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Abstract

The Besicovitch pseudo-metric is a shift-invariant pseudo-metric on the set of infinite sequences,
that enjoys interesting properties and is suitable for studying the dynamics of cellular automata.
They correspond to the asymptotic behavior of the Hamming distance on longer and longer prefixes.
Though dynamics of cellular automata were already studied in the literature, we propose the first
study of the dynamics of substitutions. We characterize those that yield a well-defined dynamical
system as essentially the uniform ones. We also explore a variant of this pseudo-metric, the Feldman
pseudo-metric, where the Hamming distance is replaced by the Levenshtein distance. Like in the
Besicovitch space, cellular automata are Lipschitz in this space, but here also all substitutions are
Lipschitz. In both spaces, we discuss equicontinuity of these systems, and give a number of exam-
ples, and generalize our results to the class of the dill maps, that embed both cellular automata and
substitutions.

1 Introduction

In [BFK97] were studied the dynamics of cellular automata in the spaces of sequences endowed with the
Besicovitch pseudo-metric, which is defined as the asymptotics of the Hamming distance over prefixes
of the sequences. This corresponds to the d̄-metric defined for ergodic purposes in [Orn74]. [Fel76],
and independently [Kat77], proposed to replace the Hamming distance by the Levenshtein distance from
[Lev66], and get the f̄ -metric, which is useful in Kakutani equivalence theory. The Levenshtein distance
depends on the minimum number of the edit operations (deletion, insertion, substitution) required to
change one word into an other word. It used extensively for information theory, linguistics, word algo-
rithmics, statistics. . . . One can read some properties of the pseudo-metric in [ORW82a, Chapter 2], and
a nice history of this notion in [KL17].

The recent [GRK20] can be seen as presenting a nice picture of those systems for which the identity
map from the Cantor space into the Feldman space is a topological factor map, after a similar task has
been achieved for the Besicovitsh space in [GR14]. Here, we adopt a complementary point of view, by
considering the dynamics within the space itself. Though the work on the Besicovitch space concerned
mainly cellular automata so far, relaxing the pseudometric to edit space allows to naturally consider a
larger class of systems, that also includes substitutions : the so-called dill maps.

In Section 2, we will introduce some basic vocabulary of symbolic dynamical systems, including
dill maps, and define the Besicovitch and Feldman spaces. In Section 3, we study dill maps over the
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Besicovitch space, give a sufficient and necessary conditions for them to induce a well-defined dynami-
cal system over this space, and give some examples of behaviours. In Section 4, we do the same within
the Feldman space.

2 Definitions and basic results

The aim of this section is to introduce some concepts and basic notations in symbolic dynamics, that
will be used throughout this paper, and to introduce some symbolic dynamical objects and topological
spaces.

We start with some terminology in word combinatorics. We fix once and for all an alphabet A of
finitely many letters (it will be precised in each example, but general in our statements). A finite word
over A is a finite sequence of letters in A; it is convenient to write a word as u = uJ0,|u|J to express u as
the concatenation of the letters u0,u1, . . . ,u|u|−1, with |u| representing the length of u, that is, the number
of letters appearing in u and J0, |u|J = {0, ..., |u|− 1}. The unique word of length 0 is the empty word
denoted by λ . The number of occurrences of a letter a ∈ A in a finite word u is denoted by |u|a. An
infinite word x = x0x1x2 . . . over A is the concatenation of infinitely many letters from A. The set of all
finite (resp. infinite) words over A is denoted by A∗ (resp. AN), and An is the set of words of length
n ∈ N over A.

2.1 Symbolic dynamics

Let us now introduce some basic notions in symbolic dynamics. First we equip the set AN with the
product topology on each copy of A. The topology defined on AN is equivalent to the topology defined
by the Cantor distance denoted by dC and defined as follows:

∀x 6= y ∈ AN,dC(x,y) = 2−min{n∈N|xn 6=yn},∀x 6= y ∈ AN, and dC(x,x) = 0,∀x ∈ AN.

This space, called the Cantor space, is compact, totally disconnected and perfect.
A (topological) dynamical system is a pair (Xd ,F) where F is a continuous map from a compact

metric space Xd = (X ,d) to itself. When Xd is understood from the context, we may omit it. In particular,
the shift dynamical system is the couple (AN,σ), where σ is the shift defined for all x ∈ AN by σ(x)i =
xi+1, for i ∈ N.

We can now introduce some topological properties of a dynamical system (Xd ,F). We say that x∈ X
is a fixed point if F(x) = x; it is periodic if Fn(x) = x for some n > 0. The map F is M-Lipschitz, for
M > 0, if d(F(x),F(y))≤Md(x,y) for all x,y ∈ X .

A point x ∈ X is an equicontinuous point of (Xd ,F) if:

∀ε > 0,∃δ > 0,∀y ∈ X ,d(x,y)< δ =⇒ ∀t ∈ N,d(F t(x),F t(y))< ε.

The following property is a strong form of non-equicontinuity. A point x ∈ X is 1−-unstable if:

∀ε > 0,∀δ > 0,∃y ∈ X ,d(x,y)< δ but ∃t ∈ N,d(F t(x),F t(y))> 1− ε.

A dynamical system (Xd ,F) is equicontinuous if:

∀ε > 0,∃δ > 0,∀x ∈ X ,∀y ∈ B(x,δ ),∀t ∈ N,d(F t(x),F t(y))< ε.

Note that if F is M-Lipschitz, then F t is Mt-Lipschitz. It is then clear that if F is 1-Lipschitz, then F
is equicontinuous (and it is actually an equivalence, up to equivalent distance, as seen for instance in
[Kůr03, Proposition 2.41]). A dynamical system (Xd ,F) is sensitive if:

∃ε > 0,∀x ∈ X ,∀δ > 0,∃y ∈ X ,d(x,y)< δ but ∃t ∈ N,d(F t(x),F t(y))> ε.
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A dynamical system (Xd ,F) is expansive if:

∃ε > 0,∀x 6= y ∈ X ,∃t ∈ N,d(F t(x),F t(y))> ε.

As examples of dynamical systems, we will be interested in this paper by cellular automata, substi-
tutions, and in general dill maps, which are defined from the Cantor space X = AN to itself. For more
details, we can refer to [PF02], [BR10] and [Kůr03].

