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WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNELS

PHILIPPE CHONÉ, NATHAEL GOZLAN AND FRANCIS KRAMARZ

Abstract. We introduce a new variant of the weak optimal transport problem where mass is
distributed from one space to the other through unnormalized kernels. We give sufficient conditions
for primal attainment and prove a dual formula for this transport problem. We also obtain dual
attainment conditions for some specific cost functions. As a byproduct we obtain a transport
characterization of the stochastic order defined by convex positively 1-homogenous functions, in the
spirit of Strassen theorem for convex domination.

Introduction

The aim of this paper is to study the mathematical aspects of a new variant of the optimal transport
problem, related to the weak optimal transport problem introduced in [23], that has been recently
considered by the first and third authors in [15] in an economic context.

In what follows X and Y are compact metrizable spaces, PpX q (resp. PpYq) denotes the set of
all Borel probability measures on X (resp. Y) and µ P PpX q and ν P PpYq are fixed probability
measures.

In the usual Monge-Kantorovich transport problem, given a cost function ω : X ˆY Ñ R, assumed
to be measurable and bounded from below, the optimal transport cost between µ and ν is defined as

(1) Tωpµ, νq “ inf
πPΠpµ,νq

ĳ
ωpx, yqπpdxdyq,

where Πpµ, νq denotes the set of all couplings between µ and ν, that is to say the set of all probability
measures π on X ˆ Y such that the X -marginal of π is µ and the Y-marginal of π is ν. We refer to
the textbooks [34, 35, 18, 31] for a panorama of applications.

To motivate the introduction of weak optimal transport, recall that any coupling π P Πpµ, νq can
be disintegrated as follows

πpdxdyq “ µpdxqpxpdyq,
where p “ ppxqxPX is a probability kernel from X to Y (which is µ almost surely unique). In an
informal way, for all x P X the probability px P PpYq contains all the information about how the mass
taken at x is distributed over Y. Using this notation, one sees in particular that

ĳ
ωpx, yqπpdxdyq “

ż ˆż
ωpx, yq pxpdyq

˙
µpdxq,

which highlights the fact that in the Monge-Kantorovich optimal transport problem, the mass transfers
from X to Y are penalized only through their mean costs

ş
ωpx, yq pxpdyq, x P X . In contrast, the
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Weak Optimal Transport (WOT) framework allows to consider more general penalizations on the
probability kernel p. Given a cost function c : X ˆPpYq Ñ R assumed to be measurable and bounded
from below, the weak optimal transport cost between µ and ν is defined as

(2) Tcpµ, νq “ inf
pPPpµ,νq

ż
cpx, pxqµpdxq,

where Ppµ, νq denotes the set of all probability kernels p “ ppxqxPX transporting µ onto ν in the sense
that

µppdyq :“
ż
pxpdyqµpdxq “ νpdyq.

This definition, which finds its origin in the works by Marton [29, 30] on transport-entropy inequalities
and their relations to the concentration of measure phenomenon [21, 26], stricly extends the setting
of the Monge-Kantorovich transport problem (which corresponds to cpx, pq “

ş
ωpx, yq ppdyq, x P X ,

p P PpYq). It turns out that the WOT setting includes several interesting variants of the optimal
transport problem such as the Schrödinger / entropic regularized transport problem [27, 16, 10] or
the martingale transport problem [8, 19, 9]. General tools such as a Kantorovich type duality formula
[23, 2, 4] and a cyclical monotonicity criterium [20, 4] have been developed in the framework of
WOT. We refer to the nice survey paper [6] for a general panorama of recent results and applications
of WOT. Among the new WOT problems recently considered, the class of barycentric transport
problems attracted a particular attention. These barycentric transport problems correspond to cost
functions of the form

cpx, pq “ θ

ˆ
x´

ż
y ppdyq

˙
, x P X , p P PpYq,

with X ,Y Ă R
d and θ : Rd ˆ R

d Ñ R a convex function bounded from below. The introduction of
these barycentric optimal transport costs was first motivated by their applications in concentration
of measure [23, 22]. In dimension 1 and for a general convex function θ, the structure of optimal
plans has been settled in [22, 1, 5]. For the quadratic cost function θ “ } ¨ }22 on the Euclidean space
pRd, } ¨ }2q with d ě 1, the structure of optimal plans has been described in [20, 4], and yields a new
characterization of the couples pµ, νq for which the Brenier transport map [11, 12] is a contraction
and to a new proof [17] of the Caffarelli contraction theorem [13]. These barycentric cost functions
also recently found applications in machine learning [14].

The new variant of the WOT problem studied in the present paper consists in relaxing the assump-
tion that p “ ppxqxPX appearing in (2) is a probability kernel. To state a formal definition, we need to
introduce additional notions and notations. We will denote by MpYq the set of all finite nonnegative
measures on Y. This set will always be equipped with the usual weak topology, and with the cylindric
σ-field. A nonnegative kernel from X to Y is a collection q “ pqxqxPX of elements of MpYq such that
the map X Ñ R` : x ÞÑ qxpAq is measurable for all Borel set A Ă Y. Given µ P PpX q and ν P PpYq
and a measurable cost function c : X ˆ MpYq Ñ R such that there exist r0, r1 P R such that

(LB) cpx,mq ě r0 ` r1mpYq, @x P X ,@m P MpYq,
we consider

(3) Icpµ, νq “ inf
qPQpµ,νq

ż
cpx, qxqµpdxq,

where Qpµ, νq denotes the set of all nonnegative kernels from X to Y such that µq “ ν, where as
above µqpdyq “

ş
qxpdyqµpdxq.

Remark 0.1. The same transport problem can be stated for measures µ, ν with different masses. It
is not difficult to see that this unbalanced problem can be reduced to the one above simply by redefining
the cost function. So in all the paper, we will stick to the balanced case.
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The transport problem (3) has been introduced in [15] with the following economic motivation.
The space X represents firms’ technologies in a given industry and the space Y represents workers’
skills. The probability measures µ and ν represent the distributions of firms and of workers respec-
tively. A firm of type x P X that recruits a distribution of workers m P MpYq produces output
given by ´cpx,mq. The problem (3) consists in maximizing total output in the industry over all
possible assignments of workers to firms. More precisely, a nonnegative kernel q P Qpµ, νq represents
a particular hiring policy, with qxpdyq giving the distribution of workers hired by firms of type x P X .
The condition µq “ ν expresses that all workers are employed. The mass Npxq :“ qxpYq represents
the total number of workers hired by a firm x P X , i.e., the size of firms with technology x. Impor-
tantly, these firms’ sizes are an outcome of the optimization process, whereas OT models restrict to
probability kernels and hence cannot accommodate this issue.

The main difficulty in dealing with the transport problem (3) is that, unlike Problem (2), assuming
that the cost function is jointly lower semicontinuous and convex in its second variable is not enough to
ensure existence of a minimizer. To obtain existence of a minimizer, one needs to introduce additional
conditions :

‚ We will say that the cost function c : X ˆMpYq Ñ R satisfies Assumption (A) if there exists
a family of continuous functions pakqkě0 on X and a family of continuous functions pbkqkě0

on X ˆ Y such that

(A) cpx,mq “ sup
kě0

"ż
bkpx, yqmpdyq ` akpxq

*
, x P X ,m P MpYq.

Note that this condition implies in particular that c is jointly lower semicontinuous, convex
with respect its second variable and satisfies (LB).

‚ We will say that c satisfies Assumption (B) if

(B)
cpx, λmq

λ
ÝÑ
λÑ8

`8, @x P X , @m P MpYqzt0u.

Let us now present the main results of this paper.

Our first main contribution, is a primal attainment result for the transport problem (3). Under
Assumptions (A) and (B), we show that for all probability measures µ P PpX q and ν P PpYq, there
exists a nonnegative kernel q P Qpµ, νq such that Icpµ, νq “

ş
cpx, qxqµpdxq (see Theorem 2.2). In a

nutshell, the role of Assumption (B) is to avoid mass accumulation on sets of µ measure 0. Note that
existence of solutions can also hold under other types of conditions on c (see in particular Theorem
5.4 dealing with nonpositive cost functions c having a moderate growth).

Our second main result is a Kantorovich type duality formula for the transport problem (3). Under
assumptions (A) and (B), for all probability measures µ P PpX q and ν P PpYq, it holds

Icpµ, νq “ sup
fPCbpYq

"ż
Kcfpxqµpdxq ´

ż
fpyq νpdyq

*
,

where CbpYq denotes the set of (bounded) continuous functions on Y and the operator Kc is defined
by

Kcfpxq “ inf
mPMpYq

"ż
f dm ` cpx,mq

*
, x P X .

Note that, at least formally, if one allows c to take the value `8 and cp ¨ ,mq “ `8 when m is not
of mass 1, then Icpµ, νq “ Tcpµ, νq and one recovers the duality formula for WOT [4]. As we shall see
in Theorem 3.2, the duality formula for Ic actually holds under a more general condition (Approx)
which is in particular implied by Assumption (B).
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The third main contribution of this paper is a general investigation of transport problems involving
cost functions of the following form

(4) cpx,mq “ F

ˆ
x,

ż
y dm

˙
, x P X ,m P MpYq

where Y is a compact subset of R
d whose conical hull is denoted by Z and F : X ˆ Z Ñ R is

convex with respect to its second variable. Such cost functions will be called conical in all the paper.
This name comes from the fact that cost functions of this type are naturally related to positively
1-homogenous convex functions (whose epigraphs are cones). Recall that a function ϕ : Rd Ñ R is
said positively 1-homogenous (or positively homogenous of degree 1) if ϕptxq “ tϕpxq for all t ě 0 and
x P R

d. This link between conical cost functions and positively 1-homogenous convex appears in the
duality formula for the transport problem (3). More precisely, we will prove that if c is a conical cost
function satisfying (A) and such that the convex hull of the support of ν does not contain 0, then,
under some mild integrability condition on F , the following reduced duality formula holds

(5) Icpµ, νq “ sup
ϕ

"ż
QFϕpxqµpdxq ´

ż
ϕpyq νpdyq

*
,

where ϕ runs over the set of positively 1-homogenous convex functions and the operator QF is defined
by

QFϕpxq “ inf
zPZ

tϕpzq ` F px, zqu, x P X .

Moreover, under the same assumptions, we will show the existence of dual optimizers ; see Theorem
5.1 for a precise statement. These conical cost functions are precisely those that were considered in
[15] and motivated the present paper. In the economic model of [15], a dual optimizer ϕ represents a
“wage schedule” (ϕpyq is the wage paid to workers with skills y), while QFϕpxq represents the opposite
of the profit earned by firms with technology x (the profit is the produced output ´F px, zq minus the
firm’s wage bill ϕpzq, with z being the sum of the skills of firm x’ employees).

A byproduct of our primal attainment and duality results for conical cost functions is a seemingly
new variant of the Strassen’s theorem [33], that we shall now present. Recall that if µ, ν are probability
measures on R

d having finite first moments, one says that µ is dominated by ν in the convex order,
which is denoted by µ ďc ν, if

(6)

ż
f dµ ď

ż
f dν

for all convex function f : Rd Ñ R. Strassen’s theorem provides the following useful probabilistic
characterization of convex order : µ ďc ν if and only if there exists a couple of random variables
pX0, X1q such that X0 „ µ, X1 „ ν and pX0, X1q is a martingale :

ErX1 | X0s “ X0 a.s.

Note that if πpdxdyq “ µpdxqpxpdyq denotes the law of pX0, X1q, the martingale condition is equivalent
to the following centering condition on the probability kernel p : for µ almost all x,

ż
y pxpdyq “ x.

Our generalization of Strassen’s theorem deals with a weaker variant of the convex order defined
as follows : if (6) holds for all positively 1-homogenous convex functions f , we will say that µ is
dominated by ν in the positively 1-homogenous convex order and write µ ďphc ν. As we will see in
Theorem 5.2, if ν is a compactly supported probability measure on R

d such that the convex hull of
the support of ν does not contain 0, then µ ďphc ν if and only if there exists a nonnegative kernel
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q P Qpµ, νq such that, for µ almost all x,

(7)

ż
y qxpdyq “ x.

See Theorem 5.2 for the case where 0 belongs to the convex hull of the support of µ. Let us briefly
explain how this Strassen type result is connected to conical costs. Consider µ, ν two compactly
supported probability measures on R

d and denote by Y the support of ν. For p ą 1, the conical cost
function

cpx,mq “
››››x´

ż
y dm

››››
p

, x P R
d,m P MpYq,

where } ¨ } is an arbitrary norm on R
d satisfies Assumption (B) if and only if 0 does not belong to

the convex hull of Y. According to our primal existence result, we thus have Icpµ, νq “ 0 if and only
if there is some q P Qpµ, νq satisfying (7). Using the dual formulation (5), one can then show with
some extra work, that µ ďphc ν implies that Icpµ, νq “ 0, thus completing the proof. In our proof,
we actually follow a slightly different route, since we use the cost c above with p “ 1 which will allow
us to relax the assumption on the support of ν.

The new version of Strassen’s theorem will also enable us to describe optimal transport plans for
conical transport costs, in the spirit of [20]. As we will see in Theorem 5.6, as soon a conical cost
function c of the form (4) satisfies Assumption (A) and the convex hull of the support of ν does not
contain 0, it holds

(8) Icpµ, νq “ inf
γďphcν

TF pµ, γq,

where TF denotes the Monge-Kantorovich optimal transport cost associated to the cost function F :

TF pµ, γq “ inf
πPΠpµ,γq

ĳ
F px, zqπpdxdzq, @µ P PpX q,@γ P PpZq.

Moreover, if q is a kernel minimizer for Icpµ, νq, then the map Spxq “
ş
y qxpdyq, x P X , does not

depend on the particular choice of the optimizer q̄ and provides an optimal transport for the cost TF
between µ and a probability measure ν̄ ďphc ν that achieves the infimum in (8). The map S can also
be related to dual optimizers (see Theorem 5.7 and Corollary 5.1). In the particular case where X is
a compact subset of Rd and F px, zq “ 1

2
}x´ z}22, x, z P R

d, with } ¨ }2 the standard Euclidean norm,
more can be said about the form of the transport map S. Namely, we show in Theorem 5.8 that there
exists some closed convex set C such that for µ almost every x, it holds Spxq “ x´ pCpxq where pC
is the orthogonal projection onto the set C.

Let us point out that during the preparation of this work, we learned about the recent paper [25],
devoted to the study of

inf
γďAν

TF pµ, γq,

where F : X ˆ R
d Ñ R` is some lower semicontinuous function, A is some cone of continuous

functions on R
d and γ ďA ν means that

ş
f dγ ď

ş
f dν for all f P A. A general duality formula has

been obtained in [25] for these distance functionals (called backward projection there) : under good
assumptions, it holds

inf
γďAν

TF pµ, γq “ sup
ϕPA

ż
QFϕdµ ´

ż
ϕdν,

with QF defined as above (with Z “ R
d). We refer to [25, Theorem 4.3] for a precise statement.

Applying this result to the class A of all convex positively 1-homogenous functions together with (8),
gives back the duality formula (5). Note that the two papers complement each other, since the identity
(8) crucially requires the variant of Strassen theorem for the convex positively 1-homogenous order
proved here. It would be very interesting to see if other forward projections admit representations in
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terms of weak transport costs Tc or Ic for some special classes of cost functions c, but this question
will not be considered here.

In the conical case described above, a basic feature of the corresponding transport problem is
that it admits in general more than one solution. This non-uniqueness of solutions is no longer true
for other class of cost functions, also considered in [15], that we shall now describe. Suppose that
c : X ˆ MpYq Ñ R is given by

(9) cpx,mq “ G

ˆż
F px, yqmpdyq

˙
, x P X ,m P MpYq,

where F : X ˆ Y Ñ p0,8q is some continuous function and G : r0,8q Ñ R is a convex differentiable
function. We establish in Theorem 4.2, that when X ,Y are compact subsets of R, µ has no atoms, G
is monotonic and F : R2 Ñ R is twice continuously differentiable and satisfies the following condition

B lnF
BxBy ‰ 0

then the transport problem (3) associated to a cost function of the form (9) admits at most one kernel
solution (and exactly one whenever G1pxq Ñ `8 as x Ñ 8 for instance). Moreover, this kernel
solution is of the following form

q̄xpdyq “ N̄pxqδT̄ pxqpdyq,

for µ almost every x P X , where N̄ is a density with respect to µ and T̄ is a monotonic function. This
uniqueness result is obtained as a consequence of a general result of independent interest establishing a
relation between the support of primal solutions and dual optimizers (see Proposition 4.1 for details).

The paper is organized as follows. In Section 1, we introduce another formulation of the transport
problem (3) involving couplings π with a first marginal absolutely continuous with respect to µ and
second marginal equal to ν. This class of couplings being not closed in general, primal attainment
is not always true (when it holds we call such coupling a strong solution). To compensate this non-
attainment issue, we introduce the notion of weak solution. These weak solutions are defined as
limit points of minimizing sequences, and as such always exist. We conclude Section 1 by giving
several explicit examples admitting only strong solutions or only weak (but not strong) solutions or
solutions of both types. In Section 2, we show that under good assumptions, weak solutions can be
interpreted as couplings minimizing a certain functional denoted Īµc which is lower semicontinuous
on its domain of definition. One of the main result of this section is Theorem 2.2 which shows that
under Assumption (B) all weak solutions are strong. The main result of Section 3, Theorem 3.2,
provides the dual formulation of the transport problem already presented above. Section 4 deals with
cost functions of the form (9). We prove in Theorem 4.1 that the dual problem admits at least one
solution. Then we establish in Proposition 4.1 a general link between supports of primal solutions and
this dual optimizer, on which relies the proof of the uniqueness result (Theorem 4.2) presented above.
Section 5 is entirely devoted to the study of the transport problem (3) for conical cost functions. We
prove in particular in Theorem 5.1 duality and dual attainment under conditions that are weaker than
in Theorem 3.2. This section also contains the Strassen type result presented above characterizing
the positively 1-homogenous convex order (Theorem 5.2) and, as a corollary, the identity (8). We
also prove in Theorem 5.4 a primal attainment result for a special class of nonpositive conical cost
functions. Finally, the paper ends with an Appendix containing the proofs of some technical results
of Section 2.
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1. A new transport problem

In this section, we first introduce an alternative equivalent formulation of the transport problem
(3) which involves couplings and is thus closer to the usual optimal transport framework. Then we
introduce the notion of weak solutions which compensate the fact that the transport problem (3) does
not always admit minimizers. Finally, we study several explicit examples of transport problem (3) in
dimension one.

