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ABSTRACT

Some methods have been developed for automatic e"ectiveness 
evaluation without relevance judgments. We propose to use those 
methods, and their combination based on a machine learning ap-
proach, for query performance prediction. Moreover, since predict-
ing average precision as it is usually done in query performance 
prediction literature is sensitive to the reference system that is cho-
sen, we focus on predicting the average of average precision values 
over several systems. Results of an extensive experimental evalu-
ation on ten TREC collections show that our proposed methods 
outperform state-of-the-art query performance predictors.
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1 INTRODUCTION

Query Performance Prediction (QPP) is about predicting the effec-
tiveness of the system for an unknown query [3, 19] while Effec-
tiveness Evaluation without Relevance Judgments (EEwRJ) mainly 
tackles the problem of the cost of human relevance judgment by 
considering new methodologies to assess system effectiveness [15].

https://doi.org/10.1145/3209978.3210146

We consider these problems as the two sides of the same coin and

we propose to combine these two research directions that so far

have been treated independently. We show by extensive experi-

ments on ten TREC collections that EEwRJ can be exploited to

obtain a more accurate QPP than state-of-the-art.

In the following, we brie&y review QPP and EEwRJ in Section 2,

detail how EEwRJ can be adapted to QPP in Section 3, present our

experiments in Section 4, and summarize our $ndings and sketch

future developments in Section 5.

2 BACKGROUND

Query Performance Prediction. QPP aims at estimating system

e"ectiveness for a given query [3, 19]. Current approaches consider

either individual features [4, 9, 14, 20] or a combination of them [2,

7, 13, 20] to predict query performance. QPP accuracy is evaluated

by means of correlation between the predicted AP and the real

AP [3, 11].

The most e"ective individual predictors are the post-retrieval

ones, which are calculated after the query has been submitted

to the search engine considering the retrieved document list and

document scores [3]. Although some of these features can be quite

sophisticated (e.g. Weighted Information Gain which measures the

divergence between the mean of the top-retrieved document scores

and the mean of the entire set of document scores [20]), they only

weakly correlate with actual system e"ectiveness [7, 11]: Pearson

correlation with actual e"ectiveness is about 0.5 [14].

Since using one single query feature for QPP is not fully e"ec-

tive, combining features looks as a reasonable alternative. Current

research mainly investigated linear regression [2, 6, 13, 20]. Thanks

to these types of combination, the correlation has been slightly

increased but remains well below 0.6.

EvaluationWithout Relevance Judgments. The objective of all

the EEwRJ methods1 is to predict system e"ectiveness in a TREC-

like environment. The $rst proposal was by Soboro" et al. [15], who

proposed to randomly sample documents from the pool and treated

such documents as relevant; the intuition is that if a document is

retrieved bymany systems in the top rank positions it will be pooled

and thus it is probably a relevant document. Wu and Crestani [18]

used data fusion techniques to merge the ranked lists retrieved

by the systems and computed a score for each system based on

1To avoid confusion, we speak of QQP approaches and of EEwRJmethods in this paper.



the popularity of the documents it retrieves. Aslam and Savell [1] 
proposed an index based on the similarity between the ranked lists 
of systems; their index is computed simply considering the ratio 
between the document intersection and the document union of the 
ranked lists of each pair of systems.

Nuray and Can [10] adapted methods from democratic election 
strategies to compute the popularity score of each document by 
treating the documents as candidates and the systems as voters; 
more in detail, they used the “RankPosition,” “Borda,” and “Con-
dorcet” methodologies. Spoerri [16] proposed a set of trials between 
systems and for each trial measures the percentage of documents 
retrieved by a system alone, by all the systems in the trial, and a 
combination of the previous percentage scores.

Diaz [5] embedded the retrieved documents in a high-dimensional 
space and computed spatial correlation values to measure docu-
ment similarity and derived a predicted retrieval performance. Diaz 
[5] methodology is the only one which makes use of the collection 
documents; we leave such technique as future work. Sakai and Lin 
[12] used a variation of the Condorcet method from [10] which is 
less computationally demanding.

3 QPP BY MEANS OF EEWRJ

While QPP focuses on individual queries, EEwRJ focuses on average 
over queries. By focusing on a single e"ectiveness measure such as 
Average Precision (AP), we can say that QPP aims at predicting AP, 
while the EEwRJ aims at predicting Mean AP (MAP) for all the runs 
in a given TREC edition. Usually, the EEwRJ methods are evaluated 
by means of correlation, like QPP. However, while QPP approaches 
are evaluated by the Pearson correlation between predicted and 
real AP, EEwRJ methods are evaluated by the correlation between 
predicted and real MAP.

