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ABSTRACT

Cartesian Genetic Programming (CGP) has previously shown ca-
pabilities in image processing tasks by evolving programs with a 
function set specialized for computer vision. A similar approach 
can be applied to Atari playing. Programs are evolved using mixed 
type CGP with a function set suited for matrix operations, includ-
ing image processing, but allowing for controller behavior to emerge. 
While the programs are relatively small, many controllers are com-

petitive with state of the art methods for the Atari benchmark 
set and require less training time. By evaluating the programs of 
the best evolved individuals, simple but e�ective strategies can be 
found.
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1 INTRODUCTION

The Arcade Learning Environment (ALE) [1] has recently been

used to compare many controller algorithms, from deep Q learn-

ing to neuroevolution. This environment of Atari games o�ers a

number of di�erent tasks with a common interface, understand-

able reward metrics, and an exciting domain for study, while using

relatively limited computation resources. It is no wonder that this

benchmark suite has seen wide adoption.

One of the di�culties across theAtari domain is using pure pixel

input. While the screen resolution is modest compared to modern

game platforms, processing this visual information is a challenging

https://doi.org/10.1145/3205455.3205578

task for arti�cial agents. Object representations and pixel reduc-

tion schemes have been used to condense this information into a

more palatable form for evolutionary controllers. Deep neural net-

work controllers have excelled here, bene�ting from convolutional

layers and a history of application in computer vision.

Cartesian Genetic Programming (CGP) also has a rich history

in computer vision, albeit less so than deep learning. CGP-IP has

capably created image �lters for denoising, object detection, and

centroid determination. There has been less study using CGP in

reinforcement learning tasks, and this work represents the �rst use

of CGP as a game playing agent.

The ALE o�ers a quantitative comparison between CGP and

other methods. Atari game scores are directly compared to pub-

lished results of multiple di�erent methods, providing a perspec-

tive on CGP’s capability in comparison to other methods in this

domain.

CGP has unique advantages that make its application to the ALE

interesting. By using a �xed-length genome, small programs can

be evolved and later read for understanding. While the inner work-

ings of a deep actor or evolved neural network might be hard to

discern, the programs CGP evolves can give insight into strategies

for playing the Atari games. Finally, by using a diverse function

set intended for matrix operations, CGP is able to perform compa-

rably to humans on a number of games using pixel input with no

prior game knowledge.

This article is organized as follows. In the next section, § 2, a

background overview of CGP is given, followed by a history of its

use in image processing. More background is provided concerning

the ALE in §§ 2.3. The details of the CGP implementation used in

this work are given in § 3, which also covers the application of

CGP to the ALE domain. In § 4, CGP results from 61 Atari games

are compared to results from the literature and selected evolved

programs are examined. Finally, in § 5, concerns from this experi-

ment and plans for future work are discussed.

2 BACKGROUND

While game playing in the ALE involves both image processing

and reinforcement learning techniques, research on these topics



using CGP has not been equal. There is a wealth of literature con-
cerning image processing in CGP, but little concerning reinforce-
ment learning. Here, we therefore focus on the general history of 
CGP and its application to image processing.

2.1 Cartesian Genetic Programming

Cartesian Genetic Programming [16] is a form of Genetic Program-

ming in which programs are represented as directed, often acyclic 
graphs indexed by Cartesian coordinates. Functional nodes, de�ned 
by a set of evolved genes, connect to program inputs and to other 
functional nodes via their coordinates. The outputs of the program 
are taken from any internal node or program input based on evolved 
output coordinates.

In its original formulation, CGP nodes are arranged in a rectan-
gular grid of R rows and C columns. Nodes are allowed to connect 
to any node from previous columns based on a connectivity pa-
rameter L which sets the number of columns back a node can con-
nect to; for example, if L = 1, nodes could connect to the previous 
column only. Many modern CGP implementations, including that 
used in this work, use R = 1, meaning that all nodes are arranged 
in a single row [17].

Recurrent CGP showed performance improvements on time-based 
tasks, as shown in Turner and Miller [26]. Here, a recurrency pa-
rameter r was introduced to express the likelihood of creating a re-
current connection; when r = 0, standard CGP connections were 
maintained, but r could be increased by the user to create recurrent 
programs. This work uses a slight modi�cation of the meaning of 
r , but the idea remains the same.

