N
N

N

HAL

open science

TOUCAN: An IDE Supporting the Development of
Effective Interactive Java Applications

Célia Martinie, David Navarre, Philippe Palanque, Eric Barboni, Alexandre
Canny

» To cite this version:

Célia Martinie, David Navarre, Philippe Palanque, Eric Barboni, Alexandre Canny. TOUCAN: An
IDE Supporting the Development of Effective Interactive Java Applications. ACM SIGCHI con-

ference Engineering Interactive Computing Systems (EICS 2018), Jun 2018, Paris, France. pp.1-7,
10.1145/3220134.3220136 . hal-03623020

HAL Id: hal-03623020
https://hal.science/hal-03623020
Submitted on 29 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03623020
https://hal.archives-ouvertes.fr

OATAO

Cipen Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22536

Official URL
DOI : https://doi.orq/10.1145/3220134.3220136

To cite this version: Martinie De Almeida, Celiaand Navarre, David and
Palanque, Philippe and Barboni, Eric and Canny, Alexandre TOUCAN: An
IDE Supporting the Development of Effective Interactive Java Applications.
(2018) In: ACM SIGCHI conference Engineering Interactive Computing
Systems (EICS 2018), 19 June 2018 - 22 June 2018 (Paris, France).

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

TOUCAN: An IDE Supporting the Development of
Effective Interactive Java Applications

Célia Martinie, David Navarre, Philippe Palanque, Eric Barboni, Alexandre Canny
ICS-IRIT, University Toulouse 3
Toulouse,France
{martinie, navarre, palanque, barboni, acanny}@irit.fr

ABSTRACT

The TOUCAN IDE (Integrated Development Environment)
provides support for building effective interactive
applications programmed in Java Swing or in JavaFX.
Taking into account the effectiveness factor of
usability requires from developers to guarantee that the
application allows users to reach their goals and to
complete their tasks. This means that users’ goals and
tasks have been analyzed and that their explicit
description is available. By providing support for
mapping and co-execution of task descriptions with
interactive application software, TOUCAN IDE enables
to program an interactive application and, at the same
time, to support its effectiveness. In this article we
highlight the main features of TOUCAN, as well as its
underlying principles for enabling the mapping and co-
execution of an interactive application with its
associated task models.

KEYWORDS

Interactive application programming, task models, co-
execution.

https://doi.org/10.1145/3220134.3220136

1 INTRODUCTION

Ensuring that an interactive application allows users to
perform their activities and to reach their goals is essential
to the overall usability of the interactive application. The
effectiveness factor of usability [3] directly refers to this
capability. The interactive application shall implement all
of the needed functionalities and these functionalities
shall be accessible when needed (e.g. made available to the
user in an order that is compatible with the one needed to
reach the goals). Ensuring the effectiveness of an
interactive application thus requires an explicit
description of users’ goals and tasks. Task models is one
of the very few means for explicitly and exhaustively
describing user tasks at design time. However, at the same
time, task models are considered as cumbersome,
expensive to build and mainly useful in the early phases of
the development process, where they provide high-level
descriptions for the identification of the main functions of
the interactive application. But, ensuring the effectiveness
of an interactive application also requires to verify that
each user actions are feasible with the interactive
application (e.g. being able to click on a button that is
enabled at the appropriate time) and this verification
should be possible along the whole development process.
The TOUCAN IDE (Integrated Development
Environment) provides support for such verification.
TOUCAN stands for Tasks Objects and Users Connected
to Applications Natively. TOUCAN IDE provides support
for programming a Java application (Java Swing and Java
FX) while ensuring its effectiveness thanks to the
integration of the application with its corresponding task
models. In this article, we highlight how TOUCAN
provides support for:
« checking the effectiveness factor of usability using task
models and interactive software application,
« connecting a description of user interactive task in a
task model to lines of codes in an interactive software
application,

the co-development of an interactive application and
its associated task models.
Next section describes the positioning of TOUCAN with
related work on task models based IDE that support the
development of interactive applications. The third section
presents the TOUCAN IDE and illustrates its main

features with the example of the Automated Teller
Machine (ATM) application. The fourth section presents
how the underlying parts of TOUCAN contribute to the
mapping and co-execution of an interactive application
with its associated task models. The last section concludes
on the benefits and perspectives for the usage of
TOUCAN.

