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WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNELS

PHILIPPE CHONE, NATHAEL GOZLAN AND FRANCIS KRAMARZ

ABsTrRACT. We introduce a new variant of the weak optimal transport problem where mass is
distributed from one space to the other through unnormalized kernels. We give sufficient conditions
for primal attainment and prove a dual formula for this transport problem. We also obtain dual
attainment conditions for some specific cost functions. As a byproduct we obtain a transport
characterization of the stochastic order defined by convex positively 1-homogenous functions, in the
spirit of Strassen theorem for convex domination.

INTRODUCTION

The aim of this paper is to study the mathematical aspects of a new variant of the optimal transport
problem, related to the weak optimal transport problem introduced in [23], that has been recently
considered by the first and third authors in [15] in an economic context.

In what follows X and ) are compact metrizable spaces, P(X) (resp. P(})) denotes the set of
all Borel probability measures on X (resp. V) and p € P(X) and v € P()) are fixed probability
measures.

In the usual Monge-Kantorovich transport problem, given a cost function w : X x ) — R, assumed
to be measurable and bounded from below, the optimal transport cost between p and v is defined as

1) Tl = _int [ wle.g) n(dody)

well(p,v)

where TI(u, v) denotes the set of all couplings between p and v, that is to say the set of all probability
measures 7 on X X ) such that the X'-marginal of 7 is u and the Y-marginal of 7 is v. We refer to
the textbooks [34, 35, 18, 31| for a panorama of applications.

To motivate the introduction of weak optimal transport, recall that any coupling 7 € II(u, v) can
be disintegrated as follows
m(dwdy) = p(dx)p®(dy),
where p = (p®)zex is a probability kernel from X to ) (which is p almost surely unique). In an
informal way, for all z € X the probability p* € P()) contains all the information about how the mass
taken at x is distributed over ). Using this notation, one sees in particular that

ﬂW(way) m(dwdy) = f (JW(%y)W(dy)) p(dz),

which highlights the fact that in the Monge-Kantorovich optimal transport problem, the mass transfers
from X to Y are penalized only through their mean costs {w(z,y)p*(dy), © € X. In contrast, the
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2 PHILIPPE CHONE, NATHAEL GOZLAN AND FRANCIS KRAMARZ

Weak Optimal Transport (WOT) framework allows to consider more general penalizations on the
probability kernel p. Given a cost function ¢ : X x P()) — R assumed to be measurable and bounded
from below, the weak optimal transport cost between p and v is defined as

2) Tww)= nt | elw)(da),

PEP (11,v)
where P(u, v) denotes the set of all probability kernels p = (p™),ex transporting p onto v in the sense
that

yp(dy) = f P (dy) p(dz) = v(dy).

This definition, which finds its origin in the works by Marton [29, 30] on transport-entropy inequalities
and their relations to the concentration of measure phenomenon [21, 26], stricly extends the setting
of the Monge-Kantorovich transport problem (which corresponds to ¢(z,p) = §w(z,y) p(dy), = € X,
p € P(Y)). It turns out that the WOT setting includes several interesting variants of the optimal
transport problem such as the Schrédinger / entropic regularized transport problem [27, 16, 10] or
the martingale transport problem [3, 19, 9]. General tools such as a Kantorovich type duality formula
[23, 2, 4] and a cyclical monotonicity criterium [20, 4] have been developed in the framework of
WOT. We refer to the nice survey paper [(] for a general panorama of recent results and applications
of WOT. Among the new WOT problems recently considered, the class of barycentric transport
problems attracted a particular attention. These barycentric transport problems correspond to cost
functions of the form

o) =0 (o= [unian).  wexpero)

with X,Y < R? and 6 : R x R? — R a convex function bounded from below. The introduction of
these barycentric optimal transport costs was first motivated by their applications in concentration
of measure [23, 22]. In dimension 1 and for a general convex function 6, the structure of optimal
plans has been settled in [22, 1, 5]. For the quadratic cost function 6 = | - % on the Euclidean space
(R4, || - |2) with d > 1, the structure of optimal plans has been described in [20, 4], and yields a new
characterization of the couples (u,v) for which the Brenier transport map [L1, 12] is a contraction
and to a new proof [17] of the Caffarelli contraction theorem [13]. These barycentric cost functions
also recently found applications in machine learning [14].

The new variant of the WOT problem studied in the present paper consists in relaxing the assump-
tion that p = (p*).ex appearing in (2) is a probability kernel. To state a formal definition, we need to
introduce additional notions and notations. We will denote by M())) the set of all finite nonnegative
measures on ). This set will always be equipped with the usual weak topology, and with the cylindric
o-field. A nonnegative kernel from X to ) is a collection ¢ = (¢*)zex of elements of M()) such that
the map X — R, : 2 — ¢®(A) is measurable for all Borel set A < Y. Given u € P(X) and v € P())
and a measurable cost function ¢ : X x M()) — R such that there exist ro,r; € R such that

(LB) c(z,m) =ro +rim(Y), Vr e X,Vme M(Y),

we consider

3) Luv) = _inf | cle,q®) u(da),
q€Q(u,v)

where Q(u,v) denotes the set of all nonnegative kernels from X to ) such that pug = v, where as
above pg(dy) = §¢*(dy) p(dz).

Remark 0.1. The same transport problem can be stated for measures i, v with different masses. It
1s not difficult to see that this unbalanced problem can be reduced to the one above simply by redefining
the cost function. So in all the paper, we will stick to the balanced case.
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The transport problem (3) has been introduced in [15] with the following economic motivation.
The space X represents firms’ technologies in a given industry and the space ) represents workers’
skills. The probability measures p and v represent the distributions of firms and of workers respec-
tively. A firm of type @ € X’ that recruits a distribution of workers m € M()) produces output
given by —c(x,m). The problem (3) consists in maximizing total output in the industry over all
possible assignments of workers to firms. More precisely, a nonnegative kernel g € Q(u, V) represents
a particular hiring policy, with ¢*(dy) giving the distribution of workers hired by firms of type x € X'.
The condition pg = v expresses that all workers are employed. The mass N(z) := ¢”())) represents
the total number of workers hired by a firm x € X, i.e., the size of firms with technology z. Impor-
tantly, these firms’ sizes are an outcome of the optimization process, whereas OT models restrict to
probability kernels and hence cannot accommodate this issue.

The main difficulty in dealing with the transport problem (3) is that, unlike Problem (2), assuming
that the cost function is jointly lower semicontinuous and convex in its second variable is not enough to
ensure existence of a minimizer. To obtain existence of a minimizer, one needs to introduce additional
conditions :

e We will say that the cost function ¢ : X x M(Y) — R satisfies Assumption (A) if there exists
a family of continuous functions (ay)r=0 on X and a family of continuous functions (by)r=0
on X x Y such that

(A) c(xz,m) =sup{fbk(x,y)m(dy) +ak(x)} , xe X, me M(D).
k=0
Note that this condition implies in particular that c is jointly lower semicontinuous, convex
with respect its second variable and satisfies (LB).
e We will say that ¢ satisfies Assumption (B) if
A
(B) M — 4w,  VzeX, Yme MY)\{0}).

A—00
Let us now present the main results of this paper.

Our first main contribution, is a primal attainment result for the transport problem (3). Under
Assumptions (A) and (B), we show that for all probability measures p € P(X) and v € P()), there
exists a nonnegative kernel ¢ € Q(u, ) such that Z.(u,v) = {c(x, ¢*) p(dz) (see Theorem 2.2). In a
nutshell, the role of Assumption (B) is to avoid mass accumulation on sets of 1 measure 0. Note that
existence of solutions can also hold under other types of conditions on ¢ (see in particular Theorem
5.4 dealing with nonpositive cost functions ¢ having a moderate growth).

Our second main result is a Kantorovich type duality formula for the transport problem (3). Under
assumptions (A) and (B), for all probability measures p € P(X) and v € P(}), it holds

Ze(p,v) = sup Uch(:v)u(d:v)—ff(y)V(dy)},

feCu(Y)
where Cp()) denotes the set of (bounded) continuous functions on ) and the operator K. is defined
by
K.f(x) = infy){ffderc(x,m)}, xeX.

meM(

Note that, at least formally, if one allows ¢ to take the value +00 and ¢(-,m) = +00 when m is not
of mass 1, then Z.(u,v) = T.(11, ) and one recovers the duality formula for WOT [4]. As we shall see
in Theorem 3.2, the duality formula for Z. actually holds under a more general condition (Approx)
which is in particular implied by Assumption (B).
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The third main contribution of this paper is a general investigation of transport problems involving
cost functions of the following form

4) c(w,m)=F(x,Jydm), veX,me M)

where ) is a compact subset of R? whose conical hull is denoted by Z and F : X x Z — R is
convex with respect to its second variable. Such cost functions will be called conical in all the paper.
This name comes from the fact that cost functions of this type are naturally related to positively
1-homogenous conver functions (whose epigraphs are cones). Recall that a function ¢ : R — R is
said positively 1-homogenous (or positively homogenous of degree 1) if ¢(tx) = ty(x) for all t = 0 and
x € R?. This link between conical cost functions and positively 1-homogenous convex appears in the
duality formula for the transport problem (3). More precisely, we will prove that if ¢ is a conical cost
function satisfying (A) and such that the convex hull of the support of v does not contain 0, then,
under some mild integrability condition on F', the following reduced duality formula holds

(5) Z.(yv) = sup { [ @rota) ) - [ otw) u(dy>} |

where ¢ runs over the set of positively 1-homogenous convex functions and the operator @ r is defined
by

Qre(z) = ;22{50(2) + F(z,2)}, reX.

Moreover, under the same assumptions, we will show the existence of dual optimizers ; see Theorem
5.1 for a precise statement. These conical cost functions are precisely those that were considered in
[15] and motivated the present paper. In the economic model of [15], a dual optimizer ¢ represents a
“wage schedule” (¢(y) is the wage paid to workers with skills y), while Q pe(x) represents the opposite
of the profit earned by firms with technology z (the profit is the produced output —F(z, z) minus the
firm’s wage bill ¢(z), with z being the sum of the skills of firm 2’ employees).

A byproduct of our primal attainment and duality results for conical cost functions is a seemingly
new variant of the Strassen’s theorem [33], that we shall now present. Recall that if y, v are probability
measures on R? having finite first moments, one says that x is dominated by v in the convex order,
which is denoted by p <. v, if

(6) deu<ffdy

for all convex function f : R — R. Strassen’s theorem provides the following useful probabilistic
characterization of convex order : u <. v if and only if there exists a couple of random variables
(X0, X1) such that Xo ~ p, X7 ~ v and (Xo, X1) is a martingale :

E[Xl | XQ] = XQ a.s.

Note that if 7(dzdy) = p(dx)p®(dy) denotes the law of (X, X1), the martingale condition is equivalent
to the following centering condition on the probability kernel p : for p almost all x,

fypw(dy) =z

Our generalization of Strassen’s theorem deals with a weaker variant of the convex order defined
as follows : if (6) holds for all positively 1-homogenous convex functions f, we will say that pu is
dominated by v in the positively 1-homogenous convex order and write u <pp v. As we will see in
Theorem 5.2, if v is a compactly supported probability measure on R? such that the convex hull of
the support of v does not contain 0, then p <pp. v if and only if there exists a nonnegative kernel
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ot

q € Q(u,v) such that, for u almost all z,

(7) j y g (dy) = .

See Theorem 5.2 for the case where 0 belongs to the convex hull of the support of p. Let us briefly
explain how this Strassen type result is connected to conical costs. Consider u,r two compactly
supported probability measures on R? and denote by ) the support of v. For p > 1, the conical cost

function
- J ydm

where | - | is an arbitrary norm on R? satisfies Assumption (B) if and only if 0 does not belong to
the convex hull of ). According to our primal existence result, we thus have Z.(u,v) = 0 if and only
if there is some ¢ € Q(u,v) satisfying (7). Using the dual formulation (5), one can then show with
some extra work, that yu <pp. v implies that Z.(u, ) = 0, thus completing the proof. In our proof,
we actually follow a slightly different route, since we use the cost ¢ above with p = 1 which will allow
us to relax the assumption on the support of v.

p

’ xeRd,meM()}),

c(z,m) = |z

The new version of Strassen’s theorem will also enable us to describe optimal transport plans for
conical transport costs, in the spirit of [20]. As we will see in Theorem 5.6, as soon a conical cost
function ¢ of the form (4) satisfies Assumption (A) and the convex hull of the support of v does not
contain 0, it holds
(8) Ic(uv I/) = inf TF(N ’7)

'Y\phc

where T denotes the Monge-Kantorovich optimal transport cost associated to the cost function F":

Tr (1, 7y) inf f F(x,2)n(dzdz), Ve P(X),Vy e P(2).
weH ()

Moreover, if ¢ is a kernel minimizer for Z.(u,v), then the map S(z) = {y¢*(dy), x € X, does not
depend on the particular choice of the optimizer ¢ and provides an optlmal transport for the cost Tp
between £ and a probability measure 7 <. v that achieves the infimum in (8). The map S can also
be related to dual optimizers (see Theorem 5.7 and Corollary 5.1). In the particular case where X is
a compact subset of R? and F(z, z) = |z — 2|3, z,2 € R%, with | - | the standard Euclidean norm,
more can be said about the form of the transport map S. Namely, we show in Theorem 5.8 that there
exists some closed convex set C' such that for 1 almost every z, it holds S(x) = x — po(z) where pe
is the orthogonal projection onto the set C.

Let us point out that during the preparation of this work, we learned about the recent paper [25],
devoted to the study of

inf Tr(p,v),

y<av
where F : X x R? — R, is some lower semicontinuous function, A is some cone of continuous
functions on R? and v <4 v means that § fdy < § fdv for all f e A. A general duality formula has
been obtained in [25] for these distance functionals (called backward projection there) : under good
assumptions, it holds

inf Tr(p,v) = sup f Qrepdu — f pdv,
ysav peA

with Qr defined as above (with Z = R%). We refer to [25, Theorem 4.3] for a precise statement.
Applying this result to the class A of all convex positively 1-homogenous functions together with (8),
gives back the duality formula (5). Note that the two papers complement each other, since the identity
(8) crucially requires the variant of Strassen theorem for the convex positively 1-homogenous order
proved here. It would be very interesting to see if other forward projections admit representations in
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terms of weak transport costs 7. or Z. for some special classes of cost functions ¢, but this question
will not be considered here.

In the conical case described above, a basic feature of the corresponding transport problem is
that it admits in general more than one solution. This non-uniqueness of solutions is no longer true
for other class of cost functions, also considered in [15], that we shall now describe. Suppose that
c: X x M(Y) — R is given by

) (e, m) = G ( | F(x,y>m<dy>) L seXime M)

where F: X x Y — (0,00) is some continuous function and G : [0,0) — R is a convex differentiable
function. We establish in Theorem 4.2, that when X, ) are compact subsets of R, u has no atoms, G
is monotonic and F : R? — R is twice continuously differentiable and satisfies the following condition

clnF

oxdy #0

then the transport problem (3) associated to a cost function of the form (9) admits at most one kernel
solution (and exactly one whenever G’'(x) — +o as * — o for instance). Moreover, this kernel
solution is of the following form

7" (dy) = N ()07, (dy),

for ;o almost every z € X, where N is a density with respect to  and T is a monotonic function. This
uniqueness result is obtained as a consequence of a general result of independent interest establishing a
relation between the support of primal solutions and dual optimizers (see Proposition 4.1 for details).