1.1. Definitions, equivalent formulation and first properties. First let us introduce some no-
tations. If E is some Polish metric space, we will denote by PpEq the set of all Borel probability
measures on E and by MpEq (resp. MspEq) the set of all nonnegative finite measures (resp. finite
signed measures) on E. The space MspEq will be equipped with the topology of weak convergence,
that is to say the coarsest topology that makes the maps MspEq Ñ R : m ÞÑ

ş
f dm continuous for

all f P CbpEq, the space of all bounded continuous functions on E.
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In all what follows, X and Y will be two compact metrizable spaces and c : X ˆMpYq Ñ R will be
a cost function which will always be assumed to be convex with respect to its second variable, jointly
lower semicontinuous on X ˆ MpYq and to satisfy the lower bound (LB). Given µ P PpX q, for any
nonnegative kernel q from X to Y such that µqpYq “ 1 we will set

Iµc rqs “
ż
cpx, qxqµpdxq.

With this notation, the transport problem (3) can be restated as

(10) Icpµ, νq “ inf
qPQpµ,νq

Iµc rqs,

where we recall that Qpµ, νq denotes the set of all nonnegative kernels q from X to Y such that µq “ ν.
We will say that q̄ P Qpµ, νq is a kernel solution to the transport problem (10) if

Icpµ, νq “
ż
cpx, q̄xqµpdxq.

A first basic observation is that Ic is jointly convex.

Proposition 1.1. The functional PpX q ˆ PpYq Ñ R Y t`8u : pµ, νq ÞÑ Icpµ, νq is convex.

Proof. Take µ0, µ1 P PpX q, ν0, ν1 P PpYq and for t Ps0, 1r let µt “ p1´tqµ0`tµ1 and νt “ p1´tqν0`tν1.
It will be convenient to work with a reference probability measure m such that µt ! m for all t P r0, 1s.
One can take for instance m “ µ1{2, since µ1{2pAq “ 0 implies that µ0pAq “ µ1pAq “ 0 which implies
that µtpAq “ 0. Let q0 and q1 be nonnegative kernels such that µ0q0 “ η0 and µ1q1 “ η1. Let qt the
nonnegative kernel defined by

qxt pdyq “ p1 ´ tqh0pxq
p1 ´ tqh0pxq ` th1pxqq

x
0 pdyq ` th1pxq

p1 ´ tqh0pxq ` th1pxqq
x
1 pdyq,

where h0 and h1 are the densities of µ0, µ1 with respect to m. We have

µtqtpdyq “
ż
qxt pdyqµtpdxq “

ż
rp1 ´ tqh0pxqqx0 pdyq ` th1pxqqx1 pyqsmpdxq

“ p1 ´ tqν0pdyq ` tν1pdyq “ νtpdyq,
hence µtqt “ νt. By convexity of cpx, ¨ q, it holds

ż
cpx, qxt qµtpdxq ď

ż
p1 ´ tqh0pxqcpx, qx0 q ` th1pxqcpx, qx1 qmpdxq

“ p1 ´ tq
ż
cpx, qx0 qµ0pdxq ` t

ż
cpx, qx1 qµ1pdxq.

The result then follows by minimizing over q0 and q1. �

Let us now derive an alternative equivalent formulation of the transport problem (10) that is closer
to the classical viewpoint in optimal transport. We will denote by Πpη, νq the set of all transport
plans between two probability measures η P PpX q and ν P PpYq, that is to say the set of probability
measures on X ˆ Y having η and ν as marginals. For any µ P PpX q, we will consider

Πp! µ, νq “
ď

η!µ
Πpη, νq and Πp! µ, ¨ q “

ď

νPPpYq
Πp! µ, νq

where η ! µ means that η is absolutely continuous with respect to µ. In other words, Πp! µ, ¨ q is the
set of all probability measures on X ˆY whose first marginal is absolutely continuous with respect to
µ. Observe that if q P Qpµ, νq then the function N defined by Npxq “ qxpYq is such that

ż
Npxqµpdxq “ 1.
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Therefore, N is a probability density with respect to µ. Moreover, πpdxdyq “ µpdxqqxpdyq is a trans-
port plan between ηpdxq :“ Npxqµpdxq and νpdyq. Conversely, if η P PpX q is absolutely continuous
with respect to µ and π P Πpη, νq with πpdxdyq “ ηpdxqpxpdyq, then the nonnegative kernel q defined

by qxpdyq “ dη
dµ

pxqpxpdyq, x P X , belongs to Qpµ, νq. With a slight abuse of notation, let us also

denote by Iµc the function defined on Πp! µ, ¨ q by

Iµc rπs “
ż
c

ˆ
x,
dπ1

dµ
pxqpx

˙
µpdxq, π P Πp! µ, ¨ q,

where π1 is the first marginal of π and p is the probability kernel such that πpdxdyq “ π1pdxqpxpdyq.
With this notation, it thus holds

(11) Icpµ, νq “ inf
πPΠp!µ,νq

Iµc rπs.

Definition 1.1 (Strong solutions). Let µ P PpX q and ν P PpYq ; a probability measure π̄ P PpX ˆYq
is called a strong solution of the transport problem (10) if π̄ P Πp! µ, νq and Icpµ, νq “ Iµc rπ̄s.

Note that if q̄ is a kernel solution to the transport problem (10) then the transport plan π̄pdxdyq “
µpdxqq̄xpdyq P Πp! µ, νq is a strong solution of the transport problem (10) and, conversely, any strong
solution defines a kernel solution.

Since the set Πp! µ, νq is not closed in general, the infimum in the transport problem (10) is
not always attained and strong solutions may not always exist. This technical issue motivates the
introduction of weak solutions.

Definition 1.2 (Weak solutions). Let µ P PpX q and ν P PpYq ; a probability measure π̄ P PpX ˆ Yq
is called a weak solution of the transport problem (10) if there exists a sequence of transport plans
πn P Πp! µ, νq such that πn Ñ π̄ for the weak topology and Iµc rπns Ñ Icpµ, νq.

Of course, a strong solution is also a weak solution. Under good conditions on the cost function c,
weak solutions will be interpreted in Section 2.2 as solutions of a related minimization problem.

Weak solutions always exist as shows the following elementary result.

Proposition 1.2. For any µ P PpX q and ν P PpYq, the transport problem (10) admits at least one
weak solution.

Proof. Let pπnqnPN be a minimizing sequence in Πp! µ, νq, that is to say that limnÑ8 Iµc rπns “
Icpµ, νq. Since X ˆ Y is compact, the space PpX ˆ Yq is also compact. Therefore, the sequence
pπnqnPN admits at least one converging subsequence, and any limit point π̄ is a weak solution of the
transport problem (10). �

At least in the simple case when X is a finite set, strong solutions always exist.

Theorem 1.1. Suppose that X is a finite then, for any µ P PpX q and ν P PpYq, every weak solution
of the transport problem (10) is a strong solution.

We will need the following lemma.

Lemma 1.1. If X is a finite set, then for any µ P PpX q the set Πp! µ, ¨ q is a closed subset of
PpX ˆ Yq and the functional Πp! µ, ¨ q Ñ R : π ÞÑ Iµc rπs is lower semicontinuous.

Proof. Fix µ P PpX q. The fact that Πp! µ, ¨ q is a closed subset of PpX ˆ Yq is easy to see and
left to the reader. Let pπnqnPN be a sequence of Πp! µ, ¨ q converging to some π. Since Πp! µ, ¨ q
is closed, it follows that π belongs to Πp! µ, ¨ q. Denote by ηn (resp. η) the first marginal of πn
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(resp. π). For all x P X such that ηnpxq ą 0, πxnpdyq “ πnpx,dyq
ηnpxq . If ηnpxq “ 0, set πxnpdyq “ νpdyq

(say). Then ηn Ñ η and dηn
dµ

pxq Ñ dη
dµ

pxq for all x P X such that µpxq ą 0. Also, it is clear that

πxnpdyq “ πnpx,dyq
ηnpxq Ñ πpx,dyq

ηpxq “ πxpdyq as n Ñ 8, for all x such that ηpxq ą 0. So, using the lower

semicontinuity of c, one gets

lim inf
nÑ8

Iµc rπns “ lim inf
nÑ8

ÿ

xPX
c

ˆ
x,
dηn

dµ
pxqπxn

˙
µpxq ě

ÿ

xPX
lim inf
nÑ8

c

ˆ
x,
dηn

dµ
pxqπxn

˙
µpxq

ě
ÿ

xPX
c

ˆ
x,
dη

dµ
pxqπx

˙
µpxq “ Iµc rπs,

which completes the proof. �

Proof of Theorem 1.1. Let π be some weak solution of the transport problem (10) and pπnqnPN be a
minimizing sequence converging to π. Since X is finite, it follows from Lemma 1.1 that Πp! µ, νq is
closed, and so π P Πp! µ, νq. According to Lemma 1.1, it follows that Icpµ, νq “ lim infnÑ8 Iµc rπns ě
Iµc rπs, and so π is a strong solution. �

1.2. Examples. We study below particular cases of the transport problem (10) and we describe
their set of solutions. These explicit examples show that all the possibility in terms of uniqueness or
non-uniqueness or existence of strong solutions can occur.

1.2.1. An example without strong solution. Suppose that µ is the uniform measure on X “ r0, 1s and
ν is an arbitrary probability measure on Y “ r2, 3s and define

cpx,mq “
ż

|x´ y|2mpdyq, x P r0, 1s, m P MpYq.

Then,

Icpµ, νq “ inf
µq“ν

ĳ
|y ´ x|2µpdxqqxpdyq.

Since for all x P r0, 1s and y P r2, 3s, |y ´ x|2 ě |y ´ 1|2 it holds

Icpµ, νq ě
ż 3

2

|y ´ 1|2 νpdyq.

This lower bound is not reached. Indeed, suppose by contradiction that there is some q P Qpµ, νq
such that

ť
|y ´ x|2µpdxqqxpdyq “

ş
|y ´ 1|2 νpdyq. Then, denoting by πpdxdyq “ µpdxqqxpdyq the

associated transport plan, it would hold πpt1u ˆ r2, 3sq “ 1 and so π “ δ1 b ν and π1 “ δ1. Since δ1
is not absolutely continuous with respect to µ this is not possible. So this problem does not admit
strong solutions.

On the other hand, define for all n ě 2, πnpdxdyq “ ηnpdxqbνpdyq, with ηn the uniform probability
measure on r1 ´ 1{n, 1s. The associated kernel is given by

qxnpdyq “ n1r1´1{n,1spxqνpdyq, x P r0, 1s,
and it holds

ż
cpx, qxnqµpdxq “

ż 1

0

ż 3

2

|y ´ x|2qxnpdyqµpdxq “ n

ż 3

2

ż 1

1´1{n
|y ´ x|2dxνpdyq

ď
ż 3

2

|y ´ p1 ´ 1{nq|2 νpdyq Ñ
ż 3

2

|y ´ 1|2 νpdyq

as n Ñ 8. This shows that Icpµ, νq “
ş3
2

|y ´ 1|2 νpdyq and that π “ δ1 b ν is a weak solution of this
transport problem.



WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNELS 11

1.2.2. An example with a unique strong solution. In this paragraph, we modify the definition of the
cost function of the first example and observe the effect in terms of existence of strong solutions. Let
µ be the uniform distribution on X “ r0, 1s and ν “ δ2 on Y “ r2, 3s and consider now the cost

cpx,mq “
ˆż

|y ´ x| dm
˙2

, x P r0, 1s, m P MpYq.

If q P Qpµ, δ2q then qxpRzt2uq “ 0 for almost all x. Therefore, denoting Npxq “ qxpt2uq, it holds

Iµc rqs “
ż 1

0

p2 ´ xq2N2pxq dx.

By Cauchy-Schwarz,

1 “
ż 1

0

Npxq dx ď
ˆż 1

0

p2 ´ xq2N2pxq dx
˙1{2 ˆż 1

0

1

p2 ´ xq2 dx
˙1{2

.

So, letting C “
´ş1

0
1

p2´xq2 dx
¯´1

, we get that

Iµc rqs ě C

and there is equality if and only if Npxq “ C
p2´xq2 , x P r0, 1s. So qxpdyq “ Npxqδ2pdyq is the unique

nonnegative kernel achieving the minimum in Icpµ, δ2q. Equivalently πpdxdyq “ Npxq dx b δ2 is the
unique strong solution of the transport problem. It will follow from Theorem 2.2 below that all weak
solutions are actually strong in this example, so π is also the unique weak solution.

1.2.3. An example exhibiting both strong and weak solutions. Let µ be the uniform distribution on
r0, 1s and νpdyq “ 2y21r0,1spdyq ` 1

3
δ0pdyq. Consider the cost function

cpx,mq “
ˇ̌
ˇ̌x´

ż
y dm

ˇ̌
ˇ̌
p

, x P r0, 1s,m P Mpr0, 1sq,

with 0 ă p. We refer to Section 5.3 (in particular the proof of Theorem 5.3) for more insights about
this type of costs and the construction of the weak solution below.

Let us first show that the transport problem (10) between µ and ν admits a strong solution.
Consider the nonnegative kernel q̄xpdyq “ 2xνpdyq. Since

ş
xµpdxq “

ş
y νpdyq “ 1

2
, it is clear that

µq “ ν and that
ş
y q̄xpdyq “ x. Therefore

ş
cpx, q̄xqµpdxq “ 0, which shows that Icpµ, νq “ 0 and q̄

is a strong solution.

Now let us construct a weak (but not strong) solution. Define ηpdxq “ ?
xµpdxq ` 1

3
δ0pdxq and let

πpdxdyq “ ηpdxqδ?
xpdyq. We claim that π is a weak solution of the transport problem (10) between

µ and ν. First it is easy to check that the second marginal of π is ν, in other words that ν is the
push-forward of η under the map x ÞÑ ?

x. Let us now construct a minimizing sequence converging

to π. Define πε, for 0 ă ε ă 1{2 as the law of pp1 ´ εqX ` εU,
?
Xq, where X „ η and U „ µ. A

simple calculation shows that πεpdxdyq “ µpdxqqxε pdyq, where q is the nonnegative kernel defined by

qxε pdyq :“ 1

3ε
1aďεδ0pdyq ` 2y2

ε
1”b

maxpx´ε
1´ε

,0q;
b
minp x

1´ε
,1q

ıpyq dy.



12 PHILIPPE CHONÉ, NATHAEL GOZLAN AND FRANCIS KRAMARZ

Therefore, for all x P r0, 1s,

bεpxq :“
ż
y qxε pdyq “ 1

2ε

«
min

ˆ
x

1 ´ ε
, 1

˙2

´ max

ˆ
x´ ε

1 ´ ε
, 0

˙2
ff

“ 1

p1 ´ εq2

$
&
%

1
2
x2

ε
if 0 ď x ď ε

px´ ε
2

q if ε ď x ď 1 ´ ε
1
2

p1´xq
ε

p1 ` x´ 2εq if 1 ´ ε ď x ď 1

.

Thus, one sees that for all x P r0, 1s, bεpxq Ñ x as ε Ñ 0 and that sup0ăεă1{2 supxPr0,1s bεpxq ă `8.
So, applying the dominated convergence theorem yields

ż
cpx, qxε qµpdxq Ñ 0

as ε Ñ 0. Since πε Ñ π in the weak sense, this shows that π is a weak solution (which is obviously
not strong).

1.2.4. A particular case of a one dimensional nonpositive conical cost function. Consider the following
cost function c : rα, βs ˆ Mprγ, δsq Ñ R´ where α, β, γ, δ ě 0 .

(12) cpx,mq “ ´x
ˆż

y dm

˙η
, x P rα, βs,m P Mprγ, δsq,

where 0 ă η ă 1. This cost function is a particular case of the cost functions considered in [15] (in
arbitrary dimensions). Note that c satisfies Assumption (LB). Indeed, by concavity of the function
y ÞÑ yη on R`, it holds

yη ď 1 ` ηpy ´ 1q, @y ě 0.

Therefore,

cpx,mq ě ´x
ˆ
1 ´ η ` η

ż
y dm

˙
ě ´β p1 ´ η ` ηδmprγ, δsqq :“ r0 ` r1mprγ, δsq.

The following result gives informations on strong solutions of the transport problem associated to
the cost function c defined above.

Proposition 1.3. Let µ P Pprα, βsq and ν P Pprγ, δsq ; the transport problem (10) between µ and ν
with respect to the cost function c defined by (12) admits strong solutions. For instance, denoting by

µ̄pdxq “ 1
Z
x

1

1´η µpdxq, where Z is a normalizing constant, then the coupling π̄ given by

π̄ “ µ̄ b ν

is a strong solution. More generally, q P Qpµ, νq is a nonnegative kernel solution if and only if there
exists some constant C ą 0 such that

(13)

ż
y qxpdyq “ Cx

1

1´η

for µ almost all x P rα, βs. In particular, if µ has a positive density f on rα, βs and ν a positive
density g on rγ, δs, and T : rα, βs Ñ rγ, δs is a continuously differentiable bijection such that for some
constant C ą 0 it holds

(14) NpxqT pxq “ Cx
1

1´η ,

for Lebesgue almost all x P rα, βs, where N is the density (with respect to µ) defined by

(15) Npxq “ gpT pxqq|T 1pxq|
fpxq , @x P rα, βs

then qxpdyq “ NpxqδT pxq, x P rα, βs, is a strong solution.
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We will see in Theorem 5.4 below that for such cost function, all weak solutions are actually strong.