2 BACKGROUND AND POSITIONNIG WITH
REGARDS TO TASK-MODEL BASED IDE

This section aims at highlighting the scope of the
TOUCAN IDE compared to the scope of other task models
based development environments. Task models are one of
the main artefacts in the CAMELEON framework [2]. This
framework assumes that task models are the preliminary
source of information and that it is possible to generate an
interactive application from such information (while
adding other ingredients such as UI guidelines for
instance). The main claim is that with such an approach it
is possible to generate user interfaces for different
platforms thus reducing the development costs. The main
drawbacks are that it is difficult to integrate design and
craft knowledge in such processes. A tool suite based on
CTT can help to overcome these drawbacks by integrating
reverse engineering tools such as ReverseCTT and
ReverseMARIA [4] in order to automatically produce
Abstract UI models from concrete Ul and to produce task
models from Abstract UI models. The TOUCAN approach
is different in the way that the software programmer
connects the presentation and dialog of the application
manually with the task models. The connection between
task models and an interactive application at runtime has
first been proposed for fully model-based approaches [1].
Such Integrated Development Environments provides
support the co-execution between task and system models
and enables to produce and to connect task models and
formal models of the application at design time and at
runtime. This type of IDE can be used for ensuring
consistency between task and system models. However,
they require using a formal description technique able to
encompass all the elements of the interactive application
including input device information, interaction techniques
as well as the non-interactive part (functional core) of the
application. This may lead to high development costs for
the construction of the application and interaction models.
The TOUCAN approach is different in the way that the
software programmer can use a generic development
language to develop the interactive software. The
TOUCAN IDE is based on previous work on how
development processes may support the validation of the
effectiveness of an interactive application [5]. The work

presented in [5] focuses on the process. It also discusses
the possible different types of approaches for the mapping
of task models with interactive applications and presents a
proof of concept CASE tool to support this mapping. From
this proof of concept version of the tool, we have built a
standalone IDE that aims at being publicly released to
software developers. This article focuses on this new
standalone IDE itself featuring additional capabilities such
as the co-execution of JavaFX applications with task
models, as well as the programming of adapters for
enabling the mapping between task models and custom
widget that the developers may have to program.

3 THE DEVELOPMENT OF AN EFFECTIVE
INTERACTIVE APPLICATION WITH TOUCAN

The TOUCAN IDE (Integrated Development
Environment) enables developers and HCI specialists to
code Java Swing or JavaFX applications and to validate
their effectiveness using task models as the description of
the user tasks. TOUCAN addresses the following
challenges: to integrate task modeling common features
(edition, simulation) and Java software development main
features (programming, build, execution) in an IDE, to
provide means to map lines of codes with user actions, to
provide means to synchronize and control simulation of
task models with java software under execution. To
address these challenges, the main features of the
TOUCAN IDE are:

« TOUCAN project creation and management
(composed of task models, java classes and libraries, as
well as correspondence configuration files)

« Java application programming and execution

« Task models editing and simulation

« Automatic extraction of interactive input and output
tasks in the HAMSTERS task models

« Automatic extraction of event sources and renderers
from annotated applications using Java technology

« Edition of the correspondences between interactive
tasks and event sources and renderers

« Co-execution of the Java application with the task
models

Figure 1 depicts the screenshot of the TOUCAN IDE while
an interactive application is co executing with its
associated task model. The TOUCAN IDE is composed of:
a project panel (left side panel in Figure 1) presenting the
structure of a TOUCAN project, including task models,
java software and correspondence files, and a main
modeling and programming area for the editing of java
applications and task models (main central part in Figure

1.

a User Appiications Natively 201609300107

svigate S Refactor Run Debug Team Tc

dow Help

PEHES D s PT W BB

\ " A@%S%

|y Automated Teller Machine

Projects X |
588 sxampie:: 4TM Swing

Vsusl TobleVew Source HECores Hswry |,

R4S

| [User - Wihcraw cash «party [[5 ATM_Steetierson_AlContosActuated ave X ff: Enter PiNdgit 1 X i Enter]
= a7 O

Please enter your code:

& ns
&-§: Roles
% user
¥ Withdraw cash - pan

Subroutines
i Component
Concept Map
Scenanos
Actor
Tranee
G- Practical sessions
(155ource Packages
08, .m0t

| ATMRunnable java

[amm_steetverson_aid

[JcardinsertionPanel 2

~[d MoreytiitharawingPan
&8 fruos.atm.adapters

[MarcinsertionPaneiada

[Trextareandapter java)
L1 TestPadages
|y Other Sourcas
@ Dependences

.