The paper is organized as follows. In Section 1, we introduce another formulation of the transport
problem (3) involving couplings 7w with a first marginal absolutely continuous with respect to px and
second marginal equal to v. This class of couplings being not closed in general, primal attainment
is not always true (when it holds we call such coupling a strong solution). To compensate this non-
attainment issue, we introduce the notion of weak solution. These weak solutions are defined as
limit points of minimizing sequences, and as such always exist. We conclude Section 1 by giving
several explicit examples admitting only strong solutions or only weak (but not strong) solutions or
solutions of both types. In Section 2, we show that under good assumptions, weak solutions can be
interpreted as couplings minimizing a certain functional denoted I* which is lower semicontinuous
on its domain of definition. One of the main result of this section is Theorem 2.2 which shows that
under Assumption (B) all weak solutions are strong. The main result of Section 3, Theorem 3.2,
provides the dual formulation of the transport problem already presented above. Section 4 deals with
cost functions of the form (9). We prove in Theorem 4.1 that the dual problem admits at least one
solution. Then we establish in Proposition 4.1 a general link between supports of primal solutions and
this dual optimizer, on which relies the proof of the uniqueness result (Theorem 4.2) presented above.
Section 5 is entirely devoted to the study of the transport problem (3) for conical cost functions. We
prove in particular in Theorem 5.1 duality and dual attainment under conditions that are weaker than
in Theorem 3.2. This section also contains the Strassen type result presented above characterizing
the positively 1-homogenous convex order (Theorem 5.2) and, as a corollary, the identity (8). We
also prove in Theorem 5.4 a primal attainment result for a special class of nonpositive conical cost
functions. Finally, the paper ends with an Appendix containing the proofs of some technical results
of Section 2.



WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNELS 7

CONTENTS
Introduction 1
1. A new transport problem 7
1.1. Definitions, equivalent formulation and first properties 7
1.2. Examples 10
2. Weak solutions as minimizers of an extended functional 14
2.1.  Closure of TI(« p, V) 14
2.2. Weak solutions as minimizers of I/ 17
2.3. A criterion for the existence of strong solutions 18
3. Dual formulations 19
4. Monotonicity properties and uniqueness of primal solutions 21
5. The particular case of conical cost functions 26
5.1. Framework 26
5.2. Duality and dual attainment for conical cost functions 27
5.3. A new variant of Strassen Theorem 30
5.4. Study of a particular class of nonpositive conical transport problems 34
5.5.  Structure of solutions for conical cost functions 36
Appendix 43
Appendix A. Proofs of some technical results 43
A.1. Proof of Proposition 2.1 43
A.2. Proof of Lemma 2.4 45
References 47

1. A NEW TRANSPORT PROBLEM

In this section, we first introduce an alternative equivalent formulation of the transport problem
(3) which involves couplings and is thus closer to the usual optimal transport framework. Then we
introduce the notion of weak solutions which compensate the fact that the transport problem (3) does
not always admit minimizers. Finally, we study several explicit examples of transport problem (3) in
dimension one.

1.1. Definitions, equivalent formulation and first properties. First let us introduce some no-
tations. If E is some Polish metric space, we will denote by P(FE) the set of all Borel probability
measures on E and by M(E) (resp. M (E)) the set of all nonnegative finite measures (resp. finite
signed measures) on E. The space M(F) will be equipped with the topology of weak convergence,
that is to say the coarsest topology that makes the maps M (E) — R : m +— § f dm continuous for
all f € C,(F), the space of all bounded continuous functions on E.
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In all what follows, X and ) will be two compact metrizable spaces and ¢ : X x M()) — R will be
a cost function which will always be assumed to be convex with respect to its second variable, jointly
lower semicontinuous on X x M(Y) and to satisfy the lower bound (LB). Given u € P(X), for any
nonnegative kernel ¢ from X to ) such that ug(Y) = 1 we will set

1la) = [ elo.”) n(da).
With this notation, the transport problem (3) can be restated as

(10) Ze(p,v) = inf 1F[q],
q€Q(p,v)

where we recall that Q(u, ) denotes the set of all nonnegative kernels ¢ from X to ) such that pg = v.
We will say that § € Q(u,v) is a kernel solution to the transport problem (10) if

To(u,v) = f e(.7°) u(d).

A first basic observation is that Z. is jointly convex.
Proposition 1.1. The functional P(X) x P(Y) = R u {400} : (i, v) — Z.(p,v) is conver.
Proof. Take pg, p1 € P(X), vo,v1 € P(Y) and for ¢ €]0, 1] let iy = (1—1t)po+tp1 and vy = (1—t)vg+tv.
It will be convenient to work with a reference probability measure m such that p; « m for all ¢ € [0, 1].
One can take for instance m = fi1 /o, since p1/9(A) = 0 implies that 1o(A) = p1(A) = 0 which implies

that p(A) = 0. Let go and ¢1 be nonnegative kernels such that pogo = no and p1g1 = n1. Let ¢ the
nonnegative kernel defined by

(1 —t)ho(x) . thy(z)
1— Dho(z) 0+ @) ) T @) - @)

where hg and hy are the densities of ug, u1 with respect to m. We have
pealdy) = [ g (dppn(do) = [ 101~ Oho(a)ai (dy) + ths (o) ()] m(do)
= (1 —t)w(dy) + tr1(dy) = vi(dy),
hence p.q; = 4. By convexity of ¢(z, -), it holds

| vty ) < [ (1= Ohata)ete.ai) + ths @)eta, ) m(do)

= (1=1) [ e qp) pnld) + t [ cla,af) (o)

The result then follows by minimizing over gg and ¢;. g

q (dy) = ( qi (dy),

Let us now derive an alternative equivalent formulation of the transport problem (10) that is closer
to the classical viewpoint in optimal transport. We will denote by II(n,v) the set of all transport
plans between two probability measures n € P(X) and v € P(Y), that is to say the set of probability
measures on X x ) having n and v as marginals. For any p € P(X), we will consider

M« p,v) = | JT(pv)  and  («<p )= ) (< pv)
N veP(Y)

where 1 « 1 means that 7 is absolutely continuous with respect to p. In other words, II(« p, - ) is the
set of all probability measures on X’ x ) whose first marginal is absolutely continuous with respect to
. Observe that if ¢ € Q(u,v) then the function N defined by N(z) = ¢®(}) is such that

JN(az)u(da:) ~- 1



WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNELS 9

Therefore, N is a probability density with respect to u. Moreover, 7(dxdy) = u(dx)q®(dy) is a trans-
port plan between n(dz) := N(z) u(dz) and v(dy). Conversely, if n € P(X) is absolutely continuous
with respect to p and 7 € II(n, v) with 7(dzdy) = n(dz)p®(dy), then the nonnegative kernel ¢ defined
by ¢*(dy) = Z—Z(:zr)pm(dy), x € X, belongs to Q(u,v). With a slight abuse of notation, let us also
denote by I* the function defined on TI(« y, -) by

) = [ (2 ) wido), meTi(e )

where 7y is the first marginal of 7 and p is the probability kernel such that 7(dzdy) = 71 (dx)p® (dy).
With this notation, it thus holds

11 T.(u,v) = inf  I"[x].
(11) (wv) = it I¢[r]

Definition 1.1 (Strong solutions). Let pn € P(X) and v € P(Y) ; a probability measure T € P(X x V)
is called a strong solution of the transport problem (10) if ™ € II(« p,v) and Z.(u,v) = IH[7].

Note that if g is a kernel solution to the transport problem (10) then the transport plan 7(dzdy) =
w(dx)q* (dy) € TI(« p,v) is a strong solution of the transport problem (10) and, conversely, any strong
solution defines a kernel solution.

Since the set II(« p,v) is not closed in general, the infimum in the transport problem (10) is
not always attained and strong solutions may not always exist. This technical issue motivates the
introduction of weak solutions.

Definition 1.2 (Weak solutions). Let € P(X) and v e P(Y) ; a probability measure T € P(X x Y)
is called a weak solution of the transport problem (10) if there exists a sequence of transport plans
7 € II(K p,v) such that m, — 7 for the weak topology and I*[m,] — Z.(u,v).

Of course, a strong solution is also a weak solution. Under good conditions on the cost function c,
weak solutions will be interpreted in Section 2.2 as solutions of a related minimization problem.
Weak solutions always exist as shows the following elementary result.

Proposition 1.2. For any u € P(X) and v € P(Y), the transport problem (10) admits at least one
weak solution.

Proof. Let (m,)nen be a minimizing sequence in II(« w,v), that is to say that lim, o I*[m,] =
Z.(u,v). Since X x Y is compact, the space P(X x }) is also compact. Therefore, the sequence
(7 )nen admits at least one converging subsequence, and any limit point 7 is a weak solution of the
transport problem (10). O

At least in the simple case when X is a finite set, strong solutions always exist.
Theorem 1.1. Suppose that X is a finite then, for any p€ P(X) and v € P(Y), every weak solution
of the transport problem (10) is a strong solution.

We will need the following lemma.
Lemma 1.1. If X is a finite set, then for any p € P(X) the set II(K p, -) is a closed subset of

P(X x Y) and the functional TI(< p, -) — R : 7w — I#[r] is lower semicontinuous.

Proof. Fix p € P(X). The fact that TI(« p, -) is a closed subset of P(X x ) is easy to see and
left to the reader. Let (m,)nen be a sequence of TI(« pu, -) converging to some 7. Since IT(« p, )
is closed, it follows that = belongs to II(« u, -). Denote by 7, (resp. 1) the first marginal of m,
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(resp. 7). For all z € X such that n,(z) > 0, 72(dy) = ””imi(dy If n,(z) = 0, set 7% (dy) = v(dy)

(say). Then n, — n and d"”( ) — g—Z(x) for all € X such that p(x) > 0. Also, it is clear that

7 (dy) = melody) ﬂ(:(j)y) = 7%(dy) as n — oo, for all z such that n(z) > 0. So, using the lower

semicontinuri]‘:}gmgf ¢, one gets
lim inf I#[m,] = lim inf Z ¢ (x, %(a:)wm) w(z) = Z liminf ¢ <x, dﬂ(x)ﬂ'z) w(x)
e T gex dp ! vex " dp "’
> 3 (= ) we) = 2,
which completes the proof. 0

Proof of Theorem 1.1. Let  be some weak solution of the transport problem (10) and (7, )nen be a
minimizing sequence converging to w. Since X is finite, it follows from Lemma 1.1 that II(« p,v) is
closed, and so 7 € TI(« p, ). According to Lemma 1.1, it follows that Z.(u, v) = iminf, o [#[m,] =

I#[~x], and so 7 is a strong solution. O

1.2. Examples. We study below particular cases of the transport problem (10) and we describe
their set of solutions. These explicit examples show that all the possibility in terms of uniqueness or
non-uniqueness or existence of strong solutions can occur.

1.2.1. An exzample without strong solution. Suppose that p is the uniform measure on X = [0, 1] and
v is an arbitrary probability measure on Y = [2,3] and define

co.m) = [ o= yPm(dy), w01, me M)
Then,
Z.(u.v) = it [ [y~ oPp(do)g® @),
Since for all z € [0,1] and y € [2,3], |y — z|*> = |y — 1|? it holds

3
v) >L v — 112 v(dy).

This lower bound is not reached. Indeed, suppose by contradiction that there is some ¢ € Q(u, V)
such that ({|y — z|*u(dz)q”(dy) = §|y — 1|> v(dy). Then, denoting by m(dzdy) = p(dz)q”(dy) the
associated transport plan, it would hold 7 ({1} x [2,3]) = 1 and so 7 = 6; ® v and 7 = ;. Since &,
is not absolutely continuous with respect to p this is not possible. So this problem does not admit
strong solutions.

On the other hand, define for all n > 2, 7, (dzdy) = 0, (dz)®@v(dy), with n,, the uniform probability
measure on [1 — 1/n,1]. The associated kernel is given by

QZ(dy) = nl[l—l/n,l] (I)V(dy)v TE [Oa 1]5

[ vzt - f f Iy — 2 Pg2 (dy)p(da) = f j |y eldavtay)

< f ly— (1= 1/n) 2 w(dy) — j v — 1 v(dy)

as n — oo. This shows that Z.(u, v Sz ly — 1) v(dy) and that m = §; ® v is a weak solution of this
transport problem.

and it holds
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1.2.2. An example with a unique strong solution. In this paragraph, we modify the definition of the
cost function of the first example and observe the effect in terms of existence of strong solutions. Let
1 be the uniform distribution on X = [0,1] and v = d2 on Y = [2, 3] and consider now the cost

o, m) — <f|y—x|dm)2, re01],  me M)

If g € Q(p, 02) then ¢*(R\{2}) = 0 for almost all 2. Therefore, denoting N(x) = ¢”({2}), it holds
1
1l = | - 2PN de
By Cauchy-Schwarz,
1/2

1=J4N@ﬁmz<(J%2xYNQ@ym)

0 0

(

-1
So, letting C' = (Sé ﬁ dw) , we get that

II'ql = C

and there is equality if and only if N(z) = ﬁ, x € [0,1]. So ¢*(dy) = N(x)d2(dy) is the unique
nonnegative kernel achieving the minimum in Z.(y, d2). Equivalently m(dxdy) = N(z)dz ® o is the
unique strong solution of the transport problem. It will follow from Theorem 2.2 below that all weak
solutions are actually strong in this example, so 7 is also the unique weak solution.

1.2.3. An example exhibiting both strong and weak solutions. Let p be the uniform distribution on
[0,1] and v(dy) = 2y*1[o1)(dy) + 300(dy). Consider the cost function

x—Jydm

with 0 < p. We refer to Section 5.3 (in particular the proof of Theorem 5.3) for more insights about
this type of costs and the construction of the weak solution below.

p

c(;[,'7m) = s X € [O, 1],mEM([O,1]),

Let us first show that the transport problem (10) between p and v admits a strong solution.
Consider the nonnegative kernel ¢”(dy) = 2zv(dy). Since §z p(dz) = {yv(dy) = 1, it is clear that
pg = v and that §yq”(dy) = z. Therefore {c(z, ") pu(dzx) = 0, which shows that Z.(u,v) = 0 and ¢

is a strong solution.

Now let us construct a weak (but not strong) solution. Define n(dz) = /zu(dz) + $60(dz) and let
m(dxdy) = n(dr)d, /z(dy). We claim that 7 is a weak solution of the transport problem (10) between
1 and v. First it is easy to check that the second marginal of 7 is v, in other words that v is the
push-forward of 7 under the map x — /x. Let us now construct a minimizing sequence converging
to m. Define 7., for 0 < & < 1/2 as the law of ((1 — &)X + U, v/X), where X ~ nand U ~ pu. A
simple calculation shows that 7.(dzdy) = p(dx)q” (dy), where ¢ is the nonnegative kernel defined by

sy e 2y
¢z (dy) := 3-La<edo(dy) + — 1[xhnax(%5§ig;vgﬁn(T%gJ)](y)dy-



12 PHILIPPE CHONE, NATHAEL GOZLAN AND FRANCIS KRAMARZ

Therefore, for all z € [0, 1],

2 fo<z<e
1081 4e—2) ifl-e<z<l

Thus, one sees that for all z € [0,1], bo(z) — 2 as ¢ — 0 and that sup_. ;5 SUP,e[o,1] be(z) < +00.
So, applying the dominated convergence theorem yields

[ ctwna) ntan) 0

as ¢ — 0. Since 7° — 7 in the weak sense, this shows that 7 is a weak solution (which is obviously
not strong).

1.2.4. A particular case of a one dimensional nonpositive conical cost function. Consider the following
cost function ¢ : [«, 5] x M([v,d]) = R_ where a, 8,7,6 =0 .

(12) (e, m) = —a (fydm) v € o, 8], m € M([, ),

where 0 < 7 < 1. This cost function is a particular case of the cost functions considered in [15] (in
arbitrary dimensions). Note that c satisfies Assumption (LB). Indeed, by concavity of the function
y— y" on R, it holds

y'<1+n(y—1), Yy = 0.
Therefore,

c(x,m) = —x (1 —n+ nfydm) > —0B(1 —n+ndm([y,9d])) := ro + rim([y,9]).

The following result gives informations on strong solutions of the transport problem associated to
the cost function ¢ defined above.

Proposition 1.3. Let p € P([er, B]) and v € P([7,0]) ; the transport problem (10) between p and v
with respect to the cost function ¢ defined by (12) admits strong solutions. For instance, denoting by

A(dx) = %xﬁ w(dx), where Z is a normalizing constant, then the coupling T given by

T=nuRU
is a strong solution. More generally, q € Q(u, V) is a nonnegative kernel solution if and only if there
exists some constant C > 0 such that

(13) qu””(dy) = CaT

for p almost all x € [a, B]. In particular, if p has a positive density f on [«, 5] and v a positive
density g on [, 9], and T : [, B] — [, 9] is a continuously differentiable bijection such that for some
constant C' > 0 it holds

(14) N(z)T(z) = CxT,

for Lebesgue almost all x € [a, 5], where N is the density (with respect to ) defined by

g(T'(x))|T"(x)|
fl) 7

then ¢*(dy) = N(x)dr (), © € [, B], is a strong solution.

