Célia Martinie
email: martinie@irit.fr!

David Navarre
email: !navarre@irit.fr!

Philippe Palanque
email: !palanque@irit.fr!

Eric Barboni
email: !barboni@irit.fr!

Alexandre Canny
email: !acanny@irit.fr!

TOUCAN: An IDE Supporting the Development of Effective Interactive Java Applications

e!TOUCAN!IDE!(Integrated!Development!Environment)! provides! support! for! building! e#ective! interactive! applications! programmed! in! Java! Swing! or!

INTRODUCTION

Ensuring! that! an! interactive! application! allows! users! to! perform!their!activities!and!to!reach!their!goals!is!essential! to!the!overall! usability!of!the!interactive!application.!The! effectiveness! factor! of! usability! [START_REF]!Ergonomic!requirements!for!office!work!with!visual! display!terminals!(VDTs)!-!Part!11:!Guidance!on!usability![END_REF]! directly! refers! to! this! capability.!The!interactive!application!shall!implement!all! of! the! needed! functionalities! and! these! functionalities! shall!be!accessible!when!needed!(e.g.!made!available!to!the! user!in!an!order!that!is!compatible!with!the!one!needed!to! reach! the! goals).! Ensuring! the! effectiveness! of! an! interactive! application! thus! requires! an! explicit! description! of! users'! goals! and! tasks.! Task! models! is! one! of! the! very! few! means! for! explicitly! and! exhaustively! describing!user!tasks!at!design!time.!However,!at!the!same! time,! task! models! are! considered! as! cumbersome,! expensive!to!build!and!mainly!useful!in!the!early!phases!of! the! development! process,! where! they! provide! high-level! descriptions!for!the!identification!of!the!main!functions!of! the!interactive!application.!But,!ensuring!the!effectiveness! of! an! interactive! application! also! requires! to! verify! that! each! user! actions! are! feasible! with! the! interactive! application! (e.g.! being! able! to! click! on! a! button! that! is! enabled! at! the! appropriate! time)! and! this! verification! should! be!possible!along!the! whole!development!process.! The! TOUCAN! IDE! (Integrated! Development! Environment)! provides! support! for! such! verification.! TOUCAN! stands! for! Tasks! Objects! and! Users! Connected! to! Applications! Natively.! TOUCAN! IDE! provides! support! for!programming!a!Java!application!(Java!Swing!and!Java! FX)! while! ensuring! its! effectiveness! thanks! to! the! integration! of!the!application!with! its!corresponding!task! models.! In! this! article,! we! highlight! how! TOUCAN! provides!support!for:! •! checking!the!effectiveness!factor!of!usability!using!task! models!and!interactive!software!application,!

•! connecting! a! description! of! user! interactive! task! in! a! task! model! to! lines! of! codes! in! an! interactive! software! application,! •! the! co-development! of!
an! interactive! application! and! its!associated!task!models.! Next! section! describes! the! positioning! of! TOUCAN! with! related! work! on! task! models! based! IDE! that! support! the! development!of!interactive!applications.!The!third!section! presents! the! TOUCAN! IDE! and! illustrates! its! main! features! with! the! example! of! the! Automated! Teller! Machine! (ATM)! application.! The! fourth! section! presents! how! the! underlying! parts! of! TOUCAN! contribute! to! the! mapping! and! co-execution! of! an! interactive! application! with!its!associated!task!models.!The!last!section!concludes! on! the! benefits! and! perspectives! for! the! usage! of! TOUCAN.!

BACKGROUND AND POSITIONNIG WITH REGARDS TO TASK-MODEL BASED IDE

THE DEVELOPMENT OF AN EFFECTIVE INTERACTIVE APPLICATION WITH TOUCAN

The! TOUCAN! IDE! (Integrated! Development! Environment)! enables! developers! and! HCI! specialists! to! code! Java! Swing! or! JavaFX! applications! and! to! validate! their!effectiveness!using!task!models!as!the!description!of! the! user! tasks.! TOUCAN! addresses! the! following! challenges:

! to! integrate! task! modeling! common! features! (edition,!simulation)!and!Java!software!development!main! features! (programming,! build,! execution)! in! an! IDE,! to! provide!means!to!map!lines!of!codes!with!user!actions,!to! provide! means! to! synchronize! and! control! simulation! of! task! models! with! java! software! under! execution.! To! address! these! challenges,! the! main! features! of! the! TOUCAN!IDE!are:!! •! TOUCAN! project!
•! Co-execution! of! the! Java! application! with! the! task! models! Figure!1!depicts!the!screenshot!of!the!TOUCAN!IDE!while! an! interactive! application! is! co! executing! with! its! associated!task!model.!The!TOUCAN!IDE!is!composed!of:! a!project!panel!(left!side!panel!in!Figure!1)!presenting!the! structure! of! a! TOUCAN! project,! including! task!