=
Enter PIN digit 1
&Inf : Picoss

@i Mavigator T |] Services Elﬁura

//\\ =

% 0bj : Pmdigtt

awepd 1] B | mu[im[

w

I Validate ‘

o

==

w

=]

5.

& Funbme O

@ Jeve Deperdences
5 Projct e

1 Important Fies
& ProgctFies
= Rurnabies.
B # Synergstc
Fa, ATMESwng.syn

888888888

B Tvpe ey 1 as frest digt (Erter PIN digt 1)
& Tvoe ey 2 as fest digit {Enter PIN digit 1)
& Tyoe Key 3as fest digt {Enter PIN digit 1)
& Tyvoe Key 4 as fest digit Enter PIN digit 1)
B Tvoe Key § as frst digt (Enter PIN digit 1)
E Tyoe Key 5 as frst digit (Enter PIN digit 1)
L2 Type Key 7 s frst digt (Enter PIN digit 1)

F— Ho task selected

Current task Current scenano ~

task Grab card from wallet per formed ‘ T

task Insert card performed
task Ask for PIN code performed
task Remind of PIN code performed

& [output

Figure 1. The co-execution of the task model with the application (task driven)

3.1 lustrative example of the Automated Teller
Machine

The ATM is an interactive system that is widely known
and used regularly by most of us. This article focuses on
the usage of the TOUCAN tool for this simple but realistic
example of interactive application.

3.2 Describe user tasks

The TOUCAN tool provides support to edit and simulate

HAMSTERS task models [5]. In the case of the ATM
application, the main user goal is to “Withdraw money”.
Figure 2 presents the task model that describes the tasks
that need to be performed to reach that goal. At the higher
abstraction level, the main goal can be decomposed into
sub-goals, which can in turn be decomposed into
activities. Output of this decomposition is a graphical tree
of nodes. Nodes can be tasks or temporal operators. At the
second level of the hierarchical decomposition of the goal
“Withdraw money” in Figure 2, the following sub-goals

. . « P
have to be reached in a sequential manner: “Identify”,
38
Wmu;awmnnsy
o \J
p
®Phyo: Il >
Fvo: M 7R
38 .30 ,g-. 3
Y L e s B Lt B
Iaentiy selestamoum Process reques(Finalize wnnarawal
%:Phy o: (]
/// G v \‘ Z\‘\ ‘2
38 m
- w
- . 11
insert card Insertcode Askfor Choose anamount Enteramount Verify card and.account Packmonay Takscard Putcard in wallst Take money
J ‘ requested amount
> >> ‘ \lnf i ;reqﬁlrad amaumf
J \ ‘.obj . quue;tad:muunt ;
-\\:?
.38 .32 2 e oo
» » » B 2 Dlsplay Rale:se card Dlsplay Rele:sa
Grab card Insertcard Askfor Remind of Enter PIN digit 1 Enter PIN digil 2 Enter PIN digit 3 Enter PIN digit 4 Type key "take your card" "take your money' money
from wallet PIN code PIN code validate
& Inf : ‘PIN code, 9,Obj : Pndgit1 % Obj: Pidigt2 B Obj : Piidigits %, Obj : Piidiits

Figure 2. Task model to achieve the goal “Withdraw money”

5 L

Enter PIN digit 1

&Inf ; [Firicons v
=N

a &

«.‘ l.: L:I
Type Key 1 Type Key 2 Type Key 3

Type Key 6
as first digit

i
Type Key 0
as first digit

s
Type Key 9
as first digit

Type I;ey 8
as first aigit

Type Key 7
as first digit

QObi + PIN digit1

Figure 3. Subroutine “Enter PIN digit 1”