(15) N(x) = Vz € [a, B]
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We will see in Theorem 5.4 below that for such cost function, all weak solutions are actually strong.

Proof. Let m € II(« p,v), then % (z) = d—”}(x)l:rﬁ and so

dp dpn
5 n
f ywz<dy>> (dz)

= Lo () () oo -5 () (]
A LB (%)n <L6y7r””(dy)>77 fi(de) < Z'" Uj Z—E(w) Léyww(dy)u(dﬂc))7 =z (fyy(dy) )n=

where the inequality follows from the concavity of the function u — u”. Note that if 7y = g and
7 (dy) = v(dy) for all z, there is equality. In other words, 7 = i ® v is a strong solution of the
transport problem between p and v. Moreover, according to the equality case in Jensen’s inequality
and the strict concavity of u — u", we see that there is equality above if and only if the function

N

T — ‘Z—’E(m) Si y 7™ (dy) is constant i almost surely. Writing m(dxdy) = pu(dx)q* (dy), we see that this
condition is equivalent to the existence of C' > 0 such that (13) holds p almost everywhere. Now, let
us assume that p has a positive density f on [«, 5] and v a positive density g on [7, §], and let us look
for solutions of the form ¢*(dy) = N(2)07(s), where x — T'(x) is a continuously differentiable bijection
from [« 8] to [v,6]. First of all, if N satisfies (15), then for any bounded measurable function h on

[7, 0], it holds

)

W(T (2))g(T(2) T ()| dir = f h(y)g(y) dy,

| " AT @)N @) () da = | ’

[e3 [e3

by the change of variable formula, which shows that pug = v. Now, according to (14), it holds

quwy) — N(@)T(x) = Cz™7,

for p almost every x € [, 8], which shows that ¢ satisfies (13) and completes the proof. O

In the following result we consider the particular case where p = v is the uniform measure on [0, 1].

Corollary 1.1. If p and v are both the uniform distribution on [0, 1], the three following kernels are
strong solutions of the problem:

e Random sorting: ¢f(dy) = No(z)u(dy) with No(z) = Cz®, for all x € [0,1], ap = 1/(1 —n)
and C = (2 —n)/(1 —n) is such that Sé No(z) pu(dx) = 1;
e Positive Assortative Matching: ¢f (dy) = Ni(z) o1, (z), where for all x € [0, 1],

. o __2-n _C
Ti(w) =%, Nifo) =Ti(w), a1 = 55— 5 = 5

e Negative Assortative Matching: ¢5(dy) = Na(z) O, (q), where for all x € [0,1],

To(z) = V1 —x%2, Ny(x)=-Ty(x), az=——=C.

Proof. The verification that ¢; and g2 are strong solutions is left to the reader. O
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2. WEAK SOLUTIONS AS MINIMIZERS OF AN EXTENDED FUNCTIONAL

As explained above, the difficulty in dealing with the minimization problem (11) is that the set
II(« w, -) is not closed in general, and so the optimal value of the problem can be reached at the
boundary. In this section, we first identify the closure of II(« p,v), using a simple approximation
technique from [28]. Then, we introduce an explicit functional I#* which is a lower semicontinuous
extension of I*, and we introduce a condition (see (Approx) below) under which [/ coincides with the
lower semicontinuous envelope of /. When this condition is in force, we can interpret weak solutions
as minimizers of I# on the closure of II(« p,v). Finally, when Assumption (B) is satisfied, we will
see that every weak solution is strong.

2.1. Closure of II(« p,v). Let us introduce a general mollifying approximation technique from [28,
Theorem C.5|, that will be very useful in the next paragraphs.

Lemma 2.1 (Lott-Villani [28]). Let (S,d) be an arbitrary compact metric space and p be a Borel
probability measure on S. There exist a family of kernels (Ky,)n=0 such that

(i) For alln =0, K, : S xS — Ry is a continuous and symmetric function such that for all

z € Supp(p), § Kn(z,y)u(dy) = 1.
(i) For all continuous function f: Supp(u) — R, the functions K, f, n = 0, defined by

(16) Ko f(y) = f Ko(2,9)f(@) p(dz),  yes,

are continuous on Supp(u) and such that K, f — [ uniformly on Supp(u) as n — o0.
(#i1) For all probability measure n € P(S) such that n (Supp(p)) = 1, the probability measures K,n,
n =0, defined by

Kon(dy) = j Ko(,y) n(da) u(dy)

s such that K,n — n as n — o for the weak convergence.

For a fixed p € P(X), we will denote in what follows by II(Supp(u), ) the set of probability
measures ™ on X x ) such that 71 (Supp()) = 1 and 7w = v, where m; and o denote respectively
the marginals of 7 on X and ).

Lemma 2.2. For any p € P(X) and v e P(Y), it holds

clII(« p,v) = II(Supp(n), v),

where clII(« p,v) denotes the closure of TI(« w,v) for the weak topology. More precisely, for any
7 € II(Supp(p), v) with w(dxdy) = n(dz)w™(dy), the sequence (my)n=0 defined for alln =0 by

o (didy) = f Ko, 2)* (dy)n(dz)u(de),

where (K )n=0 is the sequence of kernels given by Lemma 2.1 (applied to S = X and u) is such that
7 € (K p,v) for all n =0 and 7, — m for the weak topology as n — o0.

Proof of Lemma 2.2. The inclusion c is clear. Let us show the other inclusion. Let m € II(Supp(u), v)
and set n = m. We claim that the first marginal of 7, is K,7n and the second marginal is v. Indeed,
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if f: X — R is a continuous function, then

[ @ mtazay) = [[[ @000 itz
- [| r@) Kz utom(az)
- Jf(w)(Knm(d:c)

and if g : Y — R is a continuous function, then

” ) o (dady) = m 7 (dy) p(dx)n(dz)
[t

= Jg(y)V(dy)-

If f: X x)Y — Ris a continuous function, then denoting by f, the function z — f(z,y), it follows
from Item (i7) of Lemma 2.1 that

|[ sy mtdzdy) = [[[ £ a0 mtan)n o) = [[ €0, 7 i) — [[ 70 (v,

as n — o0. In other words m,, — 7 in the weak topology. Also, since K,,n « p, 7, belongs to II(« u,v)
which completes the proof. O

2.1.1. Lower semicontinuous extensions of I*. For any fixed p € P(X), consider the functional
I :P(X xY) > Ru {+x0}
defined by

) = [ (2. 5 @) ) wtao) + [ 07 mi(a). vme P <)

where m; = w{¢ + 7} is the decomposition of 7; into an absolutely continuous part and a singular part
with respect to p and

N xeX,me M(Y)

is the recession function of ¢(x, - ). Note that this limit is always well defined since, by convexity of

c(xz,dm)—c(z,0)
A

¢z, +), the function A — is non-decreasing on (0, o).

The following proposition shows that, for a fixed p and under Assumption (A), the functional I*
is a lower semicontinuous extension of I*.

Proposition 2.1. Under Assumption (A), the function P(X) x P(X x V) : (u, ) — I¥[x] is lower
semicontinuous and such that I* = I* on TI(K p, - ).

The proof of Proposition 2.1 (which is adapted from [3]) is postponed to Section A.1 of Appendix.

For a fixed p € P(X), let us now introduce the lower semicontinuous envelope of I*, denoted I*
and defined as follows : for all m € P(X x Y)

IM[r] = su inf IH]7],
7] VeVI()Tr)VEVﬁH(«Hx) ]

where V(m ) denotes the class of all open neighborhoods of 7. By convention inf J = +00, so in
particular, I* = +o0 outside clTI(« g, -) = TI(Supp (i), -).
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At this level of generality, it is not clear whether I# and I** always coincide on TI(Supp(x), - ). The
following proposition gives a necessary and sufficient condition for that.

Proposition 2.2. For a fized € P(X) and under Assumption (A), it holds

(i) for all me P(X x Y), IM[x] < IM[x],
(i) for all e TI(« p, -), I*[x] = I#[x] = IM[x],
(i3) the functionals It* and I* coincide on TI(Supp(p), -) if and only if for all w € TI(Supp (), -)
there exists a sequence m, € IL(< p, -) such that I*[r,] — I*[n].

Proof. Since I# is lower semicontinuous, for all m € P(X x ))) it holds

I*[r] = sup inf I*[y] < sup inf I*[y] = sup inf 18]y] = 18| x|,
7] vev(r) 1€V ] VeV (r) YEVIL(«pu, ) ] VeV (n) Y€V NIL(«p, ) ] 7]

and so I* < I*, which proves (i). On the other hand, if 7 € II(« p, - ), then

inf M) < IH[r) = 1*
o nf )< ) =
and so, optimizing over V € V(r), I*[x] < I*[r] which proves (ii). Let us prove (iii). Suppose that
7w € II(Supp(p), -) is such that there exists a sequence m, € II(« p, -) for which I¥*[r,] — I¥[x].
Then, since I* is lower semicontinuous, it holds
IM[n] < liminf I#[x,] = liminf I#[x,] = I*[x].
n—ao0 n—o0

Since the inequality I*[r] < I*[r] is always true, there is in fact equality. Conversely, suppose
that I* = I* on (Supp(u, - ). If 7 € II(Supp(p), - ), then according to Lemma 2.2, 7 € clTI(« p, - ).
Therefore, for any open neighborhood V' of 7, the set VnII(« p, -) is non-empty. Now, it easily follows
from the definition of I, that there exists some sequence 7, € II(« p, -) such that I%[m,] — I}[~]
and so [#[m,] — I#[x].

For a fixed € P(X), let us introduce the following variants of problem (10): for v € P(Y),

17 Ic , V) = i fét 0
( ) (M ) mell(Supp(u),v) [ ]
and

18 ic S, V) = i fét -
( ) (,LL ) mell(Supp(u),v) [ ]

Unlike transport problem (10), the transport problems (17) and (18) always admit solutions.

Lemma 2.3. Under Assumption (A), for any p € P(X),v € P(Y) such that Io(u,v) < o0, there
exists m € TI(Supp (u), v) such that I*[n] = Z.(u,v). The same is true for the transport problem (18).

Proof. The functional I* is lower semicontinuous on the compact set I1(Supp (), ) so it attains its
lower bound. 0

Finally, the following result will be very useful in Section 3 dealing with duality.
Proposition 2.3. Under Assumption (A), the functional P(X) x P(Y) —» R u {+w©} : (u,v) —

T.(p,v) is lower semicontinuous at any point (u,v) with Supp (1) = X.

Proof. Let (u,v) € P(X) x P(Y) be such that Supp (¢) = X and consider (pn,v,) € P(X) x P(Y) a
sequence converging to (u, v). According to Lemma 2.3, for all n > 0 there exists m,, € II(Supp(fin), Vn)
such that

I [mn] = jC(/Lm Vn)-



WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNELS 17

Let ¢ = liminf, o I#*[r,]. Extracting a subsequence if necessary, one can assume without loss
of generality that I#"[m,] — ¢ as n — oo. Since P(X x ) is compact, the sequence 7, admits a
converging subsequence, that we will denote again by m,. Let @ be the limit of m,. Since v, — v,
7 e II(X,v) = H(Supp (i), v). Then, by semicontinuity of I;[ -], it holds

(= lim I"[r,] = I"[7] = inf "] = Z(u, v).
S fElma] 2w > Jof L] = Te(nv)

2.2. Weak solutions as minimizers of [*. The following inequality is always true

(19) Zo(p,v) < Ze(p, v) < Zo(p,v).

Indeed, the first inequality comes from the fact that I** < I* (Item (i) of Proposition 2.2) and the
second from the fact that I* = I* on TI(« u,v) < II(Supp(p),r). It is not clear if there is always
equality in (19). The following result gives a sufficient condition.

We will say that c¢ satisfies Assumption (Approx) if for all € P(X) and v € P()),
(Approx) Ve I(Supp(u),v) there exists a sequence 7, € II(« u,v) such that I*[r,] — I*[x].

Of course, when 7 € II(« pu,v), one can choose the constant sequence m,, = 7, n > 0. Only the case
7 € II(Supp(u), v)\II(K p,v) is non trivial in the above condition. Note that this condition is trivially
satisfied when X is finite. We will see below more general sufficient conditions for (Approx).

Theorem 2.1. Let ¢ : X x M(Y) — R be a cost function satisfying condition (A) and (Approx) and
pe P(X).

(i) For any m € I(Supp(p), - ), it holds I"[x] = I"[x].
(i1) For any v e P(Y), it holds T.(i1,v) = Zo(p,v) = Lo(p, v).
(iii) Let v e P(Y) be such that I.(p,v) < +0. A coupling m € TL(Supp(), v) is a weak solution of

the transport problem (10) if and only if m minimizes I* on TI(Supp(p),v).

Proof. Ttem (i) follows from Proposition 2.2 (Item (i4i)) and Assumption (Approx). Let us show
Item (i4). Let m € II(Supp(u),v) and consider a sequence 7, € II(« j,v) such that I#[x,] — I#[x].
For all n, it holds Z.(u,v) < I#[r,], and so letting n — oo gives Z.(u,v) < I*[r]. Optimizing
over all 7 € TI(Supp(p),v) yields to Z.(u,v) < Z.(ut,v), which together with (19) proves the claim.
Let us finally show Item (i7i). Since Z.(u, -) = Z.(u, -), it follows that any minimizer of I* on
II(Supp(p),v) = clTI(« u,v) is a weak solution. Conversely, note that if 7, is a sequence of TI(« p, V)
converging to some 7 and such that I#[r,] — Z.(u,v), then by lower semicontinuity of I#, it holds
I"[r] < Z.(i,v) = Z.(pt,v), and so 7 € I(Supp(u),v) is a minimizer of I* on II(Supp(u),r), which
completes the proof. O

Let us now give some concrete conditions on ¢ ensuring (Approx). We will say that a cost function
c: X x M(Y) — R satisfies Assumption (C) if
— for all m e M(Y), the functions ¢(-,m) and ¢/, (-, m) are continuous on X,
(C) and
— there exists a > 0 such that ¢/ (x,p) < a for all z € X and p e P()).

For instance, the cost function introduced in Section 1.2.4 :

c<x,m>:_x(jydm)", v € o, B, m € M([7,6]),
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where «, 8,7,0 = 0, n € (0,1), is such that
cp(a,p) =0, x € o, B],p € P([v,4)),

and so ¢ satisfies Assumption (C).

Lemma 2.4. Ifc: X x M(Y) — R satisfies Assumptions (A) and (C), then it satisfies Assumption
(Approx). More precisely, for any p € P(X) and 7 € II(Supp(u),v), the sequence m, € (< p,v),
n =0, defined in Lemma 2.2 is such that I¥(my,) — I¥ (7).

The proof of Lemma 2.4 is postponed to Section A.2 of Appendix.

2.3. A criterion for the existence of strong solutions. Recall Assumption (B) given in the
introduction, which can be recast as follows :

e (z,m) = +o0, Vm e M(Y)\{0}, Vo e X.
Under Assumption (B), one gets [*[n] = I*[x], if 7 € TI(« p, -) and +o0 otherwise.
Lemma 2.5. If ¢ : X x M(Y) — R is a cost function satisfying Assumptions (A) and (B), then it
satisfies (Approx).
Proof. If m, € II(« p,v) is any sequence converging to m € II(Supp(u), v)\II(« p,v) (such sequences
always exist according to Lemma 2.2), then since I* is lower semicontinuous, one gets
lim inf I#[7,] = liminf [*[r,] > [}[r] = 4o
n—0o0

n—ao0

and so I#[m,| — I#[x]. O
The following result shows in particular that strong solutions always exist under Assumptions (A)
and (B).

Theorem 2.2. Let ¢ : X x M(Y) — R be a cost function satisfying Assumptions (A) and (B). If
we PX), ve P are such that T.(11,v) < 400, then any weak solution of the transport problem
(10) is a strong solution.

Proof. According to Lemma 2.5 and Theorem 2.1, if 7 is a weak solution, then
T[] = T, v) = T, v) < 0.
Therefore, I#[r] < +c0 and so 7 € TI(« p,v) and I#[r] = I*[r] = Z.(u,v), which shows that 7 is a
strong solution. O
Note that condition (B) applies for instance if there exists ¢ : R, — R a function such that
o(u)/u — +00, when u — +00, such that
(20) c(xz,m) = p(m(Y)), Vo e X,¥m e M(D).

