Florian Galinier
email: orian.galinier@irit.fr

A DSL for Requirements in the Context of a Seamless Approach

Keywords: Requirements engineering, DSL, Seamless development, Traceability, Verification and Validation

Reducing the lack of consistency between requirements and the system that should satisfy these requirements is one of the major issue in Requirement Engineering (RE). The objective of my thesis work is to propose a seamless approach, allowing users to express requirements, specifications and the system itself in a unique language.

The purpose of formal approaches is to reduce inconsistency. However, most developers are not familiar with these approaches, and they are not often used outside the critical systems domain. Since we want that non-experts can also use our approach to validate systems in the early stage of their development, we propose a Domain Specific Language (DSL) that is: (i) close to natural language, and (ii) based on a formal semantics. Using Model-Driven Engineering (MDE), this language bridges the gap not only between the several stakeholders that can be involved in a project, considering their different backgrounds, but also between the requirements and the code.

RESEARCH PROBLEM

One of the main challenge in Requirements Engineering (RE) is to introduce formality in the expression of requirements. If formal approaches are used in critical systems, most of the time requirements are still expressed in Natural Language (NL). This can be explained by the force of habits, by the lack of knowledge on formal methods, https://doi.org/10.1145/3238147.3241538 or simply by the need to use a language understandable by all of the stakeholders. However, the use of a formal approach to express requirements shall lead to validate the systems in a rigorous way.

To overcome the di culty of formal methods adoption, traceability is often used. This can help to detect which requirements are satis ed -providing a coverage information -, but given that traceability links are not semantically de ned, these links cannot be automatically analyzed.

There is so a main question to address: How to link requirements and other artifacts (such as requirements or even system parts) to automatically validate a system? This question also raises the problem that in complex systems, stakeholders with di erent backgrounds are involved and often use heterogeneous tools. INCOSE [START_REF]SE Vision[END_REF] emphasizes this need to conciliate the several views of a system, and address it as a major challenge.

These questions are critical. Indeed, a lack of consistency between requirements and systems can lead to dramatic failures, such as some of the one listed in [START_REF] Lake | Epic failures: 11 infamous software bugs[END_REF].

PREVIOUS WORKS

As we stated in [START_REF] Galinier | Seamless integration of multirequirements in complex systems[END_REF], two worlds can be distinguished in RE 1 . Formal methods are, by de nition, the more mathematically rigorous, and approaches like Event-B [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF] or VDM [START_REF]The Vienna Development Method: The Meta-Language[END_REF] have been successfully used among years. As mentioned in section 1, the major issues of these approaches is linked to their main advantage: there are formal, and so, discouraging to non-experts.

That is why the most used tools, industrial ones, rely on Natural Language. IBM Rational Doors [START_REF]IBM Rational Doors[END_REF] or Reqtify [7] thus allow to create traceability links between requirements, expressed in a Microsoft Word document for example, with a part of the systeme.g., some C code. SysML [START_REF]Object Management Group (OMG)[END_REF] also proposes a requirements diagram, that allows users to link requirements to other parts of systems (such as blocks). If SysML's relationships own a type, contrary to the previously mentioned industrial approaches, there are not semantically de ned.

Some approaches try to propose a bridge between the "formal world" and the "NL world". For example, Relax [START_REF] Whittle | RELAX: Incorporating Uncertainty into the Speci cation of Self-Adaptive Systems[END_REF] or Stimulus [START_REF] Jeannet | Debugging real-time systems requirements: simulate the "what" before the "how[END_REF] propose to express requirements in a constrained NL, allowing users to express requirements as they usually do. Their approaches are however semantically de ned -in fuzzy branching temporal logic [START_REF] Moon | Fuzzy branching temporal logic[END_REF] for Relax and on a programming language based on Lucid Synchrone [START_REF] Colaço | A Conservative Extension of Synchronous Data-ow with State Machines[END_REF] and Lutin [START_REF] Raymond | Specifying and Executing Reactive Scenarios With Lutin[END_REF] for Stimulus. This helps the user to check requirements, while using an easy-to-handle tool. However, these approaches do not address the problem of linking requirements to the system, and are more speci cally designed to ease and strengthen the requirements elicitation (making it rigorous).

