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Abstract
Artificial reefs (ARs) have been used to support fishing activities. Sessile invertebrates
are essential components of trophic networks within ARs, supporting fish productivity.
However, colonization by sessile invertebrates is possible only after effective larval dis-
persal from source populations, usually in natural habitat. While most studies focused
on short-term colonization by pioneer species, we propose to test the relevance of geo-
graphic location, shape, age and depth of immersion on the ARs long-term colonization
by species found in natural stable communities in the Gulf of Lion.We recorded the pres-
ence of five sessile invertebrates species, with contrasting life-history traits and regional
distribution in the natural rocky habitat, on ARs with different shapes deployed during
two immersion time periods (1985 and the 2000s) and in two depth ranges (<20m and
>20m). At the local level (~5kms), neither shape, depth nor immersion duration differen-
tiated ARs assemblages. At the regional scale (>30kms), colonization patterns differed
between species, resulting in diverse assemblages. This study highlights the primacy of
geographical positioning over shape, immersion duration and depth in ARs colonization,
suggesting it should be accounted for in maritime spatial planning
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Introduction 

The decline of fish stocks and natural marine habitat degradation resulting from human exploitation 
have been documented worldwide for decades (Claudet and Fraschetti, 2010; Jackson, 2001; Pauly et al., 
2002).  

Artificial reefs (ARs) have been primarily implemented to reduce the pressure of fisheries in coastal 
areas, complementing other management tools such as marine protected areas or regulatory measures 
such as fishing licenses (Claudet and Pelletier, 2004; Seaman, 2007; Wilson, 2002). Moreover, ARs could 
provide economic benefits such as recreational and traditional fishing and scuba diving (Chen et al., 2013). 
Beneficial effects such as increase in fish biomass and capture efficiency near ARs have been reported 
(reviewed by Bohnsack and Sutherland, 1985; Tessier et al., 2014) but led to a debate on the effects of ARs 
fishery, opposing attraction vs production (Grossman et al., 1997). The fish attraction argument is based 
on the quick colonization by fishes and mobile invertebrates (Powers et al., 2003; Relini, 2002; Santos and 
Monteiro, 2007). The fish production argument is based on the hypotheses of a better protection against 
predators and an increase in available substrate area for larval establishment thanks to habitat 
complexification and an increase of available trophic resource (Bohnsack, 1989). In natural rocky habitats, 
benthic invertebrates play an essential role in fish trophic networks (Ardizzone et al., 1996; Martens et al., 
2006). ARs trophic network showed similarity with natural rocky habitat, with dominance of filter-feeders 
using phytoplanktonic primary production and fish predation on crustacean colonizing the ARs (Cresson, 
2013). Moreover, AR deployed in sandy areas are expected to enhance fish productivity given that epifauna 
secondary production per ARs unit surface has been estimated to be 30 times greater than that of natural 
sandy infauna (Steimle, 2002). However, those estimates were made shortly after immersion and do not 
prove the long-term fish production in ARs and supporting this argument would require extending data on 
colonization by benthic invertebrates in the long-term (Svane and Petersen, 2001). Indeed, age since 
deployment has been described as a key factor to explain ARs coverage by benthic invertebrates (Svane 
and Petersen, 2001). The assemblages of benthic communities are expected to change over time in a 
succession between pioneer and specialist species (Connell and Slatyer, 1977). In contrast with pioneer 
species, specialist ones have slower colonization dynamics, because of their lower fecundity (Fava et al., 
2016). However, after colonization, specialists are expected to outcompete pioneer species due to their 
more efficient use of environmental resources (Connell and Slatyer, 1977). Among these, light availability 
is an essential factor shaping marine benthic communities across the water depth gradient (Odum, 1971). 
Several studies have shown a decrease in the density of benthic invertebrates with depth on ARs (Lewbel 
et al., 1986; Moura et al., 2007; Shinn and Wicklund, 1989; Van der Stap et al., 2016) explained by  the 
decrease in light intensity (Relini et al., 1994).  The structural complexity has also been put forward as 
important characteristics linked to ARs efficiency in ecological restoration (Strain et al., 2018). Structural 
complexity increases available surface for colonization and niches diversity with various shelter and light 
exposure conditions, the latter being related to different benthic assemblage compositions (Glasby, 2000; 
Glasby, 1999) and higher productivity (Vivier et al., 2021). The recent 3D printing techniques using concrete 
allow the design of ARs mimicking natural habitats (Ly et al., 2021). However, those studies concerned 
short-term colonization (<3.5 years) (Wendt et al., 1989) hence based on pioneer species with high 
dispersal capacities which long term colonization is likely regulated by post-settlement processes such as 
competition, predation and physical disturbance (Todd, 1998).  In contrast to mobile species, 
sessile benthic invertebrates can only colonize reefs after larval dispersal which is limited by reproduction 
frequency (Thorson, 1950). Colonization implies thus an effective dispersal between natural areas and ARs, 
which depends on source population spatial distribution, species fecundity, dispersive larval traits and 
ocean circulation. Nevertheless, until now dispersal drivers have been disregarded while colonization 
disparities among ARs may result from differences in both larval connectivity (which in turn depends on 
fecundity, dispersal capacities and adult distribution in the natural habitat) and post-recruitment 
processes.   