Type Key 4 Type Key 5
asfirstdigit asfirstdigit asfistdigit asfirstdigit s firstdigit
“Select amount”, “Process request”, and “Finalize

withdrawal”. At the third level, for sub-goal “Identify”, the
following sub-sub-goals have to be performed in a
sequential way: “Insert card” and “Insert code”. At the
lowest level, of each part of the hierarchical description,
user concrete tasks or actions are described. For example,
to achieve the sub-sub-goal “Insert card”, the following
sequence of user actions has to be performed: “Grab card
from wallet”, “Insert card”, “Ask for PIN code”. Tasks may
be of several types (user, interactive input, interactive
output) and the temporal ordering may be sequential but
also concurrent, order independent... For example, in
Figure 2, in sub-goal “Finalize withdrawal”, the operator
“lI” on top of the interactive output tasks “Display take
your card” and “Release card” indicates that these two
tasks are performed concurrently. Another example is in
Figure 3, which depicts the description of the refinement
of the task “Enter PIN digit 1” in a subroutine. The
operator “[]” indicates that the user has to choose to
perform only one of the above described interactive tasks.
Data manipulated by the user (information, objects...) are
also described in the task model.

3.3 Program the Java application

The TOUCAN IDE is based on the Netbeans Platform [6]
and thus provides the same functionalities as the Netbeans
IDE from a software programming point of view. User
interface Frames may be constructed with the embedded
GUI builder. The behavior of the application as well as its
functional core may be edited with the Java software
editor. Figure 4 shows a screenshot of the UI of the
running Java Swing version of the ATM (programmed
within the TOUCAN IDE).

Welcome, please enter your card

Figure 4. Screenshot of the ATM application

3.4 Annotate Java software

Annotation in Java (since JSE 1.8) is a form of metadata
(prefixed with a ‘@’), providing data about a program that
is not part of the program itself. Annotations have no
direct effect on the code instructions that they annotate
but they are used by the compiler to detect errors. At
compilation time, they provide information to generate
the code. At run time they provide support for examining
the annotated code. The TOUCAN IDE uses this
mechanism to allow the programmer to declare:

« event handlers that are related to descriptions of user
inputs in task models (interactive input tasks). In that case
they use the annotation @SynergyEventSource on top of
the declaration of the widget variable,

« rendering properties that are related to description of
user outputs in task models (interactive output tasks). In
that case, they have to wuse the annotation
@SynergyRenderer on top of the declaration of the widget
variable.

Java Swing Java FX
BFEML
@SynergyEventSource (name = "Keyl", event = "actionPexformed") @SynergyEventSource (name = "buttonCne", event = "actionPerformed")
private javax.swing.JButton :(1) private Button :(1)
BFXML

@SynergyRenderer (name = "labelWelcome", property = "text™)

private javax.swing.JLabel (2)

@SynergyEventSource (name

@SynergyEventSource (name

1", property
private fr.ups.ath.JCardInsercionPanel (3)

@SynergyRenderer (name = "card

@5ynergyRenderer (name = "welcome
private Label

BFXML
BSynergyEventSource (name

BSynergyEventSource (name

[
13
4
i3
i
o
[

BSynergyRenderer (name = "cax 1", property
private FXMLInsertionPanel ;(3)

Figure 5. Excerpt from the declaration of variables with annotations in Java Swing and JavaFX

Figure 5 presents excerpts from the annotated code of
both Java Swing and JavaFX version of the ATM. For each
widget, the programmer is able to annotate one event
handler (Figure 5, label “(1)”), one rendering property
(Figure 5, label “(2)”) or a combination of event handlers
and renderings (Figure 5, label “(3)”). Each annotation
declared before a variable indicates that the variable may
be associated to an interactive task in a task model. In
Figure 5, the annotation declared before the variable
“jButton1” (Java Swing column, label “(1)”) indicates that
the event handler “actionPerformed” of the “jButton1”
may be mapped to an interactive input task in a task
model. The annotation declared before the wvariable
“jLabelWelcome” (Java Swing column, label “(2)”)
indicates that the rendering property “text” may be
associated to an interactive output task in a task model.
Both types of annotation may be enhanced with extra data
to provide information for the correspondence editing. In
both cases, it provides a readable name for the
correspondence (independent from the attribute name).