If X,V < R? and the convex hull of ) does not contain 0, this assumption is for instance satisfied by
the following conical cost functions
T — fy dm

where | - | is an arbitrary norm on R% and p > 1.

p

(21) c(x,m) = , xeX,me M(Y),
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Remark 2.1. Let us briefly indicate another possible method for proving existence of strong solu-
tions when c satisfies (20). Let v € P(Y) be such that Z.(u,v) < +00 and assume (Tp)n>0 S @
sequence in H(<< w,v) such that I*[m,] — Z.(u,v) and m, — . Then it follows from (20) that
Sup,en § 0(N,) dp < +00, denoting by N, the denszty of the first marginal of m, with respect to .
Therefore, the sequence (Np)ns=o s uniformly integrable and so, according to the Dunford-Pettis the-
orem, it admits a converging subsequence for the topology o(L'(u), L*(1)). From this follows easily
that m € (< p,v) and is therefore a strong solution.

3. DUAL FORMULATIONS

In this section, we establish a Kantorovich type dual formula for the transport problem (3). The
derivation of these dual forms will make use of the following abstract Fenchel-Moreau biconjugation
theorem (see e.g [36, Theorem 2.3.4]).

Theorem 3.1. Let E be a Hausdorff locally convex topological vector space and E’ its topological dual
space. If F 1 E — (—o0,0] is a convex function such that dom (F) = {x € E: F(z) < w0} # ¢, then
for any x € dom (F) where F is lower semicontinuous, it holds

F(z) = sup {e(x) — F*(0)}

where

F*(0) =stelg{€(ac) — F(x)}, (e FE.

In what follows, we will apply Theorem 3.1 in the following setting: E = M (X) x M4())
equipped with the product weak topology whose topological dual is E' = Cp(X) x Cp(Y) and F :
M (X) x Ms(Y) - Ru {+w0} defined as follows

Le (oz(oj'v)7 %) a(X) fa,f=0and a(X)=6(Y) >
(22) F(a,8) =1 0 if , >0 and a(X) = B(Y) =

400 otherwise
for all & € M4(X) and 5 € Ms(Y).

Lemma 3.1. The functional F is convex on Ms(X) x Ms(Y). Moreover, under Assumptions (A)
and (Approx), the functional F is lower semicontinuous at any point («, ) such that o, = 0,

a(X) = B(Y) and Supp (a) = X.

Proof. The first statement easily follows from Proposition 1.1. Let «,, 3, be sequences converging
respectively to finite nonnegative measures «, § such that a(X’) = 5()) and Supp (o) = X and let us
show that liminf,, .o F(an, Bn) = F(«, 3). Dropping terms if necessary, one can assume without loss
of generality that «,, (X) = 8,(Y) for all n. As « has full support, «(X) > 0 and since o, (X) — a(X),
it follows that a, (X)) > 0 for all n large enough. Under Assumptions (A) and (Approx), Theorem 2.1
gives that Z. = Z.. Since a,,/a,(X) — a/a(X) (which has full support) and 3,/3,() — B/8()), it
follows from Proposition 2.3 that

o on B a p
a5 50) > = (w05 509)
and since a,,(X) = B,(Y) — «(Y) = () this proves the claim. O

Theorem 3.2. Under Assumptions (A) and (Approx), it holds

(23) Z.(p,v) = sup {fK f () u(dx) Jf }, Vv e P(Y)

feCy ()
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where

K.f(x) = inf {dem—i—c;vm)} zeX.

meM(Y)

In particular, (23) holds whenever ¢ satisfies Assumption (A) and Assumption (B) or (C).

Remark 3.1. It would be very interesting to obtain general sufficient conditions for dual attainment in
Theorem 3.2. This could lead to cyclical monotonicity criterium characterizing optimality of transport
plans, in the spirit of the C-monotonicity criterium obtained for WOT [4, 7].

The proof below is adapted from the proof of [2, Theorem 4.2].

Proof. Let u € P(X), v € P(Y) and assume that p has full support. According to Lemma 3.1,
the function F' defined by (22) is convex on M (X) x M,(Y) and lower semicontinuous at (u,v).
Therefore, according to Theorem 3.1, it holds

Le(p,v) = Fp,v) = sup ”cpdijdv—l’*(%w)}a
(p,9)ECH(X) xCp (V)
with, for all (¢,1) € Cp(X) x Cp(Y),
F*(p,¢) = sup Usﬁda+f¢dﬂF(a,ﬂ)}
)

(0, B)EM (X)X Mo (Y

= sup sup{AJ(de&+)\J¢dﬁ/\Ic(o‘aﬂ)}

(a,B)EP(X)xP(Y) A=0
= XK. (907 ¢)7

where

K. = {(cp,z/J) € Cp(X) x Cp(Y) : Jg@da—i- fwdﬁ < Z.(a, B),YVa € P(X), V3 673(37)}

and yr, (p,¥) =0 if (p,9) € K. and 400 otherwise. Thus we get
Ze(p,v) = F(p,v) = sup Ucpdu + fde} :
(p,9)eKe
Now, observe that if (¢,v) € K., then (choosing o = ¢, with x € X) it holds
r) < inf <{— dp + Z.(0,, < inf —f dp + c(z, }=Kc— x),
o)< int (- [vas 26} < it {- [vas o) - Ko@)
where we used that Z.(d,, 8) = ¢(x, 8). Thus, it holds

Zinn) < s {[ Kot utan) - [ s vtan}.

The converse inequality is always true. Indeed, if 7w(dzdy) = N(z)u(dx)n®(dy) € TI(< w,v), then

[ Ket@utao) < [ ([ rwav@nyan + oo, N@ye®)) nta) = [ g+ 1211

Eormula (23) is thus proved when p has full support. When p does not l~1ave full support, then letting
X = Supp(u) and applying the preceding reasoning in the space M;(X) x M;()) gives the desired
duality formula. O
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4. MONOTONICITY PROPERTIES AND UNIQUENESS OF PRIMAL SOLUTIONS

In this section, we consider cost functions of the following form
(24) cle,m) =G <JF($, Y) m(dy)) , xeX,me M(Y),

where F' : X x Y — (0,400) is a continuous function and G : RT — R is a convex function,
assumed to be differentiable on (0, +o0) and we denote by G'(0) = lim,_,o+ G'(z) € R u {—0} and
G'(+0) = limg_ 14 G'(z) € R U {+o0}. We will establish below that the dual problem admits a
solution (Theorem 4.1) and then use this dual optimizer to get informations on the support of primal
solutions (Proposition 4.1). Finally, we will consider the particular case when X and ) are subsets of
R and prove uniqueness of primal solutions under suitable assumptions on F, G and p (Theorem 4.2).

First let us check that ¢ satisfies the assumptions introduced in the preceding sections. Writing G
as a countable supremum of affine functions, one easily sees that ¢ satisfies Assumption (A) and in
particular (LB). Thus Z.(u, v) makes sense for any u € P(X) and v € P()). Note also that for any
me M(Y)\{0} and z € X

cp(z,m) = G'(+0).
So ¢ satisfies Assumption (B) if G'(+0) = +o0 and Assumption (C) otherwise. Therefore, Theorem
3.2 applies and it is easily seen that

5 T(uw) =sm>{fo wm—jf@www}, Ve P(X), Y e PY),

feLt(v)
with
L) = {f : Y — R : f measurable and f|f|di/ < +oo}
and
26 K. dm + X, fel(v).
(26) F@= o o | Fam b eam |, aexgeciw)

Note that K. f is upper semicontinuous on X as an infimum of continuous functions and that K. f(z) <
G(0) for all z € X and thus { K.f(z) p(dx) always makes sense.

The following result establishes dual attainment.

Theorem 4.1. If the function G in (24) is such that G'(0) > —oo, then for every p € P(X) and
v e P(Y), there exists a bounded function f on Y such that

) = | Ke(@ (o) - [ Flw)viay)

The same conclusion holds if G'(0) = —oo and Y is a finite set. Moreover, if G is non-decreasing
(resp. mon-increasing) on R™, then f can be chosen nonpositive (resp. nonnegative).

Proof. Let us show that the supremum in (25) can be restricted to the class of measurable functions
[ such that f > a, with a = Z.(it, V) —sup,ecx ey G(2F (u,v)) — 1. Note that if f is not bounded from
below, then K.(f)(xz) = —co for all x € X, so the supremum in (25) can be restricted to functions f
bounded from below. If f is such a function, then for all y € ), it holds

Kef(x) <2f(y) + G2F(z,y)) < 2f(y) + S G(2F (u,v)).

So optimizing over ¥y, one gets

K.f(x) <2inf f+ sup G(2F(u,v))
ueX wey
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and so

f K. f(z) p(dz) — j fy)v(dy) <inff+ sup GEF(u,v))

ueX ,vey
Therefore, if inf f < Zo(p,v) — sup,cx pey G(2F (u,v)) — 1, then

JKf pi(dz) Jf v(dy) < Zo(p,v) — 1,

and so f can be dropped from the supremum in (25). We thus conclude that the supremum in (25)
can be restricted to functions f bounded from below by a. In the case, where G is non-increasing,
this lower bound can be improved. Indeed, if f(yo) < 0 for some yo € Y, then for all A > 0 it holds

Kef(x) < Af(yo) + G(AF (2, 90)) > —0
as A — +0. So the supremum in (25) can be restricted in this case to nonnegative functions.

Now let us show that the supremum in (25) can be further restricted to functions f such that
f < b, where b = [G'(0)]— sup,cx ey F(z,y) with [z]_ = max(—z;0). Let f e £'(v); define A =
{yeY: f(y) < b} and for all m € M(Y) write ma(dy) = La(y) m(dy) and mac(dy) = 1.4-(y) m(dy).
Since u — G(u) + [G'(0)]—u is non-decreasing, for all z € X, it holds

f min(f,b) dm + c(x,m) = f fdma+bm(A°) + G U F(z,y) ma(dy) + JF(x,y) mAc(dy))
> demA +bm(A9) + G (J F(x,y) mA(dy)) - [G'(0)] - JF(:L‘, y) mae(dy)
> ffdmA +G (f F(z,y) mA(dy)> + (b —[G"(0)]- sup F(way)> m(A)

reX ,yey
> K.f(z)

and so, letting f = min(f,b), one gets K.f = K.f. On the other hand, since f < f, it also holds
ch < K. f and so K.f = ch. Since,

Jchdu—ffdy<Jchdufffdy

one concludes that the supremum in (25) can be restricted to functions bounded from above by b. In
particular, when G is non-decreasing, then [G’(0)]— = 0 and one can restrict to nonpositive functions.

Let us now show the dual attainment. Consider a sequence (g,)n>o of elements of B = {f €
LYv) :a < f < b} such that (K.g,du — §g,dv — Zo(p,v). According to the Dunford-Pettis
theorem (or the Banach-Alaoglu-Bourbaki theorem), one can extract from (g,)n>0 a subsequence
(still denoted (g, )n>0) converging to some go, € B for the weak topology o(L', L*®): for all h € L*(v),
§gnhdv — § goh dv. Moreover, according to Mazur’s Lemma, there exists a sequence (fy,)n=0 of the
form f, = va’"”o )\f )gn+i with N,, = 0, )\((J"), cey )\g\’;z > 0 and va’"”o )\fn) = 1 such that f,, converges
strongly in L'(v) to gs, as n — o0. Extracting a subsequence if necessary, one can further assume
that (f,)n=0 converges v almost everywhere to go,. Let @ : B - R: f — (K .fdpy—§fdv. Ttis
easily seen that

K((1=t)f +tg) = (1 - )K.f +tK.g,  Vte[0,1],Vf,ge B

and so ® is concave. Therefore

N,
NG :
O(fn) = ;0 P(gnti) = égi@(gk) — Te(p,v),
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as n — o, and so ®(f,) — Z.(p,v) as n — oo. Since K f, < G(0) for all n > 0, one can apply
Fatou’s Lemma

To(p,v) = limsupJchn dp — liIJIrl an dv < Jlimsuchfn dp — ng dv.
n—-+0o0

n——+0o0 n——+0o0

For all m € M(Y) and x € X, it holds

K.fn(z andm—i—c(x m)
and so, applying Fatou’s Lemma again, one gets

lim sup K. f,,(z) < flimsup fndm + c(x,m), reX

n— -+ n—-+0o0

and so, optimizing over m yields limsup,, , , , K.f, < K.(f), with f = lim SUP,,_, 40 fn € B, and so

meéjKJW—f%ma

Finally, since f,, converges v almost everywhere to o, it holds g, = f v a.e. and so

W<JKJ@*JfM,

which shows that f is a dual optimizer. Finally, let us show dual attainment when ) is a finite set and
G'(0) = —o0. According to what precedes, the supremum in (25) can be restricted to functions f > a.
On the other hand, since { K. f du < G(0) one can further restrict the supremum in (25) to functions f

such that § f dv < G(0)+1—Z.(p,v) := a’. Since Y is finite, theset C = {f € L' (v) :a < f,{ fdv <
is compact. Reasoning as above, one shows that any maximizing sequence of the dual problem admlts
a subsequence converging to a dual optimizer, which completes the proof. 0

The following result relates primal and dual optimizers (provided they exist).

Proposition 4.1. Let p e P(X) and v € P(Y) be such that Z.(u,v) < +o0 and suppose that q is a
kernel minimizer of I.(u,v) and that f € L*(v) is a dual optimizer:

T(p,v) =IM[q Jdeu deu
Then, the following relation holds true: for p almost all x € X,
(27) ¢ ([rear) rea s im =0 wey,

In particular, if G'(0) = —co, then ¢*(Y) > 0 for u almost all x € X. Moreover, equality holds in (27)
for @ almost all y e Y.

Proof. Since

~ [Kefdn— [ Fav < | [ Fo) @ (@nntae) + [ clo.q) utan) = [ Fav = 2210) = Zo(uv),

one concludes that
| F @) + o) = Koo

for p almost every x € X. Fix some x € X for which the equality holds. By definition of K. we thus
get that for all ¢ € (0,1) and m € M(Y)) such that {|f|dm < +c0 it holds

Jf “(dy) + c(z,q%) 1ftff “(dy) +tff m(dy) + c(x, (1 —t)g" + tm).
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Sending ¢ — 0 yields to

[ 7@ = man < ([ Pl @) [P on - e

(with the convention —o0 x 0 = 0 if G'(0) = —o0 and m = ¢”). In particular, if G'(0) = —o0, then
" # 0. Rearranging terms yields to

@) [1w+6 ([Feoew) Fenea) < [ fo+e ([ Fes re) Fepma).

If the function ¢, : ¥ —> R:y — f(y) + G’ ({ F(z,2) ¢"(dz)) F(z,y) takes a negative value at some
point y, € Y then choosing m = Ad,, with A > 0 arbitrary large yields a contradiction. Therefore,
(27) holds true. Since the function v, is nonnegative, one has inf,,c vq(y) § ¥z (y) m(dy) = 0. Therefore
taking the infimum over m in (28) yields to {4, (y) ¢*(dy) = 0 and so ¢, (y) = 0 for ¢* almost all
ye). U

In a one dimensional framework, we now draw from (27) monotonicity properties of the supports
of ¢, x e X.

Theorem 4.2. Let X and Y be two compact subsets of R, u € P(X),v € P(Y) and suppose that
q € Q(u,v) is a kernel solution of the transport problem (3) with cost function (24). For all x € X,
denote by S, < Y the support of ¢°. Suppose also that F : R x R — (0, +00) is twice continuously
differentiable and such that

0% In F(z,y)
oxdy

(1) If G is increasing on R", then there exists A < X with u(A) = 1 such that

(29) <0, Y,y e R.

(30) T <xg,xl,xgeA:Vylele,VygeSm,yl < Y2.

(2) If G is decreasing on RT and G'(0) > —owo, then there exists A < X with u(A) = 1 such that
(31) Ty < T2,T1,T2 € A= Vy1 € Sz, VY2 € Seuy Y1 = Yoo
The same conclusion holds if G'(0) = —o0 provided Y is a finite set.