The Single Model Principle proposed in [START_REF] Paige | The Single Model Principle[END_REF] and adapted in [START_REF] Meyer | Multirequirements. Modelling and Quality in Requirements Engineering[END_REF] recommends the use of an unique paradigm to express the several artifacts of the system. This should help to avoid the gap introduced by the use of several languages, allowing users to validate the system while developing it. The proposed approach is based on this seamless idea.

PROPOSED APPROACH 3.1 Seamless Requirements

In [START_REF] Naumchev | Expressing and verifying embedded software requirements[END_REF], a set of patterns are proposed to transform NL requirements to a programmatic representation, based on Design by Contracts [START_REF] Meyer | Applying 'design by contract[END_REF]. These representations -named speci cation drivers in [START_REF] Naumchev | Complete contracts through speci cation drivers[END_REF] shall be used to validate that other parts of system, controlled by these speci cation drivers, are complying with the requirements.

By using a programming language that integrates Design by Contracts (such as Ei el or JML [START_REF] Gary T Leavens | Preliminary design of jml: A behavioral interface speci cation language for java[END_REF]), this approach is seamless. It allows users to represent requirements (via speci cation drivers) and system implementation (via the code) in a same paradigm. Moreover, the solver can be used to prove this validation (for example, the Autoproof tool [START_REF] Tschannen | Au-toProof: Auto-Active Functional Veri cation of Object-Oriented Programs[END_REF] for Ei el), by calling it on speci cation drivers.

--R e q u i r e an ambulance t o be Listing 1: Example of a functional requirement from the London Ambulance Service (LAS) system [START_REF] Letier | Reasoning about agents in goal-oriented requirements engineering[END_REF] expressed with speci cation driver in Ei el Listing 1 is an example of a speci cation driver. This driver controls the validation of the requirement "After being allocated, an ambulance shall be mobilized within two time units". The mo-bilize_ambulance feature is the controlled one -i.e., the feature that should satisfy the requirement.

m o b i l i z e d _ w i t h i n _ t w o _ t i m e _ u n i t s l o c a l o l d _ d i

Semantics of Relationships

Since it is possible in Ei el to express requirements and other artifacts, we propose to explicit relationships between these artifacts. We use for this purpose the Ei el Information System (EIS) mechanism. This mechanism exploits the Ei el notion of note (equivalent to Java annotations), that let developers put information in the form of: <Notes> ::= 'note' <Note>+ <Note> ::= <Tag> ':' <String> <NEWLINE> This mechanism allows the users of Ei elStudio (the main IDE for Ei el) to create links between parts of code (features, classes or clusters) and other documents (such as Microsoft Word, PDF, website, . . .). If one of the endpoint of this link is modi ed, the IDE warn the user that a change occurred and he should probably take care of it.

To make explicit the relationships linked to requirements expressed through speci cation drivers, we modify this mechanism 2 . More ne grain are thus possible, allowing users to link parts of features (such as assertions, used to express the speci cations' constraints). EIS links can also be used to link parts of code between themselves (for example a speci cation driver and the feature that should satisfy this driver), and these relationships are now typed.

These add should lead to clarify the several relationships existing between artifacts. In Listing 2, we add EIS links to our previous example. Relationships are thus clari ed. Actually, example giving, the EIS note line 4 links the speci cation driver to a textual version of it, in a Microsoft Word document, referenced by the bookmark 1.6. The note line 5 details the role of assertions is_mobilized and distance_less_than_two that are used to verify the validation of the speci cation driver by the feature mobilize_ambulance. Moreover, we add semantics to these links, de ned in Table 1. The notation used in the following is:

• R i is a requirement;

• r i is the speci cation driver of the requirement R i ;

• f is an Ei el feature (a method or an attribute);

• a is an assertion in Ei el (a pre or postcondition, or an invariant)

Table 1: Types of EIS relationships and their semantics.

Relationships Semantics Trace

Link with no semantics Re ne

R 1 re nes R 2 ∆ = r 1 rede ne r 2 Contains R 1 contains R 2 ∆ = r 2 is called in r 1 ∧(r 3 : R 3 | r 2 is called in r 3)
Copy

R 1 copies R 2 ∆ = r 1 body is a unique call to r 2 Derive R 1 derives from R 2 ∆ = r 1 is called in r 2 Satisfy f contributes to satisfy R 1 ∆ = f is called in r 1 Verify a veri es R 1 ∆ = a is an assertion of r 1
These semantics can be used in two di erent ways:

• it should lead to a complete requirements validation -e.g., a requirement R 1 that contains requirements R 2 and R 3 will be validate thanks to this semantics only if both contained requirements are validate; • by checking if the semantics of the relationships is respected, users can have feedback on the matching of what they intended to express and these relationships. Thus, by adding semantics on links between requirements and artifacts, we get a more precise information on the validity of the system. Besides, we plan to explore the inverse relationships, to detect patterns that can be used to generate relationships between requirements. This can also help to detect relationships between requirements coming from several stakeholders.