2.2 Cellular automata

Definition 1. A cellular automaton (CA) with diameter θ is a map F : AN→ AN, such that there exists a
map called local rule f : Aθ → A such that for all x ∈ AN, i ∈ N: F(x)i = f (xJi,i+θJ).

Example 2. 1. The shift which is a CA with diameter θ = 2 and local rule f such that f (ab) = b.

2. Let A = {0,1}. The XOr is the CA with diameter θ = 2 and local rule defined as follows:

f (ab) = a+b mod 2, for every a,b ∈ {0,1}.

3. Let A = {0,1}. The Min CA with diameter θ = 2 and local rule f defined as follows:

f (ab) = min{a,b},∀a,b ∈ A.

In the Cantor space, an elegant characterization of cellular automata was was given by Hedlund in
[Hed69] as follows: A function F : AN → AN is a cellular automaton if and only if it is a continuous
function with respect to the metric Cantor space and shift-invariant (i.e. ∀x ∈ AN,F(σ(x)) = σ(F(x))).

2.3 Substitutions

Definition 3. 1. A substitution τ is a nonerasing homomorphism of monoid A∗, (i.e. τ−1(λ ) = {λ}
and τ(uv) = τ(u)τ(v), for all u,v ∈ A∗).

2. Substitution τ yields a dynamical system, denoted by τ , and defined over AN by:

τ(z) = τ(z0)τ(z1)τ(z2)τ(z3) . . . ,∀z ∈ AN.

3. The lower norm |τ| and upper norm ‖τ‖ of τ are defined by:

|τ|= min{|τ(a)| |a ∈ A} and ‖τ‖= max{|τ(a)| |a ∈ A} .

We say that τ is uniform if |τ|= ‖τ‖ .

4. The matrix M(τ) = (M(τ)ab)a,b∈A is defined such that M(τ)ab is the number |τ(a)|b of occurrences
of b in τ(a). Mτ can be written in block-triangular form. An irreducible component (or matrix
block) is a maximal subalphabet A′ such that for all a,b ∈ A′, b appears in τ t(a), for some t ∈ N.
A letter a ∈ A can reach a component A′′ if some b ∈ A′′ appears in τ t(a), for some t ∈ N. A
component A′ can reach another one A′′ if some a ∈ A′ can reach it. A component is terminal
if it cannot reach any distinct component. A component is maximum if the spectral radius of
the corresponding submatrix is maximal, among all components. We will denote A+

τ ⊂ A the
union of all components which can reach a maximal component. τ is irreducible if there is only
one irreducible component. A classical object of study si the primitive substitutions, which are
irreducible, as well as all their powers (equivalently its matrix M(τ) is primitive, i.e. ∃n ∈ N,
∀a,b ∈ A we have Mn(τ)ab > 0).
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Example 4. Let A = {0,1}.

1. The Thue-Morse substitution defined over A by:

τ : 0 7→ 01
1 7→ 10

M(τ) =

[
1 1
1 1

]
This is an primitive uniform substitution.

2. The Fibonacci substitution defined over A by:

τ : 0 7→ 01
1 7→ 0

Mτ =

[
0 1
1 1

]
M2

τ =

[
1 1
1 2

]
This is an primitive nonuniform substitution: |τ|= 1 < 2 = ‖τ‖.

3. The doubling substitution defined over A by:

τ : 0 7→ 00
1 7→ 11

This is a uniform reducible substitution: {0} and {1} are two disjoint invariant subalphabets.

4. A uniform substitution τ is Tœplitz if ∃i ∈ J0,‖τ‖J ,∀a,b ∈ A,τ(a)i = τ(b)i. An example is the
Cantor substitution, defined over A by:

τ : 0 7→ 010
1 7→ 111

This is a reducible uniform substitution: {1} is an invariant subalphabet.

The following is folklore, direct consequence from Perron-Frobenius theory (see for example [Kůr03,
Theorem A.72]).

Remark 5. Let τ be a substitution and t ∈ N. Clearly, M(τ)t
a,b is the number of occurrences of b

in τ t(a), and ∑b∈J0,nJ M(τ)t
a,b = |τ t(a)|. Let τ be a substitution, a ∈ A, and ρa the maximal spectral

radius of the irreducible components that a can reach. Then there exist αa ∈ R∗+ such that |τ t(a)| =
∑b∈A M(τ)t

a,b ∼t→∞ αaρ t
a. In particular, A+

τ is exactly the set of letters a ∈ A such that ρa is the spectral
radius ρ+ of the matrix, i.e. the letters that grow the fastest.

2.4 Dill maps

The dill maps were defined in [ST15], and generelize both substitutions and CA. Here we give a simple
definition, which is equivalent to [ST15, Definition 2].

Definition 6.

• A dill map F with diameter θ ∈ N\{0} is a dynamical system over the set of infinite words such
that there exists a local rule f : Aθ → A+ satisfying:

∀x ∈ AN,F(x) = f (xJ0,θJ) f (xJ1,θ+1J) f (xJ2,θ+2J) · · · .

• The lower norm | f | and the upper norm ‖ f‖ of a dill map F with diameter θ and local rule f are
defined by:

| f |= min
{
| f (u)|

∣∣u ∈ Aθ

}
and ‖ f‖= max

{
| f (u)|

∣∣u ∈ Aθ

}
.
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• We extend the local rule into a self-map f ∗ : A∗→ A∗ by:

f ∗(u) = f (uJ0,θJ) f (uJ1,1+θJ) . . . f (uJl,l+θJ),

for u such that |u| ≥ θ and f ∗(u) = λ if |u|< θ .

• We also consider the cocycle sn
x = ∑ j≤n

∣∣ f (xJ j, j+θJ)
∣∣= ∣∣ f ∗(xJ0,n+θJ)

∣∣ for n∈N and x ∈ AN, which
represents the position in which one can read the image at offset n.

• If ‖ f‖ = | f |, then we say that F is uniform. In that case, the cocycle sn
x does not depend on the

infinite word x, and we note it sn.

When it is clear from the context, we may identify a dill map with its local rule.

Remark 7.

1. The substitutions are the dill maps with diameter θ = 1.

2. The cellular automata are the uniform dill maps with | f |= ‖ f‖= 1.

3. The composition of a substitution τ and a cellular automaton local rule f with diameter θ is
a dill map local rule τ ◦ f with diameter θ . Actually, every dill map is the compositions of a
substitution and a shift homomorphism (which is like a cellular automaton, but allowing to change
the alphabet).