Input
correspondences

Output
correspondences

Available)
task models [[

Task models
used for the =
correspondence

3.5 Connect the application to the task model

A dedicated control panel aims at connecting interactive
tasks with event handlers and widget rendering properties
(depicted in Figure 6). The control panel is composed of
three areas. The upper table panel (labelled “Input
correspondences” in Figure 6) makes it possible to map
interactive input tasks with event handlers (one detailed
example of this mapping is described in Table 1).

Table 1. Detailed example of input correspondence

Event handler
actionPerformed on Keyl
(jButton1)

Interactive input task

Type key 1
as first digit

The second table panel (labelled “Output correspondences
in Figure 6) makes it possible to map interactive output
tasks with rendering properties (one detailed example of
this mapping is described in Table 2). The lower part of

‘Cormespordence coverage
Correspondence
o Tteractive Tt sk 1outaf 45 4‘-
— Irfcactive Cutpot tasks: 8 0t of & coverage
Urused handiers: Events Manders 4outef 14
S Rendering Events Soutol 10
Co-execstion property R
Dl e Tak i PN o o = Co-execution
e e et —— el
P property p

Figure 6. The correspondence edition window in TOUCAN IDE

the control panel is dedicated to the analysis of the
correspondence coverage. This correspondence coverage
area (labelled “Correspondence coverage” in Figure 6)
allows programmers to check the completeness of the
correspondences/mapping that have been performed. It
highlights the ratio of interactive tasks that are not
connected to event handlers and rendering properties. The
programmer can then check whether there are missing
widgets and/or functionalities in the interactive
application or whether the task descriptions has to be
modified if there are missing or irrelevant user actions.

Table 2. Detailed example of output correspondence

Interactive output task | Change in the rendering

property of a widget

Property: text of
labelEnterAmount
(jLabel Amount)

Asl< far PIN code

For example, in Figure 6, the correspondence coverage
panel displays that the coverage is not full (orange bar
filled in up to around 50%). In addition, it displays the
ratio of interactive tasks that are not mapped (meaning
that a widget is maybe missing) and the ratio of event
handlers and property renderers that are not mapped
(meaning that some task description are maybe missing or
that widgets or functions are maybe useless for the user).
This enables to alert the programmer that the mapping is
not up-to-date, and that the effectiveness criteria cannot
be guarantee to be achieved.

3.6 ° Co-execute the application with task model

Once the correspondence between interactive tasks and
event sources and renderers is completed, the button
labeled “Co-execute” aims at triggering the co-execution
of the interactive application with the task models. Figure
1 depicts the co-execution of the Java application with its
associated task model in the TOUCAN IDE. The lower
part in Figure 1 depicts the co-execution control panel.
The TOUCAN IDE provides three different means for the
co-execution of the interactive application and its
associated task models: task model driven co-execution,
system driven co-execution and scenario driven co-
execution. In Figure 1, the co-execution is task model
driven. Tasks highlighted in green in the task model as
well as in the list are available for execution. Clicking on
an interactive input task in the list triggers its execution
in the task model and the execution of the corresponding
event handler in the interactive application. In the case
where an object is produced by the application once the
user has performed an interactive task (for example object
“requested amount” in the task model presented in Figure
2), the task driven co-execution panel displays an input
area for editing the value of this object before triggering

the execution of the task. The interactive application is
run through the execution of the task model. The
scenario-driven co-execution is quite similar but the
programmer triggers the execution of the tasks that are
listed in the selected scenario, even if other tasks would
have been available. In the case of the system driven co-
execution, the programmer interacts with the interactive
application and the interactive tasks in the task model are
highlighted in light blue if a correspondence is detected. In
addition to the blue highlighting, the ordering of the
interaction performed while using the application is
displayed close to the task.