The objective of the present study was to test the hypothesis that the geographical location of ARs 
deployment with respect to the natural habitat can condition ARs colonization after more than 10 years. 
To this aim we investigated the effects of local (shape, depth and immersion duration) and regional 
(geographic area) factors on the presence of five species of sessile invertebrates with different life history 
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traits, endemics to the Gulf of Lion (GoL) (Northwestern Mediterranean Sea) and frequently found on 
natural hard substrates. 

Methods 

Study area and spatially stratified sampling design 
The study area extended along 160 km of the GoL coastline (Figure 1). The GoL is a wide micro-tidal 

continental shelf dominated by soft-bottom habitat with few small rocky habitat patches of less than 20 
km2. The GoL is a homogeneous and isolated hydrodynamic unit (Rossi et al., 2014), delimited by the 
northern current (Millot, 1990).  

Between 1985 and 2009, 763 ARs with different shapes or material for a total volume of 37 575 m3 
(Tessier et al., 2015) have been deployed along the GoL coastline over 66 km² of state concessions  
(Cepralmar, 2015) between 10 and 35 m depth (Figure 1, Blouet et al., 2021). The ARs deployed in GoL 
represent 40% of the total AR volume in France (Tessier et al., 2015).  

In the present study we examined the oldest (in the 80s) and the youngest (in the 2000s) ARs with the 
most common shapes (namely pipe, steel cage, Bonna, Comin, pyramid, heap of telegraph poles, and 
concrete box, Figure 1).  For the analysis of data, we followed a stratified sampling design.  

To this aim, the GoL coastline was regularly divided into 6 geographical sectors separated by a distance 
ranging from 12 to 117 km, with a median value of 49 km (AGM referring to Aigues-Mortes, AGD to Agde, 
VLR to Valras, GRU to Gruissan, LEU to Leucate, CST to Canet/Saint-Cyprien sectors, Figure 1). Each sector 
included ARs deployed during either the first (1985, CST geographical sector), the last (2002-2009, AGM, 
VLR, GRU, LEU geographical sectors) or both deployment periods (AGD), and of different shapes. In each 
geographical sector, two sites were defined except in AGD (5 sites, AGD1, AGD2, AGD3, AGD4, AGD5) and 
GRU (3 sites, GRU1, GRU2, GRU3). To test for location effect, sites were separated by a distance ranging 
from 2.1 to 11.7 km (median value of 7.5 km) except in GRU, where two of the three sites (GRU1 and GRU2) 
were defined in the same location to account for different shapes. Hence, depending on the geographical 
sector, sites may differ either by AR shape, immersion depth or immersion duration (Figure 1). Due to this 
set up, the effect of these three factors was only tested locally (see Statistical analysis). In each site (except 
in the geographical sector GRU), three sampling units separated by a distance between 4 m and 3.6 km 
(median distance of 251 m) were set out by pooling neighboring ARs reaching a minimum surface of 89 m2 
per sampling unit and totalling a minimum developed surface of 306 m2 per site (Table 1: Supplementary 
Material). In the geographical sector GRU, GRU2 and GRU3 included only one sampling unit because the 
surface of a single AR in these sites already yielded 459 m2 (heap of telegraph poles; Table 1: 
Supplementary Material).  Such large continuous sampling units in each site aimed at limiting the effect of 
recruitment spatial variability over distances from 100s meters to kilometers arising from the non-
uniformity of the flow of larvae (Daigle et al., 2014; Glasby, 2000; Simpson et al., 2017; Smale, 2012). Such 
a spatial scale is consistent with the spatial scale of flow homogeneity obtained in simulations over GoL 
soft-bottom habitat (Briton et al., 2018). This inventory methodology enabled us to test for the existence 
of structuring factors at the local and regional scales. Developed reef surface was calculated on the basis 
of technical specifications data present in the state concession documents taking into account only the 
colonizable surface (surfaces in contact with the sediment were excluded).  

