post-retrieval features since they have been shown to be more
e"ective than pre-retrieval features for QPP [21].



SLFi (S,q) = φS({LFi (d,q)},q,Dq,n )

whered ∈ Dq,n is a document, {LFi (d,q)} is the set of values for the
Letor feature i for each couple (d, q) and φS is a summary function
with S ∈ {Min,Max ,Mean,Q1,Median,Q3, Std,Var ,and Sum}.

We used 9 summary functions for each LF:
- φMin , φMax , φMean , φSum : the minimum (maximum, average,

and sum) value of the Letor feature over the retrieved documents;
-φQ1,φmeadian ,φQ3: after calculating the Letor feature for each

retrieved document, we sorted the values in increasing order; then
the set is divided into quartiles. Q1 (respectively median, Q3) is the
value that makes at least one quarter (2 quarters, 3 quarters) of the
values having a score lower than Q1 (respectively median, Q3);

- φStd , φVar : the standard deviation and the variance of the Letor
feature values.

Each of the summary functions leads to a variant of the Letor
feature. Thus, we have a group of summarized Letor features (SLF)
for each LF. As opposed to previous research that analyses a few
features, in this study, we analysed more than 350 SLF.

3 EVALUATION OF THE FEATURES

The accuracy of a query performance predictor is usually mea-
sured in the literature by evaluating the link (e.g. correlation value)
between the predictor values (considered as the predicted e"ective-
ness) and the actual system e"ectiveness values [11, 18]. Pearson
correlation is usually considered; it assumes a linear correlation
between the two analyzed variables. Since correlation may exist
without being linear, we complete the study using Kendall correla-
tion as well.

The results can be biased by the choice of the system used as a
reference. What is now a common reference in QPP is Language
Modeling with Dirichlet smoothing and µ=1000 [8, 18, 20, 22]. We
also focus on this system in this paper and keep the analysis of
system dependency for future work. With regard to system e"ec-
tiveness, we considered AP and NDCG, which is also common
practice in IR evaluation. Finally, we use four reference collections
from TREC: Robust (528,155 newspaper documents, 250 topics),
WT10G (1.6 million web/blog documents, 100 topics), GOV2 (25

1Features name are the ones used in Terrier; they correspond to di"erent implementa-
tions of features number 3, 5, 13, 15, 20, 23, 25, 33, and 35 in Table 2 from [17].
2All the features are detailed at http://www.terrier.org/docs/v4.0/javadoc/index.html?
org/terrier/matching/models/WeightingModel.html

million web documents, 150 topics), and ClueWeb12B (52 million
web documents, 100 topics).

3.1 Individual e!ectiveness

We studied the individual e"ectiveness for QPP of any single sum-
marized Letor feature. We also considered the state of the art QPP
features, namely: Clarity [8], QF [22], WIG [22], UQC [21], and
NQC [21].

Since we have more than 350 SLF, it was not possible to present
all the correlations; we selected the most correlated features. For
each collection, we selected the top 4 features and reported their
correlation for the 4 collections in Table 1. In the #rst part of the
table, we present AP while the second part reports NDCG (both
@1000). The features are ordered according to decreasing Pearson
correlation on GOV2.

In Table 1, we can see that many of the SLF are more correlated
than state of the art QPP features, at least on one of the collections,
but many times across several collections. The most correlated
feature (AP and NDCG) is WMODEL.DFIZ_std which represents
a weighting model based on the standardized distance from in-
dependence in term frequency [16]. WMODEL.ML2_std (second
feature for AP) represents a weighting model based on multinomial
randomness model, with Laplace after-e"ect model and normalisa-
tion 2 [12]. WMODEL.In_expC2_max (second feature for NDCG) is
the Inverse Expected Document Frequency weighting model with
Bernoulli after-e"ect and normalization [1]. When considering the
4 di"erent collections, the 2 correlation measures, the 2 evaluation
measures, and all the SLFs, we found out that several of them con-
sistently correlate signi#cantly across collections and measures.
This is the case for the #rst 5 SLFs in Table 1. None of the state
of the art features are as robust across collections and measures.
The state of the art feature that has a similar robustness is QF, but
it is not signi#cantly correlated for AP on ClueWeb12B. We also
observed that the highest correlations are with SLF calculated on
document content rather than on part of it such as the title only.