Proof. Let π P Πp! µ, νq, then dπ1

dµ
pxq “ dπ1

dµ̄
pxq 1

Z
x

1

1´η and so

´ Iµc rπs “
ż β

α

x

ˆ
dπ1

dµ

˙η ˜ż δ

γ

y πxpdyq
¸η

µpdxq “ 1

Zη

ż β

α

x
1

1´η

ˆ
dπ1

dµ̄

˙η ˜ż δ

γ

y πxpdyq
¸η

µpdxq

“ Z1´η
ż β

α

ˆ
dπ1

dµ̄

˙η ˜ż δ

γ

y πxpdyq
¸η

µ̄pdxq ď Z1´η
˜ż β

α

dπ1

dµ̄
pxq

ż δ

γ

y πxpdyq µ̄pdxq
¸η

“ Z1´η
ˆż

y νpdyq
˙η

,

where the inequality follows from the concavity of the function u ÞÑ uη. Note that if π1 “ µ̄ and
πxpdyq “ νpdyq for all x, there is equality. In other words, π̄ “ µ̄ b ν is a strong solution of the
transport problem between µ and ν. Moreover, according to the equality case in Jensen’s inequality
and the strict concavity of u ÞÑ uη, we see that there is equality above if and only if the function

x ÞÑ dπ1

dµ̄
pxq

şδ
γ
y πxpdyq is constant µ̄ almost surely. Writing πpdxdyq “ µpdxqqxpdyq, we see that this

condition is equivalent to the existence of C ą 0 such that (13) holds µ almost everywhere. Now, let
us assume that µ has a positive density f on rα, βs and ν a positive density g on rγ, δs, and let us look
for solutions of the form qxpdyq “ NpxqδT pxq, where x ÞÑ T pxq is a continuously differentiable bijection
from rα, βs to rγ, δs. First of all, if N satisfies (15), then for any bounded measurable function h on
rγ, δs, it holds

ż β

α

hpT pxqqNpxqfpxq dx “
ż β

α

hpT pxqqgpT pxqq|T 1pxq| dx “
ż δ

γ

hpyqgpyq dy,

by the change of variable formula, which shows that µq “ ν. Now, according to (14), it holds

ż
y qxpdyq “ NpxqT pxq “ Cx

1

1´η ,

for µ almost every x P rα, βs, which shows that q satisfies (13) and completes the proof. �

In the following result we consider the particular case where µ “ ν is the uniform measure on r0, 1s.

Corollary 1.1. If µ and ν are both the uniform distribution on r0, 1s, the three following kernels are
strong solutions of the problem:

‚ Random sorting: qx0 pdyq “ N0pxqµpdyq with N0pxq “ Cxa0 , for all x P r0, 1s, a0 “ 1{p1 ´ ηq
and C “ p2 ´ ηq{p1 ´ ηq is such that

ş1
0
N0pxqµpdxq “ 1;

‚ Positive Assortative Matching: qx1 pdyq “ N1pxq δT1pxq, where for all x P r0, 1s,

T1pxq “ xa1 , N1pxq “ T 1
1pxq, a1 “ 2 ´ η

2p1 ´ ηq “ C

2
;

‚ Negative Assortative Matching: qx2 pdyq “ N2pxq δT2pxq, where for all x P r0, 1s,

T2pxq “
?
1 ´ xa2 , N2pxq “ ´T 1

2pxq, a2 “ 2 ´ η

1 ´ η
“ C.

Proof. The verification that q1 and q2 are strong solutions is left to the reader. �
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2. Weak solutions as minimizers of an extended functional

As explained above, the difficulty in dealing with the minimization problem (11) is that the set
Πp! µ, ¨ q is not closed in general, and so the optimal value of the problem can be reached at the
boundary. In this section, we first identify the closure of Πp! µ, νq, using a simple approximation
technique from [28]. Then, we introduce an explicit functional Īµc which is a lower semicontinuous
extension of Iµc , and we introduce a condition (see (Approx) below) under which Īµc coincides with the
lower semicontinuous envelope of Iµc . When this condition is in force, we can interpret weak solutions
as minimizers of Īµc on the closure of Πp! µ, νq. Finally, when Assumption (B) is satisfied, we will
see that every weak solution is strong.

2.1. Closure of Πp! µ, νq. Let us introduce a general mollifying approximation technique from [28,
Theorem C.5], that will be very useful in the next paragraphs.

Lemma 2.1 (Lott-Villani [28]). Let pS, dq be an arbitrary compact metric space and µ be a Borel
probability measure on S. There exist a family of kernels pKnqně0 such that

piq For all n ě 0, Kn : S ˆ S Ñ R` is a continuous and symmetric function such that for all
x P Supppµq,

ş
Knpx, yqµpdyq “ 1.

piiq For all continuous function f : Supppµq Ñ R, the functions Knf , n ě 0, defined by

(16) Knfpyq :“
ż
Knpx, yqfpxqµpdxq, y P S,

are continuous on Supppµq and such that Knf Ñ f uniformly on Supppµq as n Ñ 8.
piiiq For all probability measure η P PpSq such that η pSupppµqq “ 1, the probability measures Knη,

n ě 0, defined by

Knηpdyq :“
ż
Knpx, yq ηpdxqµpdyq

is such that Knη Ñ η as n Ñ 8 for the weak convergence.

For a fixed µ P PpX q, we will denote in what follows by ΠpSupppµq, νq the set of probability
measures π on X ˆ Y such that π1 pSupppµqq “ 1 and π2 “ ν, where π1 and π2 denote respectively
the marginals of π on X and Y.

Lemma 2.2. For any µ P PpX q and ν P PpYq, it holds

cl Πp! µ, νq “ ΠpSupppµq, νq,

where cl Πp! µ, νq denotes the closure of Πp! µ, νq for the weak topology. More precisely, for any
π P ΠpSupppµq, νq with πpdxdyq “ ηpdxqπxpdyq, the sequence pπnqně0 defined for all n ě 0 by

πnpdxdyq “
ż
Knpx, zqπzpdyqηpdzqµpdxq,

where pKnqně0 is the sequence of kernels given by Lemma 2.1 (applied to S “ X and µ) is such that
πn P Πp! µ, νq for all n ě 0 and πn Ñ π for the weak topology as n Ñ 8.

Proof of Lemma 2.2. The inclusion Ă is clear. Let us show the other inclusion. Let π P ΠpSupppµq, νq
and set η “ π1. We claim that the first marginal of πn is Knη and the second marginal is ν. Indeed,
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if f : X Ñ R is a continuous function, then
ĳ

fpxqπnpdxdyq “
¡

fpxqKnpz, xqπzpdyqµpdxqηpdzq

“
ĳ

fpxqKnpz, xqµpdxqηpdzq

“
ż
fpxqpKnηqpdxq

and if g : Y Ñ R is a continuous function, then
ĳ

gpyqπnpdxdyq “
¡

gpyqKnpz, xqπzpdyqµpdxqηpdzq

“
ĳ

gpyqπzpdyqηpdzq

“
ż
gpyqνpdyq.

If f : X ˆ Y Ñ R is a continuous function, then denoting by fy the function x ÞÑ fpx, yq, it follows
from Item piiq of Lemma 2.1 that
ĳ

fpx, yqπnpdxdyq “
¡

fpx, yqKnpz, xqµpdxqπzpdyqηpdzq “
ĳ

Knfypzqπzpdyqηpdzq Ñ
ĳ

fpy, zqπpdydzq,

as n Ñ 8. In other words πn Ñ π in the weak topology. Also, since Knη ! µ, πn belongs to Πp! µ, νq
which completes the proof. �

2.1.1. Lower semicontinuous extensions of Iµc . For any fixed µ P PpX q, consider the functional

Īµc : PpX ˆ Yq Ñ R Y t`8u
defined by

Īµc rπs “
ż
c

ˆ
x,
dπac1
dµ

pxqπxpdyq
˙
µpdxq `

ż
c1

8 px, πxq πs1pdxq, @π P PpX ˆ Yq,

where π1 “ πac1 `πs1 is the decomposition of π1 into an absolutely continuous part and a singular part
with respect to µ and

c1
8px,mq “ lim

λÑ8

cpx, λmq
λ

, x P X ,m P MpYq

is the recession function of cpx, ¨ q. Note that this limit is always well defined since, by convexity of

cpx, ¨ q, the function λ ÞÑ cpx,λmq´cpx,0q
λ

is non-decreasing on p0,8q.
The following proposition shows that, for a fixed µ and under Assumption (A), the functional Īµc

is a lower semicontinuous extension of Iµc .

Proposition 2.1. Under Assumption (A), the function PpX q ˆ PpX ˆ Yq : pµ, πq ÞÑ Īµc rπs is lower
semicontinuous and such that Īµc “ Iµc on Πp! µ, ¨ q.

The proof of Proposition 2.1 (which is adapted from [3]) is postponed to Section A.1 of Appendix.

For a fixed µ P PpX q, let us now introduce the lower semicontinuous envelope of Iµc , denoted Ĩµc
and defined as follows : for all π P PpX ˆ Yq

Ĩµc rπs “ sup
V PVpπq

inf
γPVXΠp!µ, ¨ q

Iµc rγs,

where Vpπq denotes the class of all open neighborhoods of π. By convention inf H “ `8, so in

particular, Ĩµc “ `8 outside cl Πp! µ, ¨ q “ ΠpSupppµq, ¨ q.
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At this level of generality, it is not clear whether Īµc and Ĩµc always coincide on ΠpSupppµq, ¨ q. The
following proposition gives a necessary and sufficient condition for that.

Proposition 2.2. For a fixed µ P PpX q and under Assumption (A), it holds

piq for all π P PpX ˆ Yq, Īµc rπs ď Ĩµc rπs,
piiq for all π P Πp! µ, ¨ q, Iµc rπs “ Īµc rπs “ Ĩµc rπs,

piiiq the functionals Īµc and Ĩµc coincide on ΠpSupppµq, ¨ q if and only if for all π P ΠpSupppµq, ¨ q
there exists a sequence πn P Πp! µ, ¨ q such that Iµc rπns Ñ Īµc rπs.

Proof. Since Īµc is lower semicontinuous, for all π P PpX ˆ Yq it holds

Īµc rπs “ sup
V PVpπq

inf
γPV

Īµc rγs ď sup
V PVpπq

inf
γPVXΠp!µ, ¨ q

Īµc rγs “ sup
V PVpπq

inf
γPVXΠp!µ, ¨ q

Iµc rγs “ Ĩµc rπs,

and so Īµc ď Ĩµc , which proves piq. On the other hand, if π P Πp! µ, ¨ q, then

inf
γPVXΠp!µ, ¨ q

Iµc rγs ď Iµc rπs “ Īµc rπs

and so, optimizing over V P Vpπq, Ĩµc rπs ď Īµc rπs which proves piiq. Let us prove piiiq. Suppose that
π P ΠpSupppµq, ¨ q is such that there exists a sequence πn P Πp! µ, ¨ q for which Iµc rπns Ñ Īµc rπs.
Then, since Ĩµc is lower semicontinuous, it holds

Ĩµc rπs ď lim inf
nÑ8

Ĩµc rπns “ lim inf
nÑ8

Iµc rπns “ Īµc rπs.

Since the inequality Īµc rπs ď Ĩµc rπs is always true, there is in fact equality. Conversely, suppose

that Ĩµc “ Īµc on ΠpSupppµ, ¨ q. If π P ΠpSupppµq, ¨ q, then according to Lemma 2.2, π P cl Πp! µ, ¨ q.
Therefore, for any open neighborhood V of π, the set V XΠp! µ, ¨ q is non-empty. Now, it easily follows

from the definition of Ĩµc , that there exists some sequence πn P Πp! µ, ¨ q such that Iµc rπns Ñ Ĩµc rπs
and so Iµc rπns Ñ Īµc rπs. �

For a fixed µ P PpX q, let us introduce the following variants of problem (10): for ν P PpYq,
(17) sIcpµ, νq “ inf

πPΠpSupppµq,νq
Īµc rπs

and

(18) rIcpµ, νq “ inf
πPΠpSupppµq,νq

Ĩµc rπs.

Unlike transport problem (10), the transport problems (17) and (18) always admit solutions.

Lemma 2.3. Under Assumption (A), for any µ P PpX q, ν P PpYq such that sIcpµ, νq ă 8, there
exists π P ΠpSupp pµq, νq such that Īµc rπs “ sIcpµ, νq. The same is true for the transport problem (18).

Proof. The functional Īµc is lower semicontinuous on the compact set ΠpSupppµq, νq so it attains its
lower bound. �

Finally, the following result will be very useful in Section 3 dealing with duality.

Proposition 2.3. Under Assumption (A), the functional PpX q ˆ PpYq Ñ R Y t`8u : pµ, νq ÞÑ
sIcpµ, νq is lower semicontinuous at any point pµ, νq with Supp pµq “ X .

Proof. Let pµ, νq P PpX q ˆ PpYq be such that Supp pµq “ X and consider pµn, νnq P PpX q ˆ PpYq a
sequence converging to pµ, νq. According to Lemma 2.3, for all n ě 0 there exists πn P ΠpSupppµnq, νnq
such that

Īµn
c rπns “ sIcpµn, νnq.
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Let ℓ “ lim infnÑ8 Īµn
c rπns. Extracting a subsequence if necessary, one can assume without loss

of generality that Īµn
c rπns Ñ ℓ as n Ñ 8. Since PpX ˆ Yq is compact, the sequence πn admits a

converging subsequence, that we will denote again by πn. Let π̄ be the limit of πn. Since νn Ñ ν,
π̄ P ΠpX , νq “ ΠpSupp pµq, νq. Then, by semicontinuity of Ī ¨

cr ¨ s, it holds

ℓ “ lim
nÑ8

Īµn
c rπns ě Īµc rπ̄s ě inf

πPΠpSupppµq,νq
Īµc rπs “ sIcpµ, νq.

�

2.2. Weak solutions as minimizers of Īµc . The following inequality is always true

(19) sIcpµ, νq ď rIcpµ, νq ď Icpµ, νq.

Indeed, the first inequality comes from the fact that Īµc ď Ĩµc (Item piq of Proposition 2.2) and the

second from the fact that Ĩµc “ Iµc on Πp! µ, νq Ă ΠpSupppµq, νq. It is not clear if there is always
equality in (19). The following result gives a sufficient condition.

We will say that c satisfies Assumption (Approx) if for all µ P PpX q and ν P PpYq,
(Approx) @π P ΠpSupppµq, νq there exists a sequence πn P Πp! µ, νq such that Iµc rπns Ñ Īµc rπs.
Of course, when π P Πp! µ, νq, one can choose the constant sequence πn “ π, n ě 0. Only the case
π P ΠpSupppµq, νqzΠp! µ, νq is non trivial in the above condition. Note that this condition is trivially
satisfied when X is finite. We will see below more general sufficient conditions for (Approx).

Theorem 2.1. Let c : X ˆMpYq Ñ R be a cost function satisfying condition (A) and (Approx) and
µ P PpX q.

piq For any π P ΠpSupppµq, ¨ q, it holds Īµc rπs “ Ĩµc rπs.
piiq For any ν P PpYq, it holds Icpµ, νq “ rIcpµ, νq “ Icpµ, νq.

piiiq Let ν P PpYq be such that Icpµ, νq ă `8. A coupling π P ΠpSupppµq, νq is a weak solution of
the transport problem (10) if and only if π minimizes Īµc on ΠpSupppµq, νq.

Proof. Item piq follows from Proposition 2.2 (Item piiiq) and Assumption (Approx). Let us show
Item piiq. Let π P ΠpSupppµq, νq and consider a sequence πn P Πp! µ, νq such that Iµc rπns Ñ Īµc rπs.
For all n, it holds Icpµ, νq ď Iµc rπns, and so letting n Ñ 8 gives Icpµ, νq ď Īµc rπs. Optimizing
over all π P ΠpSupppµq, νq yields to Icpµ, νq ď sIcpµ, νq, which together with (19) proves the claim.
Let us finally show Item piiiq. Since sIcpµ, ¨ q “ Icpµ, ¨ q, it follows that any minimizer of Īµc on
ΠpSupppµq, νq “ cl Πp! µ, νq is a weak solution. Conversely, note that if πn is a sequence of Πp! µ, νq
converging to some π and such that Iµc rπns Ñ Icpµ, νq, then by lower semicontinuity of Īµc , it holds
Īµc rπs ď Icpµ, νq “ sIcpµ, νq, and so π P ΠpSupppµq, νq is a minimizer of Īµc on ΠpSupppµq, νq, which
completes the proof. �

Let us now give some concrete conditions on c ensuring (Approx). We will say that a cost function
c : X ˆ MpYq Ñ R satisfies Assumption (C) if

(C)

$
’&
’%

´ for all m P MpYq, the functions cp ¨ ,mq and c1
8p ¨ ,mq are continuous on X ,

and

´ there exists a ě 0 such that c1
8px, pq ď a for all x P X and p P PpYq.

For instance, the cost function introduced in Section 1.2.4 :

cpx,mq “ ´x
ˆż

y dm

˙η
, x P rα, βs,m P Mprγ, δsq,
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where α, β, γ, δ ě 0, η P p0, 1q, is such that

c1
8px, pq “ 0, x P rα, βs, p P Pprγ, δsq,

and so c satisfies Assumption (C).

Lemma 2.4. If c : X ˆ MpYq Ñ R satisfies Assumptions (A) and (C), then it satisfies Assumption
(Approx). More precisely, for any µ P PpX q and π P ΠpSupppµq, νq, the sequence πn P Πp! µ, νq,
n ě 0, defined in Lemma 2.2 is such that Iµc pπnq Ñ Īµc pπq.

The proof of Lemma 2.4 is postponed to Section A.2 of Appendix.

2.3. A criterion for the existence of strong solutions. Recall Assumption (B) given in the
introduction, which can be recast as follows :

c1
8px,mq “ `8, @m P MpYqzt0u, @x P X .

Under Assumption (B), one gets Īµc rπs “ Iµc rπs, if π P Πp! µ, ¨ q and `8 otherwise.

Lemma 2.5. If c : X ˆ MpYq Ñ R is a cost function satisfying Assumptions (A) and (B), then it
satisfies (Approx).

Proof. If πn P Πp! µ, νq is any sequence converging to π P ΠpSupppµq, νqzΠp! µ, νq (such sequences
always exist according to Lemma 2.2), then since Īµc is lower semicontinuous, one gets

lim inf
nÑ8

Iµc rπns “ lim inf
nÑ8

Īµc rπns ě Īµc rπs “ `8

and so Iµc rπns Ñ Īµc rπs. �

The following result shows in particular that strong solutions always exist under Assumptions (A)
and (B).

Theorem 2.2. Let c : X ˆ MpYq Ñ R be a cost function satisfying Assumptions (A) and (B). If
µ P PpX q, ν P PpYq are such that Icpµ, νq ă `8, then any weak solution of the transport problem
(10) is a strong solution.

Proof. According to Lemma 2.5 and Theorem 2.1, if π is a weak solution, then

Īµc rπs “ sIcpµ, νq “ Icpµ, νq ă 8.