The task driven co-execution provides support for
detecting inconsistencies between the planned tasks and
the behavior of the application. For example, if a widget is
not enabled in the application and that, according to the
execution of the task model, the corresponding interactive
input task should be executable, the task is highlighted in
orange to show the inconsistency between the specified
task and the behavior of the application. In the same way,
the scenario driven co-execution provides support for
detecting inconsistencies between the specified scenarios
and the interactive application. The system driven co-
execution can be used at user testing time to track the
frequency of occurrence of the interactive input tasks.

4 IMPLEMENTATION OF THE TOUCAN IDE

The TOUCAN IDE is built on top of the Netbeans Platform
[6] and encompasses the basic IDE functions such as
project management, unit testing, versioning... The
TOUCAN IDE integrates several software elements:
HAMSTERS for the editing and execution of task models,
the Netbeans API for the editing and execution of Java
code, and an in home library named Synergistic for the
parsing of the annotations as well as for the
correspondence edition and execution. The TOUCAN IDE
integrates natively a library of classes of adapters for Java
Swing and JavaFX widgets. Programmers may develop
their own custom widget. In that case, an adapter is
required to be programmed for the custom widget. The
main attributes of the adapter are: events and properties
to be handled, a list of listeners that need to be called once
an event occurs. The main methods of the adapter are: a
method to process the events, a getter for the instance of
the adapter and a getter for the class type of the widget
for which the adapter has been programmed. This feature
enables programmers to annotate a custom widget and to
map its event handlers and property renderers to
interactive tasks in task model. In the illustrative example
of the ATM, an adapter has been coded for the custom
widget “JCardSlotPanel,” which is the panel containing
the virtual card and the card slot. The TOUCAN IDE can
also be used in the case of large scale interactive
applications. A TOUCAN project may contain several java

classes and several task models. The mapping can be done
between several tasks in several task models and several
handlers and renderers in several Java classes.

5 CONCLUSION

This article highlights the principles and the functioning
of TOUCAN IDE blending tasks models and Java code of
interactive application. We use the well-known example
of a simulated cash machine. TOUCAN provides a precise
and concrete way for integrating human factor work (and
more precisely tasks analysis and tasks description) within
software development. It proposes a tool-support bridge
over the gap between design and development. The bridge
consists in making explicit the correspondence between
common elements in the tasks descriptions and in the user
interface. Reaching this goal requires limited additional
work on the developer side (adding annotations) while
providing significant help for evaluating the usability (and
more precisely the effectiveness) of interactive
applications. Such IDE could be helpful for increasing the
use of task models in interactive system development by
providing benefits even for existing and already deployed
applications.

REFERENCES

[1] Barbonj E., Ladry J-F., Navarre D., Palanque P. and Winckler M.
Beyond modeling: an integrated environment supporting co-
execution of tasks and systems models. EICS'10, 165-174.

[2] Calvary G., Coutaz J., Thevenin D., Limbourg Q., Bouillon L.,
Vanderdonckt J. A Unifying Reference Framework for multi-target
user interfaces. Interacting with Computers 15(3): 289-308 (2003)

[3] ISO 9241-11: Ergonomic requirements for office work with visual
display terminals (VDTs) - Part 11: Guidance on usability (1998).

[4] Manca, M., Paterno, F., Santoro, C. A Public Tool Suite for Modelling
Interactive Applications. Handbook of Formal Methods in Human-
Computer Interaction 2017: 505-528

[5] Martinie, C., Navarre, D., Palanque, P., Fayollas, C. A generic tool-
supported framework for coupling task models and interactive
applications. In Proc. of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS’15). ACM, New York, NY, USA,
244-253.

[6] Netbeans Platform, https://netbeans.org/features/platform/index.html
, last accessed March 2018.

[7] Palanque P., Martinie C. 2015. Designing and Assessing Interactive
Systems Using Task Models. ACM CHI Extended Abstracts, 2465-
2466.

[8] Palanque P., Martinie C. Designing and Assessing Interactive Systems
Using Task Models. 2016. ACM CHI Extended Abstracts, 976-979.

[9] Wilson S., Johnson P., Kelly C., Cunningham J. and Markopoulos P.
Beyond hacking: A model based approach to user interface design, In
Proceedings of HCI'93, 217—23, University Press, BCS HCL