Example 8. Let f be the local rule of the XOr CA and τ be the Fibonacci substitution. Then τ ◦ f is a
local rule of a dill map with diameter 2 and defined as follows:

τ ◦ f : 00,11 7→ 01
10,01 7→ 0

Remark 9. For all x ∈ AN, n 7→ sn
x is a one-to-one function.

Proof. For n≤ m ∈ N such that sn
x = sm

x we have:

∑
i≤m

∣∣ f (xJi,i+sJ)
∣∣−∑

i≤n

∣∣ f (xJi,i+sJ)
∣∣= ∑

n<i≤m

∣∣ f (xJi,i+sJ)
∣∣= 0

Then for all n < i≤ m we have
∣∣ f (xJi,i+sJ)

∣∣= 0. Since f is nonerasing then n = m.

Similarly to the case of cellular automata, we give a characterization of dill maps à la Hedlund.

Theorem 10. A function F : AN→ AN is a dill map if and only if it is continuous over the Cantor space
and there exists a continuous map s : AN→ N;x 7→ sx such that for all x ∈ AN: F(σ(x)) = σ sx(F(x)).

Proof.

”⇒ ” Let F be a dill map with diameter θ and local rule f . For x ∈ AN, ε = 2−p for p ∈ N∗ we take
m = min

{
i ∈ N

∣∣si
x ≥ p

}
. For δ = 2−m and y ∈ AN such that dC(x,y)≤ δ we have xJ0,mJ = yJ0,mJ.

Then f ∗(xJ0,mJ) = f ∗(yJ0,mJ). Hence F(x)J0,pJ = F(y)J0,pJ. So, dC(F(x),F(y)) ≤ 2−p = ε . In
conclusion, F is continuous. Now let us define s(x) = sx =

∣∣ f (xJ0,θJ)
∣∣ for all x ∈ AN. Let x ∈ AN

and ε > 0. For y ∈ AN such that dC(x,y)< 2−θ we have xJ0,θJ = yJ0,θJ. Then f (xJ0,θJ) = f (yJ0,θJ)
and hence

∣∣ f (xJ0,θJ)
∣∣= ∣∣ f (yJ0,θJ)

∣∣. So d(sx,sy) = 0. In conclusion, s is continuous, and it satisfies
F(σ(x)) = σ sx(F(x)).
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”⇐ ” We suppose now that there exists a continuous map s : AN→N. We can write AN=
⋃

n∈N s−1({n}).
Since {n} is clopen set for all n∈N and s is continuous, then s−1({n}) is open for all n∈N. On the
other hand, (AN,dC) is compact, so that there exists a finite set I ⊂N such that AN =

⋃
i∈I s−1({i}).

Let x ∈ AN; then there exists i ∈ I such that x ∈ s−1(ni). Since F is continuous, for ε = 2−ni , there
exists ri such that for all y ∈ AN verifying dC(x,y) < 2−ri we have dC(F(x),F(y)) < ε . Then for
all x ∈ AN, there exists i ∈ {1, · · · , p} and ri such that for all y ∈ AN verifying dC(x,y) < 2−ri we
have dC(F(x),F(y)) < 2−ni . Let θ = max{ri| i ∈ {1, · · · , p}}. Hence for all x ∈ AN, there exists
i ∈ {1, · · · , p} such that for all y ∈ AN with xJ0,θJ = yJ0,θJ, we have F(x)J0,niJ = F(y)J0,niJ with
ni = sx.
So there exists a map f : Aθ → A∗ such that f (xJ0,θJ) = F(x)J0,niJ, for all x ∈ AN.
On the other hand, for x ∈ AN and j ∈ N we have:

f (xJ j, j+θJ) = f (σ j(x)J0,θJ) = F(σ j(x))J0,niJ, with ni = s
σ j(x).

Hence, by induction we find:

F(σ j(x)) = F(σ(σ j−1(x))) = σ
s

σ j−1(x)F(σ j−1(x)) = σ
mF(x), with m =

j−1

∑
h=0

s
σh(x).

Then : f (xJ j, j+θJ) = σmF(x)J0,niJ = F(x)Jm,m+niJ.
Finally, we find that F(x) = f (xJ0,θJ) f (xJ1,1+θJ) f (xJ2,2+θJ) · · · . In conclusion, F is a dill map.

Corollary 11. Let F be a dill map with local rule f . Then for all x ∈ AN, all n ∈ N we have:

F ◦σ
n(x) = σ

sn
x ◦F(x).

Proof. Let F be a dill map with diameter θ and local rule f . Then according to Theorem 10 there
exists a continuous map s : AN→ N such that for all x ∈ AN: F(σ(x)) = σ sx(F(x)). We aim to prove by
induction that for all x ∈ AN, for all n ∈ N there exists sn

x ∈ N such that:

F ◦σ
n = σ

sn
x ◦F.

Let x ∈ AN. For k = 1 we have F(σ(x)) = σ sx(F(x)). We suppose that our statement is true for k = n,
so there exists sn

x ∈ N such that Fσn(x) = σ sn
x F(x). Now, for k = n+1 we have:

F ◦σ
n+1(x) = F(σ(σn(x))) = σ

s
σn(x)(F(σn(x))) = σ

s
σn(x)(σ sn

x (F(x))) = σ
sn+1

x (F(x)).

Which is the next step of the induction hypothesis.
Hence, for all x ∈ AN, all n ∈ N and for sn

x = ∑
n−1
k=0 s

σ k(x) we have:

F(σn(x)) = σ
sn

x (F(x)).

2.5 The Besicovitch space

In this subsection, we recall the definition and topological properties of Besicovitch space.
Recall that a distance is an application over A∗×A∗ to R+ satisfying: separation, symmetry, and

the triangle inequality. We can endow the set An for n ∈ N with distance. The prototypical example is
the Hamming distance denoted by dH . It is usually defined as the number of differences between two
finite words of the same length. Let us present a definition in terms of edit distance, that is a number of
operations from a specific kind to transfor a word into another one.

Definition 12.
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• The substitution operations Sa
j at position j ∈ J0, |u|J, for a∈ A, are defined over finite word u∈ A∗

as follows: Sa
j(u) = u0 · · ·u j−1au j+1 · · ·u|u|−1.