Colonization assessment and species selection 
Assessment of ARs colonization was carried out by autonomous scuba-diving in 2020 by direct visual 

census counting the number of individuals of the five target species on the entire surface of ARs (7295 m²; 
Table1: Supplementary Material). On the ARs, all individuals older than one year (size > 2 cm) have been 
recorded. Among the species listed in previous ARs inventories in the GoL, we selected five species that 
were present in most inventories, easy to identify by direct visual census and spanning different phyla with 
contrasting life-history traits (Créocean, 2003 & 2004; Table 1).  We selected two gorgonians Eunicella 
singularis (Esper, 1791) and Leptogorgia sarmentosa (Esper, 1789), one bryozoan Pentapora fascialis 
(Pallas, 1766), one annelida Sabella spallanzanii (Gmelin, 1791) and one ascidian Halocynthia papillosa 
(Linnaeus, 1797) (Figure 2). The five species have a similar wide natural repartition area along European 
coasts ranging from 1 m to 250 m depth (Giangrande et al., 2005; Gori et al., 2011; Ponti et al., 2019; Turon, 
1990; Weinberg and Weinberg, 1979). In addition, S. spallanzanii has been recorded along the coasts of 
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Brazil, Australia and New Zealand where it is classified as an invasive non-indigenous species (Currie et al., 
2000). The five species are present in the rocky habitat of the NW Mediterranean Sea (Laubier, 1966; True, 
1970; Hong, 1980). However, in the GoL, where natural rocky habitat covers uneven surfaces within the 6 
geographical sectors (from 3,123 107 m2 for the AGM sector to 5 105 m2 for the LEU sector), the five species 
display different spatial distributions (Dutrieux et al., 2005; Dalias et al., 2011; Guizien et al., 2022; S. Blouet 
personal observation). E. singularis is frequently observed and abundant throughout the GoL (from the 
AGM sector to the CST sector), while L. sarmentosa, less abundant, is present mainly in the center of the 
GoL (AGD, VLR, LEU, CST). P. fascialis is abundant in the west of the GoL (AGD, LEU, CST, and south of CST). 
The distribution of H. papillosa is not well known, however the species has been observed in all the rocky 
areas of the GoL. S. spallanzanii is present but rare in natural rocky habitat. Nevertheless, S. spallanzanii is 
very abundant in lagoons, ports and marinas of the GoL (S. Blouet personal observation) which has been 
indicated as preferred habitat of the species (Currie et al., 2000). 

The five species display different life-history traits. All five species reproduce once a year in different 
seasons and with different strategies (Table 1).  

S. spallanzani reproduces in January-February, when water temperature is the coldest. The species 
displays multiple reproductive strategies: internal fertilization, with larvae brooded either inside or outside 
the mineral tube secreted around the body, and external fertilization broadcast spawning (Giangrande et 
al., 2000). In addition, asexual reproduction by fission has been reported (Read et al., 2011). S. spallanzani 
releases lecithotrophic larvae with a planktonic larval duration (PLD) of about 4 weeks (Giangrande et al., 
2000). Its life span can exceed 5 years, with sexual maturity after one year (Giangrande and Petraroli 1994; 
Giangrande et al., 2000).  

Like most gorgonians, E. singularis releases lecithotrophic larvae in early summer (June to August). Even 
though larval competency period can reach up to 2 months (Guizien et al., 2020; Zelli et al., 2020), PLDs 
ranging from 7 to 14 days best explained gene flow among E. singularis natural populations dwelling in the 
fragmented rocky habitat of the GoL  (Padron et al., 2018). E. singularis life span can reach 25-30 years with 
sexual maturity before 6 years (Gori et al., 2007; Weinberg and Weinberg, 1979).  

The other gorgonian, L. sarmentosa also releases lecithotrophic larvae but in the late summer 
(September to October) and the PLD is unknown (Rossi and Gili, 2009). L. sarmentosa life span can reach 
20 years with female sexual maturity within 2-3 years after settlement (Rossi and Gili, 2009). 

H. papillosa is a simultaneous hermaphrodite which releases larvae in late summer (September to 
October; Becerro and Turon, 1992), presumably lecithotrophic. The PLD of H. papillosa larvae is unknown 
but PLD shorter than 12 hours has been consistently reported for other solitary ascidian species (Ayre et 
al., 1997). We did not find any data about the age at sexual maturity and the life span of H. papillosa. 
However, the ascidians are considered as highly invasive, particularly because of their rapid growth and 
early sexual maturity (Zhan et al., 2015), with some species such as Ciona intestionalis complex and Ciona 
savigniy, reaching sexual maturity at the age of 2 months (Zhan et al., 2015) and continuous spawning  
(Carver et al., 2003).  

