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Abstract 19 

Food sharing can occur in both social and non-social species but is crucial in eusocial species in 20 

which only some group members collect food. This food collection but also intranidal food 21 

distribution through trophallactic (i.e. mouth-to-mouth) exchanges are fundamental issues in 22 

eusocial insects. However, the behavioural rules underlying the regulation and the dynamics of 23 

food intake and the resulting networks of exchanges are poorly understood. In this study, we 24 

provide new insights into the behavioural rules underlying the structure of trophallactic networks 25 

and food dissemination dynamics within the colony. We build a simple data-driven model that 26 

implements interindividual variability and division of labour to investigate the processes of food 27 

accumulation/dissemination inside the nest, both at the individual and collective levels. We also 28 

test the alternative hypotheses (no variability and no division of labour). Division of labour with 29 

inter-individual variability predicts contrary to other models the food dynamics and exchange 30 

networks. We establish the links between the interindividual heterogeneity of the trophallactic 31 

behaviours, the food flow dynamics and network of trophallactic events. Despite the relative 32 

simplicity of the model rules, efficient trophallactic networks may emerge as the ones observed in 33 

ants leading to better understanding of evolution of such societies. 34 

 35 
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 39 



    
  

Introduction 40 

Food sharing is not the most obvious advantage of group living but can occur in different species 41 

(Isaac 1978; Kaplan et al. 1985; Stevens and Gilby 2004). Evolutionary origins of food sharing 42 

have been studied using the predictions of reciprocal altruism (Trivers 1971), biological markets 43 

(Noë and Hammerstein 1995) and multilevel selection (Traulsen and Nowak 2006). Food 44 

exchange is central to eusocial species such as ants, termites, bees and even naked mole 45 

rats(Anderson 1984; Jarvis et al. 1994; Nowak et al. 2010). In eusocial species, only a restricted 46 

number of individuals forage and retrieve food for the rest of the colony forming trophallaxes 47 

(i.e., mouth-to-mouth food exchange) networks (Quque et al. 2021). Indeed, insect societies may 48 

be seen as social networks whose structure is shaped by individual (nodes) behaviours and 49 

interactions (edges) between individuals, including food sharing. While different networks 50 

(colonies) may allocate the same total amount of time to a task (such as brood care or food 51 

collection), the time investment or the efficiency (i.e. quantity of food exchanged per interaction) 52 

could be quite different between nodes (Dornhaus et al. 2012; Tenczar et al. 2014) according to 53 

their interactions and the emergent hierarchical and modular property of the trophallaxes 54 

networks (Quque et al. 2021). The topology of social networks drives information transmission 55 

(Aplin et al. 2014; Atton et al. 2014), food stock building (Sendova-Franks et al. 2010) and 56 

influences a range of collective outcomes, such as the transmission of parasites and pathogens 57 

(Hamede et al. 2009; VanderWaal et al. 2014; Stroeymeyt et al. 2018; Romano et al. 2020). Food 58 

stock building in social insects involves networks of food sharing interactions through 59 

trophallactic events, during which not only food is transferred (LeBoeuf 2017). A small fraction 60 

of the workers (the foragers) collect the food that is distributed to the nonforaging part of the 61 

colony, which in turn disseminates the food (Howard and Tschinkel 1981; Pinter-Wollman et al. 62 



    
  

2013). A chain of demands, whose origins are principally the larvae and the queen, fine-tunes the 63 

foraging activity to the colony’s needs (Cassill et al. 1998; Dussutour and Simpson 2008). No 64 

single worker has a comprehensive understanding of the nutritional status of the whole colony. 65 

Instead, colony-level nutritional regulation is an emergent property resulting from numerous 66 

individual behaviours (e.g., foraging and disseminating) modulated by local information (such as 67 

individual crop content (Seeley 1989)). In such a process, the interindividual variability of the 68 

responses may affect the collective outcomes and performance of the colony (Adler and Gordon 69 

1992; Robinson et al. 2008; Pamminger et al. 2014; Delgado et al. 2018). 70 

Many studies have focused on interindividual variability in searching behaviour and in food 71 

collection efforts (e.g., in honeybees (Spaethe and Weidenmüller 2002; Tenczar et al. 2014), 72 

bumblebees (Crall et al. 2018), and ants (Dornhaus 2008; Robinson et al. 2008; Beverly et al. 73 

2009; Campos et al. 2016; Pask et al. 2017)). However, the intertwining of the interindividual 74 

heterogeneity with the food dissemination activity and the division of work and the resulting 75 

trophallactic networks at the intranidal level remain far less studied. Some empirical works 76 

revealed the colony-level dynamics of food sharing and accumulation as well as the negative 77 

feedbacks that regulate the food flow entering the nest (Buczkowski and Bennett 2009; Buffin et 78 

al. 2009a, 2012). The absence of individual identification in such studies limits the inquiries 79 

between the level of workers’ contributions and colony food management. The recent 80 

technological improvement in automating individual identification (Mersch et al. 2013; Gernat et 81 

al. 2017; Crall et al. 2018; Greenwald et al. 2018a; Richardson et al. 2020; Wild et al. 2021) 82 

allows better investigations of the individual behaviours involved in food exchanges. A first 83 

study analysing the whole trophallactic network showed a spatial re-organisation of worker 84 

positions in the presence of starvation, accelerating the food stock recovery (Sendova-Franks et 85 