Therefore, Īµc rπs ă `8 and so π P Πp! µ, νq and Īµc rπs “ Iµc rπs “ Icpµ, νq, which shows that π is a
strong solution. �

Note that condition (B) applies for instance if there exists φ : R` Ñ R a function such that
φpuq{u Ñ `8, when u Ñ `8, such that

(20) cpx,mq ě φpmpYqq, @x P X ,@m P MpYq.
If X ,Y Ă R

d and the convex hull of Y does not contain 0, this assumption is for instance satisfied by
the following conical cost functions

(21) cpx,mq “
››››x´

ż
y dm

››››
p

, x P X ,m P MpYq,

where } ¨ } is an arbitrary norm on R
d and p ą 1.
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Remark 2.1. Let us briefly indicate another possible method for proving existence of strong solu-
tions when c satisfies (20). Let ν P PpYq be such that Icpµ, νq ă `8 and assume pπnqně0 is a
sequence in Πp! µ, νq such that Iµc rπns Ñ Icpµ, νq and πn Ñ π. Then it follows from (20) that
supnPN

ş
φpNnq dµ ă `8, denoting by Nn the density of the first marginal of πn with respect to µ.

Therefore, the sequence pNnqně0 is uniformly integrable and so, according to the Dunford-Pettis the-
orem, it admits a converging subsequence for the topology σpL1pµq, L8pµqq. From this follows easily
that π P Πp! µ, νq and is therefore a strong solution.

3. Dual formulations

In this section, we establish a Kantorovich type dual formula for the transport problem (3). The
derivation of these dual forms will make use of the following abstract Fenchel-Moreau biconjugation
theorem (see e.g [36, Theorem 2.3.4]).

Theorem 3.1. Let E be a Hausdorff locally convex topological vector space and E1 its topological dual
space. If F : E Ñ p´8,8s is a convex function such that dom pF q “ tx P E : F pxq ă 8u ‰ H, then
for any x P dom pF q where F is lower semicontinuous, it holds

F pxq “ sup
ℓPE1

tℓpxq ´ F˚pℓqu

where

F˚pℓq “ sup
xPE

tℓpxq ´ F pxqu , ℓ P E1.

In what follows, we will apply Theorem 3.1 in the following setting: E “ MspX q ˆ MspYq
equipped with the product weak topology whose topological dual is E1 “ CbpX q ˆ CbpYq and F :

MspX q ˆ MspYq Ñ R Y t`8u defined as follows

(22) F pα, βq “

$
’&
’%

Ic

´
α

αpX q ,
β

βpYq

¯
αpX q if α, β ě 0 and αpX q “ βpYq ą 0

0 if α, β ě 0 and αpX q “ βpYq “ 0

`8 otherwise

,

for all α P MspX q and β P MspYq.
Lemma 3.1. The functional F is convex on MspX q ˆ MspYq. Moreover, under Assumptions (A)
and (Approx), the functional F is lower semicontinuous at any point pα, βq such that α, β ě 0,
αpX q “ βpYq and Supp pαq “ X .

Proof. The first statement easily follows from Proposition 1.1. Let αn, βn be sequences converging
respectively to finite nonnegative measures α, β such that αpX q “ βpYq and Supp pαq “ X and let us
show that lim infnÑ8 F pαn, βnq ě F pα, βq. Dropping terms if necessary, one can assume without loss
of generality that αnpX q “ βnpYq for all n. As α has full support, αpX q ą 0 and since αnpX q Ñ αpX q,
it follows that αnpX q ą 0 for all n large enough. Under Assumptions (A) and (Approx), Theorem 2.1
gives that Ic “ Ic. Since αn{αnpX q Ñ α{αpX q (which has full support) and βn{βnpYq Ñ β{βpYq, it
follows from Proposition 2.3 that

lim inf
nÑ8

Ic

ˆ
αn

αnpX q ,
βn

βnpYq

˙
ě Ic

ˆ
α

αpX q ,
β

βpYq

˙

and since αnpX q “ βnpYq Ñ αpYq “ βpYq this proves the claim. �

Theorem 3.2. Under Assumptions (A) and (Approx), it holds

(23) Icpµ, νq “ sup
fPCbpYq

"ż
Kcfpxqµpdxq ´

ż
fpyq νpdyq

*
, @ν P PpYq
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where

Kcfpxq “ inf
mPMpYq

"ż
f dm ` cpx,mq

*
, x P X .

In particular, (23) holds whenever c satisfies Assumption (A) and Assumption (B) or (C).

Remark 3.1. It would be very interesting to obtain general sufficient conditions for dual attainment in
Theorem 3.2. This could lead to cyclical monotonicity criterium characterizing optimality of transport
plans, in the spirit of the C-monotonicity criterium obtained for WOT [4, 7].

The proof below is adapted from the proof of [2, Theorem 4.2].

Proof. Let µ P PpX q, ν P PpYq and assume that µ has full support. According to Lemma 3.1,
the function F defined by (22) is convex on MspX q ˆ MspYq and lower semicontinuous at pµ, νq.
Therefore, according to Theorem 3.1, it holds

Icpµ, νq “ F pµ, νq “ sup
pϕ,ψqPCbpX qˆCbpYq

"ż
ϕdµ`

ż
ψ dν ´ F˚pϕ, ψq

*
,

with, for all pϕ, ψq P CbpX q ˆ CbpYq,

F˚pϕ, ψq “ sup
pα,βqPMspX qˆMspYq

"ż
ϕdα `

ż
ψ dβ ´ F pα, βq

*

“ sup
pα,βqPPpX qˆPpYq

sup
λě0

"
λ

ż
ϕdα ` λ

ż
ψ dβ ´ λIcpα, βq

*

“ χKc
pϕ, ψq,

where

Kc “
"

pϕ, ψq P CbpX q ˆ CbpYq :
ż
ϕdα `

ż
ψ dβ ď Icpα, βq,@α P PpX q,@β P PpYq

*

and χKα
pϕ, ψq “ 0 if pϕ, ψq P Kc and `8 otherwise. Thus we get

Icpµ, νq “ F pµ, νq “ sup
pϕ,ψqPKc

"ż
ϕdµ `

ż
ψ dν

*
,

Now, observe that if pϕ, ψq P Kc, then (choosing α “ δx, with x P X ) it holds

ϕpxq ď inf
βPPpYq

"
´
ż
ψ dβ ` Icpδx, βq

*
ď inf
βPPpYq

"
´
ż
ψ dβ ` cpx, βq

*
“ Kcp´ψqpxq,

where we used that Icpδx, βq “ cpx, βq. Thus, it holds

Icpµ, νq ď sup
fPCbpYq

"ż
Kcfpxqµpdxq ´

ż
fpyq νpdyq

*
.

The converse inequality is always true. Indeed, if πpdxdyq “ Npxqµpdxqπxpdyq P Πp! µ, νq, then
ż
Kcfpxqµpdxq ď

ż ˆż
fpyqdpNpxqπxqpdyq ` cpx,Npxqπxq

˙
µpdxq “

ż
f dν ` Iµc rπs.

Formula (23) is thus proved when µ has full support. When µ does not have full support, then letting

X̃ “ Supppµq and applying the preceding reasoning in the space MspX̃ q ˆ MspYq gives the desired
duality formula. �
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4. Monotonicity properties and uniqueness of primal solutions

In this section, we consider cost functions of the following form

(24) cpx,mq “ G

ˆż
F px, yqmpdyq

˙
, x P X ,m P MpYq,

where F : X ˆ Y Ñ p0,`8q is a continuous function and G : R
` Ñ R is a convex function,

assumed to be differentiable on p0,`8q and we denote by G1p0q “ limxÑ0` G1pxq P R Y t´8u and
G1p`8q “ limxÑ`8 G1pxq P R Y t`8u. We will establish below that the dual problem admits a
solution (Theorem 4.1) and then use this dual optimizer to get informations on the support of primal
solutions (Proposition 4.1). Finally, we will consider the particular case when X and Y are subsets of
R and prove uniqueness of primal solutions under suitable assumptions on F,G and µ (Theorem 4.2).

First let us check that c satisfies the assumptions introduced in the preceding sections. Writing G
as a countable supremum of affine functions, one easily sees that c satisfies Assumption (A) and in
particular (LB). Thus Icpµ, νq makes sense for any µ P PpX q and ν P PpYq. Note also that for any
m P MpYqzt0u and x P X

c1
8px,mq “ G1p`8q.

So c satisfies Assumption (B) if G1p`8q “ `8 and Assumption (C) otherwise. Therefore, Theorem
3.2 applies and it is easily seen that

(25) Icpµ, νq “ sup
fPL1pνq

"ż
Kcfpxqµpdxq ´

ż
fpyq νpdyq

*
, @µ P PpX q,@ν P PpYq,

with

L1pνq “
"
f : Y Ñ R : f measurable and

ż
|f | dν ă `8

*

and

(26) Kcfpxq “ inf
mPMpYq s.t fPL1pmq

"ż
f dm ` cpx,mq

*
, x P X , f P L1pνq.

Note thatKcf is upper semicontinuous on X as an infimum of continuous functions and thatKcfpxq ď
Gp0q for all x P X and thus

ş
Kcfpxqµpdxq always makes sense.

The following result establishes dual attainment.

Theorem 4.1. If the function G in (24) is such that G1p0q ą ´8, then for every µ P PpX q and
ν P PpYq, there exists a bounded function f̄ on Y such that

Icpµ, νq “
ż
Kcf̄pxqµpdxq ´

ż
f̄pyq νpdyq.

The same conclusion holds if G1p0q “ ´8 and Y is a finite set. Moreover, if G is non-decreasing
(resp. non-increasing) on R

`, then f̄ can be chosen nonpositive (resp. nonnegative).

Proof. Let us show that the supremum in (25) can be restricted to the class of measurable functions
f such that f ě a, with a “ Icpµ, νq´ supuPX ,vPY Gp2F pu, vqq´1. Note that if f is not bounded from
below, then Kcpfqpxq “ ´8 for all x P X , so the supremum in (25) can be restricted to functions f
bounded from below. If f is such a function, then for all y P Y, it holds

Kcfpxq ď 2fpyq `Gp2F px, yqq ď 2fpyq ` sup
uPX ,vPY

Gp2F pu, vqq.

So optimizing over y, one gets

Kcfpxq ď 2 inf f ` sup
uPX ,vPY

Gp2F pu, vqq
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and so ż
Kcfpxqµpdxq ´

ż
fpyq νpdyq ď inf f ` sup

uPX ,vPY
Gp2F pu, vqq

Therefore, if inf f ă Icpµ, νq ´ supuPX ,vPY Gp2F pu, vqq ´ 1, then
ż
Kcfpxqµpdxq ´

ż
fpyq νpdyq ă Icpµ, νq ´ 1,

and so f can be dropped from the supremum in (25). We thus conclude that the supremum in (25)
can be restricted to functions f bounded from below by a. In the case, where G is non-increasing,
this lower bound can be improved. Indeed, if fpy0q ă 0 for some y0 P Y, then for all λ ą 0 it holds

Kcfpxq ď λfpy0q `GpλF px, y0qq Ñ ´8
as λ Ñ `8. So the supremum in (25) can be restricted in this case to nonnegative functions.

Now let us show that the supremum in (25) can be further restricted to functions f such that
f ď b, where b “ rG1p0qs´ supxPX ,yPY F px, yq with rxs´ “ maxp´x; 0q. Let f P L1pνq; define A “
ty P Y : fpyq ď bu and for all m P MpYq write mApdyq “ 1Apyqmpdyq and mAcpdyq “ 1Acpyqmpdyq.
Since u ÞÑ Gpuq ` rG1p0qs´u is non-decreasing, for all x P X , it holds
ż
minpf, bq dm ` cpx,mq “

ż
f dmA ` bmpAcq `G

ˆż
F px, yqmApdyq `

ż
F px, yqmAcpdyq

˙

ě
ż
f dmA ` bmpAcq `G

ˆż
F px, yqmApdyq

˙
´ rG1p0qs´

ż
F px, yqmAcpdyq

ě
ż
f dmA `G

ˆż
F px, yqmApdyq

˙
`
ˆ
b´ rG1p0qs´ sup

xPX ,yPY
F px, yq

˙
mpAcq

ě Kcfpxq

and so, letting f̂ “ minpf, bq, one gets Kcf̂ ě Kcf . On the other hand, since f̂ ď f , it also holds

Kcf̂ ď Kcf and so Kcf “ Kcf̂ . Since,
ż
Kcf dµ ´

ż
f dν ď

ż
Kcf̂ dµ´

ż
f̂ dν

one concludes that the supremum in (25) can be restricted to functions bounded from above by b. In
particular, when G is non-decreasing, then rG1p0qs´ “ 0 and one can restrict to nonpositive functions.

Let us now show the dual attainment. Consider a sequence pgnqně0 of elements of B “ tf P
L1pνq : a ď f ď bu such that

ş
Kcgn dµ ´

ş
gn dν Ñ Icpµ, νq. According to the Dunford-Pettis

theorem (or the Banach-Alaoglu-Bourbaki theorem), one can extract from pgnqně0 a subsequence
(still denoted pgnqně0) converging to some g8 P B for the weak topology σpL1, L8q: for all h P L8pνq,ş
gnh dν Ñ

ş
g8h dν. Moreover, according to Mazur’s Lemma, there exists a sequence pfnqně0 of the

form fn “
řNn

i“0 λ
pnq
i gn`i with Nn ě 0, λ

pnq
0 , . . . , λ

pnq
Nn

ě 0 and
řNn

i“0 λ
pnq
i “ 1 such that fn converges

strongly in L1pνq to g8, as n Ñ 8. Extracting a subsequence if necessary, one can further assume
that pfnqně0 converges ν almost everywhere to g8. Let Φ : B Ñ R : f ÞÑ

ş
Kcf dµ ´

ş
f dν. It is

easily seen that

Kcpp1 ´ tqf ` tgq ě p1 ´ tqKcf ` tKcg, @t P r0, 1s,@f, g P B

and so Φ is concave. Therefore

Φpfnq ě
Nnÿ

i“0

λ
pnq
i Φpgn`iq ě inf

kěn
Φpgkq Ñ Icpµ, νq,
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as n Ñ 8, and so Φpfnq Ñ Icpµ, νq as n Ñ 8. Since Kcfn ď Gp0q for all n ě 0, one can apply
Fatou’s Lemma

Icpµ, νq “ lim sup
nÑ`8

ż
Kcfn dµ ´ lim

nÑ`8

ż
fn dν ď

ż
lim sup
nÑ`8

Kcfn dµ ´
ż
g8 dν.

For all m P MpYq and x P X , it holds

Kcfnpxq ď
ż
fn dm ` cpx,mq

and so, applying Fatou’s Lemma again, one gets

lim sup
nÑ`8

Kcfnpxq ď
ż
lim sup
nÑ`8

fn dm ` cpx,mq, x P X

and so, optimizing over m yields lim supnÑ`8 Kcfn ď Kcpf̄q, with f̄ “ lim supnÑ`8 fn P B, and so

Icpµ, νq ď
ż
Kcf̄ dµ ´

ż
g8 dν.

Finally, since fn converges ν almost everywhere to g8, it holds g8 “ f̄ ν a.e. and so

Icpµ, νq ď
ż
Kcf̄ dµ ´

ż
f̄ dν,

which shows that f̄ is a dual optimizer. Finally, let us show dual attainment when Y is a finite set and
G1p0q ě ´8. According to what precedes, the supremum in (25) can be restricted to functions f ě a.
On the other hand, since

ş
Kcf dµ ď Gp0q one can further restrict the supremum in (25) to functions f

such that
ş
f dν ď Gp0q`1´Icpµ, νq :“ a1. Since Y is finite, the set C “ tf P L1pνq : a ď f,

ş
f dν ď a1u

is compact. Reasoning as above, one shows that any maximizing sequence of the dual problem admits
a subsequence converging to a dual optimizer, which completes the proof. �

The following result relates primal and dual optimizers (provided they exist).

Proposition 4.1. Let µ P PpX q and ν P PpYq be such that Icpµ, νq ă `8 and suppose that q̄ is a
kernel minimizer of Icpµ, νq and that f̄ P L1pνq is a dual optimizer:

Icpµ, νq “ Iµc rq̄s “
ż
Kcf̄ dµ´

ż
f̄ dν.

Then, the following relation holds true: for µ almost all x P X ,

(27) G1
ˆż

F px, zq q̄xpdzq
˙
F px, yq ` f̄pyq ě 0, @y P Y.

In particular, if G1p0q “ ´8, then q̄xpYq ą 0 for µ almost all x P X . Moreover, equality holds in (27)
for q̄x almost all y P Y.

Proof. Since

Icpµ, νq “
ż
Kcf̄ dµ ´

ż
f̄ dν ď

ż ż
f̄pyq q̄xpdyqµpdxq `

ż
cpx, q̄xqµpdxq ´

ż
f̄ dν “ Iµc rq̄s “ Icpµ, νq,

one concludes that ż
f̄pyq q̄xpdyq ` cpx, q̄xq “ Kcf̄pxq,

for µ almost every x P X . Fix some x P X for which the equality holds. By definition of Kc we thus
get that for all t P p0, 1q and m P MpYq such that

ş
|f | dm ă `8 it holds

ż
f̄pyq q̄xpdyq ` cpx, q̄xq ď p1 ´ tq

ż
f̄pyq q̄xpdyq ` t

ż
f̄pyqmpdyq ` cpx, p1 ´ tqq̄x ` tmq.
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Sending t Ñ 0 yields to
ż
f̄pyq pq̄x ´mqpdyq ď G1

ˆż
F px, zq q̄xpdzq

˙ż
F px, yq pm ´ q̄xqpdyq

(with the convention ´8 ˆ 0 “ 0 if G1p0q “ ´8 and m “ q̄x). In particular, if G1p0q “ ´8, then
q̄x ‰ 0. Rearranging terms yields to

(28)

ż
f̄pyq `G1

ˆż
F px, zq q̄xpdzq

˙
F px, yq q̄xpdyq ď

ż
f̄pyq `G1

ˆż
F px, zq q̄xpdzq

˙
F px, yqmpdyq.

If the function ψx : Y Ñ R : y ÞÑ f̄pyq ` G1 `ş F px, zq q̄xpdzq
˘
F px, yq takes a negative value at some

point yo P Y then choosing m “ λδyo with λ ą 0 arbitrary large yields a contradiction. Therefore,
(27) holds true. Since the function ψx is nonnegative, one has infmPMpYq

ş
ψxpyqmpdyq = 0. Therefore

taking the infimum over m in (28) yields to
ş
ψxpyq q̄xpdyq “ 0 and so ψxpyq “ 0 for q̄x almost all

y P Y. �

In a one dimensional framework, we now draw from (27) monotonicity properties of the supports
of q̄x, x P X .