If 11 has no atoms and full support, then there exists a unique right-continuous map T : X — Y which
18 non-decreasing when G is increasing and non-increasing when G is decreasing such that any kernel
solution G € Q(u,v) of the transport problem (3) can be written as

" (dy) = N(2)07 1),

Jor p almost all x € X, with N : X > R a density with respect to . If G is assumed to be strictly
convez, the density N is unique also.

If F is such that
0% In F(z,y)
0xdy

then all the conclusions are reversed: (30) holds when G is decreasing, (31) holds when G is increasing,
and the monotonicity of T is the opposite of that of G.

> 0, Vr,y e R.

Note that the existence of a kernel solution in Proposition 4.1 or Theorem 4.2 is granted at least
in the following two cases : G'(+©) = +m (according to Theorem 2.2) or G'(+®) < +o0 and X is
finite (according to Theorem 1.1).
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Proof. We do the proof only in the case where G is increasing, the other case being similar. According
to Theorem 4.1, there exists a nonpositive bounded function f achieving equality in the dual formula
for Z.(u,v). According to Proposition 4.1, there is a set A < X with u(A) = 1 and such that for all
x € A it holds

G’ (fF(:v,z) q’”(dz)) F(z,y) + f(y) =0, Vye .

Denote by S, the set of y € Y for which the inequality above is an equality. According to Proposition
4.1, we know that ¢*(S,) = 1 for all x € A. Condition (29) easily implies the following monotonicity
property for F: if a1 < as and by < by then

(32) F(al, bl)F(CLQ, b2) < F(al, bQ)F(CLQ, bl)

Let x1, 25 € A such that T < X2 and suppose that there exist y; € S'II and yo € 5’12 such that yo < y1.
Then, denoting by U(z) = { F(z,2) ¢"(dz), x € X, it holds

G'(U(x1))F(21,51) = = f(y1)
G'(U(w2)) F(22,92) = — f(y2)
G'(U(21))F (21, 92) = —f(y2)

G'(U(22))F(z2,51) = — [ (31).

Multiplying the last two inequalities (note that all quantities are nonnegative) one gets

G'(U(21))G"(U(x2)) F (21, y2) F (x2,91) = [(y1)f(y2) = G"(U(21))G' (U (22)) F (w1, y1) F (22, y2).
Since G is increasing the term G'(U(z1))G'(U(xz2)) is positive and can be simplified yielding to

F(x1,y2)F(x2,y1) = F(z1,91)F (22,92),

which contradicts (32) with a1 = x1, as = 3, by = Yo and by = y;. Therefore, the family of sets
(Sz)zea satisfies the following property:

T < T2 =11 < yQ,Vyl € gxl,Vyg € S’z2.

Since g* (S’z) =1, it is clear that S, is dense in S, and so the same property is satisfied by the family
(Sz)zea, which proves (30).

Let us now assume that p has no atoms. Let is(A) be the set of isolated points of A. Since this set
is at most countable and p has no atoms, it holds p(is(A)) = 0. Thus, letting A" = A\is(A4), one gets
p(A") = 1. Consider the maps T_, T : A — R defined by T_(z) = inf S, and T’y (x) = sup S, for all
x € A’. According to (30), the maps Ty are non-decreasing. Let D < A’ be the set of points where
T_ or T, is discontinuous. It is well known that D is at most countable. It is clear that whenever
T_(x) < Ty (z) then x € D. Defining A” = A\D, and T(x) = T_(x) = T4 (z) for z € A”, one thus
gets that S, = {T'(z)} for all z € A” and so there exists some nonnegative number N(z) such that
q = N(a:)zST(m) for all z € A”. Finally, defining T'(z) = inf{T(y) : y € A",y > 2}, x € X, yields a
non-decreasing and right-continuous extension of 7' to the whole space X.

To prove the uniqueness part, we use a classical reasoning which goes back to [11]. Suppose that
G € Q(u,v) is another kernel solution of the transport problem. Accordmg to what precedes, there
exists a density N and a non-decreasing right-continuous map T such that ¢ = N(z )5T( ) for p
almost all x € X. By convexity, the nonnegative kernel §(q + @) is also a solution. Therefore, there
exists yet another non-decreasing right-continuous map U such that

5 (V@ore + F@iz,) = 5@ + ) = (350 + 38 dueo,
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for p almost all z € X. Therefore, T(z) = T(z) = U(z) for p almost all z € X'. Since X is the support
of pand T, T are right-continuous, the equality holds true for all z € X. Furthermore, by optimality
it holds

[&(Grw + gFEFeTE)) uin - § [ 6 (V@ FE@T@) uin)+; [6 (9@ FTe) )

and so, assuming that G is strictly convex, one gets N(x) = N (x) for p almost every & € X', which
completes the proof. O

5. THE PARTICULAR CASE OF CONICAL COST FUNCTIONS

This section is devoted to the study of the transport problem (3), when ¢ is a conical cost function.
We will first obtain an improved duality result showing in particular that under mild conditions there
is dual attainment. Then we will obtain a Strassen type result for a variant of the convex order
involving positively 1-homogenous functions. Finally, we will prove structure results for primal and
dual solutions.

5.1. Framework. In the whole section, we adopt the following framework :

e X is a compact metrizable space,
e ) is a compact subset of R% equipped with some arbitrary norm | - |, and we denote by
co(}) its convex hull and by Z its conical hull, i.e

Z:{Z)\iyi:Alu"'u)‘RER+7ylu"'7ynEy7n>1}7
i=1
e the cost function ¢ : X x M(Y) — R is of the following form

(33) o, m) =F<x,fydm), veX,me M),

where F': X x Z — R is lower semicontinuous on X’ x Z and convex with respect to its second
variable.

When c is of this form we will say that c is a conical cost function.

First let us translate Assumptions (A), (B) and (C) in this framework. Let us introduce the
recession function of F', defined by

F(xz, A
Fl (z,z) = lim Fz,22) reX,ze Z.

A—+0 A ’
e Assumption (A) is fulfilled as soon as F' satisfies the following condition (A’): there exists a
family of continuous functions (ax)r=0 on X and a family of continuous functions (ux)xr=0 on
X with values in R? such that
(A) F(z,z) = sup{ug(z) - z + ax(z)}, reX,z€ Z.
k=0
Note that if F' satisfies (A’), then the corresponding cost function ¢ satisfies (A) with by (x,y) =
ug(z) -y and the same ay for k = 0.
e Assumption (B) is satisfied by ¢ as soon as F satisfies the following condition (B’)

(B") Fl(z,2) =+, Vze X,Vz e Z2\{0}.

e Finally, Assumption (C) holds for ¢ as soon as F satisfies the following condition (C’) : for
all z € Z, the functions z — F(x,2) and x — F (x, z) are continuous on X and there exists
a € Ry such that F) (z,2z) < a for all z € X and z € co()).
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5.2. Duality and dual attainment for conical cost functions. The following result improves
the conclusion of Theorem 3.2 in the case of conical cost functions. Recall that a function ¢ : Z —
R U {+} defined on a cone Z < R? is positively 1-homogenous if p(Ax) = A\p(z), for all A = 0 and
for all x € Z such that p(x) < +00.

Theorem 5.1. With the above notation, and further assuming that

e 0 does not belong to co()),
o there exists X > 1 such that M := sup,cy, § F(x, \y) p(dx) < +oo0,
o I satisfies (A),

then it holds
(34) T(u,v) = {[are@utan - [ewman},  werw)
@E@(Z ﬁLl (v)

where ®(Z) is the set of all lower semicontinuous, convex positively 1-homogenous functions ¢ : Z —
R U {+o0} and where

Qrye(r) = ;gg {p(z) + F(x,2)}, reX.

Moreover, one can further restrict the supremum in (34) to functions p € ®(Z) n L' (v) such that

(35) o(z) = o7 Vz € co()).

Furthermore, there exists a function @ € ®(Z) n LY(v) satisfying (35) and such that

v) = f Q) uldr) — j o) v(dy).

Proof. The proof is divided into three steps.
Step 1. In this step, we show that

(36) sup JQ;«pdu - Jgpdy < Ze(p, v).
YeP(Z)nL(v)

If ¢ € ®(2) is v integrable and ¢ € Q(u,v), then using Jensen’s inequality and the positive 1-
homogeneity of ¢, it holds

fs@dv = f (J e(y) qx(dy)> p(dx) = fs@ (qux(dy)) p(d).

On the other hand
JQW dp < Jw (quz(dy)> +F (I quz(dy)) p(dx)

< deu+fF (x,fyqz(dy)) p(dx).

Thus optimizing over ¢ and over ¢ gives (36).

Step 2. In this step, we assume that ¢ satisfies Assumption (B’) and we prove that the converse
inequality holds true in (36) and that the supremum can be restricted to functions satisfying (35).
Recall that according to Theorem 3.2, it holds

Touv) = sup fo (da) ~ [ £y

feCy ()
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Observe that for all f € Cy())
ket~ int A [ rymian + 7 (o [yman )} = @efo)

= int{ [y mian) s me M), [ymian =2}, ez

Note that f is the greatest convex and positively 1-homogenous function ¢ : Z — R such that ¢ < f
on Y. Furthermore, the function f is lower semicontinuous and so f € ®(Z). Indeed, if Zn — 2 in Z
then there exists a sequence m,, € M(Y) such that {ym,(dy) = 2, and f(z,) = § f(y) mn(dy) + €n,
with €, — 0. Let D = sup,,>¢ HSymn(dy H < +00. Since 0 does not belong to the compact convex
set co()), there is a > 0 such that ||y| = « for all y € co(}). Thus, one gets

Jy ma (dy)

One concludes from Prokhorov’s theorem that the sequence m, admits a converging subsequence.
The claim then follows from the lower semicontinuity of the function m — § f(z) m(dz).

where

amp(Y) < ' <D.

By construction f<fon) and since f is convex, it is bounded from below by some affine map.
Thus f is v-integrable. Also, since f < f, it holds

[ Het @y utin) ~ [ 1) vian) < [ Qe utao) - [ Fw) v

Optimizing, one thus gets that

Le(pv) < JQFsD Jw(y) v(dy),
gae@(Z r\Ll (v)
which completes the proof of (34).

Now, let us show that the supremum can be restricted to functions ¢ € ®(Z) n L!(v) satisfying
(35). If ¢ € ®(Z) n L*(v), then being v integrable, it takes at least one finite value on the support
of v. Since ¢ is also lower semicontinuous, it reaches its infimum on co()) at some point zy € co(Y).
By definition of Qr¢, it holds

Qre(r) < p(Az) + F(w,A20),  VoeX.
Therefore, ¢ being positively homogenous, it holds

| @retarntan) - [ o vin) < O pten) + | Floxz0) n(dn) < (O Dptan) + M.
Thus, if ¢(20) < —32%, then § Qpo(z) p(dz) — §o(y) v(dy) < 0. Since Z.(u,v) > 0, one can thus drop
such functions ¢ from the supremum in (34) which completes the proof.

Step 3. In this step, we remove the assumption that ¢ satisfies (B’) and we prove dual attainment.
Without loss of generality, we will assume that ) = coSupp(v). Note that this is always possible
since the convex hull of a compact set is itself compact. To make the proof easier to read, we will
also assume that ) = co Supp(v) has a non empty interior. If this is not the case, then one can easily
adapt the arguments below using the notions of relative interior and relative boundary of a convex
set.

For all n > 1, define
Fn(I,Z)ZF(I,Z)+%HZH2, reX, z€ Z,
and ¢, (z,m) = Fy(z,fydm), v € X, m e M(Y). It is clear that F), satisfies both (A’) and (B’).
Observe that for all n > 1, Z.(p, v) < L, (1, v).
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Let (pn)n=1 be a sequence in ®(Z) n L(v) satisfying (35) and such that for all n > 1

1
L, (n,v) < JQFnSﬁn dp — Jgpn dv + —.
Such a sequence exists thanks to Step 2. For all n > 1, it holds

(37) QrF,¢n(r) < ¢n(0) + F,(x,0) = F(x,0), Ve X.

Therefore, using the integrability condition on 1, one gets that sup,,~; { Qr, ¢n(z) p(dz) < +0. Since
$Qr,ondp — §ondv =T (pu,v) — L, this implies in particular that sup,,>, § ¢, dv < +00.

Let us show that (p,,),>1 admits a converging subsequence. Define &, = ¢, + %, n = 1. For all
>1,p=0,v1,...,yp € Supp(r) and A1,...,\, = 0 such that >;*_, \; = 1, it follows from Jensen’s
1nequahty and the fact that @, > 0 on ) that

~ SB(y“e) SB(yl, ) P ) 1 ~
o (Z&W <3 (B ) < Bt 00

P 1 R
= (Z N (Bl e>>> J utervtas),

where B(y, €) denotes the open ball centered at y of radius € > 0. Since sup,,~; § $» dv < +00, it holds

sup G (u) < +00

n=1

for all u belonging to the set C' = co {% :y € Supp(v), € > O} . Let us show that C' is dense

in ). Take y € Y ; since Y = coSupp(v), there exists y1,...,yp € Supp(v) and Ai,..., A, = 0 such

zv(dz
that 7 A\, = land y = > | Njy;. For all € > 0, define ye = >0, /\i% C. Then it is
easily seen that y. — y when € — 0, which proves the claim.

According to [32, Theorem 10.9 page 91], one can extract from (@, ),>1 a subsequence (we will still
denote it by ($n)n>1 not to overload the notation) converging pointwise on int())) to some convex
function. Of course, the sequence (p,),>1 also converges pointwise on int()). Since Z = R,Y
and int(Z) = R¥int(}), the positive homogeneity of the functions ¢, implies that ¢, converges
pointwise on int(Z). Set ¢(z) = lim,_ @n(z), for all x € int(Z). Extend ¢ by setting ¢(a) =
liminf,_,, .eint(z) ¢(2) whenever a € 0Z, so that ¢ is lower semicontinuous on Z (and still convex
and positively homogenous). If a € Z and z € int(Z), then for all ¢ € (0,1) the point (1 — t)a + tz
belongs to int(Z). Therefore, letting n — o0 in the inequality

pn((1 —t)a+1t2) < (1 —t)on(a) + ten(2)
one gets that

o((1 —t)a+tz) < (1 —¢)liminf @, (a) + te(z)

n—-+00

and letting ¢ — 0 gives then

p(a) < liminf o, (a).

n—+o0
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Then,

Ze(p,v) < limsup <J QF,Pn di — Jsﬁn dV>

n—+00

< limsuprann du — limiroltjfjcpn dv

n—+0o0

< Jlim sup Qr, pn dit — flimJirnf pn dv
n—-+00

n—+00
< flim sup @, pn dp — Jcp dv,
n—+0o0
where the third inequality follows by Fatou lemma (note that, for alln > 1, ¢,, = —M/(A—1) on Y and

Qr, ¢n < F(-,0) which is p-integrable), and the last inequality from the fact that liminf,,, ;o @ = ¢
on Z. For all n > 0, it holds

on(2) = Qrpn(x) — Fu(z, 2), Ve e X, Vze Z.
Therefore, letting n — oo, one gets that

©(z) = limsup Qp, on(z) — F(x, 2), Vo e X,Vz € int(Z).
n— -+

This inequality is still true when z € 0Z. Indeed, fix z € 0Z and 2’ € int(Z) ; since ¢ and F(x, - ) are
both convex and lower semicontinuous on Z, they satisfy ¢(z) = limy_o ¢((1 — t)z + t2’) and, for all
xe X, F(x,z) = limyo F(z, (1 —t)z + t2’). Since (1 —t)z + ¢z’ € int(Z), this easily implies that the
inequality above is also true for z. From this follows that
limsup Qr, on(z) < in;{ga(z) + F(x,2)} = Qrp(x), Vre X.
zE

n—+0

In conclusion, we have shown the existence of a function ¢ € ®(Z) n L!(v) such that

Z(p,v) < JQW dp — fs@dv.

Since the converse inequality is always true (according to Step 1), this completes the proof. O

5.3. A new variant of Strassen Theorem. Recall that if i, v are two probability measures on R%
having a finite first moment, g is said to be dominated by v in the convex order, if

deu < dev,

for all convex function ¢ : R — R. In this case, we denote this relation by pu <. v. According to
a well known result due to Strassen [33], u <. v if and only if there exists a martingale coupling
with marginals u and v, that is to say a couple (U, V) of random vectors with U ~ p, V ~ v and
E[V |U] =U as.