    
  

al. 2010). Network resilience (i.e. capacity to maintain the food exchange whilst removing central 86 

individuals) and efficiency (i.e. how fast the food is transmitted from foragers to peripheral 87 

individuals) are stable with colony size but increase in the presence of broods, presumably in 88 

response to the nutritional needs of larvae (Quque et al. 2021). Other studies focused on the 89 

individual behavioural rules regulating the food exchanges (Bonavita-cougourdan and Gavioli 90 

1981; Greenwald et al. 2015, 2018a), refuting some classical assumptions about this phenomenon 91 

which was commonly viewed as a deterministic process (Cassill and Tschinkel 1999; Gregson et 92 

al. 2003; Buffin et al. 2009b; Sendova-Franks et al. 2010). In particular, the authors showed that 93 

1) the donor does not deliver its entire crop load, nor does the recipient fill up to its crop capacity; 94 

2) the food flow during a trophallactic event can be bidirectional; and 3) foragers are able to leave 95 

the nest even if their crops are not completely empty. 96 

Moreover, a high level of variability is observed in the amount of food transferred during a 97 

trophallactic exchange for the crop contents of a given recipient as well as in the crop load of the 98 

foragers exiting the nest (Greenwald et al. 2018a). These variabilities prevent any clear 99 

conclusions about the relationships between the crop content and the nest-leaving behaviour or 100 

the amount of food transferred during an exchange. The consequences of this stochasticity on 101 

food flow dynamics and food spreading speed are not straightforward to assess empirically and 102 

are therefore overlooked (Gräwer et al. 2017). 103 

In the context of foraging activity, a widely accepted behavioural categorisation distinguishes the 104 

individuals visiting, even once, the food source and bringing the food back to the nest (foragers) 105 

and the individuals staying inside the nest (non-foragers). However, the link between this 106 

categorisation and the respective contributions of each caste (foragers vs. non-foragers) in 107 

intranidal food dissemination and the characteristics of the trophallactic network are far from 108 



    
  

clear. How intra-caste variability in food exchange behaviour affects food dissemination within 109 

the context of the trophallactic network is also poorly understood. 110 

In this study, we attempt to fill this gap by developing a data-driven model of trophallactic 111 

networks that implements interindividual variability and division of labour. We also tested the 112 

alternative hypotheses (no variability and no division of labour). These models are based on 113 

empirical data collected from the food exchange process in colonies of the ants Lasius niger [see 114 

“summary of the behavioural experiments” section]. Our goal is to identify the minimal set of 115 

rules governing the trophallactic and foraging behaviours and to capture the main features of the 116 

food exchange process of our experimental ant colonies. The model includes four activities: 117 

departure from the nest, food collection, travel back to the nest and food exchange 118 

(donation/reception). 119 

While some levels of variability are often expected to enhance foraging success (Campos et al. 120 

2016), here we explore the effects of two levels of variability of the trophallactic behaviour on 121 

the food spreading: 122 

(i) resulting from the existence of forager- and non-forager-specific behaviours. We will 123 

first assume that non-forager and forager trophallactic behaviours are identical and 124 

will thus consider one behavioural caste (OC) which corresponds to a null hypothesis. 125 

We will next explore the case where a differentiation of non-forager and forager 126 

trophallactic behaviours occurs after the first visit of the foragers at the food source 127 

and will thus consider two behavioural castes (TEC), which corresponds to what is 128 

observed in ants. 129 

(ii) occurring within castes. In this case, individuals of each caste have a probability of 130 

performing a trophallactic event drawn from a particular distribution. Three common 131 



    
  

probability distributions will be tested, namely, the delta distribution, uniform 132 

distribution and exponential distribution making varying the probability to give or 133 

receive food (explanations are given in the “Material and methods” section).with 134 

exponential distribution being closer to what is observed in ants as foragers give more 135 

than the received and vice-versa with non –foragers. 136 

In “Material and methods” section, we formulate the main model and its different versions; 137 

“Results” section is devoted to the analyses of the model and its comparison with experiments. 138 

Finally, we discuss the biological relevance of the model predictions, particularly the link 139 

between the interindividual variability and the participation of each ant in collective food 140 

management. 141 

Materials and Methods 142 

Model description 143 

To capture the essence of food collection and storage dynamics as well as intranidal trophallactic 144 

network properties in L. niger, we developed an agent-based model. A general overview and the 145 

relationship of the main variables of the model is given in Figure 1. At the beginning of each 146 

simulation (t=0), the colony only contains non-forager individuals NFs with a crop content equal 147 

to zero, [Qi(0) = 0]. The food source access is unrestricted, and the quantity of food is unlimited. 148 

At each timestep t, every non-forager in the nest, selected in a random order, can leave the nest 149 

and start to feed at the food source with a probability per time unit α, which is the inverse of the 150 

mean time spent before leaving the nest. Each individual visiting the food source at least once is 151 

considered to be a forager F for the rest of the simulations. After a time spent at the food source, 152 



    
  

the foragers Fs, containing an amount of food Q proportional to the time spent feeding, go back 153 

to the nest with a probability β, corresponding to the inverse of this time. 154 

 155 

 156 

 157 

At each timestep t, every individual i (i=F, NF) in the nest can randomly exchange food 158 

respectively, as donor or receiver, with a probability θi (as donor) or ϒi (as receiver), which are 159 

increasing/decreasing functions that depend in a sigmoidal way on the current crop content    160 