In practice, only a small portion of the nodes described by a CGP 
chromosome will be connected to its output program graph. These 
nodes which are used are called “active” nodes here, whereas nodes 
that are not connected to the output program graph are referred 
to as “inactive” or “junk” nodes. While these nodes are not used 
in the �nal program, they have been shown to a id evolutionary 
search [15, 28, 30].

The functions used by each node are chosen from a set of func-
tions based on the program’s genes. The choice of functions to 
include in this set is an important design decision in CGP. In this 
work, the function set is informed by MT-CGP [5] and CGP-IP [6]. 
In MT-CGP, the function of a node is overloaded based on the type 
of input it receives: vector functions are applied to vector input and 
scalar functions are applied to scalar input. The choice of function 
set is very important in CGP. In CGP-IP, the function set contained 
a subset of the OpenCV image processing library and a variety of 
vector operations.

2.2 Image Processing
CGP has been used extensively in image processing and �ltering 
tasks. In Montes and Wyatt [21], centroids of objects in images 
were determined by CGP. A similar task was more recently under-
taken in Paris et al. [22], which detected and �ltered simple shapes 
and musical notes in images. Other image �lters were evolved in 
Smith et al. [25] and Sekanina et al. [24] which involved tasks such 
as image denoising. Finally, Harding [4] demonstrated the ability 
to use GPUs with CGP for improved performance in image pro-
cessing tasks.

Many of these methods use direct pixel input to the evolved

program. While originally demonstrated using machine learning

benchmarks, MT-CGP [5] o�ered an improvement to CGP allow-

ing for greater image processing techniques to follow. By using

matrix inputs and functions, entire images could be processed us-

ing state of the art image processing libraries. A large subset of the

OpenCV library was used in Harding et al. [6] for image process-

ing, medical imaging, and object detection in robots.

2.3 Arcade Learning Environment

The ALE o�ers a related problem to image processing, but also de-

mands reinforcement learning capability, which has not been well

studied with CGP. Multiple neuroevolution approaches, including

HyperNEAT, and CMA-ES were applied to pixel and object rep-

resentations of the Atari games in Hausknecht et al. [8]. The per-

formance of the evolved object-based controllers demonstrated the

di�culties of using raw pixel input; of the 61 games evaluated, con-

trollers using pixel input performed the best for only 5 games. De-

terministic random noise was also given as input and controllers

using this input performed the best for 7 games. This demonstrates

the capability of methods that learn to perform a sequence of ac-

tions unrelated to input from the screen.

HyperNEAT was also used in Hausknecht et al. [7] to show gen-

eralization over the Freeway and Asterix games, using a visual pro-

cessing architecture to automatically �nd an object representation

as inputs for the neural network controller. The ability to general-

ize over multiple Atari games was further demonstrated in Kelly

and Heywood [10], which followed Kelly and Heywood [9]. In this

method, tangled problem graphs (TPG) use a feature grid created

from the original pixel input. When evolved on single games, the

performance on 20 games was impressive, rivaling human perfor-

mance in 6 games and outperforming neuroevolution. Thismethod

generalized over sets of 3 games with little performance decrease.

The ALE is a popular benchmark suite for deep reinforcement

learning. Originally demonstrated with deep Q-learning in Mnih

et al. [19], the capabilities of deep neural networks to learn action

policies based on pixel input was fully demonstrated in Mnih et al.

[20]. Finally, an actor-critic model improved upon deep network

performance in Mnih et al. [18].

3 METHODS

While there are many examples of CGP use for image processing,

these implementations had to be modi�ed for playing Atari games.

Most importantly, the input pixels must be processed by evolved

programs to determine scalar outputs, requiring the programs to

reduce the input space. The methods following were chosen to en-

sure comparability with other ALE results and to encourage the

evolution of competitive but simple programs.

3.1 CGP genotype

In this work, a �oating point representation of CGP is used. It has

some similarity with a previous �oating point representation [3].

In the genome, each node n in C columns is represented by four

�oats, which are all bound between [0.0, 1.0]: x input,y input, func-
tion, parameter p.