3.2 The impact of n

In the previous section, the SLF have been calculated when consid-
ering the n (1000) top-ranked retrieved documents. However, the
value of n may have an important impact on the correlation [21]. It
was not possible to report the e"ect of n on all the SLF. Since the
idea was to observe the in&uence of n if any, we chose the #rst SLF
from Table 1, namelyWMODEL:DFIZ_std. It corresponds to the fea-
ture from Terrier calculated using Divergence From Independence
model based on Standardization [13], to which we applied standard
deviation when summarizing the values across documents and we
showed it is robust across collections for QPP.

Table 2 reports the Pearson correlation that we obtained on the
four collections. We can see that the best value of n is not consistent
across collections while it is consistent for AP and NDCG. GOV2
requires fewer documents (top 500) to get the highest correlation
than the other collections. This result holds also for other SLFs we
analysed. An interesting track for future work is to analyse whether
the optimal number of documents is the same across features or
not. The robustness of the number of documents across queries is
also an interesting problem to study.

2 SUMMARIZED LETOR-BASED FEATURES
Letor features have been widely used in the context of learning to 
rank [17]. The main goal of learning to rank is to learn a function 
to better rank retrieved documents given a query; which is a di"er-
ent problem than QPP. Terrier’s FAT component [14] implements 
most of the LETOR feature that can be found in [17]1 as well as a 
few others2. Most of the features are calculated from a matching
score between the query and the document, either considering the 
document title or the full content, for a total of 39 features.

All the features are associated with query-document pairs. To 
make the Letor features (LF) usable as query features, we have used 
di"erent summary functions over the retrieved documents, for a 
given query. More formally, let q be a query in the set of all queries
Q and Dq n be the set of the top-ranked n retrieved documents

,

for the query q. We compute the i-th summarized Letor feature,
SLFi (S, q) as follows:



Table 1: Pearson (P.) and Kendall (K.) correlations between the features and the actual system e!ectiveness (AP@1000 and

NDCG@1000). The top four correlated features are selected from each collection separately and then all are ordered by decreas-

ing order based on Pearson correlation on GOV2. We also included the features from the literature that are not Letor-based.

"*" stands for p-value < 0.05, while "+" stands for p-value < 0.001. Values in bold are higher than QF baseline.

Robust WT10G GOV2 ClueWeb12B

AP P. K. P. K. P. K. P. K.