Theorem 4.2. Let X and Y be two compact subsets of R, µ P PpX q, ν P PpYq and suppose that
q̄ P Qpµ, νq is a kernel solution of the transport problem (3) with cost function (24). For all x P X ,
denote by Sx Ă Y the support of q̄x. Suppose also that F : R ˆ R Ñ p0,`8q is twice continuously
differentiable and such that

(29)
B2 lnF px, yq

BxBy ă 0, @x, y P R.

(1) If G is increasing on R
`, then there exists A Ă X with µpAq “ 1 such that

(30) x1 ă x2, x1, x2 P A ñ @y1 P Sx1
,@y2 P Sx2

, y1 ď y2.

(2) If G is decreasing on R
` and G1p0q ą ´8, then there exists A Ă X with µpAq “ 1 such that

(31) x1 ă x2, x1, x2 P A ñ @y1 P Sx1
,@y2 P Sx2

, y1 ě y2.

The same conclusion holds if G1p0q “ ´8 provided Y is a finite set.

If µ has no atoms and full support, then there exists a unique right-continuous map T̄ : X Ñ Y which
is non-decreasing when G is increasing and non-increasing when G is decreasing such that any kernel
solution q̃ P Qpµ, νq of the transport problem (3) can be written as

q̃xpdyq “ ÑpxqδT̄ pxq,

for µ almost all x P X , with Ñ : X Ñ R
` a density with respect to µ. If G is assumed to be strictly

convex, the density Ñ is unique also.

If F is such that

B2 lnF px, yq
BxBy ą 0, @x, y P R.

then all the conclusions are reversed: (30) holds when G is decreasing, (31) holds when G is increasing,
and the monotonicity of T̄ is the opposite of that of G.

Note that the existence of a kernel solution in Proposition 4.1 or Theorem 4.2 is granted at least
in the following two cases : G1p`8q “ `8 (according to Theorem 2.2) or G1p`8q ă `8 and X is
finite (according to Theorem 1.1).
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Proof. We do the proof only in the case where G is increasing, the other case being similar. According
to Theorem 4.1, there exists a nonpositive bounded function f̄ achieving equality in the dual formula
for Icpµ, νq. According to Proposition 4.1, there is a set A Ă X with µpAq “ 1 and such that for all
x P A it holds

G1
ˆż

F px, zq q̄xpdzq
˙
F px, yq ` f̄pyq ě 0, @y P Y.

Denote by S̃x the set of y P Y for which the inequality above is an equality. According to Proposition
4.1, we know that qxpS̃xq “ 1 for all x P A. Condition (29) easily implies the following monotonicity
property for F : if a1 ă a2 and b1 ă b2 then

(32) F pa1, b1qF pa2, b2q ă F pa1, b2qF pa2, b1q.

Let x1, x2 P A such that x1 ă x2 and suppose that there exist y1 P S̃x1
and y2 P S̃x2

such that y2 ă y1.
Then, denoting by Upxq “

ş
F px, zq q̄xpdzq, x P X , it holds

G1pUpx1qqF px1, y1q “ ´f̄py1q
G1pUpx2qqF px2, y2q “ ´f̄py2q
G1pUpx1qqF px1, y2q ě ´f̄py2q
G1pUpx2qqF px2, y1q ě ´f̄py1q.

Multiplying the last two inequalities (note that all quantities are nonnegative) one gets

G1pUpx1qqG1pUpx2qqF px1, y2qF px2, y1q ě f̄py1qf̄py2q “ G1pUpx1qqG1pUpx2qqF px1, y1qF px2, y2q.
Since G is increasing the term G1pUpx1qqG1pUpx2qq is positive and can be simplified yielding to

F px1, y2qF px2, y1q ě F px1, y1qF px2, y2q,
which contradicts (32) with a1 “ x1, a2 “ x2, b1 “ y2 and b2 “ y1. Therefore, the family of sets

pS̃xqxPA satisfies the following property:

x1 ă x2 ñ y1 ď y2,@y1 P S̃x1
,@y2 P S̃x2

.

Since q̄xpS̃xq “ 1, it is clear that S̃x is dense in Sx and so the same property is satisfied by the family
pSxqxPA, which proves (30).

Let us now assume that µ has no atoms. Let ispAq be the set of isolated points of A. Since this set
is at most countable and µ has no atoms, it holds µpispAqq “ 0. Thus, letting A1 “ AzispAq, one gets
µpA1q “ 1. Consider the maps T´, T` : A Ñ R defined by T´pxq “ inf Sx and T`pxq “ supSx for all
x P A1. According to (30), the maps T˘ are non-decreasing. Let D Ă A1 be the set of points where
T´ or T` is discontinuous. It is well known that D is at most countable. It is clear that whenever
T´pxq ă T`pxq then x P D. Defining A2 “ A1zD, and T pxq “ T´pxq “ T`pxq for x P A2, one thus
gets that Sx “ tT pxqu for all x P A2 and so there exists some nonnegative number N̄pxq such that
q̄x “ N̄pxqδT pxq for all x P A2. Finally, defining T̄ pxq “ inftT pyq : y P A2, y ą xu, x P X , yields a
non-decreasing and right-continuous extension of T to the whole space X .

To prove the uniqueness part, we use a classical reasoning which goes back to [11]. Suppose that
q̃ P Qpµ, νq is another kernel solution of the transport problem. According to what precedes, there

exists a density Ñ and a non-decreasing right-continuous map T̃ such that q̃x “ ÑpxqδT̃ pxq for µ

almost all x P X . By convexity, the nonnegative kernel 1
2

pq̄ ` q̃q is also a solution. Therefore, there
exists yet another non-decreasing right-continuous map U such that

1

2

´
N̄pxqδT̄ pxq ` ÑpxqδT̃ pxq

¯
“ 1

2
pq̄x ` q̃xq “

ˆ
1

2
N̄pxq ` 1

2
Ñpxq

˙
δUpxq,
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for µ almost all x P X . Therefore, T̃ pxq “ T̄ pxq “ Upxq for µ almost all x P X . Since X is the support

of µ and T̃ , T̄ are right-continuous, the equality holds true for all x P X . Furthermore, by optimality
it holdsż
G

ˆ
p1
2
N̄pxq ` 1

2
ÑpxqqF px, T̄ pxqq

˙
µpdxq “ 1

2

ż
G
`
N̄pxqF px, T̄ pxqq

˘
µpdxq`1

2

ż
G
´
ÑpxqF px, T̃ pxqq

¯
µpdxq

and so, assuming that G is strictly convex, one gets N̄pxq “ Ñpxq for µ almost every x P X , which
completes the proof. �

5. The particular case of conical cost functions

This section is devoted to the study of the transport problem (3), when c is a conical cost function.
We will first obtain an improved duality result showing in particular that under mild conditions there
is dual attainment. Then we will obtain a Strassen type result for a variant of the convex order
involving positively 1-homogenous functions. Finally, we will prove structure results for primal and
dual solutions.

5.1. Framework. In the whole section, we adopt the following framework :

‚ X is a compact metrizable space,
‚ Y is a compact subset of R

d, equipped with some arbitrary norm } ¨ }, and we denote by
copYq its convex hull and by Z its conical hull, i.e

Z “
#

nÿ

i“1

λiyi : λ1, . . . , λn P R`, y1, . . . , yn P Y, n ě 1

+
,

‚ the cost function c : X ˆ MpYq Ñ R is of the following form

(33) cpx,mq “ F

ˆ
x,

ż
y dm

˙
, x P X ,m P MpYq,

where F : X ˆZ Ñ R is lower semicontinuous on X ˆZ and convex with respect to its second
variable.

When c is of this form we will say that c is a conical cost function.

First let us translate Assumptions (A), (B) and (C) in this framework. Let us introduce the
recession function of F , defined by

F 1
8px, zq “ lim

λÑ`8

F px, λzq
λ

, x P X , z P Z.

‚ Assumption (A) is fulfilled as soon as F satisfies the following condition (A’): there exists a
family of continuous functions pakqkě0 on X and a family of continuous functions pukqkě0 on
X with values in R

d such that

(A’) F px, zq “ sup
kě0

tukpxq ¨ z ` akpxqu , x P X , z P Z.

Note that if F satisfies (A’), then the corresponding cost function c satisfies (A) with bkpx, yq “
ukpxq ¨ y and the same ak for k ě 0.

‚ Assumption (B) is satisfied by c as soon as F satisfies the following condition (B’)

(B’) F 1
8px, zq “ `8, @x P X ,@z P Zzt0u.

‚ Finally, Assumption (C) holds for c as soon as F satisfies the following condition (C’) : for
all z P Z, the functions x ÞÑ F px, zq and x ÞÑ F 1

8px, zq are continuous on X and there exists
a P R` such that F 1

8px, zq ď a for all x P X and z P copYq.
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5.2. Duality and dual attainment for conical cost functions. The following result improves
the conclusion of Theorem 3.2 in the case of conical cost functions. Recall that a function ϕ : Z Ñ
R Y t`8u defined on a cone Z Ă R

d is positively 1-homogenous if ϕpλxq “ λϕpxq, for all λ ě 0 and
for all x P Z such that ϕpxq ă `8.

Theorem 5.1. With the above notation, and further assuming that

‚ 0 does not belong to copYq,
‚ there exists λ ą 1 such that M :“ supyPY

ş
F px, λyqµpdxq ă `8,

‚ F satisfies (A’),

then it holds

(34) Icpµ, νq “ sup
ϕPΦpZqXL1pνq

"ż
QFϕpxqµpdxq ´

ż
ϕpyq νpdyq

*
, @ν P PpYq

where ΦpZq is the set of all lower semicontinuous, convex positively 1-homogenous functions ϕ : Z Ñ
R Y t`8u and where

QFϕpxq “ inf
zPZ

tϕpzq ` F px, zqu , x P X .

Moreover, one can further restrict the supremum in (34) to functions ϕ P ΦpZq X L1pνq such that

(35) ϕpzq ě ´ M

λ´ 1
, @z P copYq.

Furthermore, there exists a function ϕ̄ P ΦpZq X L1pνq satisfying (35) and such that

Icpµ, νq “
ż
QF ϕ̄pxqµpdxq ´

ż
ϕ̄pyq νpdyq.

Proof. The proof is divided into three steps.
Step 1. In this step, we show that

(36) sup
ϕPΦpZqXL1pνq

ż
QFϕdµ ´

ż
ϕdν ď Icpµ, νq.

If ϕ P ΦpZq is ν integrable and q P Qpµ, νq, then using Jensen’s inequality and the positive 1-
homogeneity of ϕ, it holds

ż
ϕdν “

ż ˆż
ϕpyq qxpdyq

˙
µpdxq ě

ż
ϕ

ˆż
y qxpdyq

˙
µpdxq.

On the other hand
ż
QFϕdµ ď

ż
ϕ

ˆż
y qxpdyq

˙
` F

ˆ
x,

ż
y qxpdyq

˙
µpdxq

ď
ż
ϕdν `

ż
F

ˆ
x,

ż
y qxpdyq

˙
µpdxq.

Thus optimizing over ϕ and over q gives (36).

Step 2. In this step, we assume that c satisfies Assumption (B’) and we prove that the converse
inequality holds true in (36) and that the supremum can be restricted to functions satisfying (35).
Recall that according to Theorem 3.2, it holds

Icpµ, νq “ sup
fPCbpYq

ż
Kcfpxqµpdxq ´

ż
fpyq νpdyq.
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Observe that for all f P CbpYq

Kcfpxq “ inf
mPMpYq

"ż
fpyqmpdyq ` F

ˆ
x,

ż
ympdyq

˙*
“ QF f̄pxq,

where

f̄pzq “ inf

"ż
fpyqmpdyq : m P MpYq,

ż
ympdyq “ z

*
, z P Z.

Note that f̄ is the greatest convex and positively 1-homogenous function ϕ : Z Ñ R such that ϕ ď f

on Y. Furthermore, the function f̄ is lower semicontinuous and so f̄ P ΦpZq. Indeed, if zn Ñ z in Z

then there exists a sequence mn P MpYq such that
ş
ymnpdyq “ zn and f̄pznq “

ş
fpyqmnpdyq ` ǫn,

with ǫn Ñ 0. Let D “ supně0

››ş y mnpdyq
›› ă `8. Since 0 does not belong to the compact convex

set copYq, there is α ą 0 such that }y} ě α for all y P copYq. Thus, one gets

αmnpYq ď
››››
ż
y mnpdyq

›››› ď D.

One concludes from Prokhorov’s theorem that the sequence mn admits a converging subsequence.
The claim then follows from the lower semicontinuity of the function m ÞÑ

ş
fpzqmpdzq.

By construction f̄ ď f on Y and since f̄ is convex, it is bounded from below by some affine map.
Thus f̄ is ν-integrable. Also, since f̄ ď f , it holds

ż
Kcfpxqµpdxq ´

ż
fpyq νpdyq ď

ż
QF f̄pxqµpdxq ´

ż
f̄pyq νpdyq.

Optimizing, one thus gets that

Icpµ, νq ď sup
ϕPΦpZqXL1pνq

ż
QFϕpxqµpdxq ´

ż
ϕpyq νpdyq,

which completes the proof of (34).

Now, let us show that the supremum can be restricted to functions ϕ P ΦpZq X L1pνq satisfying
(35). If ϕ P ΦpZq X L1pνq, then being ν integrable, it takes at least one finite value on the support
of ν. Since ϕ is also lower semicontinuous, it reaches its infimum on copYq at some point z0 P copYq.
By definition of QFϕ, it holds

QFϕpxq ď ϕpλz0q ` F px, λz0q, @x P X .

Therefore, ϕ being positively homogenous, it holds
ż
QFϕpxqµpdxq ´

ż
ϕpyq νpdyq ď pλ´ 1qϕpz0q `

ż
F px, λz0qµpdxq ď pλ´ 1qϕpz0q `M.

Thus, if ϕpz0q ă ´ M
λ´1

, then
ş
QFϕpxqµpdxq ´

ş
ϕpyq νpdyq ă 0. Since Icpµ, νq ě 0, one can thus drop

such functions ϕ from the supremum in (34), which completes the proof.

Step 3. In this step, we remove the assumption that c satisfies (B’) and we prove dual attainment.
Without loss of generality, we will assume that Y “ co Supppνq. Note that this is always possible
since the convex hull of a compact set is itself compact. To make the proof easier to read, we will
also assume that Y “ co Supppνq has a non empty interior. If this is not the case, then one can easily
adapt the arguments below using the notions of relative interior and relative boundary of a convex
set.

For all n ě 1, define

Fnpx, zq “ F px, zq ` 1

n
}z}2, x P X , z P Z,

and cnpx,mq “ Fnpx,
ş
y dmq, x P X , m P MpYq. It is clear that Fn satisfies both (A’) and (B’).

Observe that for all n ě 1, Icpµ, νq ď Icnpµ, νq.
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Let pϕnqně1 be a sequence in ΦpZq X L1pνq satisfying (35) and such that for all n ě 1

Icnpµ, νq ď
ż
QFn

ϕn dµ´
ż
ϕn dν ` 1

n
.

Such a sequence exists thanks to Step 2. For all n ě 1, it holds

(37) QFn
ϕnpxq ď ϕnp0q ` Fnpx, 0q “ F px, 0q, @x P X .

Therefore, using the integrability condition on µ, one gets that supně1

ş
QFn

ϕnpxqµpdxq ă `8. Sinceş
QFn

ϕn dµ ´
ş
ϕn dν ě Icpµ, νq ´ 1

n
, this implies in particular that supně1

ş
ϕn dν ă `8.

Let us show that pϕnqně1 admits a converging subsequence. Define rϕn “ ϕn ` M
λ´1

, n ě 1. For all

n ě 1, p ě 0, y1, . . . , yp P Supppνq and λ1, . . . , λp ě 0 such that
řp
i“1 λi “ 1, it follows from Jensen’s

inequality and the fact that rϕn ě 0 on Y that

rϕn

˜
pÿ

i“1

λi

ş
Bpyi,ǫq z νpdzq
νpBpyi, ǫqq

¸
ď

pÿ

i“1

λi rϕn

˜ş
Bpyi,ǫq z νpdzq
νpBpyi, ǫqq

¸
ď

pÿ

i“1

λi
1

νpBpyi, ǫqq

ż

Bpyi,ǫq
rϕnpzq νpdzq

ď
˜

pÿ

i“1

λi
1

νpBpyi, ǫqq

¸ż
rϕnpzq νpdzq,

where Bpy, ǫq denotes the open ball centered at y of radius ǫ ą 0. Since supně1

ş
rϕn dν ă `8, it holds

sup
ně1

rϕnpuq ă `8

for all u belonging to the set C “ co

" ş
Bpy,ǫq

z νpdzq
νpBpy,ǫqq : y P Supppνq, ǫ ą 0

*
. Let us show that C is dense

in Y. Take y P Y ; since Y “ co Supppνq, there exists y1, . . . , yp P Supppνq and λ1, . . . , λp ě 0 such

that
řp
i“1 λi “ 1 and y “ řp

i“1 λiyi. For all ǫ ą 0, define yǫ “ řp
i“1 λi

ş
Bpyi,ǫq

z νpdzq
νpBpyi,ǫqq P C. Then it is

easily seen that yǫ Ñ y when ǫ Ñ 0, which proves the claim.

According to [32, Theorem 10.9 page 91], one can extract from prϕnqně1 a subsequence (we will still
denote it by prϕnqně1 not to overload the notation) converging pointwise on intpYq to some convex
function. Of course, the sequence pϕnqně1 also converges pointwise on intpYq. Since Z “ R`Y
and intpZq “ R

˚
`intpYq, the positive homogeneity of the functions ϕn implies that ϕn converges

pointwise on intpZq. Set ϕpxq “ limnÑ8 ϕnpxq, for all x P intpZq. Extend ϕ by setting ϕpaq “
lim infzÑa,zPintpZq ϕpzq whenever a P BZ, so that ϕ is lower semicontinuous on Z (and still convex
and positively homogenous). If a P BZ and z P intpZq, then for all t P p0, 1q the point p1 ´ tqa ` tz

belongs to intpZq. Therefore, letting n Ñ 8 in the inequality

ϕnpp1 ´ tqa ` tzq ď p1 ´ tqϕnpaq ` tϕnpzq

one gets that

ϕpp1 ´ tqa ` tzq ď p1 ´ tq lim inf
nÑ`8

ϕnpaq ` tϕpzq

and letting t Ñ 0 gives then

ϕpaq ď lim inf
nÑ`8

ϕnpaq.
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Then,

Icpµ, νq ď lim sup
nÑ`8

ˆż
QFn

ϕn dµ´
ż
ϕn dν

˙

ď lim sup
nÑ`8

ż
QFn

ϕn dµ ´ lim inf
nÑ`8

ż
ϕn dν

ď
ż
lim sup
nÑ`8

QFn
ϕn dµ ´

ż
lim inf
nÑ`8

ϕn dν

ď
ż
lim sup
nÑ`8

QFn
ϕn dµ ´

ż
ϕdν,

where the third inequality follows by Fatou lemma (note that, for all n ě 1, ϕn ě ´M{pλ´1q on Y and
QFn

ϕn ď F p ¨ , 0q which is µ-integrable), and the last inequality from the fact that lim infnÑ`8 ϕn ě ϕ

on Z. For all n ě 0, it holds

ϕnpzq ě QFϕnpxq ´ Fnpx, zq, @x P X ,@z P Z.