P. fascialis displays both sexual and asexual reproduction. During sexual reproduction, most bryozoans 
release lecithotrophic larvae which settle after a few minutes or a few hours, rarely beyond several days 
(Keough, 1983). P. fascialis larval release has been inferred to happen in June based on recruitment 
observations (Cocito et al., 1998a). Asexual reproduction happens by colony fragmentation or budding 
extension (Cocito et al., 1998b). Individual life span is estimated to be about 10 years with early sexual 
maturity after 2 years (Cocito et al., 1998b). 
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Table 1: Life history traits (spawning period, relative fecundity, life expectancy, age at sexual 
maturity, larval type, planktonic larval duration (PLD), relative abundance in the GoL) for the five species 

inventoried on ARs. 

Species Spawning 
period 

Fecundity  Life 
expectancy 

Age at 
sexual 
maturity 

Larval type Planktonic 
larval duration 
(PLD) 

Abundance in 
the GoL  

Leptogorgia 
sarmentosa 

June - August ** 20 years 2-3 years Lecithotrophic  1-4 weeks 
(estimated 
from other 
gorgonians) 

** 

Eunicella 
singularis 

July - August * 25-30 years 6 years Lecithotrophic 1-4 weeks (in 
aquarium) 

*** 

Pentapora 
fascialis 

June ** 10 years 2 years Lecithotrophic <1 days  ** 

Sabella 
spallanzani 

January - 
February 

*** 5 years 1 years Lecithotrophic 21 days (in 
aquarium) 

* 

Halocynthia 
papillosa 

September - 
October 

*** 
(estimated 
from other 
ascidians) 

unknow 2 months 
(estimated 
from other 
ascidians) 

lecithotrophic 
(estimated 
from other 
ascidians) 

<12 hours 
(estimated 
from other 
ascidians) 
 

** 

Symbol legend: * = low, **=medium ***=strong 

Statistical analysis 
We examined to which extent ARs colonization measured by the presence/absence of the five species 

and on the dissimilarity between their co-occurrence assemblages is affected by the AR shape, location 
and timing of deployment (age). Due to the GoL AR deployment set up, the effect of some factors was 
tested only locally.  We first verified that shape was not affecting colonization, by testing the effect of shape 
in one geographical sector where different shapes were deployed at same depth and time (VLR1/VLR2, 
Table 1: Supplementary Material). Second, the effect of factors age (2 levels: 1985 and the 2000s) and 
depth (2 levels, >20 m, <20 m depth) was tested within the AGD geographical sector only. Factor age was 
tested in 3 sites at <20 m (AGD1/ AGD2 & AGD3) and factor depth was tested in 4 sites deployed in 2009 
(AGD2&AGD3 / AGD4&AGD5). Third, factor location was tested both at regional and local levels 
(geographical sector being the regional factor, site being the local factor). To avoid any confounding effect 
due to age or depth, the regional factor vs the local factor were tested on the 5 geographical sectors where 
AR were deployed during the 2000s immersion phase and at <20 m depth only (AGM, AGD, VLR, GRU, LEU: 
5x2 levels).  

A Jaccard similarity matrix was built on presence/absence data across all pairwise sampling units used 
in each test (Table 2: supplementary material). Two multivariate analyses were performed. Non-parametric 
multivariate analysis of variance with permutation was applied to test for the effects of shape, age, depth 
and geographical sector on species assemblages (NP-manova:  Anderson, 2001; Zar, 1999). Site was 
considered as a random factor, nested either in depth, age or the geographical sector. Another multivariate 
analysis was performed to cluster most similar species assemblages in the sector of AGD (SIMPROF:  Clarke 
et al., 2008) (Table 2: supplementary material). 

When significant differences between the five species co-occurrence assemblages were detected for a 
factor, a non-parametric univariate analysis (Kruskall-Wallis) was performed for each species 
independently to detect the species driving the difference (Table 2: supplementary material). Fisher post-
hoc test was used to identify the site where the difference arose. A same p-value of 0.05 was taken for 
detecting significant differences. Analyses were performed with Matlab software using the Fathom 
package for multivariate analyses (Jones, 2014) and the Matlab statistics toolbox for univariate analyses. 
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Figure 1: Map showing the layout of the 6 geographical sectors (AGM, AGD, VLR, GRU, LEU, CST) and 
the 16 sites prospected (indicated in dark blue) for artificial reef sampling. Areas indicated in light blue 

corresponded to artificial reef deployment areas. Areas indicated in black corresponded to natural hard-
substrate areas. Some of the AR shape illustrations were taken from Tessier et al., 2014. 