WMODEL.DFIZ_std .191* .200+ .217* .235+ .453+ .305+ .298* .255+

WMODEL.ML2_std .251+ .220+ .216* .290+ .453+ .328+ .265* .256+

WMODEL.In_expC2_max .320+ .359+ .403+ .298+ .449+ .306+ .303* .225+

WMODEL.PL2_std .334+ .296+ .211* .297+ .449+ .319+ .267* .255+

WMODEL.In_expB2_max .316+ .353+ .389+ .296+ .438+ .297+ .304* .228+

WMODEL.IFB2_max .318+ .353+ .399+ .304+ .437+ .293+ .298* .219*

WMODEL.BB2_max .298+ .344+ .374+ .277+ .436+ .300+ .308* .228+

WMODEL.IFB2_std .393+ .337+ .318* .310+ .394+ .260+ .231* .232+

WMODEL.DFReeKLIM_max .343+ .287+ .313* .202* .385+ .277+ .376+ .259+

WMODEL.DPH_max .347+ .292+ .323* .223* .385+ .276+ .374+ .253+

WMODEL.Js_KLs_max .305+ .260+ .266* .164* .367+ .262+ .379+ .253+

WMODEL.DFRee_max .295+ .251+ .252* .152* .359+ .255+ .377+ .249+

WMODEL.SFM.DirichletLM_max .392+ .324+ .235* .210* .350+ .270+ .263* .163*

WMODEL.LemurTF_IDF_max .414+ .348+ .342+ .282+ .298+ .251+ .223* .186*

WMODEL.LemurTF_IDF_std .457+ .356+ .207* .279+ .258* .230+ .170 .207*

QF [22] .432+ .343+ .343+ .169* .407+ .285+ .163 .114

Clarity [8] .435+ .308+ .239* .189* .112 .086 -.148 -.108
WIG [22] .315+ .253+ .181 .122 .302+ .239+ .366+ .201*
UQC [21] .496+ .358+ .311* .192* .286+ .191+ .152 .064
NQC [21] .125* .203+ .010 .066 -.037 .086 -.095 -.047
NDCG P. K. P. K. P. K. P. K.

WMODEL.DFIZ_std .306+ .235+ .321* .261+ .447+ .334+ .301* .239+

WMODEL.In_expC2_max .338+ .359+ .429+ .279+ .444+ .326+ .264* .200*

WMODEL.DFIC_std .291+ .221+ .294* .221* .441+ .328+ .303* .241+

WMODEL.ML2_std .326+ .248+ .290* .294+ .438+ .359+ .264* .230+

WMODEL.IFB2_max .334+ .351+ .420+ .282+ .429+ .312+ .257* .195*

WMODEL.PL2_max .434+ .329+ .389+ .258+ .412+ .322+ .324+ .235+

WMODEL.DPH_std .380+ .296+ .432+ .342+ .397+ .308+ .238* .195*

WMODEL.Js_KLs_max .364+ .271+ .280* .161* .382+ .289+ .361+ .243+

WMODEL.BM25_std .428+ .338+ .320* .295+ .344+ .289+ .162 .174*

WMODEL.DFR_BM25_std .429+ .339+ .324* .298+ .341+ .290+ .160 .173*

WMODEL.XSqrA_M_Q3 -.055 -.040 -.030 -.032 .335+ .217+ .363+ .245+

WMODEL.XSqrA_M_mean -.066 -.047 -.059 -.046 .308+ .202+ .359+ .235+

WMODEL.SFM.DirichletLM.._std .354+ .280+ .430+ .253+ .302+ .215+ .200* .172*

WMODEL.LemurTF_IDF_std .440+ .340+ .206* .267+ .243* .247+ .114 .151*
QF [22] .504+ .349+ .350+ .223* .398+ .297+ .210* .152*
WIG [22] .364+ .262+ .228* .149* .329+ .273+ .342+ .186*
UQC [21] .436+ .343+ .304* .226+ .285+ .213+ .083 .020
Clarity [8] .452+ .308+ .255* .170* .111 .100 -.132 -.099
NQC [21] .117 .191+ .065 .106 -.004 .091 -.143 -.069

3.3 Combining features for QPP

Assuming that di"erent QPP features capture diverse information
about query performance, whether a combination of features is
likely to be a better predictor than a single feature. Following this
assumption, a few studies have investigated the linear combina-
tion of features [5, 10, 20, 22]. These studies combine less than 10
features.

Considering that we have investigated more than 350 SLFs in
the individual e"ectiveness analysis, using all these features in

a single model such as linear regression would not be optimum.
In this paper, we choose to analyse the linear combination of the
features that correlate the most with the e"ectiveness measure to
predict, for each collection. Thus, for each collection, we plotted the
correlations values for the best 20 features in decreasing order, then
empirically searched for a gap in the correlation values, by looking
at the di"erences between consecutive correlation values, two by
two. We thus selected all the features before this gap. Note that
the features may be di"erent depending on whether we consider



Table 2: Pearson correlation of the WMODEL:DFIZ_std [13]

SLF predictor according to n, the number of top-ranked re-

trieved documents considered when calculating the feature.