EEwRJ methods can be taken almost o"-the-shelf and, with mi-

nor adaptations, exploited “as is” for QPP. Indeed EEwRJ methods 
can predict (by solving some normalization issues) not only MAP 
but also individual AP values for each 〈system, topic〉 pair. Follow-
ing Mizzaro and Robertson [8], we can then derive a prediction of 
Average AP (AAP) which is the average across systems of AP for a 
given query (“topic” in TREC terminology).

Considering AAP does make sense for QPP since queries (or 
topics) which get a low AAP are di#cult queries most systems failed 
on, and we should pay attention to and thus predict as di#cult, On 
the other hand, queries which get high AAP are easy queries that 
any system can treat. In this paper, we thus focus on AAP as the 
measure to predict (while most of the papers from the literature 
consider AP [11, 14, 20]).

Moreover, we also combine the individual EEwRJ methods. So far 
the EEwRJ methods have been proposed individually, without any 
combination. Instead, we train a Machine Learning (ML) system 
that, on the basis of the TREC data of the previous years, learns a 
model that is then applied on a subsequent year TREC test collection 
(previous years test collections are the training set and the new 
test collection is then the test set). In other terms, the combination 
function, or the ML model, is the one that, on the basis of historical 
data, provides the best prediction of real AAP values given the 
individual EEwRJ outcomes.

Table 1: Name, acronym, and parameters used for EEwRJ.

Citation Acronym Name Pool depth

Soboro" et al. [15] SNC Soboro" et al. 100

Wu and Crestani [18] WUCv0 Basic 100

WUCv1 Version 1 100

WUCv2 Version 2 100

WUCv3 Version 3 100

WUCv4 Version 4 100

Aslam and Savell [1] AS Aslam & Savell 100

Nuray and Can [10] NC-NRP Normal Rank Position 30

NC-NB Normal Borda 30

NC-NC Normal Condorcet 30

NC-BRP Bias Rank Position 30

NC-BB Bias Borda 30

NC-BC Bias Condorcet 30

Spoerri [16] SPO-S Single 100

SPO-A All Five 100

SPO-SA Single Minus All Five 100

Sakai and Lin [12] SL Sakai and Lin 30

Table 2: Short description of the 10 TREC collections used.

Acron. Collections Corpus Size Topics

T6 TREC6 Adhoc ROBUST 528K 50 (301 – 350)

T7 TREC7 Adhoc ROBUST 528K 50 (351 – 400)

T01 TREC2001 Adhoc WT10G 1.6M 50 (501 – 550)

R04 Robust 2004 ROBUST 528K 249 (301 – 450,

601 – 700)

R05 Robust 2005 ROBUST 528K 50 (301 – 700)

Tb04 Terabyte 2004 GOV2 25M 49 (701 – 750)

Tb05 Terabyte 2005 GOV2 25M 50 (751 – 800)

Tb06 Terabyte 2006 GOV2 25M 150 (701 – 850)

W13 Web Track 2013 ClueWeb12B 52M 50 (201 – 250)

W14 Web Track 2014 ClueWeb12B 52M 50 (250 – 300)

We use six ML algorithms [17]: Linear Regression (LR), M5P

model tree (M5P), Random Forest (RF), Neural Networks (NN), Sup-

port Vector Machine with Polynomial kernel (SVM_Poly), and SVM

with Radial Basis Function Kernel (SVM_RBF). These, in addition

to 17 state-of-the-art EEwRJ individual methods from the previous

work presented in Section 2 and summarized in Table 1, sum up to

23 methods used in the following experiments.

4 EXPERIMENTS AND RESULTS

Table 2 shows the ten TREC test collections used in our experiment.

For a $rst evaluation of the predictive power of EEwRJ features,

we considered each of the systems that participated to the cor-

responding TREC edition, predicted its AP using any individual

features and then calculated the predicted AAP (by averaging the

results across system per topic). Finally, we calculated the Pearson

correlation between the predicted AAP and the actual AAP.



(a) QF vs actual AAP (b) AS vs actual AAP

Figure 1: TREC7 Adhoc collection. Pearson correlation be-

tweenAAP and (a) QF [20], (b) AS [1].While dots correspond

to actual and predicted AAP for individual topics, the cone

represents the con!dence interval.