Therefore, letting n Ñ 8, one gets that

ϕpzq ě lim sup
nÑ`8

QFn
ϕnpxq ´ F px, zq, @x P X ,@z P intpZq.

This inequality is still true when z P BZ. Indeed, fix z P BZ and z1 P intpZq ; since ϕ and F px, ¨ q are
both convex and lower semicontinuous on Z, they satisfy ϕpzq “ limtÑ0 ϕpp1 ´ tqz ` tz1q and, for all
x P X , F px, zq “ limtÑ0 F px, p1 ´ tqz ` tz1q. Since p1 ´ tqz ` tz1 P intpZq, this easily implies that the
inequality above is also true for z. From this follows that

lim sup
nÑ`8

QFn
ϕnpxq ď inf

zPZ
tϕpzq ` F px, zqu “ QFϕpxq, @x P X .

In conclusion, we have shown the existence of a function ϕ P ΦpZq X L1pνq such that

Icpµ, νq ď
ż
QFϕdµ ´

ż
ϕdν.

Since the converse inequality is always true (according to Step 1), this completes the proof. �

5.3. A new variant of Strassen Theorem. Recall that if µ, ν are two probability measures on R
d

having a finite first moment, µ is said to be dominated by ν in the convex order, ifż
ϕdµ ď

ż
ϕdν,

for all convex function ϕ : Rd Ñ R. In this case, we denote this relation by µ ďc ν. According to
a well known result due to Strassen [33], µ ďc ν if and only if there exists a martingale coupling
with marginals µ and ν, that is to say a couple pU, V q of random vectors with U „ µ, V „ ν and
ErV | U s “ U a.s.

Transport problems with conical cost functions introduced above are naturally related to the fol-
lowing variant of the convex order. If µ, ν are two probability measures with a finite moment of
order 1, we will say that µ is dominated by ν for the positively 1-homogenous convex order if for all
ϕ : Rd Ñ R convex and positively 1-homogenous, it holds

ş
ϕdµ ď

ş
ϕdν. We will use the notation

µ ďphc ν to denote this order.

The following result generalizes Strassen’s theorem to this restricted convex order. Note that if ν
is compactly supported, then µ ďphc ν does not imply that µ is also compactly supported.

Theorem 5.2. Let µ, ν be two probability measures on R
d and suppose that µ has a finite moment of

order 1 and that ν is compactly supported and such that the convex hull of its support does not contain
0. The following are equivalent
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piq µ ďphc ν,
piiq There exists a nonnegative kernel q such that µq “ ν and

ż
y qxpdyq “ x

for µ almost every x,
piiiq There exists a probability measure η absolutely continuous with respect to µ with density de-

noted by N and a couple of random vectors pU, V q with U „ η, V „ ν such that

(38) NpUqErV | U s “ U a.s.

Note that (38) also means that pU,NpUqV q is a martingale.

Remark 5.1. Note that in dimension 1, the conclusion of Theorem 5.2 is essentially trivial. Indeed, it
is easy to see that µ ďphc ν if and only if

ş
x dµ “

ş
x dν,

ş
rxs` dµ ď

ş
rxs` dν and

ş
rxs´ dµ ď

ş
rxs´ dν.

By assumption, the convex hull of the support of ν does not contain 0, so it is contained either in
p0,8q or in p´8, 0q. Let us assume without loss of generality that the support of ν is contained in
p0,8q. Then it holds

ş
rxs´ dµ ď

ş
rxs´ dν “ 0 and so the support of µ is also contained in p0,8q.

Consider the nonnegative function Npxq “ xş
x dµ

1p0,8qpxq, which satisfies
ş
Npxqµpdxq “ 1, and define

η “ N µ. Let U, V be two independent random variables such that U „ η and V „ ν, then it holds

ErV | U s “ ErV s “
ż
x dµ “ U

NpUqa.s.

In higher dimension, it is not clear if such simple and explicit construction is available.

Theorem 5.2 will follow from the following slightly more general result where the assumption that
0 does not belong to the convex hull of the support of ν is removed (but µ is compactly supported).

Theorem 5.3. Let µ, ν be two compactly supported probability measures on R
d. The following are

equivalent:

piq µ ďphc ν,
piiq The probability measure ν can be decomposed as the sum of two nonnegative measures ν “

ν1 ` ν2 such that
ş
y ν2pdyq “ 0 and there exists a nonnegative kernel q P Qpµ, ν1q such that

ż
y qxpdyq “ x

for µ almost every x.

Proof of Theorem 5.3. Let us show that piiq implies piq. Let ϕ be some convex positively 1-homogenous
function ; according to Jensen’s inequality and positive 1-homogeneity, it holds

ż
ϕpxqµpdxq “

ż
ϕ

ˆż
y qxpdyq

˙
µpdxq ď

ĳ
ϕpyq qxpdyqµpdxq “

ż
ϕpyq ν1pdyq ď

ż
ϕpyq νpdyq,

where the last inequality comes from the fact that
ş
ϕpyq ν2pdyq ě ϕ

`ş
y ν2pdyq

˘
“ 0. Now let us show

that piq implies piiq. Let us denote by X and Y the compact supports of µ and ν and consider the
cost function c : X ˆ MpYq Ñ R`

cpx,mq “ F

ˆ
x,

ż
ympdyq

˙
“
››››x´

ż
ympdyq

›››› , @x P X ,@m P MpYq,

with F px, zq “ }x´z}, x, z P R
d. It is not difficult to see that F satisfies Assumption (A’). Therefore,

according to Theorem 5.1, the following duality formula holds

Icpµ, νq “ sup
ϕPΦpZqXL1pνq

"ż
Qϕpxqµpdxq ´

ż
ϕpyq νpdyq

*
,
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with Qϕpxq “ infzPZtϕpzq`}x´ z}u, x P R
d. The supremum can be restricted to ϕ that are bounded

from below by some constant κ P R. For such functions ϕ, it is easy to check that Qϕ is finite valued,
convex and positively 1-homogenous on R

d. Thus
ş
Qϕdµ ď

ş
Qϕdν. Since Qϕ ď ϕ on Z, we conclude

that
ş
Qϕdµ ď

ş
ϕdν. Therefore, Icpµ, νq “ 0. On the other hand, since F satisfies Assumption (C’),

it follows from Theorem 2.1 and Lemma 2.4 that there exists some π P ΠpSupppµq, νq such that

Īµc rπs “ Īcpµ, νq “ Icpµ, νq “ 0.

Since c1
8px,mq “

››ş ympdyq
››, m P MpYq, one thus gets

(39)

ż ››››x´ dηac

dµ
pxq

ż
y πxpdyq

›››› µpdxq `
ż ››››

ż
y πxpdyq

›››› η
spdxq “ 0,

where η “ ηac ` ηs denotes the first marginal of π. Let us define qxpdyq “ dηac

dµ
pxqπxpdyq, x P X ,

ν1 “ µq and ν2 “ ν ´ ν1. It follows from (39) that
ş
y qxpdyq “ x for µ almost all x. Moreover,ş

y πxpdyq “ 0 for ηs almost all x. Therefore,
ż
y ν2pdyq “

ż ˆż
yπxpdyq

˙
ηpdxq ´

ż ˆż
yπxpdyq

˙
ηacpdxq “

ż ˆż
yπxpdyq

˙
ηspdxq “ 0,

which completes the proof of piiq. �

Proof of Theorem 5.2. It is clear that piiq and piiiq are equivalent. The proof of piiq ñ piq is exactly
the same as the one of piiq ñ piq in Theorem 5.3.

Let us now prove that piq ñ piiq. First assume that µ is compactly supported. According to
Theorem 5.3, the probability measure ν can be written as ν “ ν1 ` ν2 with

ş
y ν2pdyq “ 0 and there

exists q P Qpµ, ν1q satisfying
ş
y qxpdyq “ x for µ almost all x. If ν2pYq ‰ 0, then 0 “

ş
Y
y ν2pdyq
ν2pYq P

copYq, which contradicts our assumptions. Thus ν2pYq “ 0 and so ν1 “ ν, which proves piiq, when µ
has a compact support.

Now let us relax the assumption that µ has a compact support. Let us construct a sequence of
compactly supported probability measures pµnqně1 converging to µ in the weak topology and such
that µn ďc µ for all n ě 1. One can for instance obtain such a sequence as follows. Consider
Cn “ r´n, nsd and write R

dzCn “ Ť
1ďkďKn

Dn,k, where pDn,kq1ďkďKn
are disjoints convex subsets

of Rd. Then define

µnpdxq “ 1Cn
pxqµpdxq `

Knÿ

k“1

µpDn,kqδxn,k
pdxq

where xn,k “ 1
µpDn,kq

ş
Dn,k

xµpdxq if µpDn,kq ą 0 and any point in Dn,k otherwise. If f : Rd Ñ R is

a convex function, then it follows from Jensen’s inequality that
ż
fpxqµnpdxq “

ż

C

fpxqµpdxq`
Knÿ

k“1

µpDn,kqfpxn,kq ď
ż

C

fpxqµpdxq`
Knÿ

k“1

ż

Dn,k

fpxqµpdxq “
ż
fpxqµpdxq

and so µn ďc µ. Also, for any bounded continuous function f : Rd Ñ R, it holds
ˇ̌
ˇ̌
ż
f dµn ´

ż
f dµ

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ˇ

ż

RdzCn

f dµn ´
ż

RdzCn

f dµ

ˇ̌
ˇ̌
ˇ ď 2}f}8 p1 ´ µpCnqq Ñ 0,

as n Ñ 8, and so pµnqně1 converges to µ in the weak topology.

Since µn ďc µ and µ ďphc ν, it is clear that µn ďphc ν. By construction, µn has a compact support,
and so there exists a nonnegative kernel qn such that µnqn “ ν and

ş
y qxnpdyq “ x for µn almost all

x P R
d. For all n ě 1, write for all x P R

d, qxn “ Nnpxqpxn where pxn is a probability measure and
denote ηnpdxq “ Nnpxqµnpdxq and πnpdxdyq “ ηnpdxqpxnpdyq. Let us show that the sequence pηnqně1
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is tight. By assumption,
ş

}x}µpdxq ă `8 ; thus by the de la Vallée Poussin theorem, there exists
some non-decreasing convex function α : R` Ñ R` such that αp0q “ 0, αpxq{x Ñ `8 as x Ñ `8
and

ş
αp}x}qµpdxq ă `8. The function x ÞÑ αp}x}q being convex, we thus get that

sup
ně1

ż
αp}x}qµnpdxq ď

ż
αp}x}qµpdxq :“ M

and, since
ş
y qxnpdyq “ x for µn almost all x,

sup
ně1

ż
α

ˆ››››
ż
y qxnpdyq

››››
˙
µnpdxq ď M

But, ż
α

ˆ››››
ż
y qxnpdyq

››››
˙
µnpdxq “

ż
α pNnpxqBnpxqq µnpdxq,

where Bnpxq “
››ş y pxnpdyq

››. Since
ş
y pxnpdyq belongs to the convex hull of the support of ν which is a

compact convex set not containing zero, there exists some b ą 0 independent of n such that Bnpxq ě b

for all n ě 1 and x P R
d. Since α is non-decreasing it holds

sup
ně1

ż
α pbNnpxqq µnpdxq ď M.

Set α˚ptq “ supsě0tst ´ αpsqu, t ě 0, and note that α˚ is non-decreasing, finite valued and vanishes

at 0. If f : Rd Ñ R` is a nonnegative function, then using Young’s inequality st ď αpsq ` α˚ptq, for
all s, t ě 0 it is easily seen that for all u ą 0, it holds

ż
uf dηn “

ż
ufNn dµn ď 1

b

ż
α˚pufq dµn ` 1

b

ż
αpbNnq dµn

and so

(40)

ż
f dηn ď 1

bu

ż
α˚pufq dµn ` M

bu
.

In particular, if f “ 1A with A a measurable set, then it holds

ηnpAq ď maxpM ; 1q
b

ψpµnpAqq,

where

ψptq “ inf
uą0

"
α˚puq
u

t` 1

u

*
, t ě 0.

Since the sequence pµnqně1 converges to µ, it is tight and so for all ε ą 0, there exists a compact set
Kε such that supně1 µnpRdzKεq ď ε. Choosing A “ R

dzKε one thus sees that

sup
ně0

ηnpRdzKεq ď maxpM ; 1q
b

ψpεq.

It is not difficult to check that ψ
´

1
αpsq

¯
“ s

αpsq , as soon as αpsq ą 0. This implies in particular that

ψptq Ñ 0 as t Ñ 0. So the bound above shows that the sequence pηnqně1 is tight. Therefore, according
to Prokhorov’s theorem, one can extract from the sequence pηnqně1 a subsequence converging to some
probability measure η on R

d. For notational convenience this subsequence will still be denoted by
pηnqně1. Letting n Ñ 8 in (40), one sees that for all bounded continuous and nonnegative function
f , it holds ż

f dη ď 1

bu

ż
α˚pufq dµ ` M

bu
.
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If A is a compact subset of R
d, then considering the sequence fkpxq “ r1 ´ kdpx,Aqs`, k ě 0, of

bounded continuous nonnegative functions which converges monotonically to 1A, one sees that

ηpAq ď 1

bu
α˚puqµpAq ` M

bu
, @u ą 0.

Since both η and µ are inner regular, this inequality is actually true for any measurable set A of
R
d. In particular, if µpAq “ 0 then it easily follows that ηpAq “ 0 and so η is absolutely continuous

with respect to µ. Since ηn converges, the sequence πn P Πpηn, νq is also tight. One can thus assume
without loss of generality that it converges to some π P Πpη, νq in the weak topology. If u is some
compactly supported function on R

d, it holds
ĳ

upxqy πnpdxdyq “
ż
upxq

ż
y qxnpdyqµnpdxq “

ż
upxqxµnpdxq

and letting n Ñ 8 gives ĳ
upxqy πpdxdyq “

ż
upxqxµpdxq

which reads, writing πpdxdyq “ Npxqµpdxqpxpdyq,
ż
upxq

ˆ
Npxq

ż
y pxpdyq ´ x

˙
µpdxq “ 0.

Since this holds for all compactly supported continuous functions u, one concludes that for µ almost
all x P R

d ż
y qxpdyq “ x

with qx “ Npxqpx, which completes the proof. �

5.4. Study of a particular class of nonpositive conical transport problems. In this section,
we consider a nonpositive cost function

F : X ˆ Z Ñ R´

such that F px, λzq{λ Ñ 0 as λ Ñ `8 for all x P X , z P Zzt0u. The following result shows in
particular that under mild additional assumptions on F any weak solution is strong.

Theorem 5.4. Assume that

‚ 0 does not belong to copYq,
‚ F is nonpositive, satisfies Assumption (A’) and is continuous on X ˆ Z,
‚ For all x P X and y P Y, it holds

F px, λyq
λ

Ñ 0

as λ Ñ `8.
‚ It holds

sup
xPX ,yPY

F px, λyq Ñ ´8

as λ Ñ `8.

Then it holds

(41) Icpµ, νq “ sup
ϕPΦ`pZqXL1pνq

"ż
QFϕpxqµpdxq ´

ż
ϕpyq νpdyq

*
, @ν P PpYq

where Φ`pZq is the set of all nonnegative, lower semicontinuous, convex and positively 1-homogenous
functions ϕ : Z Ñ R` Y t`8u and where

QFϕpxq “ inf
zPZ

tϕpzq ` F px, zqu , x P X .
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Furthermore, the supremum in (41) is attained at some function ϕ̄ P Φ`pZqXL1pνq, which is positive
on Zzt0u. Finally, any weak solution for the transport problem between µ and ν is a strong solution.

The assumptions of Theorem 5.4 are for instance satisfied by F : X ˆR
d
` Ñ p´8, 0s of the following

form

(42) F px, zq “ ´}Apxqz}ησ, x P X , z P R
d
`,

where 0 ă η ă 1, A : X Ñ Mą0pRdq a continuous function taking values in the space Mą0pRdq of
d ˆ d matrices with positive entries, and for 0 ă σ ď 1, the σ-“norm” is defined by

}z}σ “
˜

dÿ

i“1

|zi|σ
¸1{σ

, z P R
d.

It is well known that } ¨ }σ satisfies the following reverse triangle inequality on R
d
`:

}z1 ` z2}σ ě }z1}σ ` }z2}σ, @z1, z2 P R
d
`.

This easily implies that the function F defined by (42) is convex with respect to its second variable.
Since 0 ă η ă 1, it is also clear that for every x P X and z P R

d
`, F px, λzq{λ Ñ 0 as λ Ñ `8. Finally,

if Y is a compact subset included in p0,8qd, then it is easy to see that supxPX ,yPY F px, λyq Ñ ´8 as
λ Ñ `8.

Remark 5.2. Cost functions of the form (42) are considered in [15] to represent minus the output
of a firm x when it hires a worker of type z. In this context, the variable ϕ appearing in the dual
formulation of Icpµ, νq corresponds to a wage function and is thus naturally nonnegative.

Proof. Applying Theorem 5.1 to the cost function c yields to

Icpµ, νq “ sup
ϕPΦpZqXL1pνq

"ż
QFϕpxqµpdxq ´

ż
ϕpyq νpdyq

*
, @ν P PpYq.

Let us show that the supremum can be restricted to nonnegative functions. Indeed, let y0 P copYq be
such that ϕpy0q “ infcopYq ϕ and assume that ϕpy0q ă 0. Since F ď 0, it holds for all λ ě 0

QFϕpxq ď inf
λą0

ϕpλy0q “ inf
λą0

λϕpy0q “ ´8.