Program the Java application

The

! Property:!text!of! labelEnterAmount! (jLabelAmount)! For! example,! in! Figure! 6,! the! correspondence! coverage! panel! displays! that! the! coverage! is! not! full! (orange! bar! filled! in! up! to! around! 50%
).! In! addition,! it! displays! the! ratio! of! interactive! tasks! that! are! not! mapped! (meaning! that! a! widget! is! maybe! missing)! and! the! ratio! of! event! handlers! and! property! renderers! that! are! not! mapped! (meaning!that!some!task!description!are!maybe!missing!or! that!widgets!or!functions!are!maybe!useless!for!the!user).! This!enables!to!alert!the!programmer!that!the!mapping!is! not! up-to-date,! and! that! the! effectiveness! criteria! cannot! be!guarantee!to!be!achieved.!

° Co-execute the application with task model

Once! the! correspondence! between! interactive! tasks! and! event! sources! and! renderers! is! completed,! the! button! labeled! "Co-execute"! aims! at! triggering! the! co-execution! of!the!interactive!application!with!the!task!models.!

CONCLUSION

This! article! highlights! the! principles! and! the! functioning! of! TOUCAN! IDE! blending! tasks! models! and! Java! code! of! interactive! application.! We! use! the! well-known! example! of!a!simulated!cash!machine.!TOUCAN!provides!a!precise! and!concrete!way!for!integrating!human!factor!work!(and! more!precisely!tasks!analysis!and!tasks!description)!within! software! development.! It! proposes! a! tool-support! bridge! over!the!gap!between!design!and!development.!The!bridge! consists! in! making! explicit! the! correspondence! between! common!elements!in!the!tasks!descriptions!and!in!the!user! interface.! Reaching! this! goal! requires! limited! additional! work! on! the! developer! side! (adding! annotations)! while! providing!significant!help!for!evaluating!the!usability!(and! more! precisely! the! effectiveness)! of! interactive! applications.!Such!IDE!could!be!helpful!for!increasing!the! use! of! task! models! in! interactive! system! development! by! providing!benefits!even!for!existing!and!already!deployed! applications.!

 creation! and! management! (composed! of! task! models,! java! classes! and! libraries,! as! well!as!correspondence!configuration!files)! •! Java!application!programming!and!execution! •! Task!models!editing!and!simulation! •! Automatic! extraction! of! interactive! input! and! output! tasks!in!the!HAMSTERS!task!models!! •! Automatic! extraction! of! event! sources! and! renderers! from!annotated!applications!using!Java!technology! •! Edition! of! the! correspondences! between! interactive! tasks!and!event!sources!and!renderers!

 models,! java! software! and! correspondence! files,! and! a! main! modeling! and! programming! area! for! the! editing! of! java! applications!and!task!models!(main!central!part!in! Figure! 1).!

Figure 2 .!Figure 1 .Figure 3 .

 213 Figure 2. Task model to achieve the goal "Withdraw money"

Figure 4 .Figure 5 .Figure 6 .

 456 Figure 4. Screenshot of the ATM application 3.4 Annotate Java software Annotation! in! Java! (since! JSE! 1.8)! is! a! form! of! metadata! (prefixed!with!a!'@'),!providing!data!about!a!program!that! is! not! part! of! the! program! itself.! Annotations! have! no! direct! effect! on! the! code! instructions! that! they! annotate! but! they! are! used! by! the! compiler! to! detect! errors.! At! compilation! time,! they! provide! information! to! generate! the!code.!At!run!time!they!provide!support!for!examining! the! annotated! code.! The! TOUCAN! IDE! uses! this! mechanism!to!allow!the!programmer!to!declare:! •! event!handlers!that!are!related!to!descriptions!of!user! inputs!in!task!models!(interactive!input!tasks).!In!that!case! they!use!the!annotation! @SynergyEventSource!on!top!of! the!declaration!of!the!widget!variable, •! rendering! properties! that! are! related! to! description! of! user! outputs! in! task! models! (interactive! output! tasks).! In! that! case,! they! have! to! use! the! annotation! @SynergyRenderer!on!top!of!the!declaration!of!the!widget! variable.!