n 5 10 50 100 500 1000

AP

Robust .056 .065 .089 .081 .146* .191*

WT10G .027 -.084 .163 .142 .175 .217*

GOV2 .261* .385+ .409+ .407+ .453+ .453+
ClueWeb12B .320* .255* .266* .243* .269* .298*

NDCG

Robust .081 .119 .183* .191* .252+ .306+

WT10G .069 -.032 .224* .217* .294* .321*

GOV2 .285+ .397+ .426+ .418+ .453+ .447+
ClueWeb12B .246* .234* .253* .224* .265* .301*

correlation on AP or NDCG. For AP, this process selected 5 features
per collection, except for ROBUST (6 features). For NDCG, using the
same process we selected 6 features for WT10G and ClueWeb12B,
8 features for Robust, and 10 features for GOV2. We leave the
investigation of other feature selection methods such as LASSO
(more sparse) and other machine learning methods such as random
forest for future work since our main topic here is to investigate
the e"ectiveness of new predictors.

Similarly to [22] and [10], we used multiple linear regression to
combine the features into a single performance prediction model.
We considered #ve di"erent sets of predictors to be combined. A
#rst set S1 contains the two state of the art predictors WIG and
QF. It corresponds to our baseline. The second set S2 is composed
of the two best Letor predictors on a given collection, according
to the simple linear regression experiment. This set can be easily
compared to the baseline since it is also composed of two features
(thus the same level of complexity and costs to be calculated). The
third set S3 contains all the best LETOR features per collection we
selected as explained previously. The fourth set S4 is the union of
sets S1 and S2, thus it combines the state of the art and the two
best SLF features per collection. Finally, we considered all the best
predictors selected per collection together with the two baselines
WIG and QF in the #fth set S5. We considered the same collections,
system, e"ectiveness, and evaluation measures as in the individual
performance prediction analysis. We performed the leave-one-out
cross-validation to predict query performance. As shown in Table 3,

Table 3: Performance of linear regression of combined post-

retrieval predictors according to Pearson correlation.

Combination Robust WT10G GOV2 ClueWeb

AP

S1: WIG + QF .459+ .274* .399+ .287*
S2: 2 Best SLF .382+ .404+ .438+ .237*
S3: Best SLF .402+ .339+ .420+ .302*

S4: S1 ∪ S2 .478+ .420+ .465+ .260*
S1 ∪ S3: All .454+ .427+ .509+ .208*

NDCG

S1: WIG + QF .537+ .303* .405+ .286*
S2: 2 Best SLF .430+ .449+ .469+ .211*
S3: Best SLF .458+ .457+ .464+ .312*

S4: S1 ∪ S2 .556+ .468+ .514+ .293*
S5: S1 ∪ S3 .526+ .446+ .487+ .188

for all the collections except ClueWeb12B and NDCG, the best cor-
relation values are obtained when considering a combination of
the two best Letor features and the two state of the art features.
Considering ClueWeb12B and NDCG, the best correlation value is

obtained when considering a linear combination of the best Letor
features. If we take a #ne-grained look at the results, we observe
that the best results are obtained when considering either the Letor
features alone or combined with WIG and QF, whatever the ef-
fectiveness measure is. As an additional analysis, we computed
the correlations between the features from the literature and the
best Letor predictors. The correlations values were not signi#cant,
supporting our #nding that Letor features are complementary to
state-of-the-art ones. Finally, with regard to AP, results are not di-
rectly comparable to Raiber’s [18] (they found Pearson correlation
of .557 for Robust, .346 for WT10G, .570 for GOV2) since we could
not reproduce their results; for example, the Pearson correlation
values they reported for individual state of the art QPPs are higher
than the ones we re-calculated using the same collections and the
same reference system.

4 CONCLUSION

We showed that the Summarized Letor features we de#ned are
good query performance predictors and that some of them are
more robust than the ones from the literature across collections.
Moreover, we found that they are complementary to the existing
features as when combined we achieved better QPP.
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