(Greenwald et al. 2015, 2018a): 161 

   
         

 

     
         (1) 162 

Variable Meaning  

NF Number of non-foragers  
inside the nest, empty at t = 0 

 

F Number of foragers  

S Number of foragers feeding at the food source  

C Number of trophallactic events  

Q Individual crop content  

Parameter Meaning Value 

α Probability for a non-forager NF                                                                                  
to leave the nest to food source 

1/30b 

β Probability to leave the food source 1/120a 

θ Probability to be a donor in a trophallactic event 1/5-1/100b 

ϒ Probability to be a recipient in a trophallactic event 1/5-1/100b 

α' Probability for a forager F, to go back to food source 1/50a 

Φ Probability to stop a trophallactic event 1/120a 

Figure 1: Flow diagram of the model, variables and parameters. The square boxes representing the states of individuals 

(NF, F, S, C). Black arrows are state-transition rates; coloured arrows represent the formation of a trophallactic pair, the 

red one being the donor and the blue one the receiver. On the right part of the figure, variables and parameters are defined 

and value of parameters implemented are indicated.
 a
Parameters estimated from the experiments presented in the material 

and methods section or derived from the literature (Mailleux et al., 2010, 2006). 
b
Parameters estimated by fitting on the 

experiments. 



    
  

   
        

 

     
                     (2) 163 

where k is a threshold value of the amount of food carried (as individuals may have different 164 

thresholds, (Greenwald et al. 2018b)) and n controls the steepness of the functions (Amé et al. 165 

2006; Sueur and Deneubourg 2011). A high value of n leads to a rapid decreasing (increasing) 166 

probability to accept (give) food when the value of Qi, the amount of food carried by the 167 

individual i, approaches the value of k. The probability that two individuals exchange food 168 

depends on the product of their individual interaction probabilities. Furthermore, the food flow is 169 

directional from the donor to the receiver and cannot be reversed during a single trophallactic 170 

event. The probability Φ for a trophallactic pair to be separated is equal and constant for both 171 

individuals; however, when the donor is empty, the trophallactic event is stopped. For simplicity, 172 

we imposed that the quantity of food exchanged is proportional to the duration of the 173 

trophallactic event (Greenwald et al. 2015). The individual maximal carrying capacity is not 174 

imposed but results from the product of the individual probability θ or ϒ to give or to receive 175 

food and the probability Φ to separate a trophallactic pair. The probability of leaving the nest also 176 

decreases with the crop content Q: 177 

   
        

 

     
         (3) 178 

with αi(0) representing the maximum probability of leaving (when Q=0). After the first visit to 179 

the food source, this maximum probability α’i(0) increases (α’i(0) > αi(0)). The literature suggests 180 

only a weak link between the crop content and the probability of food exchange or the probability 181 

to leave the nest (a wide range of the probability to exchange food or to leave the nest is observed 182 

for a given crop content (Greenwald et al. 2015, 2018a)); therefore, we fixed the values of n and 183 

k as follows: n = 2 (smooth increasing/decreasing of the probability to give/receive with an 184 



    
  

increasing crop content) and k = 120 (which corresponds to the mean quantity of food exchanged 185 

during one trophallactic event, see the next section for details on experimental procedure). Given 186 

these parameter values, individuals leave the nest with variable crop content, according to 187 

experiments from (Greenwald et al. 2018a). 188 

We compared the dynamics of food dissemination at the intranidal level and the properties of 189 

trophallactic networks in two versions of the model, which differed only in their assumptions 190 

concerning the individual probability of giving or receiving food through a trophallactic event 191 

between foragers and non-foragers: 192 

A. In the first version, we made a one-caste assumption (OC version). All individuals of 193 

the colony were indistinguishable in terms of their probabilities to give and receive food through 194 

a trophallactic event (θF = θNF and ϒF = ϒNF, respectively). 195 

B. In the second version of the model, we made a two emergent castes assumption (TEC 196 

version); at the beginning of the simulation, all the individuals are non-foragers NFs. When a 197 

non-forager NF leaves the nest to go to the food source, it becomes a forager F and, having new 198 

information about the food availability, now behaviourally differs from the non-foragers NFs in 199 

terms of the probabilities to give and receive food through a trophallactic event (θF ≠ θNF and ϒF 200 

≠ ϒNF, respectively). 201 

In both versions of the model, we tested three hypotheses entailing an increasing level of 202 

interindividual variability in the probability θi to give and ϒi to receive food: (i) Delta probability, 203 

we tested a delta probability distribution where all the individuals have the same intrinsic 204 

probability to exchange food (this corresponds to a simple but null hypothesis); (ii) Uniform 205 

probability, we tested a uniform distribution of the probability θi to give and ϒi to receive food 206 



    
  

between the individuals with a standard deviation, respectively, equal to the mean probabilities of 207 

θi and ϒi; and (iii) Exponential distribution, we tested for the effect of individual variation in 208 

trophallaxis probability on the food flow entering the nest and the individual inequality in 209 

trophallactic activity since ants vary in their probability to give/receive food following a 210 

decreasing exponential law [            
 

 
 
, with   equal to θ or ϒ ] (this corresponds to what 211 

is observed in ants with foragers giving more and receiving less than non-foragers). In (i), (ii) and 212 