 Figure! 1!depicts!the!co-execution!of!the!Java!application!with!its! associated! task! model! in! the! TOUCAN! IDE.! The! lower! part! in! Figure! 1! depicts! the! co-execution! control! panel.! The!TOUCAN!IDE!provides!three!different!means!for!the! co-execution! of! the! interactive! application! and! its! associated! task! models:! task! model! driven! co-execution,! system! driven! co-execution! and! scenario! driven! coexecution.! In! Figure! 1,! the! co-execution! is! task! model! driven.! Tasks! highlighted! in! green! in! the! task! model! as! well!as!in!the!list!are!available!for!execution.!Clicking!on! an! interactive! input! task! in! the! list! triggers! its! execution! in!the!task!model!and!the!execution!of!the!corresponding! event! handler! in! the! interactive! application.! In! the! case!where! an! object! is! produced! by! the! application! once! the! user!has!performed!an!interactive!task!(for!example!object! "requested!amount"!in!the!task!model!presented!in!Figure!2),! the! task! driven! co-execution! panel! displays! an! input! area! for! editing! the! value! of! this! object! before! triggering! the! execution! of! the! task.! The! interactive! application! is! run! through! the! execution! of! the! task! model.! The! scenario-driven! co-execution! is! quite! similar! but! the! programmer! triggers! the! execution! of! the! tasks! that! are! listed! in! the! selected! scenario,! even! if! other! tasks! would! have! been! available.! In! the! case! of! the! system! driven! coexecution,! the! programmer! interacts! with! the! interactive! application!and!the!interactive!tasks!in!the!task!model!are! highlighted!in!light!blue!if!a!correspondence!is!detected.!In! addition! to! the! blue! highlighting,! the! ordering! of! the! interaction! performed! while! using! the! application! is! displayed!close!to!the!task.! The! task! driven! co-execution! provides! support! for! detecting! inconsistencies! between! the! planned! tasks! and! the!behavior!of!the!application.!For!example,!if!a!widget!is! not! enabled! in! the! application! and! that,! according! to! the! execution!of!the!task!model,!the!corresponding!interactive! input!task!should!be!executable,!the!task!is!highlighted!in! orange! to! show! the! inconsistency! between! the! specified! task!and!the!behavior!of!the!application.!In!the!same!way,! the! scenario! driven! co-execution! provides! support! for! detecting! inconsistencies! between! the! specified! scenarios! and! the! interactive! application.! The! system! driven! coexecution! can! be! used! at! user! testing! time! to! track! the! frequency!of!occurrence!of!the!interactive!input!tasks.!4 IMPLEMENTATION OF THE TOUCAN IDEThe!TOUCAN!IDE!is!built!on!top!of!the!Netbeans!Platform![START_REF]Netbeans!Platform[END_REF]! and! encompasses! the! basic! IDE! functions! such! as! project! management,! unit! testing,! versioning…! The! TOUCAN! IDE! integrates! several! software! elements:! HAMSTERS!for!the!editing!and!execution!of!task!models,! the! Netbeans! API! for! the! editing! and! execution! of! Java! code,! and! an! in! home! library! named! Synergistic! for! the! parsing! of! the! annotations! as! well! as! for! the! correspondence!edition!and!execution.!The!TOUCAN!IDE! integrates!natively!a!library!of!classes!of!adapters!for!Java! Swing! and! JavaFX! widgets.! Programmers! may! develop! their! own! custom! widget.! In! that! case,! an! adapter! is! required! to! be! programmed! for! the! custom! widget.! The! main! attributes! of! the! adapter! are:! events! and! properties! to!be!handled,!a!list!of!listeners!that!need!to!be!called!once! an! event! occurs.! The! main! methods! of! the! adapter! are:! a! method!to!process!the!events,!a!getter!for!the!instance!of! the! adapter! and! a! getter! for! the! class! type! of! the! widget! for!which!the!adapter!has!been!programmed.!This!feature! enables!programmers!to!annotate!a!custom!widget!and!to! map! its! event! handlers! and! property! renderers! to! interactive!tasks!in!task!model.!In!the!illustrative!example! of! the! ATM,! an! adapter! has! been! coded! for! the! custom! widget! "JCardSlotPanel,"! which! is! the! panel! containing! the!virtual! card! and!the!card!slot.!The!TOUCAN!IDE!can! also! be! used! in! the! case! of! large! scale! interactive! applications.!A!TOUCAN!project!may!contain!several!java! classes!and!several!task!models.!The!mapping!can!be!done! between! several! tasks! in! several! task! models! and! several! handlers!and!renderers!in!several!Java!classes.!!