Function Description Arity Broadcasting

Mathematical

ADD (x + y)/2 2 Yes

AMINUS |x − y |/2 2 Yes

MULT xy 2 Yes

CMULT xpn 1 Yes

INV 1/x 1 Yes

ABS |x | 1 Yes

SQRT
√

|x | 1 Yes

CPOW |x |pn+1 1 Yes

YPOW |x | |y | 2 Yes

EXPX (ex − 1)/(e1 − 1) 1 Yes

SINX sinx 1 Yes

SQRTXY
√

x2 + y2/
√
2 2 Yes

ACOS (arccosx)/π 1 Yes

ASIN 2(arcsinx)/π 1 Yes

ATAN 4(arctanx)/π 1 Yes

Statistical

STDDEV std(®x) 1 No

SKEW skewness(®x) 1 No

KURTOSIS kurtosis(®x) 1 No

MEAN mean(®x) 1 No

RANGE max(®x) −min(®x) − 1 1 No

ROUND round(®x) 1 No

CEIL ceil(®x) 1 No

FLOOR f loor (®x) 1 No

MAX1 max(®x) 1 No

MIN1 min(®x) 1 No

Comparison

LT x < y 2 Yes

GT x > y 2 Yes

MAX2 max(x ,y) 2 Yes

MIN2 min(x ,y) 2 Yes
Table 1: A part of the function set used. Many of the mathematical and

comparison functions are standard for inclusion in CGP function sets for
scalar inputs. Where broadcast is indicated, the function was applied equally
to scalar and matrix input, and where it is not, scalar inputs were passed
directly to output and only matrix inputs were processed by the function.

The x and y values are used to determine the inputs to n. The

function gene is cast to an integer and used to index into the list

of available functions, determining fn . Finally, the parameter is

scaled between [−1.0, 1.0] usingpn = 2p−1. Parameters are passed

to functions, as they are used by some functions. Parameters are

also used in this work as weights on the �nal function, which has

been done in other CGP work [11].

Nodes are ordered based on their ordering in the genome. The

genome begins with noutput nodes which determine the index of

the output nodes in the graph, and then all genes for theC program

nodes. The �rst ninput nodes correspond to the program inputs

and are not evolved; the �rst node after these will correspond to

the �rst four �oating point values after noutput in the genome,

and the next node will correspond to the next four values, and so

on. The number of columnsC counts only the program nodes after

ninput , so, in total, the graph is composed of N = ninput +C nodes

and is based on G = noutput + 4C genes.

When determining the inputs for a node n, the xn and yn genes

are scaled according to r and then rounded down to determine the

index of the connected nodes, xin and yin . The value r indicates

the range over which xn and yn operate; when r = 0, connections

are only possible between the �rst input node and n, and when

r = 1, connections are possible over the entire genome.

xin = ⌊xn ((1 −
n

N
)r + n

N
)⌋

yin = ⌊yn ((1 −
n

N
)r + n

N
)⌋

Output genes are also rounded down to determine the indices of

the nodes which will give the �nal program output. Once all genes

have been converted into nodes, the active graph is determined.

Starting from the output nodes, xin andyin are used to recursively

trace the node inputs back to the �nal program input. Nodes are

marked as active when passed, and nodes which have already been

marked active are not followed, allowing for a recursive search

over graphs with recurrent connections.

With the proper nodes marked as active, the program can be

processed. Due to the recurrent connections, the program must be

computed in steps. Each node in the graph has an output value,

which is initially set to the scalar 0. At each step, �rst the output

values of the program input nodes are set to the program inputs.

Then, the function of each program node is computed, using the

outputs from connected nodes of the previous step as inputs.

for n = 0 to ninput do

outn = program_input[n]

end for

for n = ninput to N do

outn = pn fn (outxin ,outyin ,pn )
end for

The �oating point representation in this work was chosen to

simplify the genome and evolution. It allows all genes to be repre-

sented as the same type, a �oat, while still allowing for high preci-

sion in the evolution of the parameter gene.