Transport problems with conical cost functions introduced above are naturally related to the fol-
lowing variant of the convex order. If u,v are two probability measures with a finite moment of
order 1, we will say that p is dominated by v for the positively 1-homogenous convex order if for all
¢ : R - R convex and positively 1-homogenous, it holds §¢ du < {pdv. We will use the notation
i <pnc v to denote this order.

The following result generalizes Strassen’s theorem to this restricted convex order. Note that if v
is compactly supported, then i <,i. v does not imply that s is also compactly supported.

Theorem 5.2. Let pu, v be two probability measures on R and suppose that i has a finite moment of
order 1 and that v is compactly supported and such that the convex hull of its support does not contain
0. The following are equivalent
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(Z) H <phc v,
(i) There exists a nonnegative kernel q such that pq = v and

quz(dy) =
for u almost every x,
(#i7) There exists a probability measure n absolutely continuous with respect to p with density de-
noted by N and a couple of random vectors (U, V) with U ~n, V ~ v such that

(38) NOE[V |U]=U a.s.

Note that (38) also means that (U, N(U)V) is a martingale.

Remark 5.1. Note that in dimension 1, the conclusion of Theorem 5.2 is essentially trivial. Indeed, it
is easy to see that p <pne v if and only if Sz dp = Sz dv, §[z] 4 dp < §[z]4 dv and §[z] - dp < §[z]- dv.
By assumption, the convex hull of the support of v does not contain 0, so it is contained either in
(0,00) or in (—00,0). Let us assume without loss of generality that the support of v is contained in
(0,00). Then it holds §[z]_du < ([z]-dv = 0 and so the support of ju is also contained in (0,00).
Consider the nonnegative function N (x) = ngdul(O,OO)(x)’ which satisfies { N (z) p(dz) = 1, and define
n=Nu. Let UV be two independent random variables such that U ~n and V ~ v, then it holds
U
ElV|U|=E|V] = di = ———a.s.
[V 1U)=BlV] = [ = g0

In higher dimension, it is not clear if such simple and explicit construction is available.

Theorem 5.2 will follow from the following slightly more general result where the assumption that
0 does not belong to the convex hull of the support of v is removed (but u is compactly supported).

Theorem 5.3. Let p,v be two compactly supported probability measures on R®. The following are

equivalent:

(Z) IUJ <;DhC V;
(i1) The probability measure v can be decomposed as the sum of two nonnegative measures v =
v1 4 vo such that §yve(dy) = 0 and there exists a nonnegative kernel g € Q(p,v1) such that

qu””(dy) =

Proof of Theorem 5.3. Let us show that (i¢) implies (7). Let ¢ be some convex positively 1-homogenous
function ; according to Jensen’s inequality and positive 1-homogeneity, it holds

[ ot ) - f<p(qu< ) (@) < [[ et a*@n) ) = [ty mntan) < et vian)

where the last inequality comes from the fact that §p(y) v2(dy) = (S % dy)) = 0. Now let us show
that (i) implies (ii). Let us denote by X and ) the compact supports of p and v and consider the
cost function ¢ : X x M(Y) — Ry

c(z,m) =F (%Jym(dy)) = —Jym(dy)

with F(z,2) = |z — z||, x, z € R Tt is not difficult to see that I satisfies Assumption (A’). Therefore,
according to Theorem 5.1, the following duality formula holds

Ze(p,v) = L S UQ@ fso(y)V(dy)},

for u almost every x.

‘, Vo e X,Yme M(Y),
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with Qp(x) = inf.cz{¢(2) + |2 — 2||}, x € R The supremum can be restricted to ¢ that are bounded
from below by some constant x € R. For such functions ¢, it is easy to check that Q is finite valued,
convex and positively 1-homogenous on R%. Thus § Qe du < §Qpdv. Since Qp < ¢ on Z, we conclude
that { Qe dp < §dv. Therefore, Z.(u, v) = 0. On the other hand, since F satisfies Assumption (C’),
it follows from Theorem 2.1 and Lemma 2.4 that there exists some 7 € II(Supp(u), v) such that

jg[ﬂ—] = fc(u, v) =Z.(u,v) = 0.
Since c(z,m) = |§ym(dy)|, me ./\/l(y), one thus gets

N e

where n = n* + n° denotes the first marginal of 7. Let us define ¢*(dy) = ;’;C( ) (dy), © € X,

vi = puq and v, = v — ;. It follows from (39) that §y¢”(dy) = z for p almost all z. Moreover,
§ym®(dy) = 0 for n* almost all z. Therefore,

[t = [ (([om @) ntae) = [ [ ) aeetan) = [ ([oretan) et =,

which completes the proof of (7). O

Proof of Theorem 5.2. Tt is clear that (i4) and (ii7) are equivalent. The proof of (i7) = (i) is exactly
the same as the one of (ii) = (i) in Theorem 5.3.

Let us now prove that (i) = (ii). First assume that p is compactly supported. According to

Theorem 5.3, the probability measure v can be written as v = 11 + 15 with {yva(dy) = 0 and there

exists ¢ € Q(u,11) satisfying {y¢®(dy) = x for p almost all z. If v5(Y) # 0, then 0 = i%(;iy) €
co()), which contradicts our assumptions. Thus v2()) = 0 and so v; = v, which proves (ii), when

has a compact support.

Now let us relax the assumption that p has a compact support. Let us construct a sequence of
compactly supported probability measures (g, ),>1 converging to p in the weak topology and such
that p, <. p for all n = 1. One can for instance obtain such a sequence as follows. Consider
Cp, = [-n,n]¢ and write RN\C,, = UlskgKn Dy, 1., where (Dy, 1)1<k<k, are disjoints convex subsets

of R%. Then define
Ky

pn(dz) = 1c, () pldz) + Y p(Dn1)6s, . (d)

k=1
where z,, = m Sp . @ pu(dx) if p(Dy ) > 0 and any point in D, , otherwise. If f : R? — R is
a convex function, then it follows from Jensen’s inequality that

| 1@ ntan) = | s m+2 Doif(ens) < [ fia) (M”;Jnk ) = [ £

and so i, <. pt. Also, for any bounded continuous function f :R? — R, it holds

U Filin = Jf du‘ - JRd\Cn Jdiin = JRd\Cn fan

as n — o0, and 80 (t,)n>1 converges to p in the weak topology.

< 2[flleo (1 = p(Cn)) — 0,

Since py, <. pand p <ppe v, it is clear that pu, <pue v. By construction, u1,, has a compact support,
and so there exists a nonnegative kernel ¢, such that j,q, = v and §y¢Z(dy) = x for u, almost all
r € RY For all n > 1, write for all z € RY, ¢ = N, (2)p2 where pZ is a probability measure and
denote 1y, (dx) = Ny () pn(dz) and m,(dzdy) = 0, (dx)pE (dy). Let us show that the sequence (1,)n>1
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is tight. By assumption, {|z| pu(dz) < +o0 ; thus by the de la Vallée Poussin theorem, there exists
some non-decreasing convex function « : R, — Ry such that «(0) = 0, a(x)/z — +00 as z — +®
and § a(]z|) p(dz) < +oo. The function z — «(||z|) being convex, we thus get that

sup j a(z]) pn(d) < f a(z]) p(dz) == M

n=1

and, since {y ¢*(dy) = = for p,, almost all z,

it;};fa (Uyqi(dy)‘) pn (dz) < M

[o (' [aztan)] ) natao) = [ @) Bte)) i)

where By, (z) = |{ypE(dy)|. Since §ypZ(dy) belongs to the convex hull of the support of v which is a
compact convex set not containing zero, there exists some b > 0 independent of n such that B, (x) > b
for all n > 1 and x € R?. Since « is non-decreasing it holds

But

3

supfoe (DN, (z)) pin(dx) < M.

n=1

Set a*(t) = sup,>q{st — a(s)}, t = 0, and note that a* is non-decreasing, finite valued and vanishes
at 0. If f:R?Y — R, is a nonnegative function, then using Young’s inequality st < a(s) + a*(t), for
all s, > 0 it is easily seen that for all w > 0, it holds

fufdnn = Jqundun < %Ja*(uf) dptn, + %Ja(an)dun

and so

1 M

< T * n I

(40) ffdnn ™ Ja (wf) dpn + 7~
In particular, if f = 1,4 with A a measurable set, then it holds

max(M; 1

no() < ZEOED ),

where

W(#) = inf {MH 1}, £>0.
u u

Since the sequence (p,)n>1 converges to p, it is tight and so for all € > 0, there exists a compact set
K. such that sup,,~; pn(RN\K.) < e. Choosing A = RN\ K. one thus sees that

max(M; 1
sup 7, (RN\K.) < 7(17 )
n=0

P(e).

It is not difficult to check that ¥ (ﬁ) = ﬁ, as soon as a(s) > 0. This implies in particular that
¥ (t) —> 0 ast — 0. So the bound above shows that the sequence (7, ),>1 is tight. Therefore, according
to Prokhorov’s theorem, one can extract from the sequence (1,,),>1 a subsequence converging to some
probability measure 1 on R%. For notational convenience this subsequence will still be denoted by
(Mn)n>1. Letting n — oo in (40), one sees that for all bounded continuous and nonnegative function

f, it holds
1 M
< — * —.
den buJa (uf) dp+ bu
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If A is a compact subset of R?, then considering the sequence fi(z) = [1 —kd(z,A)],, k = 0, of
bounded continuous nonnegative functions which converges monotonically to 14, one sees that

n(A) < ia*(u)u(A) + M Vu > 0.

bu bu’
Since both 7 and p are inner regular, this inequality is actually true for any measurable set A of
R?. In particular, if u(A) = 0 then it easily follows that n(A) = 0 and so 7 is absolutely continuous
with respect to p. Since 7, converges, the sequence 7, € II(n,,,v) is also tight. One can thus assume
without loss of generality that it converges to some 7 € II(n,v) in the weak topology. If u is some
compactly supported function on R?, it holds

[[ wtwrsmatasds) = [ute) [vaztannatin) = [ utwye o)

and letting n — oo gives
Jf x)y m(daxdy) = J u(x)z p(de)

which reads, writing 7(dzdy) = Yu(dx)p® (dy),

o) (@) [t~ o) utas) -

Since this holds for all compactly supported continuous functions u, one concludes that for p almost

all x € R4
fyq””(dy) =z

with ¢* = N(x)p®, which completes the proof. O

5.4. Study of a particular class of nonpositive conical transport problems. In this section,
we consider a nonpositive cost function

F:XxZ->R_

such that F(x,Az)/A — 0 as A\ — +oo for all x € X, z € 2\{0}. The following result shows in
particular that under mild additional assumptions on F' any weak solution is strong.

Theorem 5.4. Assume that

0 does not belong to co(Y),
e F is nonpositive, satisfies Assumption (A’) and is continuous on X x Z,
o Forallze X andye ), it holds

F(z, \y)

0
A
as X\ — +00.
e [t holds
sup F(z,\y) > —0
zeX ye)

as X\ — +00.
Then it holds
(41) Le(p,v) = { f Qry(x) p(dz) — f o(y) u(dy)} . WweP®)

pedt Z)r\L1 v)

where ®1(Z) is the set of all nonnegative, lower semicontinuous, conver and positively 1-homogenous
functions ¢ : Z - Ry U {+w0} and where

Qry(x) = 222 {p(2) + F(x,2)}, reX.
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Furthermore, the supremum in (41) is attained at some function g € ®*(Z) n L(v), which is positive
on Z2\{0}. Finally, any weak solution for the transport problem between p and v is a strong solution.

The assumptions of Theorem 5.4 are for instance satisfied by F' : X x R‘i — (=00, 0] of the following
form
d
(42) Fla.2) = —|A@):]l.  zeX,zeRl,

where 0 < < 1, A: X — M-o(R%) a continuous function taking values in the space M~o(R?) of
d x d matrices Wlth positive entries, and for 0 < o < 1, the o-“norm” is defined by

d 1/o
lz]o = (Z |zi|"> , z e R4

i—1
It is well known that | - |, satisfies the following reverse triangle inequality on R%:
lz1 + 2200 = 21l + 220 Vo1,22 € RE.

This easily implies that the function F' defined by (42) is convex with respect to its second variable.
Since 0 < n < 1, it is also clear that for every x € X and z € Ri, F(z,Az)/\ — 0 as A > +00. Finally,
if ) is a compact subset included in (0, 00)%, then it is easy to see that SUp,ex yey F(2, Ay) — —c0 as
A — +0.

Remark 5.2. Cost functions of the form (42) are considered in [15] to represent minus the output
of a firm x when it hires a worker of type z. In this context, the variable @ appearing in the dual
formulation of Z.(u,v) corresponds to a wage function and is thus naturally nonnegative.

Proof. Applying Theorem 5.1 to the cost function ¢ yields to

L= s A Qreuan) - [owvan |, werw)

Let us show that the supremum can be restricted to nonnegative functions. Indeed, let yo € co()’) be
such that ¢(yo) = infco(y) ¢ and assume that o(yo) < 0. Since F' < 0, it holds for all A > 0

Qre(r) < inf ©(M\yo) = inf Ap(yo) = —c0.

Therefore, such functions ¢ can be dropped from the supremum. According to Theorem 5.1, we also
know that the supremum in (41) is reached at some ¢ € ®*(Z) n L'(v). Let us show that this
function ¢ is positive over Z\{0}. Consider again yo € co(}) such that ¢(yo) = infeo(y) ¢ and set
a = ¢(yo) = 0. Define, for all u > 0,

Y(u) = inf {/\u + sup F(a:,/\y)} .
A>0 reX ,yey
Observe that

where we used that since yo € co()), it holds F'(x, \yo) < sup,cy F'(z, Ay). Therefore,

o < I JQFSD dz) - J@(y) v(dy) < (a) — a < ¥(a).

By assumption ¢ (0) = —o0, so a > 0. Therefore @ is positive on co(Y). Since Z = Ryco()), we
conclude that @ is positive on Z\{0}.
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Now let us show that the transport problem admits only strong solutions. According to Theorem 2.1

(applied to the cost function ¢ which satisfies condition (C)), we know there exists 7 € II(Supp(u), v)
such that

(43) IC(N? v) = TC(N? v) = _g[ﬁ]v
where, for all 7 € TI(Supp(u), v),

12l = [ 7 (0. %55 @) [y (an) ) wtan)

(because, by assumption, F., (z, z) = 0 for all &, z). Denoting by S(z) =
0 = [ Qee( utdo) ~ [ ot vidy
< [e(8@) + Ple,S@) ntds) - [ o) vidy)
([t man ) st + [ Pl syt - [
@ et~ [ ([ et wan ) atcae)
D 1iu - [ ([ o0 7 @) wita),

e (i) comes from the positive 1-homogeneity of ¢ and Jensen’s inequality,
e (i) comes from the definition of I#[7] and the fact that

[ewvtan = [([ewan) mw - [ [ewaan ) aiews [ ([ o @) s,

e and (i7i) comes from (43).
[ ([ et aetan ) aztan <o

Note that {@(y) 7 (dy) = a > 0, so the only possibility is that 75 = 0 (no singular part). Therefore,
mell(« p,v) and I#[7] = I*[7] = Z.(p,v) and so 7 is a strong solution. O

z) {y 7 (dy), it holds

where

We conclude that

5.5. Structure of solutions for conical cost functions. In all the subsection, we assume that F'

is a function satisfying Assumption (A’) and that ¢ is the conical cost function associated to F' and
defined by (33).

The following result gives an interpretation of the transport cost Z.(u, ) as a shortest transport
distance between p and the set of probability measures dominated by v in the order <,pe.

Theorem 5.5. Let € P(X) and v € P(Y) be such that Z.(u,v) < +00, and assume that the convex
hull of the support of v does not contain 0. Then the following identity holds

(44) Ze(p,v) = _inf Tp(p,7),
Y<phcV
where and Tr denotes the classical transport cost associated to the cost function F':

Tr (1, 7y) inf f F(x,2)n(dzdz), Ve P(X),Vy e P(2).
weH ()
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Moreover, suppose that q is a nonnegative kernel solution to the transport problem (10), consider the

map S defined by
5‘($)=Jyff(dy), zeX,
and denote by U the image of u under the map S. Then the following holds :

e the probability measure v is dominated by v in the positively 1-homogenous convex order,
e it holds

Y<phcV

L.(uv) = [ Flo S@)n(da) = _inf | Ti(u.7)

Note that the map S provides an optimal transport map between p and o for the cost 7. The
proof below adapts the proof of [20, Proposition 1.1] and [4, Lemma 6.1] to our setting.