• Between two finite words with the same length u,v, we define the Hamming distance:

dH(u,v) = min
{

m ∈ J0, |u|J
∣∣∣∃ j1 < j2 < · · ·< jm,(a j) j≤m ⊂ Am,Sa1

j1 ◦ · · ·S
an
jm(u) = v

}
.

Of course, the definition would be completely equivalent by allowing substitutions to be performed
on both u and v, and is simply the number of differences, letterwise.

Remark 13. Note that this distance is an additive distance i.e. for all u,u′,v,v′ such that |u| = |u′| and
|v|= |v′|,

dH(uv,u′v′) = dH(u,u′)+dH(v,v′).

Definition 14. The Besicovitch pseudo-metric, denoted by dH , is defined as follows:

∀x,y ∈ AN,dH(x,y) = limsup
l→∞

dH(xJ0,lJ,yJ0,lJ)

l
.

It is easy to verify that this is a pseudo-metric: it is symmetric, zero over diagonal pairs, and satisfies
the triangular inequality. On the other hand, it is not a distance since we can find two different infinite
words where the pseudo-metric is worth zero (for instance, we can take two infinite words with finitely
many of differences). Hence, it is relevant to quotient the space of infinite words by the equivalence of
zero distance, in order to get a separated topological space, as mentioned in the following definition:

Definition 15. • The relation x∼dH y ⇐⇒ dH(x,y) = 0, is an equivalence relation.

• The quotient space AN
/∼dH

is a topological space, called the Besicovitch space denoted by XdH .

• We denote by xdH the equivalence class of x ∈ AN in the quotient space.

• Any map F : AN 7→ AN such that dH(x,y) = 0 =⇒ dH(F(x),F(y)) induces a well-defined map
FdH : XdH → XdH over Besicovitch space.

According to [BFK97], the Besicovitch space is pathwise-connected, infinite-dimensional and com-
plete, but, it is neither separable nor locally compact.

2.6 The Feldman space

Another classical edition distance is the Levenshtein distance [Lev66]. Instead of allowing to edit finite
words only via substitution operations (like for the Hamming distance), we now allow to edit using
deletions.

Definition 16.

• The deletion operation D j at position j ∈ J0, |u|J is defined over word u ∈ A∗ as follows: D j(u) =
u0u1 . . .u j−1u j+1 . . .u|u|−1, for all u ∈ A∗.

• The Levenshtein distance dL is defined over u,v ∈ A∗ as follows:

dL(u,v)=
1
2

min
{

m+m′
∣∣∣∃ j1 < · · ·< jm, j′1 < · · ·< j′m′ ,D j1 ◦ . . .◦D jm(u) = D j′1

◦ . . .◦D j′m′
(v)
}
.
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Most frequently, we will consider the distance between two words of the same length, so that the
result is an integer, and can be defined as the minimal m such that there exist two sequences D j1 . . .D jm
and D j′1

. . .D j′m such that D j1 ◦ . . .◦D jm(u) = D j′1
◦ . . .◦D j′m(v).

The pseudo-metric dL(u,v) can also be defined as |u|+|v|2 − l, where l is the length of the longest
common subword between u and v.

Several variants exist in the literature:

• One may want to remove factor 1
2 in the definition, to make the definition look more natural.

Nevertheless, the two points above, as well as the next two remarks, motivate our definition.
Anyway, the two pseudo-metric dL and 2dL are equivalent.

• If one allows two edition operations, insertion and deletion, the purpose could be that it can be
defined by performing all operations only on one of the two words. The two pseudo-metrics are
here exactly equal because an insertion on one side corresponds to a deletion on the other side.
Manipulations are a little more technical because one has to deal with as many insertion operations
as there are letters in the alphabet.

• If one additionnally allows the substitution operation from Definition 12, with weight 1, then again
the two obtained pseudo-metrics are equal, because a substitution corresponds to a sequence of an
insertion and a deletion.

• If one gives the same weights to the substition and deletion operations, then one gets an equivalent
pseudo-metric (bounded between dL and 2dL).

Example 17. Let A = {0,1}.

1. For u = 010101 and v = 101010, we have : dL(u,v) = 1.
Indeed, D0(u) = 10101 (we delete the letter of index 0 in u), then we delete the last letter in the
end of the word v and we find D0(u) = 10101 = D5(v). For the sake of comparison, note that
dH(u,v) = 5.

2. For u = 0000 and v = 00001, we have dL(u,v) = 1
2 since it is enough to delete the last lettre of v.

Remark 18. For every u,v ∈ A∗, we have:∣∣∣ |u|− |v|∣∣∣
2

≤ dL(u,v)≤
|u|+ |v|

2
.

Proof. The upper bound comes from the trivial edition sequence producing:

D1 ◦D2 · · ·D|u| = λ = D1 ◦ . . .D|v|.

On the other hand, if
D j1 ◦D j2 ◦ · · · ◦D jm(u) = D j′1

◦D j′2
◦ · · · ◦D j′m′

(v),

then ∣∣D j1 ◦D j2 ◦ · · · ◦D jm(u)
∣∣= ∣∣∣D j′1

◦D j′2
◦ · · · ◦D j′m′

(v)
∣∣∣ .

Hence, |u|−m = |v|−m′. Then we can conclude that∣∣∣ |u|− |v|∣∣∣
2

=

∣∣∣m−m′
∣∣∣

2
≤ m+m′

2
= dL(u,v).
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Remark 19. The Hamming distance is an upper bound for the Levenshtein distance, i.e. for all words
u,v ∈ A∗ such that |u|= |v|,

dL(u,v)≤ dH(u,v).

Proof. Let dH(u,v) = m, then there exists j1 < · · · < jm such that for all h ∈ J1,mK, u jh 6= v jh . If we
delete u jh and v jh for all h ∈ J1,mK, then we find D j1 ◦ . . .◦D jm(u) = D j1 ◦ . . .◦D jm(v). Hence:

dL(u,v)≤
2m
2

= n = dH(u,v).

Proposition 20. The Levenshtein distance is subadditive, i.e. for all words u,v,u′,v′,

dL(uu′,vv′)≤ dL(u,v)+dL(u′,v′).