3.2 Evolution

A standard 1+λ EA is used to evolve the programs. At initialization,

a random genome is created using G uniformly distributed values

in [0.0, 1.0]. This individual is evaluated and is considered the �rst
elite individual. At each generation, λ o�spring are generated us-

ing genetic mutation. These o�spring are each evaluated and, if

their �tness is greater than or equal to that of the elite individual,

they replace the elite. This process is repeated until neval individ-

uals have been evaluated; in other words, for
neval
λ

generations.

The stop condition is expressed here as a number of evaluations to

make runs comparable during optimization of λ.

The genetic mutation operator randomly selectsmnodes of the

program node genes and sets them to new random values, again

drawn from a uniform random distribution in [0.0, 1.0]. The output
nodes are mutated according to a di�erent probability;moutput of

the output genes are randomly set to new values during mutation.

When these values have been optimized, they are often found to

be distinct. It therefore seems bene�cial to include this second pa-

rameter for output mutation rate.



Function Description Arity Broadcasting

List processing

SPLIT_BEFORE return all values before
pn+1
2

in ®x 1 No

SPLIT_AFTER return all values after
pn+1
2

in ®x 1 No

RANGE_IN return the values of ®x in [y+1
2
,
pn+1
2

] 2 No

INDEX_Y return the value of ®x at
y+1
2

2 No

INDEX_P return the value of ®x at
pn+1
2

1 No

VECTORIZE return all values of ®x as a 1D vector 1 No

FIRST return the �rst value of ®x 1 No

LAST return the last value of ®x 1 No

DIFFERNCES return the computational derivative of the 1D vector of ®x 1 No

AVG_DIFFERENCES return the mean of the DIFF function 1 No

ROTATE perform a circular shift on ®x by pn elements 1 No

REVERSE reverse ®x 1 No

PUSH_BACK create a new vector with all values of x or ®x , then y or ®y 2 No

PUSH_BACK create a new vector with all values of y or ®y, then x or ®x 2 No

SET return the scalar value x len(®y) times, or y len(®x) 2 No

SUM return the sum of ®x 1 No

TRANSPOSE return the transpose of ®x 1 No

VECFROMDOUBLE return the 1-element ®x if x is a scalar 1 No

MISCELLANEOUS

YWIRE y 1 No

NOP x 1 No

CONST pn 0 No

CONSTVECTORD return a matrix of size(®x) with values of pn 1 No

ZEROS return a matrix of size(®x) with values of 0 1 No

ONES return a matrix of size(®x) with values of 1 1 No
Table 2: List processing and other functions in the function set. The choice of many of these functions was inspired by MT-CGP [5].

C 40 mnodes 0.1

r 0.1 moutput 0.6

λ 9 neval 10000
Table 3: CGP parameter values.

All parameters except neval were optimized using irace.

The parametersC , r , λ,mnodes , andmoutput were optimized us-

ing irace [13]. The values used in this experiment are presented in

Table 3 and are somewhat standard for CGP. λ is unusually large;

normal values are 4 or 5, and the maximum allowed during param-

eter optimizationwas 10. The other main parameter setting in CGP

is the choice of function set, which is detailed next.

3.3 Mixed Types

In thiswork, the program inputs are pixel values of theAtari screen

and program outputs must be scalar values, representing the pref-

erence for a speci�c action. Intermediate program nodes can there-

fore receive a mix of matrix and scalar inputs. To handle this, each

node’s function was overloaded with four possible input types:

(x ,y), (x , ®y), (®x ,y), (®x , ®y For some functions, broadcasting was used

to apply the same function to the scalar and matrix input types. In

other functions, arity made it possible to ignore the type of the y

argument. Some functions, however, such as std(®x), require matrix

input. In these cases, scalar x input was passed directly to output;

in other words, these functions operated as a wire when not re-

ceiving matrix input. In other functions, scalar input of either x

or y is necessary. In these cases, the average value of matrix input

is used. Finally, some functions use inputs to index into matrices;

when �oating point values are used to index into matrices, they

are �rst multiplied by the number of elements in the matrix and

then rounded down.