(iii) the intrinsic individual probabilities of giving and receiving food through a trophallactic 213 

event are attributed at the beginning of each simulation and do not change over time in the one-214 

caste (OC) version of the model. In the two-castes (TEC) version, the individual threshold is 215 

updated to a forager (F) value after the ant visits the food source for the 1
st
 time. These two 216 

values, before and after the 1
st
 visit to the food source, are not correlated. 217 

 218 

Summary of the behavioural experiments 219 

From five large mother colonies (>1000 ants) of L. niger (collected in Brussels, Belgium, autumn 220 

2016), we created five queenless and broodless subcolonies of 50 randomly chosen workers. Ants 221 

were individually labelled with an ArucoColor tag (https://sites.google.com/site/usetrackerac/) 222 

allowing automatic identification of ants. Each tag was stuck onto the abdomen, had a side length 223 

of 0.8 mm, weighed 0.1 mg (corresponding to less than 5% of the average mass of an adult 224 

worker or less than 10% of the amount of food a worker carries (Mailleux et al. 2000)) and was 225 

printed on waterproof paper at a resolution of 1200 dpi. The tags were hand-cut using a scalpel 226 

and a steel ruler as guide. Following a 5-min acclimatisation period, the labelling was not 227 

observed to impede the ants’ behaviours, movement or interactions. Each subcolony was 228 



    
  

introduced in the experimental setup between 15 to 18 days prior to the first experiment; the 229 

setup was composed of a one-chamber nest (56 x 41 x 2 mm) covered by a glass window. This 230 

duration was long enough to stabilise the task repartition among individuals. A single access 231 

route (4 x 3 x 2 mm) leads to the foraging area (61 x 49 x mm) containing a 0.3 M sucrose 232 

solution and water ad libitum. The walls of the foraging area were covered in Fluon® to prevent 233 

the ants from escaping. The subcolonies were kept at 22 ±3°C and 60 ±5% relative humidity, 234 

with a 12:12 h constant photoperiod. After 4 days of starvation, we introduced 3 mL of a 1 M 235 

sucrose solution. The ants were filmed for 90 min, starting 30 min before food source 236 

introduction. Each colony was tested once. The video data were recorded using a Panasonic® 237 

Lumix DMC-GH4-R mounted with a 30 mm Olympus® ED lens capturing 25 frames/s at the 238 

definition of 4180*2160 p. We discriminated foragers (Fs) from non-foragers (NFs). An 239 

individual was considered a forager if it spent at least five consecutive seconds feeding at the 240 

food source during the experiment. Each minute, we performed a scan-sampling (Altmann 1974) 241 

of all the trophallactic interactions, identifying the donor, the receiver and the X and Y spatial 242 

positions of the trophallactic event (contact point of the mandibles of both ants). A trophallactic 243 

event was recorded when ants engaged in mandible-to-mandible contact for greater than 5 s. The 244 

directionality of food flow and the role of the donor and the receiver were determined by the 245 

characteristic body posture and the mandible position (Cassill and Tschinkel 1999; Greenwald et 246 

al. 2015). A trophallactic event involving the same individuals on two or several consecutive 247 

scans was considered as a single trophallactic event of two or several min lengths. Raw empirical 248 

data, codes as well as supplementary figures (Fig.Sx) and tables (tables) are available in Zenodo 249 

(https://doi.org/10.5281/zenodo.6396637). A complete description of the results is presented in 250 

(Planckaert et al. 2019). 251 



    
  

 252 

Model calibration and comparison of the model output with the 253 

experimental results 254 

The model was calibrated with values of parameters derived from the experiments (see previous 255 

section), and the parameters given in Figure 1 and Table 1 so that the model reproduces the 256 

following experimental results: 1. the mean number of foragers; 2. the mean number of 257 

trophallactic events; and 3. the proportions of the 4 different types of trophallactic pairs (FNF; 258 

F; NF; NFF). Therefore, the simulations were run for 3600 timesteps (with each timestep 259 

equal to 1 s) with 53 individuals, corresponding to the duration of the experiment and the mean 260 

size of the experimental colonies. Simulations were repeated 1000 times. For each simulation, the 261 

start/end time of each trophallactic event, as well as the identity and role of each individual in the 262 

trophallactic pairs (the donor/receiver) were extracted. The complete trophallactic network of 263 

each simulation (N=1000) and each experiment (N=5) was built, allowing us to analyse and 264 

compare the food dissemination dynamics, the properties of the networks of food exchanges and 265 

the participation of individuals in the trophallactic events. Classical tools of social network 266 

analysis in animal societies (Wey et al. 2008) were also used to characterise the global properties 267 

of each trophallactic network as well as the role of each individual in the network (see the next 268 

section for details on data analysis). The survival curve of the 1
st
 arrival to the food source in the 269 

experiments is well fitted by a power law distribution of αi(0), the individual probability to leave 270 

the nest in the model (Figure S1). This suggests that few individuals have a high probability of 271 

visiting the food source, and most of them have a low probability. 272 

We evaluate the goodness-of-fit of these three outputs between the experiments and both versions 273 

of the model (OC and TEC), each tested with the three distributions (delta, uniform, exponential) 274 



    
  

of the probability θi(0) to give and ϒi(0) to receive food through a trophallactic event. Only the 275 

version of the model (OC or TEC) that best met this first “selection filter” was considered for 276 

more detailed analysis. A local sensitivity analysis of the selected parameter values is provided 277 