Results 

Artificial reefs colonization by the five target species at regional scale  
Among the five target species, S. spallanzanii was the only one whose presence was recorded in all the 

sampling units and geographical sectors (Figure 3). In only one out of the 16 sites, it was the only species 
detected. H. papillosa and L. sarmentosa were detected in five of the six geographical sectors (not present 
in GRU and AGM respectively). P. fascialis and E. singularis were detected in 3 of the 6 geographical sectors 
(CST, LEU, and AGD for P. fascialis and AGM, AGD and LEU for E. singularis). Finally, E. singularis was the 
least frequently observed species, being detected in only 5 out of the 16 sites. In all geographical sectors, 
at least three of the five target species were detected, except GRU where only two of the five species were 
detected. Assemblages of two species were found in two sites out of the 16 (sectors AGD and GRU), 
assemblages of three species were found in 7 sites, assemblages of four species were found in 2 sites and 
assemblages of five species were found in 3 sites. 

Shape effect on five target species at local scale 
No difference in species assemblages was found in VLR between pipe and steel cage (NP-MANOVA, 

F=9.08 e-19, P>0.05; Table 2). 
Similarly, in the geographical sector GRU, the same assemblages were detected on sites differing by 

ARs shape (pipes and a heap of telegraphical poles) in the same location (GRU1 and GRU2).  Conversely, 
different assemblages were detected between two sites (GRU2 and GRU3) separated by 9 km although ARs 
shape was the same (heaps of telegraphical poles). Due to the absence of replication in unit samplings, it 
was not possible to perform a statistical test on the effect of shape in this geographical sector. 
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A) B) C) 

   

D) E) 

  
 

Figure 2: Photographs of the five species inventoried on AR a) Sabella spallanzanii, b) Eunicella singularis, 
c) Leptogorgia sarmentosa, d) Halocynthia papillosa and e) Pentapora fascialis; all © Blouet sylvain 

 

Age and depth effects on five target species at local scale 
Despite all five target species being detected on ARs in the AGD sector, assemblage composition among 

sites differed (Figure 3). Clustering of sampling units within the 5 sites (AGD1, AGD2, AGD3, AGD4, AGD5) 
in AGD identified 2 clusters (SIMPROF:  P<0.05; Figure 4). The two sites (AGD2 and AGD3) with same age 
(2009), depth range (less than 20 m) and reef shape (pipe) were attributed to different clusters. 

In fact, one cluster grouped ARs of different ages at a same depth (1985 in site AGD1 and 2009 in site 
AGD2) while the other cluster grouped ARs of the same age but at different depths (less than 20 m in site 
AGD3 and more than 20 m in sites AGD4 and AGD5). In both clusters, different AR shapes were found (steel 
cage and pipes in one cluster, pipes, Comin and Bonna in the other cluster) (Figure 4). The geographic 
distance between the two clusters (AGD4-AGD5) and (AGD3-AGD4-AGD5) was 7.5 km and the median 
value of the intra-cluster geographic distance was 3 km. 

Multivariate analysis of variance confirmed that neither age (NP-MANOVA, F=1.43 P<0.05; Table 3) nor 
depth (NP-MANOVA, F=1.37 P<0.05; Table 4) explained site differences in the five species assemblages 
found on ARs in AGD (P<0.05; Tables 3 and 4).   
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Figure 3: Map showing the five species co-occurence assemblages inventoried on ARs in the 16 sites 
(AGM1, AGM2, AGD1, AGD2, AGD3, AGD4, AGD5, VLR1, VLR2, GRU1, GRU2, GRU3, LEU1, LEU2, CST1, 

CST2) in the Gulf of Lion. 

Table 2: Results of multivariate NP-Manova testing the effect of the shape between steel cage and 
pipe on the presence/absence assemblage. Sites tested: VLR1 vs VLR2. Significant (P<0.05) values in bold. 

Multivariate measures 

Source Df SS Ms F Pvalue 

Assemblage      

Shape 1 3.6408e-19 3.6408e-19 9.8301e-18 0.6090 

Residual 4 0.1481 0.0370   

Total 5 0.1481    

 
Differences among the five sites in AGD were due to different ARs colonization by three species 

(Kruskall-Wallis: E. singularis, P. fascialis, H. papillosa; all P<0.05; Table 5). Site AGD3 differed from sites 
AGD5, AGD1 and AGD2 by the presence of E. singularis, sites AGD4 and AGD5 differed from sites AGD1 and 
AGD2 due to the presence of P. fascialis and the site AGD1 differed from sites AGD5, AGD3 and AGD4 by 
the presence of H. papillosa (Post-hoc tests, Table 3: supplementary material). 
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Figure 4: Diversity and dissimilarity. Upper part: diversity of species assemblages in the sampling units 
of the five sites (AGD1, AGD2, AGD3, AGD4, AGD5) in AGD sector together with the type of AR, depth and 

years of deployment. Lower part:  dendrogram obtained by group average clustering based on the 
Jaccard dissimilarity index using the presence /absence of species (P=0.04 at 62% of dissimilarity). The 

red dotted line separates the two clusters identified by the analysis. 
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Table 3: Results of multivariate NP-Manova testing the interactive effects of the age (of deployment) 
and site (nested in Age) on the presence/absence assemblage. Sites tested: AGD1 vs (AGD2 vs AGD3). 