To account for matrix inputs of di�erent sizes, the minimum of

each dimension between the twomatrices is taken. This inherently

places more import on the earlier values along each dimension

than later ones, as the later ones will often be discarded. However,

between minimizing the sizes of the two matrices and maximizing

them, minimizing was found to be superior. Maximization requires

a padding value to �ll in smaller dimensions, for which 0, 1, and

pn were used, but the resultant graphs were found to be highly

dependent on this padding value.

All functions in the chosen set are designed to operate over the

domain [−1.0, 1.0]. However, some functions, such as std(®x), re-
turn values outside of this domain or are unde�ned for some val-

ues in this domain. Outputs are therefore constrained to [−1.0, 1.0]
and NaN and inf values are replaced with 0. This constraining oper-

ator is applied element-wise for matrix output. While this appears

to limit the utility of certain functions, evolution must choose to

use functions in an appropriate case. There have been instances



Figure 1: Using CGP to play Atari. Red, green, blue pixel matrices are input to the evolved program, and evolved outputs determine the �nal controller action.
Here, all legal controller actions are represented, but most games only use a subset of possible actions. Actions with a red mark indicate a button press.

of exaptation where evolution has used such functions with out of

domain bounds, raceto achieve constant 0.0 or pn output.

The function set used in this work was designed to be as simple

as possible while still allowing for necessary pixel input processing.

No image processing librarywas used, but certainmatrix functions

allow for pixel input to inform program output actions. The func-

tion set used in this work de�ned in tables Table 1 and Table 2. It

is a large function set and it is the intention of future work to �nd

the minimal necessary function set for Atari playing.

To determine the action taken, each node speci�ed by an out-

put gene is examined. For nodes with output in matrix format, the

average value is taken, and for nodes with scalar output, the scalar

value is taken. These output values are then compared and themax-

imum value triggers the corresponding action.

3.4 ALE

In the ALE, there are 18 legal actions, corresponding to directional

movements of the controller (8), button pressing (1), no action (1),

and controller movement while button pressing (8). Not all games

use every possible action; some use as few as 4 actions. In this work,

outputs of the evolved program correspond only to the possible

actions for each game. The output with the highest value is chosen

as the controller action.

An important parameter in Atari playing is frame skip [2]. In

this work, the same frame skip parameter as in Hausknecht et al.

[8], Kelly and Heywood [9] and Mnih et al. [20] is used. Frames are

randomly skipped with probability pf skip = 0.25 and the previous

controller action is replayed. This default value was chosen as the

highest value for which human play-testers were unable to detect

a delay or control lag [14]. This allows the results from arti�cial

controllers to be directly compared to human performance.

The screen representation used in this work is pixel values sep-

arated into red, green, and blue layers. A representation of the full

CGP and Atari scheme is included in Figure 1.

CGP parameter optimization was performed on a subset of the

full game set consisting of Boxing, Centipede, Demon Attack, En-

duro, Freeway, Kung FuMaster, Space Invader, Riverraid, and Pong.

These games were chosen to represent a variety of game strate-

gies and input types. Games were played until completion or until

reaching 18000 frames, not including skipped frames.

4 RESULTS

in1 in2

in3

out5

out14

Figure 2: The Kung-Fu Master crouching approach and the functional graph
of the player. Outputs which are never activated, and the computational

graph leading to them, are omitted for clarity.

By inspecting the resultant functional graphs of an evolved CGP

player and observing the node output values during its use, the

strategy encoded by the program can be understood. For some of

the best performing games for CGP, these strategies can remain

incredibly simple. One example is Kung-Fu Master, shown in Fig-

ure 2. The strategy, which can receive a score of 57800, is to alter-

nate between the crouching punch action (output 14), and a lateral

movement (output 5). The input conditions leading to these actions



can be determined through a study of the output program, but out-
put 14 is selected in most cases based simply on the average pixel 
value of input 1.

While this strategy is di�cult to replicate by hand, due to the use 
of lateral movement, interested readers are encouraged to try sim-

ply repeating the crouching punch action on the Stella Atari em-

ulator. The lateral movement allows the Kung-Fu Master to some-

times dodge melee attacks, but the crouching punch is su�cient 
to wipe out the enemies and dodge half of the bullets. In fact, in 
comparison to the other attack options (low kick and high kick) 
it appears optimal due to the reduced exposure from crouching. 
For the author, employing this strategy by hand achieved a better 
score than playing the game normally, and the author now uses 
crouching punches exclusively when attacking in this game.

in1 in2 in3

out17

Figure 3: The Centipede player, which only activates output 17,
down-left-and-�re. All other outputs are linked to null or constant zero

inputs and are not shown.