(Figure S6). 278 

 279 

 280 

  281 

 282 

 283 

 284 

 285 

 286 

 287 

Statistical and social network analysis 288 

A Mann-Whitney U test (MW) was used to compare the theoretical and experimental numbers of 289 

each type of trophallactic pair (FNF; FF; NFNF; NFF; Figures 2, S3 and Table S1). A 290 

Kolmogorov-Smirnov test (KS) was used to analyse the deviation between the theoretical and the 291 

experimental distributions of the number of trophallactic events among the colony members 292 

(Figures 3, S4.A-C and S5) and the cumulative number of trophallactic events (Figures 4.A and 293 

S4.D-F). To quantify the degree of inequality in trophallactic activity among the workers, we 294 

plotted the cumulative distribution of total trophallactic events performed in each trial in the form 295 

 Parameters 

One caste (OC) 
 

Two emergent castes (TEC) 

Equal Uniform   Exp. Equal Uniform Exp. 

 θF 
1/11 1/10 1/6 

 1/10 1/11 1/9 

 θW  1/33 1/32 1/23 

 ϒF 
1/60 1/50 1/56 

 1/11 1/9 1/9 

 ϒW  1/38 1/28 1/27 

Results 
Experiments 
(mean+/-s.d) 

   
 

   

Number of trophallactic 
events 

99.0+/-17.4 100.1 98.7 100.5 
 

101.0 99.5 98.7 

Number of foragers 12.2+/-1.9 12.2 12.6 12.2 
 

12.3 12.4 12.5 

Table 1: The upper part of the table shows the parameters values of the two versions of the model and three 

distributions. Only the parameters that vary between models are shown. The lower part of the table shows the 

main experimental and the theoretical results of the foraging activity. See the text for further explanation. 



    
  

of a Lorenz curve (Tenczar et al. 2014) (Figures 4.B and S4.G-I). Such a curve displays the share 296 

of trophallactic activity (Y axis) accounted for by x% of the workers (sorted by the number of 297 

trophallactic events per individual) in the colony. A perfectly equitable distribution of foraging 298 

activity would correspond to the line Y=X. The Gini coefficient (Figures 4.C and S4.J-L) is 299 

known as the ratio between the area below the experimental Lorenz curve and the triangular area 300 

below the perfect equality case Y=X and provides a measure of the degree of inequality in the 301 

distribution of trophallactic activity, ranging from 0 (perfect equality) to 1 (perfect inequality). 302 

Social network analysis was performed on both the theoretical and experimental results. The 303 

nodes correspond to individuals (Figure S2, red = foragers; green = non-foragers), and the edges 304 

represent trophallactic events directed from the donor to the receiver. We performed weighed (i.e. 305 

including the number of interactions between two nodes) and directed (i.e., including the 306 

direction of exchanges) analyses. Social network analyses were performed at both the individual 307 

level and the functional category (foragers/non-foragers) level. The length of the edge conveys no 308 

information. At the individual level, we calculated the betweenness, the closeness and the 309 

clustering coefficients of each individual (Sosa et al. 2020). Betweenness centrality (Figures 5.C 310 

and S4.S-U) is an estimate of how important an individual ant is to the promotion of connectivity 311 

across the entire colony and this value measured by the number of times an individual acts as a 312 

bridge along the shortest path between two other ants (Dell et al. 2014). Closeness centrality 313 

(Figures 5.B and S4.P-R) is based on the distance (measured by shortest paths) from an 314 

individual to every other individual in the colony; the more central an ant is, the lower its total 315 

distance is from all the other ants (Wey et al. 2008). The clustering coefficient (Figures 5.D and 316 

S4.V-X) allows us to determine the existence of “communities” in a network, such as node pairs 317 

with many more edges between them than with other ones (Saramäki et al. 2007). To assess the 318 

effect of network structure on food spreading speed, we measured the efficiency (Figures 5.A and 319 



    
  

S4.M-O), defined as the multiplicative inverse of the shortest path distance between all pairs of 320 

nodes (Latora and Marchiori 2001; Buhl et al. 2004) and measuring how fast an entity (here the 321 

food) is transmitted into the network. Concerning the food spreading speed, we compared the 322 

mean theoretical T50 and experimental T50 (time when half the trophallactic events were realised, 323 

Figures S4.Y-α). To statistically quantify whether experimental values were different from the 324 

simulations (concerning the T50, the Gini coefficient and the social networks metrics: 325 

betweenness, closeness clustering, and efficiency coefficients), we used Z-tests (ZT) to compare 326 

the experimental mean (N=5) to the corresponding theoretical mean (200 mean scores from 5 327 

randomly selected simulations among 1000 simulations). A Kruskal-Wallis (KW) analysis 328 

revealed that the degree (KW, H=0.70, p>0.95), out-degree (KW, H=1.83, p=0.77), in-degree 329 

(KW, H=0.66, p>0.95), betweenness (KW, H=9.10, p=0.06), closeness (KW, H=3.98, p=0.41) 330 

and eigenvector (KW, H=0.93, p=0.91) distributions among colony members were homogeneous 331 

between the five experiments; therefore, we merged and averaged the experimental results for the 332 

calibration of the model and for the comparison between the experimental and theoretical results. 333 

The level of significance was set at p<0.05. All simulations were conducted on Python 3.6; all the 334 

analyses were performed with NetworkX 2.1, PyGraphviz 1.4, NumPy 1.14, SciPy 1.0.0 and 335 