Proof. Let g be a nonnegative kernel such that ug = v. Thanks to Jensen’s inequality, for all positively
1-homogenous convex function ¢ : R — R, it holds

| es@atan) < [[ ew @ nao) = [ et vty

where S(z) = {y¢“(dy), z € X, and so Sypu is dominated by v in the positively homogenous convex
order. Therefore,
fF(x, S(z)) p(dx) = inf  inf JF(,T, z) m(dxdz).
Y<pheV meIl(1,7y)
Optimizing over ¢ shows that

inf Tr(u,v) <Z(u,v).

Y<phcV
Let us prove the converse inequality. Let v <,n. v and m € II(y, 7). Since ¥ <phe v, Theorem 5.2 shows
that there exists a nonnegative kernel (1) cga such that §7*(dy) v(dz) = v(dy) and §yr*(dy) = z for
~ almost all z. Write
m(dadz) = p(dx)p®(dz)

where p is a probability kernel, and consider the nonnegative kernel ¢ defined by

¢ (dy) = j P (d2)r (dy),

which satisfies g = v. Moreover, for p almost all z, it holds

quw(dy) = Jpw(dz f sz
fF(x z)w(dxdz) = f F(z,2z) p(dx)p®(dz) JF(x, 2 p*(
-

Thus,

p(dx)

\_/\_/

p(dw) = Le(p, v)-

Optimizing over 7 and over v <pp. v gives that
inf  Tp(p,7) = Le(p,v)

'Y\phc

which proves (44). Now if g is a strong solution, then v = Sy <pne v and

T.(u.v) = f F(z, 5(2)) p(de),

which completes the proof. O
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The following result considers the particular case of dimension 1.

Proposition 5.1. Let v € P(Ry) be a compactly supported probability measure with m = {yv(dy)
and denote by

C,, = {7 ePr(Ry): wa(dw) = m} )
Then it holds

L4 Cm = {’7 € ,Pl(]R) el <;Dhc V};
o if ueP(X) is such that
IC(:LL?V) = rnin TF(,L%FY),
v€Cm

then, there exists a map Sy, : X — Ry transporting . onto v, € Cyy, such that
L.(1,v) = Tt ) = | (o Si(@) (o),
e the nonnegative kernel q defined by

7" (dy) =

is a strong solution of the transport problem (10).

Sm(x) v(dy), weX,
m

This result tell us that, in dimension one, once the solutions for the transport problem between g
and Dirac masses d,,, m = 0, are known, then optimal solutions can be deduced for general v on R .

Proof. According to Remark 5.1, we know that for any compactly supported probability measure v
on R,

{yePi(R) : v <phe v} = {7 eP(Ry): fxv(dac) = un(dw)} = Ch.
According to Theorem 5.5, it holds
Ze(p,v) = inf Te(p,7y) = Wlnf Tr (7).

'Y\phc

By assumption, this last infimum is reached at some point v/, € Cy,. Let 7 € II(u,~,,) be an optimal
coupling for Tr(u,~,,) and write m(dxdy) = p(dz)p*(dy). By Jensen s inequality it holds

() foy (dy)p(dx) foS ) pu(dx),

where S,,(z) = §yp®(dy). Denoting by vm = (Sm)#p, one sees that v, <. 7, and in particular,
Ym € Cpy, Therefore one gets

it Te(n) = Tl ) > [ FSi0) pds) > Toom) > int Tr().

This proves that v/, can be replaced by v, and that S,, is an optimal transport map (for the cost
F) between p and ,,. The nonnegative kernel ¢ defined in Proposition 5.1 satisfies

[ st 7 @utan) = = [[ 1680w wtazwtan) = [ 1 an 2229~ [ 50

and so pug = v. Moreover, for all z, {y ¢*(dy) = Sy, (x) and so

[P 5t }F( [ waw)

which shows that ¢ is a strong solution. 0

The next result establishes a variant of Theorem 5.5 involving the classical convex order <..
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Theorem 5.6. Let € P(X) and v € P(Y), and assume that 7 € 1I(« p,v) is a strong solution to
the transport problem (10) for the conical cost function c defined by (33). Let 7j(dz) = N(x) pu(dxr) be
the first marginal of © and consider the map T defined by

T(x)zfyﬁ'z(dy), e X,

and denote by U the image of 1 under the map T. Consider the function G : X x Y — R defined for
reX andye) by -

F(z, N(2)y)

G = ——

(z,9) N@)

if N(z) >0, and G(z,y) = 0 (or any other arbitrary value) otherwise. The following holds :
e the probability measure v is dominated by v in the convex order,
e it holds
- |6 T@)n(do) = it Ton),

where we denote by To the Monge-Kantorovich optimal transport cost associated to the cost
function G:

Ta(n,v) inf Jf x, z) w(dxdz), Vn e P(X),YyeP).

WEH(n v)

In other words, the probability measure v turns out to be the closest point to 77 among the set
{yeP(Y):v <. v} for the transport “distance” 7. Moreover, the map T (which is sometimes called
the barycentric projection of the coupling 7) provides an optimal transport map between 77 and 7 for
the cost 7.

Remark 5.3. Suppose that 7@ is a strong solution to the transport problem 10, denote by 7 = N
its first marginal, and consider the nonnegative kernel ¢* = N(x)n®, x € X. Then for all v € X,
S(z) = N(z)T(z). Note however that 7 and U are in general two different probability measures,
so that the conclusions of Theorems 5.5 and 5.6 are not equivalent. Nevertheless, for all positively
homogenous function ¢ it holds §p(y) v(dy) = §o(y) v(dy)

Proof. Thanks to Jensen’s inequality, for all convex function ¢ : R¢ — R, it holds

| ey < [[ o e atan = [ o))

and so v = T#ﬁ is dominated by v in the convex order. Therefore,

= JG(,T,T(JJ)) f(dz) = inf  inf JG(m,z)w(dwdz).

Y<cV well(7,y)

Let us prove the converse inequality. Let v <. v and 7 € II(7,7). Since v <. v there exists a
martingale coupling m between v and v, that is to say a probability measure m € II(vy, v) such that
m(dzdy) = v(dz)m?*(dy) and §ym?*(dy) = z for v almost every z. Write

w(dxdz) = 7(dx)p” (dz) = vy(dz)r?(dx)
and consider the coupling 7 defined by
7(dxdy) = frz(dx)mz(dy)v(dz).

It is easily seen that 7 € II(7, v). Also,

7(dady) = 7(dx) j P (dz)m? (dy)
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—T — X 4 3
and so 7 (dy) = {p”(dz)m*(dy). Moreover it holds

Jvartan) = v [(eme ) = [ 207(a).

Jf G(z,2) w(dzdz) = ff G(z, 2) n(dz)p®(dz) = fG (m,fzpw(dz)) 7(dx)

~ [6 (o [ an) nta) = 2171 > Zr)

which completes the proof. O

Thus,

The aim of the next result is to understand the articulation between primal and dual optimizers.

Theorem 5.7. Let € P(X) and v € P(Y) be such that Z.(u,v) < +00 and assume that q is a kernel
solution and @ € ®(Z) n LY (v) a dual optimizer:

2 = [ F (o [y (@) utan) = [Qeputan) - [ewvian,
Define S(x) = Sy q®©(dy), z € X.
(1) For p almost every x € X, it holds

Qro(z) = ¢(5(x) + F(z, S(x)).

(2) If M denotes the set of x € X for which the support K(x) < Y of §© contains at least two
points, then for 7j almost x € M, the function @ is affine on the convex hull of K(x): there
exist u, € R and v, € R such that ¢(z) = uy - 2 + v, for all z € co(K(x)).

(3) If F is strictly convex with respect to its second variable, then the map S(z) = §yq®(dy),
x € X, is p-almost surely unique among all strong solutions q of the transport problem.

(4) If F is strictly convex with respect to its second variable and if for all x € X there exist A, € R
and M, > 0 such that ¢(z) + F(x,z) = A, + M, |z| for all z € Z, then for all x € X the map
@* o F*(x, -) is differentiable in a neighborhood of 0 and it holds

S(z) =V (¢* o F*(x, -)) (0)

for u almost all x.

In the result above we denoted

@*(u) = sup{z-u—¢(z)}, uweR
zEZ
and for z € X

F*(z,u) = sup{z-u — F(z,2)}, u e RY,
2€Z

the Fenchel-Legendre transforms of the functions @ and F'(x, - ) extended by +00 outside Z. Moreover,
we recall that the infimum convolution between @* and F*(z, -) is defined by

P o F*(z, - )(u) = infd{@*(0)+F*(I,U*'U)}a u e RY.
veR

Remark 5.4. Denoting by C(@) = {ue R? : u- 2 < ¢(2),Vz € Z}, it is easily seen that

Q* = XC(g)s
where xo(g)(u) = 0 if ue C(@) and +oo. So, it holds

(45) e* o F*(z,  )(u) = inf {F*(z,u—v)}, ue R%.
veC ()
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Proof. By optimality of ¢ and ¢, it holds
Z.(1.v) = | Qepla) n(do) | oty vidy)

= Ic(Ma V)a

where the first inequality comes from the definition of @ rp, the second from the fact that ¢ is convex
and positive 1-homogenous. Analyzing the equality cases completes the proof of (1) and (2). Now,
assume that F is strictly convex with respect to its second variable, and consider 7 another minimizing
nonnegative kernel and define U(z) = §{y7*(dy), x € X. According to what precedes, for ;¢ almost all
x € X, the points S(x) and U(z) minimize the function

2 @(z) + F(x,2), zeZ.

This function being strictly convex, this implies that S(z) = U(x) and so S = U u a.e., which
proves (3). Let us now prove (4). Consider the function H : X x R? — R U {4} defined by
H(z,2) = @(2)+ F(z,2), € X, e R? (with ¢ and F(z, -) extended by +c0 outside Z). For a given
x € X, observe that S(z) minimizes the convex function H(z, -) if and only if 0 € 0H (z, - )(S(z)),
where 0H (z, - )(z) denotes the subdifferential of the function H(z, -) at the point z. By the well

known conjugation relation of subdifferentials, it holds
0e dH(z, -)(S(x)) = S(x) e 0H*(z, -)(0)

(see e.g [24, Corollary E.1.4.4]). Moreover, since H(x, -) is a sum of two convex lower-semicontinuous
functions, its Fenchel-Legendre transform is given as follows:

H*(z,u) = ¢* o F*(z, - )(u), ueR?

(see e.g [24, Theorem E.2.3.2] and note that F(z, - ) is finite over Z which contains the relative interior
of the domain of @). The assumed lower bound on H easily implies that, for all 2z € X, the function
H*(x, -) takes finite values in a neighborhood of 0. Since H(x, -) is strictly convex for all 2 € X,
it follows from [24, Theorem E.4.1.1] that the function H*(z, -) is continuously differentiable on the
interior of its domain. In particular, it is continuously differentiable in a neighborhood of 0, and so,
for all x € X, 0H*(z, - )(0) = {V (@™ o F*(x, -)) (0)}, which completes the proof. O

Corollary 5.1. Let F: X x Z — R be a cost function satisfying assumption (A’) and strictly convex
with respect to its second variable and let 1 € P(X) and v € P(Y) be such that the convex hull of the
support of v does not contain 0.
Assume further that F satisfies

o Assumption (B’)
or
o F: X x Z— R_ is a nonpositive function satisfying the assumptions of Theorem 5.4.

Then, for any kernel solution § and any dual optimizer @ of the transport problem (3), the map
¢* o F*(x, -) is differentiable in a neighborhood of 0, for all x € X, and it holds

5(2) = j y g (dy) = V (¢* o F*(z, )) (0),

for u almost all x € X.
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Proof. Tt is well known that Assumption (B’) is equivalent to the 1-coercivity of F(z, -), that is to
say

im F(z,z2)

ez |zt 2]
Therefore, since the convex function ¢ admits at least one affine minorant, it is easily seen that for
every ¢ € X there exist A, € R and M, > 0 such that ¢(z) + F(z,z) = Ay + M,|z| for all z € Z.
We conclude using Item (4) of Theorem 5.7. Similarly, if F' satisfies the assumptions of Theorem 5.4,
then for all 2 € X and z € Z it holds F(z,Az)/A — 0 as A — +oo. This is actually equivalent to the
fact that
F(x,z)

lim —
2€Z,|z|>+0 2]
Let us briefly sketch the proof. Let z; € Z, k = 0, be a sequence such that A\, = |zx| — +
monotonically, as k — +00. Define uy = 21 /A, k = 0. By compactness, one can assume without loss
of generality that uy — u € Z as k — +o0. Then, by convexity it holds, for all £ > n
F(x,z1) — F(z,0)  F(x, \yug) — F(x,0) - F(x, AMyuy) — F(x,0)
= )\n

)\k )\k
Thus letting £k — +00, one gets

— 4-00.

fim inf £ 2)  F(x, Anu) = F(2,0)

and letting n — 400 gives that

F
lim inf Fla, ) > F, (z,u) =0.
k=0 |z
Since F' is nonpositive this proves the claim. Now, if ¢ is some dual optimizer, we know by Theorem
5.4 that ¢ > 0 on 2\{0}. Thus denoting by M = inf}, |1, ez @(u) > 0, one sees that p(z) = M|z|,

for all z € Z. And so - r
o 22+ F(@.2)

2l —>+o0 =]
and we conclude using Item (4) of Theorem 5.7. O

> M >0,

Let us emphasize a particularly simple case related to Brenier Theorem [11, 12]. In the following
result, adapted from [20, Theorem 1.2], we assume that X < R? is a compact subset of R? and we
consider the cost function cg : X x M(Y) — R, defined by

1 2
cz(x,m)=§ , xeX,me M(Y),
2

S

which corresponds to the function F» : R x R — R : (z,2) — §|z— 2|3, where | - [ is the standard
Euclidean norm.

Theorem 5.8. Let p € P(X) and v € P(Y) such that the convex hull of the support of v does not
contain 0. Then there exists a unique probability measure v € P(Z) such that

1 . 1 _
(46) Ze,(psv) = 3 inf W22(M,77) = §W22(Na’/)'

N<phcV

Moreover, there exists a closed convex set C < R% such that for any nonnegative kernel § minimizing
Z.(p,v), it holds

5(x) = quwdy) -

for p almost every x, where pc : R — R? is the orthogonal projection onto C. The probability v is
the image of u under the map x — = — po(x).
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Proof. The cost function ¢y clearly satisfies Assumption (B) and so, according to Theorem 2.2, the
transport problem (3) between g and v admits kernel solutions. According to Theorem 5.1, it also
admits dual optimizers. Let ¢ € ®(Z) n L'(v) be a dual optimizer (extended by +o0 outside Z). As
observed in Remark 5.4, 3* = x¢ for some closed convex set C, and according to (45) it holds

* . = * —0) = [ Pym—Y 4 —v)- =7z, ~ 2
@* o Fy(x, - )(u) igcf) Ff(z,u—v) 523 { 2Hu v|5 + (u—v) :v} 5 T 2dc(:1c +u),

where d¢(a) = infyec |a — v]2. It is well known that dZ is differentiable over R? and that

1
\Y (§d%> (a) = a —pc(a), Va € R
Therefore,
V(g™ 0 Fy(z, -)) (0) = x — po(x), Vo e X.
According to Corollary 5.1, for any kernel solution g, it holds

qu-m(dm E—)

for pu almost all 2 € R?. According to Theorem 5.5, we conclude that the probability measure 7 defined
as the push forward of p under x — 2z — pe(z) satisfies (46). The uniqueness of 7 is obtained as in
[20, Proposition 1.1]. O

Remark 5.5. Let us give a geometric justification of the fact that x — pc(x) belongs to Z for all
x € RY. Denoting by ¢ the dual optimizer used in the proof (extended by +oo outside Z), one has
Z5 :=cldom(p) € Z. But, since ¢ is the support function of C = {u:u-z < ¢(z),Vx € Z}, one has
according to [24, Proposition C.2.2.4]

CSO = Z@a

where

e Cy denotes the asymptotic cone of C, defined by

COO= ﬂc—t.’ﬂo’

t>0

with x, € C some arbitrary point,
o (5 denotes the polar cone of Cy, defined by

Co ={zeRl:z-y<0,YyeCyp}.
By definition of the orthogonal projection on C, it holds
(x —pe(x)) - (a—pe(x)) <0, vz e R% Va e C.