Other games follow a similar theme. Just as crouching is the

safest position in Kung-Fu Master, the bottom left corner is safe

from most enemies in Centipede. The graph of an individual from

early in evolution, shown in Figure 3, demonstrates this.While this

strategy alone receives a high score, it does not use any pixel in-

put. Instead, output 17 is the only active output, and is therefore

repeated continuously. This action, down-left-and-�re, navigates

the player to the bottom left corner and repeatedly �res on ene-

mies. Further evolved individuals do use input to dodge incoming

enemies, but most revert to this basic strategy once the enemy is

avoided.

The common link between these simple strategies is that they

are, on average, e�ective. Evolution rewards agents by selecting

them based on their overall performance in the game, not based on

any individual action. The policy which the agent represents will

therefore tend towards actions which, on average, give very good

rewards. As can be seen in the case of the Kung-Fu Master, which

has di�erent attack types, the best of these is chosen. Crouching

punch will minimize damage to the player, maximizing the game’s

score and therefore the evolutionary �tness. The policy encoded

by the program doesn’t incorporate other actions because the av-

erage reward return for these actions is lower. The safe locations

found in these games can also be seen as an average maximum

over the entire game space; the players don’t move into di�erent

positions because those positions represent a higher average risk

and therefore a worse evolutionary �tness.

Figure 4: Boxing, a game that uses pixel input to continuously move and
take di�erent actions. Here, the CGP player has pinned the Atari player

against the ropes by slowly advancing on it with a series of jabs.

Not all CGP agents follow this pattern, however. A counter ex-

ample is boxing, which pits the agent against an Atari AI in a box-

ingmatch. The CGP agent is successful at trapping the Atari player

against the ropes, leading to a quick victory, as shown in Figure 4.

Doing this requires a responsive program that reacts to the Atari

AI sprite, moving and placing punches correctly to back it into a

corner.While the corresponding program can be read as a CGP pro-

gram, it is more complex and performs more input manipulation

than the previous examples. Videos of these strategies are included

as supplementary material.

Finally, in Table 4, CGP is compared to other state of the art re-

sults. CGP performs better than all other compared arti�cial agents

on 8 games, and is tied for best with HyperNEAT for one game. On

a number of games where CGP does not perform the best, it still

achieves competitive scores to other methods. However, there are

certain games where CGP does not perform well. There appears

to be a degree of similarity between the evolved agents (TPG [9],

HyperNEAT [8]). There is also a degree of similarity between the

and the deep learning agents (Double [27], Dueling [29], Priori-

tized [23], and A3C [18]). The authors attribute this similarity to

the creation of a policy model for deep learning agents, which is

trained over a number of frames, as opposed to a player which is

evaluated over an entire episode, as is the case for the evolutionary

methods. This di�erence is discussed further in the next section.

5 DISCUSSION

Taking all of the scores achieved by CGP into account, the capa-

bility of CGP to evolve competitive Atari agents is clear. In this

work, we have demonstrated how pixel input can be processed by

an evolved program to achieve, on certain games, human level re-

sults. Using a function set based on list processing, mathematics,

and statistics, the pixel input can be properly processed to inform

a policy which makes intelligent game decisions.

The simplicity of some of the resultant programs, however, can

be disconcerting, even in the face of their impressive results. Agents

like a Kung-Fu Master that repeatedly crouches and punches, or a

Centipede blaster that hides in the corner and �res on every frame,

do not seem as if they have learned about the game. Even worse,

some of these strategies do not use their pixel input to inform their

�nal strategies, a point that was also noted in Hausknecht et al. [8].



This is a clear demonstration of a key di�culty in  evolution-
ary reinforcement learning. By using the reward over the entire se-
quence as evolutionary �tness, complex policies can be overtaken 
by simple polices that receive a higher average reward in evolution. 
While CGP showed its capability to creating complex policies, on 
certain games, there are more bene�cial s imple strategies which 
dominate evolution. These simple strategies create local optima 
which can deceive evolution.