Therefore, such functions ϕ can be dropped from the supremum. According to Theorem 5.1, we also
know that the supremum in (41) is reached at some ϕ̄ P Φ`pZq X L1pνq. Let us show that this
function ϕ is positive over Zzt0u. Consider again y0 P copYq such that ϕpy0q “ infcopYq ϕ and set
a “ ϕpy0q ě 0. Define, for all u ě 0,

ψpuq “ inf
λą0

"
λu` sup

xPX ,yPY
F px, λyq

*
.

Observe that

QFϕpxq ď inf
λą0

tϕpλy0q ` F px, λy0qu “ inf
λą0

tλa ` F px, λy0qu ď ψpaq,

where we used that since y0 P copYq, it holds F px, λy0q ď supyPY F px, λyq. Therefore,

´8 ă Icpµ, νq “
ż
QF ϕ̄pxqµpdxq ´

ż
ϕ̄pyq νpdyq ď ψpaq ´ a ď ψpaq.

By assumption ψp0q “ ´8, so a ą 0. Therefore ϕ̄ is positive on copYq. Since Z “ R`copYq, we
conclude that ϕ̄ is positive on Zzt0u.
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Now let us show that the transport problem admits only strong solutions. According to Theorem 2.1
(applied to the cost function c which satisfies condition (C)), we know there exists π̄ P ΠpSupppµq, νq
such that

(43) Icpµ, νq “ Icpµ, νq “ Īµc rπ̄s,
where, for all π P ΠpSupppµq, νq,

Īµc rπs “
ż
F

ˆ
x,
dπac1
dµ

pxq
ż
y πxpdyq

˙
µpdxq

(because, by assumption, F 1
8px, zq “ 0 for all x, z). Denoting by Spxq “ dπ̄ac

1

dµ
pxq

ş
y π̄xpdyq, it holds

Icpµ, νq “
ż
QF ϕ̄pxqµpdxq ´

ż
ϕ̄pyq νpdyq

ď
ż
ϕ̄pSpxqq ` F px, Spxqqµpdxq ´

ż
ϕ̄pyq νpdyq

piq
ď

ż ˆż
ϕ̄pyq π̄xpdyq

˙
π̄ac1 pdxq `

ż
F px, Spxqqµpdxq ´

ż
ϕ̄pyq νpdyq

piiq“ Īµc rπ̄s ´
ż ˆż

ϕ̄pyq π̄xpdyq
˙
π̄s1pdxq

piiiq“ Icpµ, νq ´
ż ˆż

ϕ̄pyq π̄xpdyq
˙
π̄s1pdxq,

where

‚ piq comes from the positive 1-homogeneity of ϕ̄ and Jensen’s inequality,
‚ piiq comes from the definition of Īµc rπ̄s and the fact that

ż
ϕ̄pyq νpdyq “

ż ˆż
ϕ̄pyq π̄xpdyq

˙
π̄1pdxq “

ż ˆż
ϕ̄pyq π̄xpdyq

˙
π̄ac1 pdxq`

ż ˆż
ϕ̄pyq π̄xpdyq

˙
π̄s1pdxq,

‚ and piiiq comes from (43).

We conclude that ż ˆż
ϕ̄pyq π̄xpdyq

˙
π̄s1pdxq ď 0.

Note that
ş
ϕ̄pyq π̄xpdyq ě a ą 0, so the only possibility is that π̄s1 “ 0 (no singular part). Therefore,

π̄ P Πp! µ, νq and Īµc rπ̄s “ Iµc rπ̄s “ Icpµ, νq and so π̄ is a strong solution. �

5.5. Structure of solutions for conical cost functions. In all the subsection, we assume that F
is a function satisfying Assumption (A’) and that c is the conical cost function associated to F and
defined by (33).

The following result gives an interpretation of the transport cost Icpµ, νq as a shortest transport
distance between µ and the set of probability measures dominated by ν in the order ďphc.

Theorem 5.5. Let µ P PpX q and ν P PpYq be such that Icpµ, νq ă `8, and assume that the convex
hull of the support of ν does not contain 0. Then the following identity holds

(44) Icpµ, νq “ inf
γďphcν

TF pµ, γq,

where and TF denotes the classical transport cost associated to the cost function F :

TF pµ, γq “ inf
πPΠpµ,γq

ĳ
F px, zqπpdxdzq, @µ P PpX q,@γ P PpZq.
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Moreover, suppose that q̄ is a nonnegative kernel solution to the transport problem (10), consider the
map S̄ defined by

S̄pxq “
ż
y q̄xpdyq, x P X ,

and denote by ν̄ the image of µ under the map S̄. Then the following holds :

‚ the probability measure ν̄ is dominated by ν in the positively 1-homogenous convex order,
‚ it holds

Icpµ, νq “
ż
F px, S̄pxqqµpdxq “ inf

γďphcν
TF pµ, γq

Note that the map S̄ provides an optimal transport map between µ and ν̄ for the cost TF . The
proof below adapts the proof of [20, Proposition 1.1] and [4, Lemma 6.1] to our setting.

Proof. Let q be a nonnegative kernel such that µq “ ν. Thanks to Jensen’s inequality, for all positively
1-homogenous convex function ϕ : Rd Ñ R, it holds

ż
ϕpSpxqqµpdxq ď

ĳ
ϕpyq qxpdyqµpdxq “

ż
ϕpyq νpdyq,

where Spxq “
ş
y qxpdyq, x P X , and so S#µ is dominated by ν in the positively homogenous convex

order. Therefore, ż
F px, Spxqqµpdxq ě inf

γďphcν
inf

πPΠpµ,γq

ż
F px, zqπpdxdzq.

Optimizing over q shows that

inf
γďphcν

TF pµ, γq ď Icpµ, νq.

Let us prove the converse inequality. Let γ ďphc ν and π P Πpµ, γq. Since γ ďphc ν, Theorem 5.2 shows
that there exists a nonnegative kernel przqzPRd such that

ş
rzpdyq γpdzq “ νpdyq and

ş
y rzpdyq “ z for

γ almost all z. Write

πpdxdzq “ µpdxqpxpdzq
where p is a probability kernel, and consider the nonnegative kernel q defined by

qxpdyq “
ż
pxpdzqrzpdyq,

which satisfies µq “ ν. Moreover, for µ almost all x, it holds
ż
yqxpdyq “

ż
pxpdzq

ż
yrzpdyq “

ż
zpxpdzq.

Thus,
ż
F px, zqπpdxdzq “

ĳ
F px, zqµpdxqpxpdzq ě

ż
F

ˆ
x,

ż
z pxpdzq

˙
µpdxq

“
ż
F

ˆ
x,

ż
yqxpdyq

˙
µpdxq ě Icpµ, νq.

Optimizing over π and over γ ďphc ν gives that

inf
γďphcν

TF pµ, γq ě Icpµ, νq

which proves (44). Now if q̄ is a strong solution, then ν̄ “ S̄#µ ďphc ν and

Icpµ, νq “
ż
F px, S̄pxqqµpdxq,

which completes the proof. �
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The following result considers the particular case of dimension 1.

Proposition 5.1. Let ν P PpR`q be a compactly supported probability measure with m “
ş
y νpdyq

and denote by

Cm “
"
γ P P1pR`q :

ż
x γpdxq “ m

*
.

Then it holds

‚ Cm “ tγ P P1pRq : γ ďphc νu,
‚ if µ P PpX q is such that

Icpµ, νq “ min
γPCm

TF pµ, γq,
then, there exists a map Sm : X Ñ R` transporting µ onto γm P Cm such that

Icpµ, νq “ TF pµ, γmq “
ż
F px, Smpxqqµpdxq,

‚ the nonnegative kernel q̄ defined by

q̄xpdyq “ Smpxq
m

νpdyq, x P X ,

is a strong solution of the transport problem (10).

This result tell us that, in dimension one, once the solutions for the transport problem between µ
and Dirac masses δm, m ě 0, are known, then optimal solutions can be deduced for general ν on R`.

Proof. According to Remark 5.1, we know that for any compactly supported probability measure ν
on R`,

tγ P P1pRq : γ ďphc νu “
"
γ P PpR`q :

ż
x γpdxq “

ż
x νpdxq

*
“ Cm.

According to Theorem 5.5, it holds

Icpµ, νq “ inf
γďphcν

TF pµ, γq “ inf
γPCm

TF pµ, γq.

By assumption, this last infimum is reached at some point γ1
m P Cm. Let π P Πpµ, γ1

mq be an optimal
coupling for TF pµ, γ1

mq and write πpdxdyq “ µpdxqpxpdyq. By Jensen’s inequality it holds

TF pµ, γ1
mq “

ĳ
F px, yqpxpdyqµpdxq ě

ż
F px, Smpxqqµpdxq,

where Smpxq “
ş
ypxpdyq. Denoting by γm “ pSmq#µ, one sees that γm ďc γ

1
m and in particular,

γm P Cm. Therefore, one gets

inf
γPCm

TF pµ, γq “ TF pµ, γ1
mq ě

ż
F px, Smpxqqµpdxq ě TF pµ, γmq ě inf

γPCm

TF pµ, γq.

This proves that γ1
m can be replaced by γm and that Sm is an optimal transport map (for the cost

F ) between µ and γm. The nonnegative kernel q̄ defined in Proposition 5.1 satisfies
ż
fpyq q̄xpdyqµpdxq “ 1

m

ĳ
fpyqSnpxqµpdxqνpdyq “

ż
fpyq νpdyq

ş
y γmpdyq
m

“
ż
fpyq νpdyq

and so µq̄ “ ν. Moreover, for all x,
ş
y q̄xpdyq “ Smpxq and so

ż
F px, Smpxqqµpdxq “

ż
F

ˆ
x,

ż
y q̄xpdyq

˙
µpdxq,

which shows that q̄ is a strong solution. �

The next result establishes a variant of Theorem 5.5 involving the classical convex order ďc.
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Theorem 5.6. Let µ P PpX q and ν P PpYq, and assume that π̄ P Πp! µ, νq is a strong solution to
the transport problem (10) for the conical cost function c defined by (33). Let η̄pdxq “ N̄pxqµpdxq be
the first marginal of π̄ and consider the map T̄ defined by

T̄ pxq “
ż
y π̄xpdyq, x P X ,

and denote by ν̃ the image of η̄ under the map T̄ . Consider the function G : X ˆ Y Ñ R defined for
x P X and y P Y by

Gpx, yq “ F px, N̄pxqyq
N̄pxq ,

if N̄pxq ą 0, and Gpx, yq “ 0 (or any other arbitrary value) otherwise. The following holds :

‚ the probability measure ν̃ is dominated by ν in the convex order,
‚ it holds

Icpµ, νq “
ż
Gpx, T̄ pxqq η̄pdxq “ inf

γďcν
TGpη̄, γq,

where we denote by TG the Monge-Kantorovich optimal transport cost associated to the cost
function G:

TGpη, γq “ inf
πPΠpη,γq

ĳ
Gpx, zqπpdxdzq, @η P PpX q,@γ P PpYq.

In other words, the probability measure ν̃ turns out to be the closest point to η̄ among the set
tγ P PpYq : γ ďc νu for the transport “distance” TG. Moreover, the map T̄ (which is sometimes called
the barycentric projection of the coupling π̄) provides an optimal transport map between η̄ and ν̃ for
the cost TG.

Remark 5.3. Suppose that π̄ is a strong solution to the transport problem 10, denote by η̄ “ N̄ µ

its first marginal, and consider the nonnegative kernel q̄x “ N̄pxqπx, x P X . Then for all x P X ,
S̄pxq “ NpxqT̄ pxq. Note however that ν̄ and ν̃ are in general two different probability measures,
so that the conclusions of Theorems 5.5 and 5.6 are not equivalent. Nevertheless, for all positively
homogenous function ϕ it holds

ş
ϕpyq ν̄pdyq “

ş
ϕpyq ν̃pdyq.

Proof. Thanks to Jensen’s inequality, for all convex function ϕ : Rd Ñ R, it holds
ż
ϕpT̄ pxqq η̄pdxq ď

ĳ
ϕpyq π̄xpdyq η̄pdxq “

ż
ϕpyq νpdyq,

and so ν̃ “ T̄#η̄ is dominated by ν in the convex order. Therefore,

Icpµ, νq “
ż
Gpx, T̄ pxqq η̄pdxq ě inf

γďcν
inf

πPΠpη̄,γq

ż
Gpx, zqπpdxdzq.

Let us prove the converse inequality. Let γ ďc ν and π P Πpη̄, γq. Since γ ďc ν there exists a
martingale coupling m between γ and ν, that is to say a probability measure m P Πpγ, νq such that
mpdzdyq “ γpdzqmzpdyq and

ş
y mzpdyq “ z for γ almost every z. Write

πpdxdzq “ η̄pdxqpxpdzq “ γpdzqrzpdxq
and consider the coupling π̄ defined by

π̄pdxdyq “
ż
rzpdxqmzpdyqγpdzq.

It is easily seen that π̄ P Πpη̄, νq. Also,

π̄pdxdyq “ η̄pdxq
ż
pxpdzqmzpdyq
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and so π̄xpdyq “
ş
pxpdzqmzpdyq. Moreover it holds

ż
yπ̄xpdyq “

ż
y

ż
pxpdzqmzpdyq “

ż
z pxpdzq.

Thus,
ĳ

Gpx, zqπpdxdzq “
ĳ

Gpx, zq η̄pdxqpxpdzq ě
ż
G

ˆ
x,

ż
z pxpdzq

˙
η̄pdxq

“
ż
G

ˆ
x,

ż
y π̄xpdyq

˙
η̄pdxq “ Iµc rπ̄s ě Icpµ, νq

which completes the proof. �

The aim of the next result is to understand the articulation between primal and dual optimizers.

Theorem 5.7. Let µ P PpX q and ν P PpYq be such that Icpµ, νq ă `8 and assume that q̄ is a kernel
solution and ϕ̄ P ΦpZq X L1pνq a dual optimizer:

Icpµ, νq “
ż
F

ˆ
x,

ż
y q̄xpdyq

˙
µpdxq “

ż
QF ϕ̄pxqµpdxq ´

ż
ϕ̄pyq νpdyq.

Define S̄pxq “
ş
y q̄xpdyq, x P X .

(1) For µ almost every x P X , it holds

QF ϕ̄pxq “ ϕ̄pS̄pxqq ` F px, S̄pxqq.
(2) If M denotes the set of x P X for which the support Kpxq Ă Y of q̄x contains at least two

points, then for η̄ almost x P M , the function ϕ̄ is affine on the convex hull of Kpxq: there
exist ux P R

d and vx P R such that ϕ̄pzq “ ux ¨ z ` vx for all z P copKpxqq.
(3) If F is strictly convex with respect to its second variable, then the map S̄pxq “

ş
y q̄xpdyq,

x P X , is µ-almost surely unique among all strong solutions q̄ of the transport problem.
(4) If F is strictly convex with respect to its second variable and if for all x P X there exist Ax P R

and Mx ą 0 such that ϕ̄pzq `F px, zq ě Ax `Mx}z} for all z P Z, then for all x P X the map
ϕ̄˚

˝ F˚px, ¨ q is differentiable in a neighborhood of 0 and it holds

S̄pxq “ ∇ pϕ̄˚
˝ F˚px, ¨ qq p0q

for µ almost all x.

In the result above we denoted

ϕ̄˚puq “ sup
zPZ

tz ¨ u´ ϕ̄pzqu, u P R
d,

and for x P X

F˚px, uq “ sup
zPZ

tz ¨ u´ F px, zqu, u P R
d,

the Fenchel-Legendre transforms of the functions ϕ̄ and F px, ¨ q extended by `8 outside Z. Moreover,
we recall that the infimum convolution between ϕ̄˚ and F˚px, ¨ q is defined by

ϕ̄˚
˝ F˚px, ¨ qpuq “ inf

vPRd
tϕ̄˚pvq ` F˚px, u´ vqu, u P R

d.

Remark 5.4. Denoting by Cpϕ̄q “ tu P R
d : u ¨ z ď ϕ̄pzq,@z P Zu, it is easily seen that

ϕ̄˚ “ χCpϕ̄q,

where χCpϕ̄qpuq “ 0 if u P Cpϕ̄q and `8. So, it holds

(45) ϕ̄˚
˝ F˚px, ¨ qpuq “ inf

vPCpϕ̄q
tF˚px, u ´ vqu, u P R

d.
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Proof. By optimality of ϕ̄ and q̄, it holds

Icpµ, νq “
ż
QF ϕ̄pxqµpdxq ´

ż
ϕ̄pyq νpdyq

ď
ż
ϕ̄pS̄pxqq ` F px, S̄pxqqµpdxq ´

ż
ϕ̄pyq νpdyq

ď
ż ż

ϕ̄pyq q̄xpdyq ` F px, S̄pxqqµpdxq ´
ż
ϕ̄pyq νpdyq

“
ż
F px, S̄pxqqµpdxq

“ Icpµ, νq,
where the first inequality comes from the definition of QF ϕ̄, the second from the fact that ϕ̄ is convex
and positive 1-homogenous. Analyzing the equality cases completes the proof of p1q and p2q. Now,
assume that F is strictly convex with respect to its second variable, and consider r̄ another minimizing
nonnegative kernel and define Ūpxq “

ş
y r̄xpdyq, x P X . According to what precedes, for µ almost all

x P X , the points S̄pxq and Ūpxq minimize the function

z ÞÑ ϕ̄pzq ` F px, zq, z P Z.

This function being strictly convex, this implies that S̄pxq “ Ūpxq and so S̄ “ Ū µ a.e., which
proves p3q. Let us now prove p4q. Consider the function H : X ˆ R

d Ñ R Y t`8u defined by
Hpx, zq “ ϕ̄pzq `F px, zq, x P X , z P R

d (with ϕ̄ and F px, ¨ q extended by `8 outside Z). For a given
x P X , observe that S̄pxq minimizes the convex function Hpx, ¨ q if and only if 0 P BHpx, ¨ qpS̄pxqq,
where BHpx, ¨ qpzq denotes the subdifferential of the function Hpx, ¨ q at the point z. By the well
known conjugation relation of subdifferentials, it holds

0 P BHpx, ¨ qpS̄pxqq ô S̄pxq P BH˚px, ¨ qp0q
(see e.g [24, Corollary E.1.4.4]). Moreover, since Hpx, ¨ q is a sum of two convex lower-semicontinuous
functions, its Fenchel-Legendre transform is given as follows:

H˚px, uq “ ϕ̄˚
˝ F˚px, ¨ qpuq, u P R

d

(see e.g [24, Theorem E.2.3.2] and note that F px, ¨ q is finite over Z which contains the relative interior
of the domain of ϕ̄). The assumed lower bound on H easily implies that, for all x P X , the function
H˚px, ¨ q takes finite values in a neighborhood of 0. Since Hpx, ¨ q is strictly convex for all x P X ,
it follows from [24, Theorem E.4.1.1] that the function H˚px, ¨ q is continuously differentiable on the
interior of its domain. In particular, it is continuously differentiable in a neighborhood of 0, and so,
for all x P X , BH˚px, ¨ qp0q “ t∇ pϕ̄˚

˝ F˚px, ¨ qq p0qu, which completes the proof. �

Corollary 5.1. Let F : X ˆZ Ñ R be a cost function satisfying assumption (A’) and strictly convex
with respect to its second variable and let µ P PpX q and ν P PpYq be such that the convex hull of the
support of ν does not contain 0.
Assume further that F satisfies

‚ Assumption (B’)
or

‚ F : X ˆ Z Ñ R´ is a nonpositive function satisfying the assumptions of Theorem 5.4.