Matplotlib 2.2.2. 336 

 337 

Results 338 

Evaluation of the quality of the calibration of the models 339 

The values of the probability θ to give and ϒ to receive a food through a trophallactic event that 340 

best fit the experimental outputs are presented in Table 1. Both model versions (OC and TEC) 341 

 



    
  

closely reproduced the empirically measured number of trophallactic events while respecting the 342 

number of foragers, although they were not explicitly imposed at the beginning of the simulation. 343 

This result is independent of the distribution (delta, uniform, exponential) of the individual 344 

probability to give/receive that was implemented (Table 1). 345 

 346 

We then determined to what extent each type of trophallactic pair (FF, FNF, NFF, 347 

NFNF) contributes to the total number of trophallactic events. The OC version, whatever the 348 

distribution implemented, systematically reproduced the proportion of each type of trophallactic 349 

pair (FF, FNF, NFF, NFNF) with a lower accuracy than did the TEC version (Figures 350 

2, S3 and Table S1): the OC version, whatever the distribution, significantly overrated the 351 

number of NFNF exchanges and underestimated the number of FF exchanges (MW: p<0.05 352 

in each case, see also Figure S3 and Table S1 for details on statistical analysis), while the TEC 353 

version, whatever the distribution, reproduced the number of each type of trophallactic pairs 354 

(MW, p > 0.2 in each case, see Figures 2, S3 and Table S1 for details on statistical analysis). 355 

As the OC version failed to reproduce the experimentally observed proportions of each type of 356 

trophallactic pair, in the rest of the paper, we will focus on the TEC version. 357 



    
  

 358 

  359 

Individual contributions to food dispersion / accumulation 360 

After investigating the trophallactic activity at the colony level, we analysed the way each ant 361 

participated in trophallactic exchanges. Our main interest was to understand whether 362 

interindividual variability in trophallactic activity was required to fine-tune the experimental 363 

distribution of trophallactic activity/contribution to food dissemination. Figure 3.A and Figures 364 

S4.A-C show the distribution of the number of trophallactic events executed by all the ants, both 365 

at the theoretical and experimental levels. While a KS test indicated a significant improvement of 366 

the fitting along with an increasing level of interindividual variability implemented in the model 367 

(exponential > uniform > delta), only the TEC exponential version was not significantly different 368 

from the experiments. Note that the model (with the delta and uniform distributions) always 369 

underestimates the proportion of inactive individuals (Figures S4.A-B). 370 

Figure 2: Comparison of the number of each type of trophallactic pairs between the experiments and the 

simulations implemented with a Delta distribution in the OC version (A) and in the TEC version (B). * = 

MW with a p < 0,05. Error bar = standard deviation. D = Sum of the difference of the number of 

trophallactic pairs of each type (FF, FNF, NFF, NFNF) between the experiments and the 

simulations. See Figure S3 for the Uniform and Exponential distributions and Table S1 for details. 

 



    
  

We then focused on the distribution of the number of trophallactic events at a finer scale: the 371 

numbers of trophallactic events as donors and receivers, respectively, by the foragers and by the 372 

non-foragers (Figures 3B-E, S5 and Table S2). Only the TEC exponential model was not 373 

different from the experimental distribution of the trophallactic activity for each category (KS, 374 

p>0.21 in each case, see Table S2 for details on statistical analysis). 375 



    
  

 376 

Figure 3: Theoretical and experimental distribution of the number of trophallactic events. A, Distribution of all the 

trophallactic events at the colony-level. B, C, Respectively, given and received trophallactic events performed by the 

foragers. D, E, Respectively, given and received trophallactic events performed by the non-foragers. Theoretical = 

TEC Exponential model. D and p on figures = statistical values from KS test. DTotal = sum of the KS distance (D) from 

the comparison of distribution in B-E. See Figure S5 and Table S2 for details on statistical analysis of other versions 

of the model.   



    
  

Food spreading, heterogeneity and social network analysis  377 

No difference was found between the dynamics of food accumulation in the simulations and 378 

experiments in the three versions of the model (KS: p>0.95 in all cases, see also Figures 4.A and 379 

S4.D-F for details on statistical analysis). Concerning the spreading speed of food, a Z-test 380 

indicated no significant difference between the experimental and theoretical T50 (time required to 381 

reach 50% of the total number of trophallactic events) of the TEC model, regardless of the 382 

distribution implemented (Figures S4.Y-α). The next step consisted of testing the ability of our 383 

model to reproduce the experimentally observed interindividual heterogeneity in the food 384 

spreading activity, with the majority of the trophallactic events performed by a relatively small 385 

number of ants. We statistically quantified the heterogeneity in food spreading activity between 386 

the simulations and experiments using the Lorenz curve and Gini coefficient (Figures 4.B-C and 387 

S4.G-L). Only the TEC exponential model produced a heterogeneity of the food spreading 388 

activity as high as that observed in the experiments (ZT: Z=-0.9; p=0.39). 389 

Figure 4: A, Cumulative number of trophallactic events after 1h of experiments or 3600 timesteps from 1000 

simulations of the TEC Exponential model and from the experiments (N=5) compared with a KS (D and p-val). 