Significant (P<0.05) values in bold. 

Multivariate measures 

Source Df SS Ms F Pvalue 

Assemblage      

Age 1 0.4825 0.4825 1.4330 0.3330 

Site (Age) 1 0.3367 0.3367 7.5551 0.0130 

Residual 6 0.2674 0.0446   

Total 8 1.0866    

Table 4: Results of multivariate NP-Manova testing the interactive effects of the depth (of 
deployment) and site (nested in depth) on the presence/absence assemblage. Sites tested: (AGD2 vs 

AGD3) vs (AGD4 vs AGD5). Significant (P<0.05) values in bold. 

Multivariate measures 

Source Df SS Ms F Pvalue 

Assemblage      
Depth 1 0.2491 0.2491 1.3715 0.3280 
Site(Depth) 2 0.3633 0.1816 8.5969 0.001 
Residual 8 0.1690 0.0211   
Total 11 0.7816    

Table5: Results of univariate Kruskall-Wallis testing the effect of location of deployment on the 
presence/absence by species. Sites tested: all sites in AGD. Significant (P<0.05) values in bold. 

Univariate measures 

Source Df SS Ms Chi_sq Pvalue 

Species      

Eunicella singularis 4 127.5 31.875 10.82 0.0287 

Leptogorgia sarmentosa 4 60 15 6.22 0.1832 

Pentapora fascialis 4 172.5 43.125 11.5 0.0215 

Sabella spallazanii 4 0 0 nan nan 

Halocynthia papillosa 4 150 37.5 11.2 0.0244 

Table 6: Results of multivariate NP-Manova testing the interactive effects of geographical sector and 
site (nested in geographical sector) on the presence/absence assemblage. Sites tested: (AGM1 vs AGM2) 
vs (AGD2 vs AGD3) vs (VLR1 vs VLR2) vs (GRU1 vs GRU2 vs GRU3) vs (LEU1 vs LEU2). Significant (P<0.05) 

values in bold. 

Multivariate measures 

Source Df SS Ms F Pvalue 

Assemblage      
Geographical sector 4 2.1671 0.5418 5.0994 0.005 

Site (Geographical sector) 6 0.6375 0.1062 2.7812 0.007 
Residual 18 0.6876 0.0382   
Total 28 3.4921    

 
Geographical effect on five target species at local and regional scales 

The five species co-occurrence assemblages on ARs deployed in the same period and at the same depth 
were significantly different at both regional and local scales (NP-MANOVA): geographical sector F=5.09 
P<0.05; site (geographical sector) F=2.78 P<0.05; Table 6). These differences were due to different 
colonization of ARs by three of the five species, E. singularis, L. sarmentosa and P. fascialis. For the latter 
two species, regional differences (Kruskall-Wallis: geographical sector P=0.0002) were more significant 
than local differences (Kruskall-Wallis: site P=0.001 for L. sarmentosa and P=0.005 for P. fascialis; Table 7). 
Both species were not detected in the north of the GoL (AGM). In contrast, for E. singularis, local differences 

10 Sylvain Blouet et al.

Peer Community Journal, Vol. 2 (2022), article e24 https://doi.org/10.24072/pcjournal.107

https://doi.org/10.24072/pcjournal.107


(Kruskall-Wallis: site P=0.017) were more significant than regional ones (geographical sector P=0.036; Table 
7), the species being detected in geographical sectors in the north, center and south of GoL. 

Table 7: Results of univariate Kruskall-Wallis testing the effects of geographical sector and site on the 
presence/absence by species. Sites tested: AGM1 vs AGM2 vs AGD2 vs AGD3 vs VLR1 vs VLR2 vs GRU1 vs 

GRU2 vs GRU3 vs LEU1 vs LEU2. Significant (P<0.05) values in bold. 

Univariate measures 

Source Df SS Ms Chi_sq Pvalue 

Eunicella singularis      
Geographical sector 4 447.08 111.77 10.28 0.036 
Site 9 937.66 93.76 21.56 0.0175 
Leptogorgia sarmentosa      
Geographical sector 4 965.7 241.42 22.2 0.0002 
Site 9 1116.5 11.65 28 0.0018 
Pentapora fascialis      
Geographical sector 4 937.66 234.41 21.56 0.0002 
Site 9 1077.83 107.78 24.78 0.0058 
Sabella spallazanii      
Geographical sector 4 0 0 nan nan 
Site 9 0 0 nan nan 
Halocynthia papillosa      
Geographical sector 4 323.59 80.89 6.01 0.1985 
Site 9 681.5 68.15 12.53 0.2509 

Discussion 

The resilience of marine natural biodiversity, including benthic invertebrates, is essential to ensure the 
sustainability of ecosystem functions. Increasing habitat surface is key to support the natural biodiversity 
resilience, which in the case of the rocky habitat can be achieved by effectively integrated ARs.  The 
effective integration of ARs into the rocky habitat network starts with their colonization by species from 
the natural habitat. In the present study the five species selected from the natural rocky habitat of the GoL 
colonized differently the ARs spread along the GoL coastline ten years after their deployment. Locally, 
neither age, immersion, depth or shape of the ARs significantly affected colonization patterns. 