Addressing the Several Stakeholders

Addressing the several stakeholders is a quite di cult problem, since they used several kinds of representations.

This problem is a well-known problem on Model Driven Engineering (MDE), and models transformations can be used to overcome these gaps between languages. Instead of de ning one-to-one transformations between several languages, we propose to de ne a modeling language, that can be used as a pivot.

We called this language Requirement Speci c Modeling Language (RSML) 3 . It is a DSL with a concrete syntax in a NL style (such as Stimulus or Relax), semantically de ned in Ei el.

In Fig. 1, is an example of a functional requirement expressed in RSML. Using patterns mentioned in section 3.1, this requirement is transformed in an Ei el representation (given Listing 3). Links between the speci cation driver and the automatically generated feature that should satisfy this requirement, are also added. In a similar way than Behavior Driven Development (BDD) [START_REF] Solis | A study of the characteristics of behaviour driven development[END_REF], RSML should allow engineers to verify that the system speci cation is correct regarding to the requirements. However, contrary to BDD tools such as Cucumber [START_REF] Wynne | The cucumber book: behaviourdriven development for testers and developers[END_REF], RSML provide a a formal representation of requirements, that can be used for static analysis of speci cation. This feature will be an entry point used by the engineer that will write the speci cation, allowing him to control that the code is correct.

--1 . 1 a n _ i n c i d e n t _ s h a l l _ b e _ r e s o l v e d n o t e E I S : " s r c = r e q u i r e m e n t s . r s m l " , " r e f = 1 . 1 " , " d e s t = e v e n t _ a n _ i n c i d e n t _ h a p p e n e d , a n _ i n c i d e n t _ i s _ r e s o l v e d " , " t y p e = v e r i f y " E I S : " s r c = r e s o l v e _ i n c i d e n t " , " t y p e = s a t i s f y " D e s c r i p t i o n : " [We plan to propose drivers from RSML to other used notation for requirements, such as SysML, KAOS [START_REF] Van Lamsweerde | Goal-oriented requirements engineering: a guided tour[END_REF] or even Microsoft Word documents. This should lead to reduce the gap between requirements, speci cations and implementation. We also expect to use Autoproof to nd some inconsistencies between requirements in an early stage, in a complementary way to model-checking approaches such as Stimulus.

EVALUATIONS

To evaluate the proposed approach, we are currently exploring di erent ways of implementation.

First we want to consider di erent activity domains. So, we applied the approach on two case studies, one is the embedded system of the LGS ([START_REF] Boniol | The Landing Gear System Case Study[END_REF]), and the other one is the reactive system LAS ([START_REF] Letier | Reasoning about agents in goal-oriented requirements engineering[END_REF]), already seen in this paper. We intend to apply it also on an Information System, a banking system for example. It will so be clear that RSML can apply on a large panel of activity domains.

Secondly, through these applications, we will consider several types of requirements (e.g., timing constraints, temporal requirements, . . .). For now, the enactment of this approach on the LGS and the LAS allowed us twice to highlight issues. In the rst case we identi ed it in a set of LTL rules formalizing the LGS' temporal requirements ([START_REF] Naumchev | Expressing and verifying embedded software requirements[END_REF]). In the second case, the failure of the Autoproof session was linked to a misinterpretation of one of the timing LAS requirements. Supporting all these types of requirements, our approach could prove e cient to express reactive systems requirements.

Thirdly, we are currently implementing the approach on a prototype that will be test in the scope of a process involving several stakeholders. At rst, we intend to propose a subject of practical classes to students, in the framework of RE course. The main idea is to split the class in three groups. We shall supply three case studies. Each of the groups will have a speci c case study to be handled and so a set of requirements, expressed in a MSWord document. Every group will rst supply its own RSML code, then propose the corresponding Ei el code with the traceability links to the reference document and endly run it with Autoproof to check the validity of its system. We will so prove the usefulness of the approach for both novices and advanced stakeholders alike.