Proof. Consider words u,u′,v,v′, and m,m′,n,n′ such that:

D j1 ◦ · · · ◦D jm(u) = D j′1
◦ · · · ◦D j′m′

(v) and D jm+1 ◦ · · · ◦D j′m+n
(u′) = D j′m′+1

◦ · · · ◦D j′m′+n′
(v′),

for some minimal edition sequences j1 < · · · < jm < |u|, j′1 < · · · < jm′ < |u′|, jm+1 < · · · < jm+n |v|
and j′m′+1 < · · · < j′m′+n′ < |v′|, so that dL(u,u′) = m+m′

2 and dL(v,v′) = n+n′
2 . By concatenating the two

previous edited words, we obtain:

D j1 ◦ · · · ◦D jm+n(uu′) = D j′1
◦ · · · ◦D j′m′+n′

(vv′).

Therefore dL(uu′,vv′)≤ m+n+m′+n′
2 = dL(u,v)+dL(u′,v′).

Following the idea behind the Besicovitch pseudo-metric, we define a pseudo-metric associated to
the Levenshtein distance as follows:

Definition 21. The Feldman pseudo-metric associated to the Levenshtein distance is:

dL(x,y) = limsup
l→∞

dL(xJ0,lJ,yJ0,lJ)

l
,∀x,y ∈ AN.

Like the Besicovith pseudo-metric, it is a pseudo-metric but not a distance. Actually all pairs at
Besicovitch pseudo-metric 0 are at Feldman pseudo-metric 0. More generally, Remark 19 gives the
following.

Remark 22. For all x,y ∈ AN we have : dL(x,y)≤ dH(x,y).

Here too, it is natural to quotient the space of infinite words by the equivalence of zero distance; we
obtain a metric space, called the Feldman space denoted by XdL .

3 Dill maps in the Besicovitch space

3.1 Lipschitz property of dill maps

It is known since [BFK97] that every cellular automaton induces a (well-defined) Lipshitz function over
Besicovitch space. [MS09, Theorem 13] goes further, by establishing a characterization à la Curtis-
Hedlund-Lyndon of cellular automata in the Besicovitch space by three conditions: shift invariance, a
condition in terms of uniform continuity and a condition in terms of periodic infinite words.

Some dill maps, on the contrary are not well-defined.
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Example 23. The Fibonacci substitution is not well-defined over the Besicovitch space XdH .
Even worse, for every x ∈ {0,1}N such that x̃ 6= 1̃∞, altering simply the first letter will induce a shift in
the substitution. Indeed, if x0 = 1, then:

dH(τ(S0
0(x)),τ(x)) = dH(0τ(x),τ(x)).

Symmetrically, if x0 = 0, then

dH(τ(S1
0(x)),τ(x)) = dH(σ(τ(x)),τ(x)).

In both cases, the pseudo-metric is at least half of the frequence dH(1∞,x) of 0s in x. For example,
dH(0∞,10∞) = 0 but dH(τ(0∞),τ(10∞)) = dH((01)∞,(10)∞) = 1. On the other hand, for all x ∈ {0,1}N,
dH(τ(x),τ(1∞))≤ dH(x,1∞) (frequence of 0s in x). This is still a quite poor continuity set.

In this section, we characterize dill maps which induce a well-defined function over this space.
Let us note d+

f = max
{

dH( f (u), f (v))
∣∣u,v ∈ Aθ

}
, and d−f = min

{
dH( f (u), f (v))

∣∣u 6= v ∈ Aθ
}

.

Proposition 24. Let F be any uniform dill map with diameter θ and local rule f . Then:

∀x,y ∈ AN,
θd−f
| f |
×dH(x,y)≤ dH(F(x),F(y))≤

θd+
f

| f |
×dH(x,y).

Proof. Let x,y ∈ AN and l ∈ N. It is clear that we can write l = | f |m+ r such that m ∈ N and r < | f |,
then :

F(x)J0,lJ = f (xJ0,θJ) f (xJ1,1+θJ) . . . f (xJm,m+θJ)J0,rJ, and

F(y)J0,lJ = f (yJ0,θJ) f (yJ1,1+θJ) . . . f (yJm,m+θJ)J0,rJ.

Hence if we note d = dH(F(x)J0,lJ,F(y)J0,lJ), then:
m

∑
i=0

(
dH( f (xJi,i+θJ), f (yJi,i+θJ))

)
− r ≤ d ≤

m

∑
i=0

dH( f (xJi,i+θJ), f (yJi,i+θJ))

m

∑
i=0

xJi,i+θJ 6=yJi,i+θJ

(
dH( f (xJi,i+θJ), f (yJi,i+θJ))

)
−| f |< d ≤

m

∑
i=0

xJi,i+θJ 6=yJi,i+θJ

dH( f (xJi,i+θJ), f (yJi,i+θJ))

m

∑
i=0

∃ j∈Ji,i+θJ,x j 6=y j

d−f −| f |< d ≤
m

∑
i=0

∃ j∈Ji,i+θJ,x j 6=y j

d+
f

∑
j∈Jθ ,m+θJ

x j 6=y j

∑
i∈K j−θ , jK

d−f −| f |< d ≤ ∑
j∈J0,m+θJ

x j 6=y j

∑
i∈K j−θ , jK

d+
f

∑
j∈Jδ ,m+θJ

x j 6=y j

θd−f −| f |< d ≤ ∑
j∈J0,m+θJ

x j 6=y j

θd+
f

dH(xJθ ,m+θJ,yJθ ,m+θJ)θd−f −| f |< d ≤ dH(xJ0,m+θJ,yJ0,m+θJ)θd+
f

dH(xJ0,mJ,yJ0,mJ)θd−f −θ
2d−f −| f |< d ≤ dH(xJ0,mJ,yJ0,mJ)θd+

f +θ
2d+

f .

Hence:

dH(xJ0,mJ,yJ0,mJ)θd−f −θ 2d−f −| f |
l

<
d
l
≤

dH(xJ0,mJ,yJ0,mJ)θd+
f +θ 2d+

f

l
θd−f
| f |
×

dH(xJ0,mJ,yJ0,mJ)−θ 2d−f −| f |
m+1

<
d
l
≤

θd+
f

| f |
×

dH(xJ0,mJ,yJ0,mJ)+θ 2d+
f

m
θd−f
| f |
×

dH(xJ0,m+1J,yJ0,m+1J)−θ 2d−f −| f |−1

m+1
<

d
l
≤

θd+
f

| f |
×

dH(xJ0,mJ,yJ0,mJ)+θ 2d+
f

m
.
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Finaly, since m→ ∞ when l→ ∞, then we find:

θd−f
| f |
×dH(x,y)≤ dH(F(x),F(y))≤

θd+
f

| f |
×dH(x,y).