 !different!types!of!approaches!for!the!mapping! of!task!models!with!interactive!applications!and!presents!a! proof!of!concept!CASE!tool!to!support!this!mapping.!From! this!proof!of! concept!version!of!the! tool,!we!have!built!a! standalone! IDE! that! aims! at! being! publicly! released! to! software! developers.! This! article! focuses! on! this! new! standalone!IDE!itself!featuring!additional!capabilities!such! as! the! co-execution! of! JavaFX! applications! with! task! models,! as! well! as! the! programming! of! adapters! for! enabling! the! mapping! between! task! models! and! custom! widget!that!the!developers!may!have!to!program.!

	presented! in! [5]! focuses! on! the! process.! It! also! discusses!
	the!possible
	This! section! aims! at! highlighting! the! scope! of! the!
	TOUCAN!IDE!compared!to!the!scope!of!other!task!models!
	based!development!environments.!Task!models!are!one!of!
	the!main!artefacts!in!the!CAMELEON!framework![2].!This!
	framework!assumes!that! task!models!are! the! preliminary!
	design! and!
	craft! knowledge! in!such!processes.!A!tool! suite! based!on!
	CTT!can!help!to!overcome!these!drawbacks!by!integrating!
	reverse! engineering! tools! such! as! ReverseCTT! and!
	ReverseMARIA! [4]! in! order! to! automatically! produce!
	Abstract!UI!models!from!concrete!UI!and!to!produce!task!
	models!from!Abstract!UI!models.!The!TOUCAN!approach!
	is! different! in! the! way! that! the! software! programmer!
	connects! the! presentation! and! dialog! of! the! application!
	manually! with! the! task! models.! The! connection! between!
	task!models!and!an!interactive!application!at!runtime!has!
	first!been!proposed!for!fully!model-based!approaches![1].!
	Such! Integrated! Development! Environments! provides!
	support!the!co-execution!between!task!and!system!models!
	and! enables! to! produce! and! to! connect! task! models! and!
	formal! models! of! the! application! at! design! time! and! at!
	runtime.! This! type! of! IDE! can! be! used! for! ensuring!
	consistency! between! task! and! system! models.! However,!
	they!require!using!a!formal!description!technique!able! to!
	encompass! all! the! elements! of! the! interactive! application!
	including!input!device!information,!interaction!techniques!
	as!well!as!the!non-interactive!part!(functional!core)!of!the!
	application.!This!may!lead! to! high!development!costs!for!
	the!construction!of!the!application!and!interaction!models.!
	The! TOUCAN! approach! is! different! in! the! way! that! the!
	software! programmer! can! use! a! generic! development!
	language! to! develop! the! interactive! software.! The!
	TOUCAN! IDE! is! based! on! previous! work! on! how!
	development!processes!may!support!the!validation!of!the!
	effectiveness! of! an! interactive! application! [5].! The! work!

source!of!information!and!that!it!is!possible!to!generate!an! interactive! application! from! such! information! (while! adding! other! ingredients! such! as! UI! guidelines! for! instance).!The!main!claim!is!that!with!such!an!approach!it! is! possible! to! generate! user! interfaces! for! different! platforms!thus!reducing!the!development!costs.!The!main! drawbacks! are! that! it! is! difficult! to! integrate!

Table 2 . Detailed example of output correspondence Interactive output task Change in the rendering property of a widget

 2