Colonization of ARs are expected to evolve toward a stable state comparable to that of the natural 
environment, through the succession of opportunistic species (wide dispersal,  high fertility, low tolerance 
of reduced resource levels, short life-spans, minimal dietary specialisation) followed by specialized 
species (limited dispersal, slow growth to a large size at maturity, delayed and limited reproduction, 
optimization to reduced resources and long life spans; Platt and Connell, 2003; Faurie et al., 2003). 
Monitoring of ARs short-term colonization (<3 years) have indeed shown a dominance of pioneer species 
(hydroids, serpulids, barnacles and bivalves), most of them having life history traits typical of opportunistic 
species (Fariñas-Franco et al., 2013; T. Glasby, 1999; Moura et al., 2007; Pamintuan and Ali, 1994; Ponti, 
2015; Relini et al., 1994; Spagnolo et al., 2014; Toledo et al., 2020).  

Long-term studies confirmed successions in ARs colonization (Burt et al., 2011; Nicoletti et al., 2007; 
Perkol-Finkel and Benayahu, 2005; Whomersley and Picken, 2003), but none have described saturation 
(Svane and Petersen, 2001). In the Tyrrhenian Sea, Nicolleti et al. (2007) described colonization in 5 distinct 
phases: (i) a first recruitment by pioneer species (hydroids, serpulids, barnacles and bivalves) during the 
firsts months after immersion, followed by phases of (ii) cover dominance, (iii) regression and (iv) absence 
of Mytilus galloprovincialis for more than 10 years. The installation of diverse bio-builders bryozoans 
characteristic of the natural environment was recorded after 20 years only (v). Our study shows that bio-
builder engineering species such as bryozoans (P. fascialis) and gorgonians (E. singularis, L. sarmentosa) 
colonized ARs as early as 10 years after their deployment, without significant difference between 10 years 
and 35 years old ARs. However, the presence of S. spallanzanii described as an opportunistic species (sexual 
precocity, various reproduction modes, rapid growth, short lived; Giangrande et al., 2000) on all ARs 
independently of their age of deployment suggests that ARs did not yet reach a stable state comparable to 
the natural environment. Thus, the presence of bio-builders is not a sufficient indicator of the ARs 
naturalization to the local biodiversity. 
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The GoL’s ARs being located in the sandy coastal zone are likely regularly disturbed by sediment 
deposits due to river delivery or/and their resuspension by either trawling activities or the mechanical 
action of the swell (Dufois et al., 2014; Durrieu de Madron et al., 2005; Ulses et al., 2008). Testing the 
impact of swell and sediment deposit on ARs requires exploring the colonization of ARs along a gradient of 
depth and distance from the coast (Van der Stap et al., 2016). However, current ARs deployment in the 
GoL ranged from 15 to 30 m depth and within 3 miles from the coast and did not allow testing for 
differential effect of sediment disturbances as swell impact occurs every year in this area (Guizien, 2009). 
Testing the impact of sediment disturbance on ARs colonization would require exploring reefs deployed 
deeper than 50 m, such as the anchorages of the floating wind farm that will be placed in the GoL in the 
next future (https://info-efgl.fr/le-projet/le-parc/#). Light is also expected to be an important factor 
structuring benthic assemblages, along a depth gradient in natural and artificial environments (Glasby, 
1999a; Glasby, 1999b; Svane and Petersen, 2001) . Absence of depth effect in the present study, although 
in the GoL light intensity strongly attenuates within the upper 30 m of the water column (Durrieu de 
Madron et al., 2011), was potentially a bias due to the five species selected in the present study 
whose distributions are not strongly structured by light intensity.  

Another factor which has been shown to drive the intensity of ARs colonization is structural complexity 
(see Bohnsack and Sutherland, 1985 for a review). Nevertheless, there is no consensus about the 
relationship between complexity and subtidal benthic invertebrates abundance, due to potential bias in 
controlling the surface and scale in ARs of different complexity (Rouse et al., 2019; Strain et al., 2018). The 
similarity in the 5 species co-occurrence between different reef shapes at the same depth and of the same 
age found in the present study suggests that shape is less important than the geographical location in AR 
colonization by benthic invertebrates when controlling the colonized surface. However, shape is an 
imprecise measure of structural complexity. The latter is rarely assessed quantitatively and can be 
described by different metrics which may be similar for apparently different shapes (such as steel cages 
and pipes; Riera, 2020). 