In future work, the authors intend to use novelty metrics to 
encourage a variety of policies. Novelty metrics have shown the 
ability to aid evolution in escaping local optima. [12] Furthermore, 
deep reinforcement learning has shown that certain frames can be 
more important in forming the policy than others [23]. Similarly, 
evolutionary �tness could be constrained to reward from certain 
frames or actions and not others. Finally, reducing the frame count 
in evolution could also decrease the computational load of evolving 
on the Atari set, as the same frame, action pairs are often computed 
multiple times by similar individuals.

A more thorough comparison between methods on the Atari 
games is also necessary as future work. Deep learning methods use 
frame counts, instead of episode counts, to mark the training ex-
perience of a model. While the use of frame skipping is consistent 
between all compared works, the random seeding of environments 
and resulting statistical comparisons are di�cult. The most avail-
able comparison baseline is with published results, but these are 
often averages or sometimes single episode scores. Finally, a thor-
ough computational performance comparison is necessary. The au-
thors believe that CGP can achieve the reported results much faster 
than other methods using comparable hardware, as the main com-

putational cost is performing the Atari games, but a more thorough 
analysis is necessary.

In conclusion, this work represents a �rst u se o f CGP i n the 
Atari domain, and the �rst case of a  GP method using pure pixel 
input. CGP was best among or competitive with other arti�cial 
agents while o�ering agents that are far less complex and can be 
read as a program. It was also competitive with human results on 
a number of games and gives insight into better human playing 
strategies. While there are many avenues for improvement, this 
work demonstrates that CGP is competitive in the Atari domain.
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Human Double Dueling Prioritized A3C FF A3C LSTM TPG HyperNEAT CGP

Alien 6875 1033.4 1486.5 900.5 518.4 945.3 3382.7 1586 1978 (± 268)

Amidar 1676 169.1 172.7 218.4 263.9 173 398.4 184.4 199 (± 1)

Assault 1496 6060.8 3994.8 7748.5 5474.9 14497.9 2400 912.6 890.4 (± 255)

Asterix 8503 16837 15840 31907.5 22140.5 17244.5 2340 1880 (± 57)

Asteroids 13157 1193.2 2035.4 1654 4474.5 5093.1 3050.7 1694 9412 (± 1818)

Atlantis 29028 319688 445360 593642 911091 875822 61260 99240 (± 5864)

Bank Heist 734.4 886 1129.3 816.8 970.1 932.8 1051 214 148 (± 18)

Battle Zone 3800 24740 31320 29100 12950 20760 47233.4 36200 34200 (± 5848)

Beam Rider 5775 17417.2 14591.3 26172.7 22707.9 24622.2 1412.8 1341.6 (± 21)

Berzerk 1011.1 910.6 1165.6 817.9 862.2 1394 1138 (± 185)

Bowling 154.8 69.6 65.7 65.8 35.1 41.8 223.7 135.8 85.8 (± 15)

Boxing 4.3 73.5 77.3 68.6 59.8 37.3 16.4 38.4 (± 4)

Breakout 31.8 368.9 411.6 371.6 681.9 766.8 2.8 13.2 (± 2)

Centipede 11963 3853.5 4881 3421.9 3755.8 1997 34731.7 25275.2 24708 (± 2577)

Chopper Comman 9882 3495 3784 6604 7021 10150 7010 3960 3580 (± 179)

Crazy Climber 35411 113782 124566 131086 112646 138518 0 12900 (± 6620)

Defender 27510 33996 21093.5 56533 233021.5 14620 993010 (± 2739)

Demon Attack 3401 69803.4 56322.8 73185.8 113308.4 115201.9 3590 2387 (± 558)

Double Dunk -15.5 -0.3 -0.8 2.7 -0.1 0.1 2 2 2 (± 0)

Enduro 309.6 1216.6 2077.4 1884.4 -82.5 -82.5 93.6 56.8 (± 7)

Fishing Derby 5.5 3.2 -4.1 9.2 18.8 22.6 -49.8 -51 (± 10)