Then, for any kernel solution q̄ and any dual optimizer ϕ̄ of the transport problem (3), the map
ϕ̄˚

˝ F˚px, ¨ q is differentiable in a neighborhood of 0, for all x P X , and it holds

S̄pxq “
ż
y q̄xpdyq “ ∇ pϕ̄˚

˝ F˚px, ¨ qq p0q,

for µ almost all x P X .
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Proof. It is well known that Assumption (B’) is equivalent to the 1-coercivity of F px, ¨ q, that is to
say

lim
zPZ,}z}Ñ`8

F px, zq
}z} Ñ `8.

Therefore, since the convex function ϕ̄ admits at least one affine minorant, it is easily seen that for
every x P X there exist Ax P R and Mx ą 0 such that ϕ̄pzq ` F px, zq ě Ax ` Mx}z} for all z P Z.
We conclude using Item p4q of Theorem 5.7. Similarly, if F satisfies the assumptions of Theorem 5.4,
then for all x P X and z P Z it holds F px, λzq{λ Ñ 0 as λ Ñ `8. This is actually equivalent to the
fact that

lim
zPZ,}z}Ñ`8

F px, zq
}z} “ 0.

Let us briefly sketch the proof. Let zk P Z, k ě 0, be a sequence such that λk “ }zk} Ñ `8
monotonically, as k Ñ `8. Define uk “ zk{λk, k ě 0. By compactness, one can assume without loss
of generality that uk Ñ u P Z as k Ñ `8. Then, by convexity it holds, for all k ě n

F px, zkq ´ F px, 0q
λk

“ F px, λkukq ´ F px, 0q
λk

ě F px, λnukq ´ F px, 0q
λn

Thus letting k Ñ `8, one gets

lim inf
kÑ8

F px, zkq
}zk} ě F px, λnuq ´ F px, 0q

λn

and letting n Ñ `8 gives that

lim inf
kÑ8

F px, zkq
}zk} ě F 1

8px, uq “ 0.

Since F is nonpositive this proves the claim. Now, if ϕ̄ is some dual optimizer, we know by Theorem
5.4 that ϕ̄ ą 0 on Zzt0u. Thus denoting by M “ inf}u}“1,uPZ ϕ̄puq ą 0, one sees that ϕ̄pzq ě M}z},
for all z P Z. And so

lim sup
}z}Ñ`8

ϕ̄pzq ` F px, zq
}z} ě M ą 0,

and we conclude using Item p4q of Theorem 5.7. �

Let us emphasize a particularly simple case related to Brenier Theorem [11, 12]. In the following
result, adapted from [20, Theorem 1.2], we assume that X Ă R

d is a compact subset of Rd and we
consider the cost function c2 : X ˆ MpYq Ñ R` defined by

c2px,mq “ 1

2

››››x´
ż
y mpdyq

››››
2

2

, x P X ,m P MpYq,

which corresponds to the function F2 : RdˆR
d Ñ R

` : px, zq ÞÑ 1
2

}x´z}22, where } ¨ }2 is the standard
Euclidean norm.

Theorem 5.8. Let µ P PpX q and ν P PpYq such that the convex hull of the support of ν does not
contain 0. Then there exists a unique probability measure ν̄ P PpZq such that

(46) Ic2pµ, νq “ 1

2
inf

ηďphcν
W 2

2 pµ, ηq “ 1

2
W 2

2 pµ, ν̄q.

Moreover, there exists a closed convex set C Ă R
d such that for any nonnegative kernel q̄ minimizing

Icpµ, νq, it holds

S̄pxq “
ż
y q̄xpdyq “ x´ pCpxq,

for µ almost every x, where pC : Rd Ñ R
d is the orthogonal projection onto C. The probability ν̄ is

the image of µ under the map x ÞÑ x´ pCpxq.
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Proof. The cost function c2 clearly satisfies Assumption (B) and so, according to Theorem 2.2, the
transport problem (3) between µ and ν admits kernel solutions. According to Theorem 5.1, it also
admits dual optimizers. Let ϕ̄ P ΦpZq X L1pνq be a dual optimizer (extended by `8 outside Z). As
observed in Remark 5.4, ϕ̄˚ “ χC for some closed convex set C, and according to (45) it holds

ϕ̄˚
˝ F2px, ¨ qpuq “ inf

vPC
F˚
2 px, u ´ vq “ inf

vPC

"
1

2
}u´ v}22 ` pu´ vq ¨ x

*
“ ´ }x}22

2
` 1

2
d2Cpx` uq,

where dCpaq “ infvPC }a´ v}2. It is well known that d2C is differentiable over R
d and that

∇

ˆ
1

2
d2C

˙
paq “ a ´ pCpaq, @a P R

d.

Therefore,

∇ pϕ̄˚
˝ F2px, ¨ qq p0q “ x´ pCpxq, @x P X .

According to Corollary 5.1, for any kernel solution q̄, it holds
ż
y q̄xpdyq “ x´ pCpxq,

for µ almost all x P R
d. According to Theorem 5.5, we conclude that the probability measure ν̄ defined

as the push forward of µ under x ÞÑ x ´ pCpxq satisfies (46). The uniqueness of ν̄ is obtained as in
[20, Proposition 1.1]. �

Remark 5.5. Let us give a geometric justification of the fact that x ´ pCpxq belongs to Z for all
x P R

d. Denoting by ϕ̄ the dual optimizer used in the proof (extended by `8 outside Z), one has
Zϕ̄ :“ cl dompϕ̄q Ă Z. But, since ϕ̄ is the support function of C “ tu : u ¨ x ď ϕ̄pxq,@x P Zu, one has
according to [24, Proposition C.2.2.4]

C˝
8 “ Zϕ̄,

where

‚ C8 denotes the asymptotic cone of C, defined by

C8 “
č

tą0

C ´ xo

t
,

with xo P C some arbitrary point,
‚ C˝

8 denotes the polar cone of C8 defined by

C˝
8 “ tx P R

d : x ¨ y ď 0,@y P C8u.

By definition of the orthogonal projection on C, it holds

px´ pCpxqq ¨ pa´ pCpxqq ď 0, @x P R
d,@a P C.

In particular, taking a “ pCpxq ` d, with d P C8 yields to px ´ pCpxqq ¨ d ď 0 for all d P C8 and so
x´ pCpxq P C˝

8 “ Zϕ̄ Ă Z.

Appendix A. Proofs of some technical results

A.1. Proof of Proposition 2.1. The proof of Proposition 2.1 is adapted from [3] (paragraph 2.6).
First let us see how the recession function c1

8 can be expressed when c satisfies Assumption (A).

Lemma A.1. Under Assumption (A) it holds

c1
8px,mq “ sup

kPN

ż
bkpx, yqmpdyq, x P X ,m P MpYq.
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Proof. Since cpx, ¨ q is convex, the function λ ÞÑ cpx,λmq´cpx,0q
λ

is non-decreasing on r0,8q. Therefore,
for all x P X and m P MpYq, it holds

(A.1) c1
8px,mq “ lim

λÑ8

cpx, λmq ´ cpx, 0q
λ

“ sup
λą0

cpx, λmq ´ cpx, 0q
λ

.

Thus, using Assumption (A), it holds

c1
8px,mq “ sup

λą0

sup
kě0

λ
ş
bkpx, yqmpdyq ` akpxq ´ cpx, 0q

λ

“ sup
kě0

"ż
bkpx, yqmpdyq ` sup

λą0

akpxq ´ cpx, 0q
λ

*

“ sup
kě0

ż
bkpx, yqmpdyq,

where the last equality comes from the fact that cpx, 0q “ supkě0 akpxq, and so for a fixed k, akpxq ´
cpx, 0q ď 0 and so the function λ ÞÑ akpxq´cpx,0q

λ
is non-decreasing on r0,8q. �

We will also need the following lemma

Lemma A.2. Let λ be a finite measure on X . If ψ0, ψ1, . . . , ψn : X Ñ R are λ integrable functions
with ψ0 ě 0, then

ż
sup

0ďkďn
ψkpxqλpdxq “ sup

pf0,...,fnqPFn

ż nÿ

k“1

ψkpxqfkpxqλpdxq

where Fn denotes the set of n ` 1-uples pf0, . . . , fnq of continuous functions f0, . . . , fn : X Ñ r0, 1s
such that f0pxq ` ¨ ¨ ¨ ` fnpxq ď 1.

Proof. See the proof of Proposition 9.4 of [23]. �

Proof of Proposition 2.1. Without loss of generality, one can assume that the functions b0 and a0
involved in (A) are nonnegative. If this is not the case, consider the cost function

c̃px,mq “ sup
kě0

"ż
b̃kpx, yqmpdyq ` ãkpxq

*
, x P X ,m P MpYq,

with b̃k “ bk ´ r0 and ãk “ ak ´ s0, with r0 “ minxPX ,yPY b0px, yq and s0 “ minxPX a0pxq. It holds

ã0 ě 0, b̃0 ě 0 and one sees that c̃px,mq “ cpx,mq ´ r0mpYq ´ s0, x P X , m P MpYq, and so
Ī
µ
c̃ rπs “ Īµc rπs ´ ps0 ` r0q, and pµ, πq ÞÑ Īµc rπs is lower semicontinuous if and only if pµ, πq ÞÑ Ī

µ
c̃ rπs is.

For n ě 0, define for all µ P PpX q and π P PpX ˆ Yq

Jµn rπs “ sup
pf0,...,fnqPFn

#
nÿ

k“0

ĳ
bkpx, yqfkpxqπpdxdyq `

nÿ

k“0

ż
akpxqfkpxqµpdxq

+
,

where Fn is defined in Lemma A.2 above. Then consider the functional Jµ defined by

(A.2) Jµrπs “ sup
ně0

Jµn rπs, π P PpX ˆ Yq.

For each n ě 0, the functional pµ, πq ÞÑ Jµn rπs is lower semicontinuous as a supremum of continuous
functionals. Similarly, the functional pµ, πq ÞÑ Jµrπs being the supremum of lower semicontinuous
functionals is itself lower semicontinuous.

For all n ě 0, write cnpx,mq “ sup0ďkďn
 ş
bkpx, yqmpdyq ` akpxq

(
, x P X , m P MpYq. According

to Lemma A.1, it holds c1
n,8px,mq “ sup0ďkďn

 ş
bkpx, yqmpdyq

(
, x P X , m P MpYq.



WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNELS 45

By monotone convergence, it holds

Īµc rπs “ sup
ně0

Īµcnrπs, @µ P PpX q,@π P PpX ˆ Yq.

Let us show that for any µ P PpX q and π P PpX ˆ Yq, it holds Jµn rπs “ Īµcnrπs for all n ě 0. This

will immediately imply that Īµc rπs “ Jµrπs for all µ P PpX q and π P PpX ˆ Yq and show the lower
semicontinuity of Ī ¨

cr ¨ s.
Fix µ P PpX q ; for all π P PpX ˆ Yq, it holds

Īµcnrπs “
ż

sup
0ďkďn

ψkpxqµpdxq `
ż

sup
0ďkďn

ϕkpxqπs1pdxq

with, for all 0 ď k ď n,

ψkpxq “ dπac1
dµ

pxq
ż
bkpx, yqπxpdyq ` akpxq, x P X

and

ϕkpxq “
ż
bkpx, yqπxpdyq, x P X .

Let A Ă X be a Borel subset such that µpAq “ 0 and πs1pX zAq “ 0. Define

Fkpxq “
"
ψkpxq if x P X zA
ϕkpxq if x P A .

Then

Īµcnrπs “
ż

sup
0ďkďn

Fkpxq pµpdxq ` πs1pdxqq.

According to Lemma A.2 above (with λ “ µ` πs1), it holds

Īµcnrπs “
ż

sup
0ďkďn

Fkpxq pµpdxq ` πs1pdxqq “ sup
pf0,...,fnqPFn

ż nÿ

k“1

Fkpxqfkpxq pµpdxq ` πs1pdxqq “ Jµn rπs,

which completes the proof. �

A.2. Proof of Lemma 2.4. The proof of Lemma 2.4 below is inspired by the proof of [28, Theorem
C.12] dealing with entropy type functionals on the space of probability measures.

Lemma A.3. If c : X ˆ MpYq Ñ R is convex with respect to its second variable, then for any x P X

and m1,m2 P MpYq, it holds

cpx,m1 `m2q ď cpx,m1q ` c1
8px,m2q.

Proof. Let θ P p0, 1q ; using the convexity of cpx, ¨ q and (A.1), one gets

cpx,m1 `m2q ď θc
´
x,
m1

θ

¯
` p1 ´ θqc

ˆ
x,

m2

1 ´ θ

˙

“ θc
´
x,
m1

θ

¯
` p1 ´ θq

„
c

ˆ
x,

m2

1 ´ θ

˙
´ cpx, 0q


` p1 ´ θqcpx, 0q

ď θc
´
x,
m1

θ

¯
` c1

8px,m2q ` p1 ´ θqcpx, 0q,

and the result follows by letting θ Ñ 1. �

Lemma A.4. If c : X ˆ MpYq Ñ R is convex with respect to its second variable and satisfies
Assumption (C), then there exists a, b ě 0 such that

cpx,mq ď b` ampYq, @x P X ,@m P MpYq.
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Proof. Using (A.1), one gets

cpx,mq ď cpx, 0q `mpYqc1
8

ˆ
x,

m

mpYq

˙
ď cpx, 0q ` ampYq,

where a is the constant appearing in Assumption (C). Since cp ¨ , 0q is continuous on the compact
space X it is upper bounded by some constant b ě 0, which completes the proof. �

Proof of Lemma 2.4. Let π P ΠpSupppµq, νq and denote by η P PpSupppµqq its first marginal. Ac-
cording to Lemma 2.2, πn Ñ π for the weak topology, and the first marginal of πn is ηn “ Knη and
is thus absolutely continuous with respect to µ. Since πn P Πp! µ, ¨ q, it holds Iµc rπns “ Īµc rπns and
since Īµc is lower semicontinuous, one gets that

lim inf
nÑ8

Iµc rπns “ lim inf
nÑ8

Īµc rπns ě Īµc rπs.

Now let us prove that lim supnÑ8 Iµc rπns ď Īµc rπs. Observe that πnpdxdyq “ qxnpdyqµpdxq with

qxnpdyq “
ż
Knpx, zqπzpdyqηpdzq “

ż
Knpx, zqπzpdyqηacpdzq `

ż
Knpx, zqπzpdyqηspdzq :“ qac,xn ` qs,xn

where η “ ηac ` ηs is the decomposition of η into absolutely continuous and singular parts (with
respect to µ). According to Lemma A.3, it holds

Iµc rπns “
ż
cpx, qxnqµpdxq “

ż
cpx, qac,xn ` qs,xn qµpdxq ď

ż
cpx, qac,xn qµpdxq `

ż
c1

8 px, qs,xn q µpdxq.

Write ηacpdzq “ hpzqµpdzq and let us bound the first term. Since
ş
Knpx, zqµpdzq “ 1, Jensen

inequality yields to

ż
c px, qac,xn q µpdxq “

ż
c

ˆ
x,

ż
Knpx, zqπzp ¨ qhpzqµpdzq

˙
µpdxq

ď
ĳ

Knpx, zqc px, πzp ¨ qhpzqq µpdxqµpdzq

“
ż

pKnCzqpzqµpdzq,

where

Czpxq “ c px, πzp ¨ qhpzqq , x, z P X .

By assumption, the function x ÞÑ c px, πzp ¨ qhpzqq is continuous on X . Therefore, according to Lemma
2.1, one gets that KnCzpuq Ñ Czpuq for any u P X (and even uniformly in u) as n Ñ 8. Also,
according to Lemma A.4, it holds c px, πzp ¨ qhpzqq ď b` ahpzq and so KnCzpzq ď b` ahpzq, which is
µ integrable. Therefore, according to the dominated convergence theorem, it holds
(A.3)

lim sup
nÑ8

ż
c px, qac,xn q µpdxq ď lim

nÑ8

ż
pKnCzqpzqµpdzq “

ż
Czpzqµpdzq “

ż
c pz, πzp ¨ qhpzqq µpdzq.
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Now, let us bound the second term. Using the convexity and 1-homogeneity of the function m ÞÑ
c1

8px,mq one gets
ż
c1

8 px, qs,xn q µpdxq “
ż
c1

8

ˆ
x,

ż
Knpx, zqπzp ¨ qηspdzq

˙
µpdxq

ď
ĳ

c1
8 px,Knpx, zqπzp ¨ qqµpdxqηspdzq

“
ĳ

Knpx, zqc1
8 px, πzp ¨ qqµpdxqηspdzq

“
ż

pKnDzqpzq ηspdzq,

where

Dzpxq “ c1
8 px, πzp ¨ qq , @x, z P X .

By assumption, the function x ÞÑ c1
8 px, πzq is continuous on X . Therefore, according to Lemma 2.1,

one gets that KnDzpuq Ñ Dzpuq for any u P X (and even uniformly in u) as n Ñ 8. By assumption,
it holds c1

8 px, πzq ď a and so KnDzpzq ď a. Therefore, according to the dominated convergence
theorem, it holds

(A.4) lim sup
nÑ8

ż
c px, qs,xn q µpdxq ď lim

nÑ8

ż
pKnDzqpzq ηspdzq “

ż
Dzpzqηspdzq “

ż
c1

8pz, πzqηspdzq.

Adding (A.3) and (A.4), one gets that lim supnÑ8 Iµc rπns ď Īµc rπs, which completes the proof. �
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