In particular, the Cantor and Thue-Morse substitutions are well-defined over this space (we will
discuss them in the next subsection).

We now reach necessary and sufficient conditions for dill maps to induce well-defined dynamical
systems over this space.

Theorem 25. Let F be a dill map with diameter θ and local rule f . Then the following statements are
equivalents:

1. FdH is well-defined.

2. F is
θd+

f
| f | -Lipschitz with respect to dH .

3. F is either constant or uniform.

Proof.

3 =⇒ 2 It is clear from Proposition 24.

2 =⇒ 1 It is clear from the definition of Lipschitz function.

1 =⇒ 3 Assume that τ is nonuniform, i.e. there are two words u and v such that | f ∗(u)| 6= | f ∗(v)|. One
can assume that their longest common suffix has length δ − 1. Indeed, otherwise let a ∈ A, u′ =
uJ|u|−θ+1,|u|Jaθ−1 and v′ = vJ|u|−θ+1,|v|−1Jaθ−1−l; one can note that f ∗(uaθ−1) = f ∗(u) f ∗(u′) and
f ∗(vaθ−1) = f ∗(v) f ∗(v′), so that either

∣∣ f ∗(uaθ−1)
∣∣ 6= ∣∣ f ∗(vaθ−1)

∣∣, or | f ∗(u′)| =
∣∣ f ∗(uaθ−1)

∣∣−
| f ∗(u)| 6=

∣∣ f ∗(vaθ−1)
∣∣−| f ∗(v)| = | f ∗(v′)|, and both these pairs of words share a common suffix

of length at least θ −1. Assume without loss of generality that k = | f ∗(u)|− | f ∗(v)|> 0.

– First assume that there exist w ∈ A∗ and i ∈ N such that f ∗(w)i 6= f ∗(w)i+k. By our pre-
vious assumption, we know that w′ = uJ|u|−θ ,|u|Jw∞

J0,θJ = vJ|v|−θ ,|v|−1Jw∞

J0,θJ. F(uw∞) =

f ∗(u) f ∗(w′)F(w∞), so that for every j ∈ N, F(uw∞)| f ∗(u)|+| f ∗(w′)|+ j
∣∣∣ f ∗(w∞

J0,|w|+θJ)
∣∣∣+i

= wi. On

the other hand, F(vw∞)| f ∗(u)|+| f ∗(w′)|+ j
∣∣∣w∞

J0,|w|+θJ

∣∣∣+i
= F(vw∞)| f ∗(v)|+k+| f ∗(w′)|+ j

∣∣∣w∞

J0,|w|+θJ

∣∣∣+i
=

wi+k 6= wi. We deduce that dH(F(uw∞),F(vw∞)) ≥ 1∣∣∣w∞

J0,|w|+θJ

∣∣∣ . Since |u| = |v|, we know

dH(uw∞,vw∞) = 0, so that F is not well-defined over the quotient space.

– Otherwise, for all w ∈ A∗, i ∈ J0, |w|J, we have f ∗(w)i = f ∗(w)i+k. Let w′ ∈ A∗, such that
|w′| ≥ k and let w ∈ A∗. Then:

∀ j ∈ N, f ∗(w) j = f ∗(w′w) j+| f ∗(w′)| = f ∗(w′w) j+| f ∗(w′)| mod k = f ∗(w′) j+| f ∗(w′)| mod k.

Hence for all x ∈ AN, j ∈ N, we have F(x) j = f ∗(w′) j+| f ∗(w′)| mod k. So, F is constant.

Corollary 26. A substitution τ yields a well-defined dynamical system τ over XdH if and only if is 1-
Lipschitz with respect to dH .
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3.2 Equicontinuity

The following derives directly from Proposition 24 (and completeness of the Besicovitch space).

Corollary 27. Let F be a uniform dill map with diameter θ and local rule f .

1. If θd+
f ≤ | f |, then FdH is equicontinuous.

For example, for every substitution τ , τ is equicontinuous.

2. If θd+
f < | f |, then FdH is contracting: every orbit converges to a unique fixed point. For example,

for every substitution τ such that d+
τ < |τ|, τ is contracting.

3. If θd−f = | f |, then FdH is an isometry.
For example, for every substitution τ such that d−τ = |τ| (which means that the substitution is
everywhere marked: any two images have no letter in common), τ is an isometry.

Example 28. Let τ be a Tœplitz substitution. By definition and by Corollary 27, τ is contracting, so
that all orbits converge towards a unique fixed point: the class for ∼dH of the usual fixed points of the
substitution (which is unique if ∀a,b ∈ A,τ(a)0 = τ(b)0, but may not be otherwise, like for the Cantor
substitution).

Example 29. On the contrary, the Thue-Morse substitution is an isometry, thanks to Corollary 27.
In particular, if Στ is the orbit closure of the two fixed points, then for every x /∈ Στ , the pseudo-metric
dH(τ

t(x),Στ) is constantly positive, so that our intuition that orbits converge towards Στ , though justified
in the Cantor space, is completely false in the Besicovitch space.

Remark 30. The behaviors from Example 28 and 29 give an essentially full picture of what can occur.
Indeed, if there exists p ∈ N such that d+

τ p < |τ|p, then τ p is contracting; consequently, for every t ∈ N

the diameter of τ t(AN) is bounded by that of τ
pd t

p e(AN), which is bounded by
(

d+
τ p

|τ|p
)d t

p e
; so all orbits of

τ converge towards a unique fixed point.
If, on the other hand, for every t ∈ N, d+

τ t = |τ|, this means that there exists a subalphabet At ∈ A
containing at least two letters, such that a,b ∈ At =⇒ dH(τ

t(a),τ t(b)) = |τ|t . It is not difficult to see
that At ⊂ At+1, and since it is finite, the subalphabet A′ =

⋂
t∈N At contains at least two letters. Then

the restriction of τ to A′N is an isometry (because Proposition 24 remains true when the minimum and
maximum are taken over a subalphabet).