Freeway 29.6 28.8 0.2 27.9 0.1 0.1 29 28.2 (± 0)

Frostbite 4335 1448.1 2332.4 2930.2 190.5 197.6 8144.4 2260 782 (± 795)

Gopher 2321 15253 20051.4 57783.8 10022.8 17106.8 364 1696 (± 308)

Gravitar 2672 200.5 297 218 303.5 320 786.7 370 2350 (± 50)

H.E.R.O. 25763 14892.5 15207.9 20506.4 32464.1 28889.5 5090 2974 (± 9)

Ice Hockey 0.9 -2.5 -1.3 -1 -2.8 -1.7 10.6 4 (± 0)

James Bond 406.7 573 835.5 3511.5 541 613 5660 6130 (± 3183)

Kangaroo 3035 11204 10334 10241 94 125 800 1400 (± 0)

Krull 2395 6796.1 8051.6 7406.5 5560 5911.4 12601.4 9086.8 (± 1328)

Kung-Fu Master 22736 30207 24288 31244 28819 40835 7720 57400 (± 1364)

Montezumas Revenge 4367 42 22 13 67 41 0 0 0 (± 0)

Ms. Pacman 15693 1241.3 2250.6 1824.6 653.7 850.7 5156 3408 2568 (± 724)

Name This Game 4076 8960.3 11185.1 11836.1 10476.1 12093.7 6742 3696 (± 445)

Phoenix 12366.5 20410.5 27430.1 52894.1 74786.7 1762 7520 (± 1060)

Pit Fall -186.7 -46.9 -14.8 -78.5 -135.7 0 0 (± 0)

Pong 9.3 19.1 18.8 18.9 5.6 10.7 -17.4 20 (± 0)

Private Eye 69571 -575.5 292.6 179 206.9 421.1 15028.3 10747.4 12702.2 (± 4337)

Q*Bert 13455 11020.8 14175.8 11277 15148.8 21307.5 695 770 (± 94)

River Raid 13513 10838.4 16569.4 18184.4 12201.8 6591.9 3884.7 2616 2914 (± 90)

Road Runner 7845 43156 58549 56990 34216 73949 3220 8960 (± 2255)

Robotank 11.9 59.1 62 55.4 32.8 2.6 43.8 24.2 (± 1)

Seaquest 20182 14498 37361.6 39096.7 2355.4 1326.1 1368 716 724 (± 26)

Skiing -11490.4 -11928 -10852.8 -10911.1 -14863.8 -7983.6 -9011 (± 0)

Solaris 810 1768.4 2238.2 1956 1936.4 160 8324 (± 2250)

Space Invaders 1652 2628.7 5993.1 9063 15730.5 23846 1251 1001 (± 25)

Star Gunner 10250 58365 90804 51959 138218 164766 2720 2320 (± 303)

Tennis -8.9 -7.8 4.4 -2 -6.3 -6.4 0 0 (± 0)

Time Pilot 5925 6608 6601 7448 12679 27202 7340 12040 (± 358)

Tutankham 167.6 92.2 48 33.6 156.3 144.2 23.6 0 (± 0)

Up n Down 9082 19086.9 24759.2 29443.7 74705.7 105728.7 43734 14524 (± 5198)

Venture 1188 21 200 244 23 25 576.7 0 0 (± 0)

Video Pinball 17298 367823.7 110976.2 374886.9 331628.1 470310.5 0 33752.4 (± 6909)

Wizard of Wor 4757 6201 7054 7451 17244 18082 5196.7 3360 3820 (± 614)

Yars Revenge 6270.6 25976.5 5965.1 7157.5 5615.5 24096.4 28838.2 (± 2903)

Zaxxon 9173 8593 10164 9501 24622 23519 6233.4 3000 2980 (± 879)

Table 4: Average CGP scores from �ve 1 + λ evolutionary runs, compared to state of the art methods. Bold indicates the best score from an arti�cial player.
Reported methods Double [27], Dueling [29], Prioritized [23], A3C [18], TPG [9], and HyperNEAT [8] were chosen based on use of pixel input. Professional

human game tester scores are from Mnih et al. [19].