Dashed lines represent the time when 50% of the trophallactic events were realized, both in the model and the 

experiments. Shaded area = standard deviation. B. Lorenz curves showing the cumulative proportions of trophallactic 

events (y axis) vs. the individual rank (x axis, sorted by the number of trophallactic events performed by each 

individual), from the simulations (black curve, N=1000) and from the experiments (grey curves, N=5). C. Distribution 

of the Gini coefficient from the simulations (grey bars, N=1000) and mean from the experiments (dashed lines, N=5) 

compared with a Z-test (Z-value and p-val). 

 



    
  

We then investigated the characteristics of the trophallactic networks to determine if the structure 390 

of the empirical networks facilitated food spreading compared with the simulations. Again, only 391 

the efficiency of the trophallactic networks resulting from the TEC exponential model was not 392 

significantly different from the empirically measured efficiency (ZT; Z=-0.9, p=0.38; Figures 5.A 393 

and S4.M-O). Concerning the closeness, betweenness and clustering coefficients, no significant 394 

differences were observed between the three distributions (delta, uniform, exponential) in the 395 

TEC model and the experiments (ZT; p>0.05; Figures 5.B-D and S4.P-X). Nevertheless, 396 

increasing the theoretical interindividual variability (delta>uniform>exponential) leads to a 397 

higher accordance between theoretical and experimental results for these three coefficients. 398 

Figure 5: Distribution of the efficiency (A), closeness (B), betweenness (C) and clustering (D) coefficients 

measured in the networks of the TEC Exponential model (grey bars, N=1000) and the mean measured from 

experiments (vertical dashed line, N=5) compared with a Z-test (Z-value and p-val).  See also Figures S4.M-X.  

 

 



    
  

Discussion 399 

We developed and analysed an agent-based model to investigate the mechanisms underlying the 400 

intranidal food spreading in ant nests based on trophallactic exchanges between the colony 401 

members. The keystone hypothesis was that no division of labour is a priori at work as far as 402 

trophallactic exchange is concerned. Rather, the trophallactic processes lead to chains of 403 

exchanges based on random encounters of potential partners. 404 

Two versions of the model were tested (OC and TEC, see “Model description” section), each of 405 

which was implemented with three types of probability distributions of giving/receiving food in a 406 

trophallactic event (delta, uniform, exponential). Both versions, regardless of the probability 407 

distribution implemented, fit some of the main outcomes of the experiments: the number of 408 

foragers and the number of trophallactic events (Table 1). In contrast, only the TEC version 409 

(irrespective of the distribution implemented) was able to reproduce the observed pattern of 410 

trophallactic exchanges between the foragers and non-foragers (Table 1, Figure 2 and Figure S3). 411 

Based on the Kolmogorov-Smirnov distance (the supremum of the set of distances between the 412 

theoretical and experimental distributions), the TEC exponential model best captured the 413 

individual and collective patterns of the food spreading and, in particular, the interindividual 414 

heterogeneity in the trophallactic activity observed naturally between foragers and non-foragers 415 

(Figure 4, S5 and Table S2). 416 

We showed as expected that a behavioural shift in the probability to give/receive food as a 417 

forager in the TEC version of the model and a right-skewed (exponential) distribution of the 418 

probability to give/receive food among all colony members (Table S3) are sufficient to reproduce 419 

the trophallactic networks. 420 



    
  

The Gini coefficient revealed that the empirical interindividual level of heterogeneity in 421 

participation in food dissemination activity, both in foragers and non-foragers, was only 422 

generated by the TEC exponential model (Figures S4.J-L). Here, few ants were highly engaged in 423 

trophallactic interactions, which is a common property of many observed networks having scale-424 

free property (Albert and Barabasi 2002; Naug 2008; Sendova-Franks et al. 2010; Sueur et al. 425 

2012; Crall et al. 2018). This interindividual variability is often considered important as far as 426 

resilience is concerned (Naug 2008), even though the removal of the most engaged nodes can 427 

severely disrupt the system (Barabasi 2002). 428 

Classical metrics of social network analysis - revealing role of individuals and topology of food 429 

networks - were also compared between theory and experiment to assess the role of the 430 

underlying network structure and, in particular, whether a non-random mixing of individuals 431 

would be at the origin of a structural organisation or if distinct patterns could play a role in the 432 

regulation of food collection through colony feedback coupled to individual behaviour. The TEC 433 

model, regardless of the distribution of the probabilities, fitted the experimental individual 434 

betweenness, closeness and eigenvector values even for the TEC delta model (Figures S4.M-X). 435 

For this latter model, the distribution of the probability of leaving the nest for the first time, 436 

which is the only source of variability, introduced a slight level of heterogeneity in the number of 437 

trophallactic events that was enough to generate the properties of the experimental networks and 438 

seems to be crucial for leading to efficient trophallactic networks. 439 

Indeed, the efficiency of experimental networks was only generated by the TEC exponential 440 

model, as the TEC delta and TEC uniform models displayed a lower efficiency. All versions of 441 

the model assumed random encounters between ants: if the potential donor (receiver) accepts to 442 

give (receive) a trophallactic exchange occurred. This simple hypothesis was sufficient to 443 



    
  

generate the experimental efficiency of the trophallactic network. One could have assumed 444 

mechanisms of avoidance/attractiveness between partners that had already exchanged food 445 