As for comparison, we calculated also the Pearson correlation,

between the actual AAP and the value obtained when using state of

the art QPP. As baselines to compare with, we consider the state of

the art QPP approaches such as Unnormalized Query Commitment

(UQC) [14], Query Feedback (QF) [20], Weighted Information Gain

(WIG) [20], and Clarity [4].

To calculate the value of the state of the art QPP post-retrieval

features, we used Language modeling. Thus while EEwRJ predictors

are calculated for any (topic/participant system) pairs, QPP features

are calculated only once for each topic.

For comparison purposes, these QPP approaches are also com-

bined using machine learning algorithms including the same al-

gorithms as previously mentioned (LR, M5P, RF, and SVM_RBF);

these predictors are later referred to as ML QPP. The algorithms

are trained to learn AAP and thus also predict AAP.

We found that EEwRJ individual features have a higher corre-

lation with AAP than QPP individual features. As for example,

Figure 1 reports the predicted values and actual AAP we obtained

for TREC7 collection (a) QF, one of the best state of the art QPP

feature (correlation value 0.599) and (b) ASLAM method, one of

the EEwRJ (correlation value 0.744). The plots and the correlation

values con$rm that the AS method is a better predictor than QF.

To turn to a more systematic and complete analysis, Table 3

reports Pearson correlation of the predicted AAP values with the

actual AAP of the participants’ system, for each collection.

In the $rst two parts, on the top of the table, we report the state

of the art baseline query performance predictors when calculated

as previously mentioned, and their correlation with AAP. We report

$rst individual predictors, second their combination using machine

learning algorithms with leave-one-query-out cross-validation on

each collection. Leave-one-query-out cross-validation is widely

used in the $eld as in [14, 20] .

The following two parts, on the bottom of the table, report

the Pearson correlation values between the predicted AAP by the

EEwRJ methods and the actual AAP 2. First, the correlation values

for the EEwRJ individual features (listed in Table 1) are reported

then the ones obtained when using the six ML based combination

2AAP is obtained averaging for each topic the AP values of all systems which partici-
pated in a given TREC collection

Table 3: Pearson correlation, over the ten TREC collections,

between the actual AAP and the predicted AAP by the indi-

vidual QPP, ML QPP, individual EEwRJ, and ML EEwRJ pre-

dictors. “‡", “†", and “*" stand for p-value < 0.001, < 0.01, and

< 0.05, respectively. Values in bold are the largest in each

part of the table for each collection.