Benthic invertebrate assemblages result from complex processes that operate at multiple spatial and 
temporal scales (Smale, 2012). At the regional scale, larval availability can become a major factor explaining 
colonization success (Padron et al., 2018). Change in the composition of assemblages during the early 
colonization of artificial substrates by benthic invertebrates has been attributed to the availability and 
abundance of larvae during the seasons rather than a sequence of distinct succession (Bramanti et al., 
2003; Turner and Todd, 1993). The larval behaviour (buoyancy and motility) and the characteristics of the 
biological cycle of the species (spawning timing and PLD) can play a key role in determining the dispersal 
distance (Todd, 1998), and consequently the possibility to reach habitat suitable for settlement. Dispersion 
distance is generally correlated with PLD, thus a species with a long PLD is supposed to colonize habitats 
further away than species with a shorter PLD (Shanks, 2009). In this study, the five species were chosen 
among different phyla known for their contrasting planktonic durations, swimming abilities and larval 
dispersal periods, although these larval traits are only known accurately for E. singularis (Guizien et al., 
2020; Zelli et al., 2020). P. fascialis and H. papillosa, the two species with short PLD (<24h and <12h, 
respectively) colonized ARs located close to the natural habitat where they are present (<4.8 km and <10 
km, respectively). The coastal circulation of the GoL allows such dispersal distance over periods of a few 
days (Guizien et al., 2012). S. spallanzanii, which has a PLD larger than 3 weeks, colonized all the inventoried 
ARs, in line with a dispersal distance of 40 km after 3 weeks (Guizien et al., 2012). In contrast, E. singularis 
did not colonize all ARs within geographical sectors of 30 km width where the species is present in the 
natural habitat, although a 2 week PLD was expected to enable such dispersal (Padron et al., 2018). The 
other gorgonian species, L. sarmentosa colonized more ARs located within distances of less than 30 km 
from its natural habitat than E. singularis while the PLD of the two species are presumably the same. This 
suggests that other factors influence the colonization failure of E. singularis.  

Reproductive traits are another key to the success in colonising new settings (Stearns, 2000). In this 
regard, E. singularis colonization potential could be limited by its low fecundity (~25-40 larvae.cm-1 of 
colony branch; Ribes et al., 2007; Theodor, 1967) compared to that of L. sarmentosa (~75 larvae.cm-1 of 
colony branch; Rossi et al., 2011; Rossi and Gili, 2009). The wide colonization of ARs by S. spallanzanii is in 
line with its reproductive traits typical of opportunistic species (early sexual maturity, high fecundity with 
more than 50 000 eggs per female, Currie et al., 2000, a fertilization close to 100%, Giangrande et al., 2000). 
Since arriving in the Pacific Ocean, S. spallanzanii has been declared one of the ten priority pest species in 
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the marine environment by the Australian authorities and classified as an invasive species (Hayes et al., 
2005). Similarly to S. spallanzanii, H. papillosa colonized nearly all ARs located within its 10 km dispersal 
distance from the natural habitat. Within the ascidian class, a wide disparity in species fecundity has been 
reported (Pandian, 2018). This suggests H. papillosa reproductive traits would be close to those of invasive 
ascidians (Zhan et al., 2015).  

Ultimately, understanding ARs colonization requires a precise mapping of source populations in the 
natural environment. To this respect, the abundance of S. spallanzani on ARs is surprising, as the species is 
not abundant in the natural rocky habitat of the GoL. For this species, other sources of larval supply than 
natural settings should be considered, such as the numerous ports and marinas along the coast of the GoL, 
as S. spallanzanii is very tolerant to environmental conditions (Currie et al., 2000). In this case of intense 
colonization by an endemic benthic invertebrate species, ARs apparently extended its metapopulation, 
acting as stepping stones for further larval dispersal beyond its natural current colonization limits (Bishop 
et al., 2017; Wang et al., 2020).  

In the GoL, the 14 500 m3 of ARs deployed 30 years ago are now decommissioned and the relevance of 
their removal is currently debated. Connectivity between natural populations has been shown to support 
species resilience after disturbances in fragmented habitat, and could be extended to ARs (Fahrig, 2003). 
However, ARs may also facilitate the spread of non-indigenous species introduced with maritime traffic in 
ports (Glasby et al., 2007).  

The present study advocates accounting for the geographical arrangement in planning ARs deployment 
to extend the habitat of hard bottom benthic invertebrate natural populations. 
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