The links between dynamical properties in the Cantor space and in the Besicovitch space appeared
for cellular automata in [BFK97], [FK09]: in particular, sensitivity in the Besicovitch space implies
sensitivity in the Cantor space, or equicontinuity in the Cantor space implies equicontinuity in the Besi-
covitch space. Nevertheless, unlike for cellular automata, there exist dill maps which are equicontinuous
in the Cantor space but not in the Besicovitch space.

Example 31. Consider the dill map F with diameter 2 defined as the composition of the doubling
substitution and of the Min CA, or equivalently by the following local rule:

f : 00,01,10 7→ 00

11 7→ 11.

This dill map is 1-Lipschitz in the Cantor space, but FdH is not equicontinuous. We can even prove that
1∞ is 1−-unstable. For p ∈ N \ {0}, let y = (1p−10)∞. Remark that dH(x,y) = 1

p . On the other hand,
F p−1(y) = 0∞, so that dH(F p−1(1∞),F p−1(y)) = dH(1∞,0∞) = 1.
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Some weak robustness properties of cellular automata from [FK09], though, can be generalized to
dill maps, like in the following statement.

Proposition 32. Let F be a uniform dill map and m ∈ N. Then we have the following:

1. If FdH is sensitive, then σm
dH
◦FdH is sensitive, too.

2. If x is an equicontinuous point for FdH , then it is an equicontinuous point for σm
dH
◦FdH , too.

3. If FdH is equicontinnuous, then σm
dH
◦FdH is equicontinuous, too.

Proof. The key to proof the three statements is the following:

∀n ∈ N,(σm ◦F)n = σ∑
n−1
k=0 m| f |k ◦Fn.

Let us prove this by induction on n ∈ N. The case n = 0 is obvious. Suppose that for it is true for some
n.

(σm ◦F)k = (σm ◦F)◦ (σm ◦F)n

= σ
m ◦F ◦ (σ∑

n−1
k=0 m| f |k ◦Fn)

= σ
m ◦σ

| f |∑n−1
k=0 m| f |k ◦F ◦Fn,

which is the next step of the induction hypothesis. The last equality comes from the fact that F is
uniform, so that sn

x = | f |= ‖ f‖. Now we can deduce the proof of the statement: for all x,y ∈ AN and for
all n,m ∈ N:

dH((σ
m ◦F)n(x),(σm ◦F)n(y)) = dH(σ

∑
n−1
k=0 m| f |k(Fn(x)),σ∑

n−1
k=0 m| f |k(Fn(y)))

= dH(Fn(x),Fn(y)) (since dH is shift-invariant)

It was known that the cellular automata suit well in the Besicovitch pseudo-metric, and we have
seen in this section that it is also the case of uniform substitutions. But we proved that this is not true
for non-uniform substitutions. In the next section, we consider another topological space, in which both
cellular automata and substitutions are well-defined over this space.

4 Dill maps in the Feldman space

4.1 Shift

One of the motivation to study the Besicovitch space is that the shift is an isometry over this space. In
the Feldman space, this is still true, but even more than this: the shift is exactly the indentity.

Proposition 33. The shift over the Feldman space is the identity map.

Proof. Let x̃ ∈ XdL . If x ∈ x̃, then dL(xJ0,lJ,σ(x)J0,lJ) = dL(xJ0,lJ,xJ1,1+lJ) ≤ 1: simply delete the first
letter of xJ0,lJ and the last letter of σ(x)J0,lJ, to obtain xJ1,lJ in both cases. Hence :

dL(x,σ(x)) = limsup
l→∞

dL(xJ0,lJ,xJ1,1+lJ)

l
≤ limsup

l→∞

1
l
= 0.

Since every equivalence class is invariant by shift, dynamical systems over this space can be consid-
ered as acting on shift orbits.
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Lemma 34. For every x,y ∈ AN, if dL(x,y) = 0 then for all p ∈ N, there exists i, j ∈ N such that :

xJi,i+pJ = yJ j, j+pJ.

Proof. Let x,y ∈ AN such that dL(x,y) = 0 and p ∈ N. Then :

∀ε > 0,∃N > 0,∀n > N,dL(xJ0,nJ,yJ0,nJ)< n× ε.

Hence, for ε =
1

p+1
, there exists N1 > 0 such that for all n>N1 we have dL(xJ0,nJ,yJ0,nJ)<

n
p+1

. Then

for ε =
1

p+1
, there exists N = max{p+1,N1} such that for all n > N we have dL(xJ0,nJ,yJ0,nJ)<

n
p+1

.

Hence, there exists u ∈ Ap such that uv xJ0,nJ and uv yJ0,nJ. So, there exists i, j ∈ J0,n− pJ such that :

u = xJi,i+pJ = yJ j, j+pJ.

Lemma 35. Let F be a CA with diameter θ and local rule f . For every u ∈ Aθ , if dL(u∞,F(u∞)) = 0
then there exists k ∈ J0,θJ such that F(u∞) = σ k(u∞).

Proof. Let u ∈ Aθ be such that dL(u∞,F(u∞)) = 0. According to Lemma 34, there exist i, j ∈ N such
that F(u∞)Ji,i+θJ = (u∞)J j, j+θJ. Since both u∞ and F(u∞) are θ -periodic for the shift, one can write, for
every k ∈ N,

F(u∞)k = F(u∞)k−i mod θ+i = (u∞)k−i mod θ+ j = (u∞) j−i+k mod θ .

Hence F(u∞) = σ j−i+k mod θ (u∞).

Theorem 36. For every CA F we have, F ∈ ĩd ⇐⇒ ∃k ∈ N,F = σ k.

Proof.

”⇐ ” Proposition 33 proves that if F = σ k then F ∈ ĩd.

”⇒ ” Let F be a CA with diameter θ ∈ N \ {0} and local rule f such that F ∈ ĩd. Then for all x ∈ AN

we have dL(F(x),x) = 0. In particular, for all u ∈ Aθ we have dL(F(u∞),u∞) = 0. So according
to Lemma 35, we deduce that for all u ∈ Aθ , there exists ku ∈ J0,θJ such that f (u) = F(u∞)0 =
σ ku(u∞)0.
Defining k to be any common multiple of all the ku, for u ∈ Aθ , we have:

∀u ∈ Aθ , f (u) = σ
k(u∞)0 = uk mod θ .