In particular, taking a = po(z) + d, with d € Cyy yields to (v — pc(x)) -d <0 for all d € Cyy and so
z—po(x)eCy =25 Z.

APPENDIX A. PROOFS OF SOME TECHNICAL RESULTS

A.1. Proof of Proposition 2.1. The proof of Proposition 2.1 is adapted from [3] (paragraph 2.6).
First let us see how the recession function ¢/, can be expressed when ¢ satisfies Assumption (A).

Lemma A.1l. Under Assumption (A) it holds

e (z,m) =supjbk(x,y)m(dy), xeX,me M(Y).
keN
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c(xz,dm)—c(z,0)
A

Proof. Since ¢(x, -) is convex, the function A — is non-decreasing on [0, c0). Therefore,

for all z € X and m € M()), it holds
c(x, dm) — ¢(x,0) c(x, dm) — ¢(x,0)

Al / = li ’ — =
(A1) Coo(z,m) = lim 3 sup 3

Thus, using Assumption (A), it holds
ANDb d _ 0
C/OO(‘Tu m) = Sup sup S k(x7y) m( y) + a/k(x) C((E, )
A>0 k=0 A

= sup U bi(x, y) m(dy) + sup M}

= sup J b (z,y) m(dy),

k=0
where the last equality comes from the fact that c(x,0) = sup,~q ax(x), and so for a fixed k, ap(x) —
¢(z,0) < 0 and so the function A — M is non-decreasing on [0, ). O

We will also need the following lemma

Lemma A.2. Let A be a finite measure on X. If g, ¥1,..., %, : X — R are \ integrable functions
with Yo = 0, then

[ RCCICE R DICCTACRTD

where F,, denotes the set of n + 1-uples (fo,..., fn) of continuous functions fo,..., fn : X — [0,1]
such that fo(z) + -+ + fa(z) < 1.

Proof. See the proof of Proposition 9.4 of [23]. O

Proof of Proposition 2.1. Without loss of generality, one can assume that the functions by and ag
involved in (A) are nonnegative. If this is not the case, consider the cost function

&, m) = gguém,y)m(dy) " ak@c)}, e X,me M),

with b, = bx — ro and @ = aj — sg, with ro = mingex yey bo(x,y) and so = mingex ap(z). It holds
do = 0, by = 0 and one sees that &(z,m) = c(z,m) — rom(Y) — so, z € X, m € M(Y), and so

IY[7] = I*[7] — (so + 7o), and (p, ) > I*[r] is lower semicontinuous if and only if (u, 7) — I£[x] is.

For n > 0, define for all y € P(X) and m € P(X x V)

il = . ,fn)efn {Z Jf bi (@, y) fi(v) T(dzdy) + Igofak(fc)fk(m)ﬂ(dx)} ;

where F,, is defined in Lemma A.2 above. Then consider the functional J* defined by
(A.2) JH[r] = sup J¥ 7], TePX xY).
n=0

For each n > 0, the functional (u, ) — JH[r] is lower semicontinuous as a supremum of continuous
functionals. Similarly, the functlonal (u,m) — JH[r] being the supremum of lower semicontinuous
functionals is itself lower semicontinuous.

For all n = 0, write ¢, (z,m) = supg<r<y, {§0k(z,y) m(dy) + ax(z)}, z € X, m e M(Y). According
to Lemma A.1, it holds ¢, ,,(z,m) = supgcie, {§ 0k (2, y) m(dy)}, z € X, me M(D).
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By monotone convergence, it holds

I¥[r] = sup It [x], Ve P(X),Vr e P(X x V).
n=0
Let us show that for any p € P(X) and m € P(X x V), it holds J4[x] = I#* [x] for all n > 0. This
will immediately imply that I#[x] = J#[x] for all 4 € P(X) and 7 € P(X x V) and show the lower
semicontinuity of I -].

Fix pe P(X) ; for all m € P(X x Y), it holds
1 0r) = | sup vne)utde) + [ sup o) i)
o<k<n o<k<n
with, for all 0 < k& < n,
_dni©

Y(x) = 0 (x) ka(ac, y) 7 (dy) + ar(x), reX

and
o@) = [ @), ze.
Let A € X be a Borel subset such that u(A) = 0 and 75 (X\A) = 0. Define
Ae = o) e
Then
It 7] = J sup Fy(x) (u(dx) + 77 (dx)).

0<k<n

According to Lemma A.2 above (with A = p + 7§), it holds

e = | sup Fu) (uldn) +7ide) = swp [ Y Fule) o) (uldo) + mi(d) = T2,
0<k<n (f0,~~~7fn)e~7:n k=1
which completes the proof. O

A.2. Proof of Lemma 2.4. The proof of Lemma 2.4 below is inspired by the proof of [28, Theorem
C.12] dealing with entropy type functionals on the space of probability measures.

Lemma A.3. Ifc: X x M(Y) — R is convex with respect to its second variable, then for any x € X
and my,ma € M(Y), it holds

c(z,m1 +ma) < c(z,my) + oy (z, ma).
Proof. Let 6 € (0,1) ; using the convexity of ¢(x, -) and (A.1), one gets

m m
c(z,mi +ma) < bc (:v, 71> +(1—-6)c (x, ﬁ)

— ge (:17 %) +(1-0) [c (a: %) — (e, 0)] + (1 - 0)e(z,0)

< fc (:v, %) + o (z,ma) + (1 — 0)c(z,0),

and the result follows by letting 6 — 1. O

Lemma A.4. If ¢ : X x M(Y) — R is conver with respect to its second variable and satisfies
Assumption (C), then there exists a,b > 0 such that

c(x,m) < b+ am(Y), Vo e X,Yme M(Y).
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Proof. Using (A.1), one gets

m
c(z,m) < c(z,0) + m(Y)c. (a:,—) < c¢(x,0) + am(Y),
(z,m) < c(z,0) + m(Y)c, ) (z,0) ()
where a is the constant appearing in Assumption (C). Since ¢(-,0) is continuous on the compact
space X it is upper bounded by some constant b > 0, which completes the proof. O

Proof of Lemma 2.4. Let m € II(Supp(u),v) and denote by 1 € P(Supp(p)) its first marginal. Ac-
cording to Lemma 2.2, 7,, — 7 for the weak topology, and the first marginal of =, is n, = K, n and
is thus absolutely continuous with respect to p. Since 7, € II(« p, -), it holds I*[r,] = I*[x,] and
since I# is lower semicontinuous, one gets that

. . M — . . 7” 7”
lﬂlcgf IH[m,) hnnilgolf IHmy,] = IH[r].

Now let us prove that limsup,, ., [#[r,] < I*[r]. Observe that m,(dzdy) = ¢%(dy)u(dr) with

4y (dy) = JKn(:v, 2)7* (dy)n(dz) = fKn(:v, 2)7* (dy)n*“(dz) + JKn(wa 2)m*(dy)n®(dz) := ¢z + ¢;°

where n = 7% + 1® is the decomposition of 7 into absolutely continuous and singular parts (with
respect to p). According to Lemma A.3, it holds

0] = [ eloa) ude) = [[elogio + ) o) < [ eloagio) o) + [ e (.0 o)

Write n%“(dz) = h(z)p(dz) and let us bound the first term. Since § K, (x,z)pu(dz) = 1, Jensen
inequality yields to

[t wtae) = [ (s [ Koo 2w (onuta) ) utao
< [| Kt 20e @7 ) utdntaz)
- [.coena:)

where
C.(x) =c(x,7*(-)h(2)), x,z€X.

By assumption, the function z — ¢ (x, 7%(- )h(z)) is continuous on X. Therefore, according to Lemma
2.1, one gets that K,C,(u) — C,(u) for any v € X (and even uniformly in u) as n — . Also,
according to Lemma A.4, it holds ¢ (z,7*( - )h(z)) < b+ ah(z) and so K,C.(z) < b+ ah(z), which is
1 integrable. Therefore, according to the dominated convergence theorem, it holds

(A.3)
lim sup f ¢ (2,q25%) plda) < lim [ (KaC.)(2)u(dz) = j C.(2)u(dz) = f ¢ (2,7 ()h(2)) p(dz).

n—oo n—00
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Now, let us bound the second term. Using the convexity and 1-homogeneity of the function m —
clo(x,m) one gets

[ twaiy utao) = e (s [ Buto2pm o)) )
< [[ ¢ @ Kat. )77 o a2
— [[ #2107 ity )
- [ @2,

where
D,(z) =, (z,7*(+)), Vi, z e X.

By assumption, the function x — ¢/, (z,7%) is continuous on X. Therefore, according to Lemma 2.1,
one gets that K, D.(u) — D,(u) for any u € X (and even uniformly in u) as n — c0. By assumption,
it holds ¢/, (z,7%) < @ and so K,,D.(z) < a. Therefore, according to the dominated convergence
theorem, it holds

(A4) limsupjc(x,qf;z) p(dr) < lim | (K,D,)(z)n’(dz) = sz(z)ns(dz) = cho(z,wz)ns(dz).

n—o n—w

Adding (A.3) and (A.4), one gets that limsup,,_,., I#[m,] < I#[r], which completes the proof. O

C

REFERENCES

1. A. Alfonsi, J. Corbetta, and B. Jourdain, Sampling of probability measures in the convexr order by Wasserstein
projection, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 3, 1706-1729. MR 4116705 2

2. J.-J. Alibert, G. Bouchitté, and T. Champion, A new class of costs for optimal transport planning, Eur. J. Appl.
Math. 30 (2019), no. 6, 1229-1263 (English). 2, 20

3. L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford
Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000. 15, 43

4. J. Backhoff-Veraguas, M. Beiglbock, and G. Pammer, Existence, duality, and cyclical monotonicity for weak trans-
port costs, Cale. Var. Partial Differ. Equ. 58 (2019), no. 6, 28 (English), Id/No 203. 2, 3, 20, 37

5. J. Backhoff-Veraguas, M. Beiglbock, and G. Pammer, Weak monotone rearrangement on the line, Electron. Com-
mun. Probab. 25 (2020), Paper No. 18, 16. MR 4069738 2

6. J. Backhoff-Veraguas and G. Pammer, Applications of weak transport theory, Bernoulli 28 (2022), no. 1, 370-394.
MR 4337709 2

, Stability of martingale optimal transport and weak optimal transport, Ann. Appl. Probab. 32 (2022), no. 1,
721-752. MR 4386541 20

8. M. Beiglbock, P. Henry-Labordére, and F. Penkner, Model-independent bounds for option prices—a mass transport
approach, Finance Stoch. 17 (2013), no. 3, 477-501. MR 3066985 2

9. M. Beiglbock and N. Juillet, On a problem of optimal transport under marginal martingale constraints, Ann.
Probab. 44 (2016), no. 1, 42-106. MR 3456332 2

10. J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, Iterative Bregman projections for regularized
transportation problems, SIAM J. Sci. Comput. 37 (2015), no. 2, A1111-A1138. MR 3340204 2

11. Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér.
I Math. 305 (1987), no. 19, 805-808. MR 923203 2, 25, 42

, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44
(1991), no. 4, 375-417. MR 1100809 2, 42

13. L. A. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm.
Math. Phys. 214 (2000), no. 3, 547-563. MR 1800860 2

14. E. Cagzelles, F. Tobar, and J. Fontbona, A novel notion of barycenter for probability distributions based on optimal
weak mass transport, 2022. 2

15. P. Choné and F. Kramarz, Matching Workers’ Skills and Firms’ Technologies: From Bundling to Unbundling,
Preprint, 2021. 1, 3, 4, 6, 12, 35

12.




48

16

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36

PHILIPPE CHONE, NATHAEL GOZLAN AND FRANCIS KRAMARZ

. M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport., in Advances in Neural Information

Processing Systems (NIPS) (2013), no. 26, 2292-2300. 2

M. Fathi, N. Gozlan, and M. Prod’homme, A proof of the Caffarelli contraction theorem via entropic reqularization,

Calc. Var. Partial Differential Equations 59 (2020), no. 3, Paper No. 96, 18. MR 4098037 2

A. Galichon, Optimal transport methods in economics, Princeton University Press, Princeton, NJ, 2016.

MR 3586373 1

A. Galichon, P. Henry-Labordére, and N. Touzi, A stochastic control approach to no-arbitrage bounds given

marginals, with an application to lookback options, Ann. Appl. Probab. 24 (2014), no. 1, 312-336. MR 3161649 2

N. Gozlan and N. Juillet, On a mizture of Brenier and Strassen theorems, Proc. Lond. Math. Soc. (3) 120 (2020),

no. 3, 434-463 (English). 2, 5, 37, 42, 43

N. Gozlan and C. Léonard, Transport inequalities. A survey, Markov Process. Related Fields 16 (2010), no. 4,

635-736. MR 2895086 2

N. Gozlan, C. Roberto, P.-M. Samson, Y. Shu, and P. Tetali, Characterization of a class of weak transport-entropy

inequalities on the line, Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 3, 1667-1693. MR 3825894 2

N. Gozlan, C. Roberto, P.-M. Samson, and P. Tetali, Kantorovich duality for general transport costs and applica-

tions, J. Funct. Anal. 273 (2017), no. 11, 3327-3405 (English). 1, 2, 44

J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis, Grundlehren Text Editions, Springer-

Verlag, Berlin, 2001. 41, 43

Y.-H. Kim and Y. L. Ruan, Backward and forward wasserstein projections in stochastic order, 2021. 5

M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, vol. 89, American

Mathematical Society, Providence, RI, 2001. MR 1849347 2

C. Léonard, A survey of the Schrédinger problem and some of its connections with optimal transport, Discrete

Contin. Dyn. Syst. 34 (2014), no. 4, 1533-1574. MR 3121631 2

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. Math. (2) 169 (2009),

no. 3, 903-991 (English). 14, 45

K. Marton, Bounding d-distance by informational divergence: a method to prove measure concentration, Ann.

Probab. 24 (1996), no. 2, 857-866. 2

, A measure concentration inequality for contracting Markov chains, Geom. Funct. Anal. 6 (1996), no. 3,

556-571. 2

G. Peyré and M. Cuturi, Computational optimal transport: With applications to data science, vol. 11, Now Pub-

lishers, Inc., 2019. 1

R. T. Rockafellar, Convexr analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton,

N.J., 1970. MR 0274683 29

V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36 (1965), 423-439.

4, 30

C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical

Society, Providence, RI, 2003. 1

, Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences|, vol. 338, Springer-Verlag, Berlin, 2009, Old and new. 1

. C. Zalinescu, Convex analysis in general vector spaces, Singapore: World Scientific, 2002 (English). 19

PuiLippE CuonNE : CREST-ENSAE, InsTiTUT POLYTECHNIQUE DE PARIS, FRANCE

Email address: Philippe.Chone®@ensae.fr

NATHAEL GozLAN : UNIVERSITE Paris CiTté, MAP5, UMR 8145, 45 RUE DES SAINTS PERES, 75270 PARIs

CeDEX 06

Email address: natael.gozlan@parisdescartes.fr

Francis Kramarz : CREST-ENSAE, INsTITUT POLYTECHNIQUE DE PARIS, FRANCE AND DEPARTMENT OF

Econowmics, UppsaLAa UNIVERSITY, SWEDEN

Email address: Francis.Kramarz@ensae.fr



	Introduction
	1. A new transport problem
	1.1. Definitions, equivalent formulation and first properties
	1.2. Examples

	2. Weak solutions as minimizers of an extended functional
	2.1. Closure of (,)
	2.2. Weak solutions as minimizers of c
	2.3. A criterion for the existence of strong solutions

	3. Dual formulations
	4. Monotonicity properties and uniqueness of primal solutions
	5. The particular case of conical cost functions
	5.1. Framework
	5.2. Duality and dual attainment for conical cost functions
	5.3. A new variant of Strassen Theorem
	5.4. Study of a particular class of nonpositive conical transport problems
	5.5. Structure of solutions for conical cost functions

	Appendix
	Appendix A. Proofs of some technical results
	A.1. Proof of Proposition 2.1
	A.2. Proof of Lemma 2.4

	References