Method T6 T7 T01 R04 R05 Tb04 Tb05 Tb06 W13 W14

QPP

UQC .606‡ .493‡ .214 .521‡ .208 .161 .299* .296‡ .102 .342*

WIG .435† .281* .197 .356‡ .142 .223 .311* .285‡ .487‡ .422†

QF .368† .599‡ .107 .409‡ .268 .454† .337*.392‡ .009 -.121

Clarity .415† .587‡ .316* .476‡ .164 .251 .121 .136 -.430† -.221

ML QPP

LR .490‡ .538‡ .152 .569‡ -.051 .251 .162 .382‡ .517‡ .490‡

M5P .529‡ .578‡ -.077 .548‡ .049 .327* .155 .351‡ .538‡ .605‡

RF .519‡ .597‡ .000 .549‡ .076 .195 .227 .312‡ .423† .281*

SVM-RBF .453‡ .671‡ .003 .501‡ .060 .268 .285*.289‡ .308* .082

EEwRJ

SNC .268 .269 .253 .134* .210 .590‡ .405† .488‡ .460‡ .656‡

WUCv0 .156 -.068 .317* .150* .275 .673‡ .465‡ .474‡ .364† .263

WUCV1 .180 -.039 .331* .163* .287* .687‡ .477‡ .492‡ .372† .293*

WUCV2 .175 -.023 .321* .160* .277 .665‡ .481‡ .478‡ .374† .280*

WUCV3 .205 .020 .332* .176† .290* .681‡ .493‡ .495‡ .381† .317*

WUCV4 .159 .182 -.066 .0430 -.001 -.178 .238 -.069 -.010 -.089

AS .671‡ .744‡ .647‡ .683‡ .466‡ .460‡ .476‡ .474‡ .460‡ .601‡

NC-NRP -.314*-.0160 .395† .018 .261 .464‡ .282* .139 .366† .261

NC-NB .384† .311* .484‡ .398‡ .379† .765‡ .610‡ .592‡ .430† .542‡

NC-NC .399† .341* .453‡ .402‡ .373† .761‡ .603‡ .585‡ .420† .590‡

NC-BRP .358* .287* .448† .415‡ .352* .761‡ .581‡ .533‡ .411† .608‡

NC-BB .344* .281* .473‡ .389‡ .357* .761‡ .585‡ .534‡ .437† .590‡

NC-BC .513‡ .597‡ .584‡ .566‡ .464‡ .636‡ .550‡ .525‡ .446† .657‡

SPO-S .244 .112 .360* .181† .259 .625‡ .509‡ .501‡ .369† .346*

SPO-A .288* .243 .308* .231‡ .336* .744‡ .504‡ .540‡ .245 .366†

SPO-SA .265 .186 .332* .219‡ .313* .697‡ .518‡ .534‡ .316* .361†

SL .504‡ .475‡ .516‡ .502‡ .41† .712‡ .620‡ .58‡ .419† .629‡

ML EEwRJ

LR .668‡ .761‡ .636‡ .607‡ .457‡ .644‡ .555‡ .568‡ .439† .201

M5P .648‡ .693‡ .605‡ .565‡ .474‡ .602‡ .407† .585‡ .429† .327*

NET .582‡ .738‡ .634‡ .509‡ .479‡ .557‡ .367† .596‡ .440† .159

RF .621‡ .685‡ .634‡ .651‡ .519‡ .578‡ .509‡ .589‡ .408† .187

SVM_Poly .656‡ .760‡ .620‡ .614‡ .465‡ .662‡ .549‡ .583‡ .448† .204

SVM_RBF .642‡ .752‡ .626‡ .613‡ .465‡ .680‡ .546‡ .575‡ .441† .207

methods. To help to understand these data, Figure 2 shows a graph-

ical comparison of the Pearson correlation. The $gure contains a

series of box-plots for the individual EEwRJ methods and for the

ML combination of the EEwRJ methods, as well as a series of point-

plots for the individual QPP features, and for the ML combination

of the QPP features, i.e., our baselines.

We can draw several conclusions from this $gure and the data

from the Table 3.

When comparing individual and combined baseline (QPP) pre-

dictors in the top part of the Table 3, we can see that in many cases

the combination is better than individual features, although for

some collections (e.g. TREC2001) the combination fails and single

features are better.
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Figure 2: Comparison over the 10 collections of Pearson

correlation between the actual AAP and the predicted AAP

by the individual QPP, ML QPP, individual EEwRJ, and ML

EEwRJ predictors. Boxplots are for EEwRJ while dots are for

QPP.

When considering individual features, EEwRJ (speci$cally AS

method) outperforms QPP baseline. When combining features, the

method we propose based on EEwRJ also outperforms the combi-

nation of QPP. For example, the best correlation when combining

EEwRJ methods is obtained for TREC7 where our combined meth-

ods get a correlation from .685 to .761 while ML QPP correlations

are from .538 to .671, depending on the ML algorithm.

Turning to comparing individual and combined EEwRJ methods,

we can clearly see that overall the combination of EEwRJ methods

(ML EEwRJ) is better than the EEwRJ considered individually, al-

though there are a few individual methods that outperform the ML

combinations.

For all but one collection (W13) the best EEwRJ individualmethod

outperforms all the baselines, and in all but two cases (W13 and

W14) the EEwRJ ML methods outperform all the baselines as well.

We also can see that apart for W14 collection, all the correlations

are statistically signi$cant which is not the case for QPP approaches

that correlate only for some of the collections. Finally, the correla-

tion values are much higher than any reported correlation when

considering AP to be predicted [6, 11, 14].

Clearly, EEwRJ is an e"ective method for QPP: both as an indi-

vidual predictor and when combined our method outperforms state

of the art.

5 CONCLUSIONS AND FUTUREWORK

In this paper, we proposed to apply the methods to e"ectiveness

evaluation without relevance judgments (EEwRJ) to the problem of

query performance prediction (QPP). Our results clearly show that 
EEwRJ is an e"ective approach to QPP. If the AAP of a TREC topic 
is a reliable measure of query ease/di#culty, as it seems reasonable 
to assume, then it is possible to $nd speci$c EEwRJ methods (both 
individual and combined by means of ML) that outperform state-
of-the-art query performance predictors.

In the future we plan to add more test collections to the analysis, 
for generality and also for a better understanding of the variation 
across datasets (e.g., W13 and W14 look di"erent from the other 
collections). We will also take into account di"erent correlation 
measures and e"ectiveness metrics. More in general, we believe 
that QPP and EEwRJ are “two sides of the same coin”. Our approach 
clearly shows that they are related, and we plan in the future to 
explore and exploit their relationships in a complete way.
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