Finally and border line, we would also like to make an experimentation to see if from the RSML code of the LGS we can deduce a valid set of LTL constraints. Actually, we believe that if from an RSML system we can not only deduce Ei el systems, bene ting from its powerful environment (EIS, Autoproof, . . .), but also LTL formulae, there would be possible to obtain Event-B systems, and so on. We will so enforce the usefulness of RSML, being able to use it to exploit others formal veri cation languages and tools.

CONCLUSION AND PERSPECTIVE

We present in this paper some solutions to lead the users to formally express requirements without any speci c knowledge while being able to validate them.

We propose for this purpose a seamless approach of development. It will reduce the gap between requirements and system, using a unique language to express both of them, Ei el. To e ase the analysis of the whole requirements, we de ne the semantics of relationships that exist between requirements and other artifacts. We also present RSML, a modeling language providing a canvas to express requirements in a syntax that is near from natural language and so, easy to handle. Since we automatically translate RSML requirements in Ei el code, we are able to use an Ei el solver to validate the provided system. This should also help users to detect errors in requirements or in the system that have to meet these requirements as early as possible. This is an ongoing work, and proposed solutions are still to improve -e.g., we are extending the syntax of RSML and adding new relationships.

The rst experiments give us some encouraging results, and we plan to apply our approach to more complex case study (with more requirements), coming from diverse domains.

One of the major remaining work is the creation of bridges with other formalisms of requirements' modeling (e.g., SysML, KAOS, . . .) to inscribe our approach in a model globalization context. This should allow the users to use their usual tools while bene ting from the advantages of our approach.

 s t a n c e : INTEGER do from o l d _ d i s t a n c e : = d i s t a n c e o c c u r s _ a l l o c a t e u n t i l m o b i l i z e d = m o b i l i z e or (d i s t a n c eo l d _ d i s t a n c e) >= 2 loop m o b i l i z e _ a m b u l a n c e end ensure i s _ m o b i l i z e d : m o b i l i z e d = m o b i l i z e d i s t a n c e _ l e s s _ t h a n _ t w o : d i s t a n c eo l d _ d i s t a n c e <= 2 end

 1 --R e q u i r e an a m b u l a n c e t o b e 2 m o b i l i z e d _ w i t h i n _ t w o _ t i m e _ u n i t s 3 n o t e 4 E I S : " s r c = r e q u i r e m e n t s . docx " , " r e f = 1 . 6 " , " t y p e = t r a c e " 5 E I S : " s r c = m o b i l i z e _ a m b u l a n c e " , " d e s t = i s _ m o b i l i z e d , d i s t a n c e _ l e s s _ t h a n _ t w o " , " t y p e = v e r i f y " 6 l o c a l 7 o l d _ d i s t a n c e : INTEGER 8 do 9 from 10 o l d _ d i s t a n c e : = d i s t a n c e 11 o c c u r s _ a l l o c a t e 12 u n t i l 13 m o b i l i z e d = m o b i l i z e or 14 (d i s t a n c eo l d _ d i s t a n c e) >= 2 15 loop 16 m o b i l i z e _ a m b u l a n c e 17 end 18 ensure 19 i s _ m o b i l i z e d : m o b i l i z e d = m o b i l i z e 20 d i s t a n c e _ l e s s _ t h a n _ t w o : d i s t a n c eo l d _ d i s t a n c e <= 2 21 end Listing 2: Example of EIS links on speci cation driver of Listing 1

Figure 1 :

 1 Figure 1: Example of a requirement from the LAS expressed in RSML

[1 . 1]

 11 An i n c i d e n t s h a l l be r e s o l v e d when an i n c i d e n t happened .] " r e q u i r e e v e n t _ a n _ i n c i d e n t _ h a p p e n e d : a n _ i n c i d e n t _ h a p p e n e d do r e s o l v e _ i n c i d e n t ensure a n _ i n c i d e n t _ i s _ r e s o l v e d : a n _ i n c i d e n t = r e s o l v e d end Listing 3: RSML requirement from Fig. 1 translated in Ei el

We are currently working on a survey of formal approaches for requirements.

https://github.com/fgalinier/Ei elStudio

https://gitlab.com/fgalinier/RSML