(Goyret and Farina 2005; Grüter et al. 2013). However, our results suggest that no specific 446 

trophallactic pairs occur except those resulting from the interindividual variability in the 447 

probability to participate in a trophallactic exchange. Therefore, the food accumulated by ants 448 

originates from a large number of randomly encountered nestmates that had regurgitated the food 449 

previously received. Indeed, the model and the experiments showed that approximately 40% of 450 

the given food is given by the non-foragers. The efficiency coefficient is a measure of the 451 

effectiveness of the diffusion of information/food. This metric assumes a network of individuals 452 

with identical needs in which the efficiency is maximal as soon as all the individuals are 453 

connected together. This situation may be far from that of real colonies of social insects, in which 454 

the needs may be different between individuals (Dussutour and Simpson 2009) and the diffusion 455 

of food must satisfy the individual needs. Thus, the effectiveness of food dissemination in the 456 

colony, based on the measure of classical efficiency, suggests an under-optimal connectivity of 457 

the observed network. 458 

Increasing the interindividual variability of the probability to give/receive food in a trophallactic 459 

event, keeping the mean probability constant (i.e., increasing the standard deviation of the 460 

uniform distribution), leads to a lower number of exchanges / speed of food accumulation in the 461 

nest for a given time-window (Figure S6). Our theoretical results are consistent with a previous 462 

theoretical work (Nicolis et al. 2003) investigating the relationship between division of labour 463 

(trail-laying behaviour) and efficiency of food recruitment and the subsequent role of positive 464 

feedbacks. These results deviate from the general agreement of the importance of division of 465 

labour in social insects (Oster and Wilson 1978; Hölldobler and Wilson 1990) and from recent 466 



    
  

experimental results establishing a link between within-group behavioural variation and task 467 

efficiency (e.g., (Pruitt and Riechert 2011)(Modlmeier et al. 2012)). However, we must keep in 468 

mind that our model (and that of (Nicolis et al. 2003)) does not take into account various 469 

ecological and physiological constraints that are omnipresent in such systems and affect the 470 

efficiency of the processes. 471 

Other model limitations may have affected the goodness-of-fit of our results. Most obviously, our 472 

model does not capture any effect of the intranidal spatial organisation/occupation (Pinter-473 

Wollman et al. 2011; Heyman et al. 2016) on the dynamics of food collection and dissemination 474 

in the colony, which are known to be linked to task (Mersch et al. 2013) and to affect collective 475 

response (Crall et al. 2018). A recent stochastic spatial model that neglects interindividual 476 

differences but shares some of our hypotheses provides useful insights into the role of space 477 

during food dissemination (Gräwer et al. 2017). Note that although the spatial segregation of 478 

specialised individuals is thought to optimise performance in social insects (Tofts 1993; 479 

Pamminger et al. 2014), our model is still consistent with experiments. 480 

In summary, we investigated the effect of interindividual variation (delta, uniform, and 481 

exponential distributions) of homogeneous (OC) or heterogeneous (TEC) colony models on the 482 

trophallactic networks and food spreading dynamics. The agreement between the theoretical and 483 

empirical data validates the right-skewed behavioural rules used in the model. This analysis 484 

succeeds in accounting for the characteristics of the empirically observed trophallactic networks, 485 

without evoking behavioural rules other than a right-skewed distribution of food dissemination 486 

effort, modulated by the individual crop load. These two hypotheses are in agreement with some 487 

recent empirical work (Greenwald et al. 2018a). Hence, the observed networks of trophallactic 488 

events of ant colonies do not seem to rely on complex behavioural rules involving the transfer of 489 



    
  

various types of information during the food exchange or the ability to count the number of 490 

trophallactic events executed. Right-skewed distribution of food dissemination effort and 491 

individual crop load are parameters characterizing decentralised control and organizational 492 

resilience of ants (Middleton and Latty 2016). Such decentralized but hierarchical networks also 493 

exist in mammals (Hill et al. 2008). Low clustered but high robust social networks have also bee, 494 

found in bees (Naug 2008) and is due to the adaptive age polyethism (Wild et al. 2021) as 495 

observed in ants. Such simple non-linear rules conducting to efficient networks have been 496 

described in nature ranging from protein complexes (Ravasz et al. 2002), to neural networks 497 

(Chatterjee and Sinha 2007; Clune et al. 2013) to organization in social insects (Linksvayer et al. 498 

2012; Quque et al. 2021). These properties increase group performance as mentioned by Sueur et 499 

al. (2012) and described by Fontanari and Rodrigues (2016). The collective cognition behind 500 

such complex systems suggests that the topology of trophallactic networks, and more generally of 501 

social networks, is selected through individual self-organised rules to optimize problem-solving 502 

competence at the group level and is described as “collective social niche construction” (Sueur et 503 

al. 2019). 504 

The presence of heterogeneity in the food dissemination effort in a more complex social context, 505 

including a queen and larvae that increase the gradient of division of work and the heterogeneity 506 

in nutritional needs among the colony members (Cassill 2003; Dussutour and Simpson 2009), 507 

still requires further investigation. Among these future experimental and theoretical 508 

investigations, priority should be given to the way the colony size affects the global dynamics of 509 

food exchanges and the resulting trophallactic network. Furthermore, the phenomenological 510 

character of our model prevents any conclusion about the origin of the observed behavioural 511 

variability: is it an outcome or an underlying driver of behavioural/network interactions? These 512 



    
  

challenging questions require further theoretical and experimental investigations and are of major 513 

interest to clarify the link between genetics (Smith et al. 2008), physiology (e.g. proteoms, Quque 514 

et al. 2019), individual experience (Robinson et al. 2008) and social structure. 515 
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