This is exactly the local rule of σ k mod θ .

4.2 Lipschitz property of dill maps

Now, we aim at proving that, unlike in the Besicovitch space, all dill maps are well-defined in the
Feldman space.

Lemma 37. Let F be a dill map and M,M′ ∈ N such that for every u ∈ A∗ and every j ∈ J0, |u|J,

dL( f ∗(D j(u)), f ∗(u))≤M+
| f ∗(u)|−

∣∣ f ∗D j(u)
∣∣

2

dL( f ∗(D j(u)), f ∗(u))≤M′−
| f ∗(u)|−

∣∣ f ∗D j(u)
∣∣

2
.

Then for all l ∈ N and u,v ∈ Al , we have:

dL( f ∗(u), f ∗(v))≤ (M+M′)dL(u,v)−

∣∣∣ | f ∗(u)|− | f ∗(v)|∣∣∣
2

.
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Proof. Consider words u,v, and m such that:

D j1 ◦ · · · ◦D jm(u) = D j′1
◦ · · · ◦D j′m(v),

for some minimal edition sequences j1 < · · · < jm < |u| and j′1 < · · · < jm < |v|, so that dL(u,v) = m.
By the triangular inequality, one gets:

dL( f ∗(u), f ∗(v))≤
m

∑
k=1

dL( f ∗(D jk+1 ◦ · · · ◦D jm(u)), f ∗(D jk ◦ · · · ◦D jm(u)))+

+dL( f ∗(D j1 ◦ · · · ◦D jm(u)), f ∗(D j1 ◦ · · · ◦D jm(v)))+

+
m

∑
k=1

dL( f ∗(D j′k
◦ · · · ◦D j′m(v)), f ∗(D j′k+1

◦ · · · ◦D j′m(v))).

Now our two assumptions allow to write:

dL( f ∗(u), f ∗(v))≤
m

∑
k=1

(
M+

∣∣ f ∗(D jk+1 ◦ · · · ◦D jm(u))
∣∣− ∣∣ f ∗(D jk ◦ · · · ◦D jm(u))

∣∣
2

)
+0+

+
m

∑
k=1

M′+

∣∣∣ f ∗(D j′k
◦ · · · ◦D j′m(v))

∣∣∣− ∣∣∣ f ∗(D j′k+1
◦ · · · ◦D j′m(v))

∣∣∣
2


≤Mm+

| f ∗(u)|−
∣∣ f ∗(D j1 ◦ · · · ◦D jm(u))

∣∣
2

+M′m+

∣∣∣ f ∗(D j′1
◦ · · · ◦D j′m(v))

∣∣∣−| f ∗(v)|
2

≤ (M+M′)m+
| f ∗(u)|− | f ∗(v)|

2
.

Lemma 38. Let F be a dill map and M,M′ ∈ N such that for every u ∈ A∗ and every j ∈ J0, |u|J,

dL( f ∗(D j(u)), f ∗(u))≤M+
| f ∗(u)|−

∣∣ f ∗D j(u)
∣∣

2

dL( f ∗(D j(u)), f ∗(u))≤M′−
| f ∗(u)|−

∣∣ f ∗D j(u)
∣∣

2
.

Let x be such that for every i ∈ N,
∣∣ f (xJi,i+θJ)

∣∣≥ L. Then for every y ∈ AN,

dL(F(x),F(y))≤ M+M′

L
dL(x,y).

Proof. Let x,y ∈ AN and l ∈ N. Consider the largest k ∈ N such that
∣∣ f (xJ0,kJ)

∣∣ ≤ l. Then F(x)J0,lJ can
be written f (xJ0,kJ)w for some w of length less than ‖ f‖. Note that l = ∑

k−θ

i=0

∣∣ f (xJi,i+θJ)
∣∣≥ (k−θ +1)L.

Proposition 20 gives the following:

dL(F(x)J0,lJ,F(y)J0,lJ)≤ dL( f ∗(xJ0,kJ), f ∗(yJ0,kJ))+dL(w,F(y)J| f ∗(yJ0,kJ)|,lJ).

Note that the previous inequality still holds if
∣∣ f ∗(xJ0,kJ)

∣∣≥ l, in which case the second term is dL(w,λ )=
|w|
2 . Otherwise,

dL(w,F(y)J| f ∗(xJ0,kJ)|,lJ)≤
|w|+

∣∣∣F(y)J| f ∗(xJ0,kJ)|,lJ
∣∣∣

2

≤
|w|+(l−

∣∣ f ∗(yJ0,kJ)
∣∣)+(

∣∣ f ∗(yJ0,kJ)
∣∣− ∣∣ f ∗(xJ0,kJ)

∣∣)
2

.

<
(
∣∣ f ∗(yJ0,kJ)

∣∣− ∣∣ f ∗(xJ0,kJ)
∣∣)

2
+‖ f‖−1.
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We can use Lemma 37 to get:

dL(F(x)J0,lJ,F(y)J0,lJ)< (M+M′)dL(xJ0,kJ,yJ0,kJ)−

∣∣∣ ∣∣ f ∗(xJ0,kJ)
∣∣− ∣∣ f ∗(yJ0,kJ)

∣∣∣∣∣
2

+

+
(
∣∣ f ∗(yJ0,kJ)

∣∣− ∣∣ f ∗(xJ0,kJ)
∣∣)

2
+‖ f‖−1

< (M+M′)dL(xJ0,kJ,yJ0,kJ)+‖ f‖−1

Since l ≥ (k−θ +1)L, one can write:

dL(F(x)J0,lJ,F(y)J0,lJ)

l
<

(M+M′)dL(xJ0,kJ,yJ0,kJ)+‖ f‖−1
(k−θ +1)L

∼k→∞

M+M′

L
dL(xJ0,kJ,yJ0,kJ)

k

Finally since k tends to infinity when l tends to infinity, we have:

dL(F(x),F(y)) = limsup
l→∞

dL(F(x)J0,lJ,F(y)J0,lJ)

l

≤ limsup
k→∞

M+M′

L
dL(xJ0,kJ,yJ0,kJ)

k

≤ M+M′

L
dL(x,y).

Corollary 39.

1. Let F be a dill map and M,M′ ∈ N such that for every u ∈ A∗ and every j ∈ J0, |u|J,

dL( f ∗(D j(u)), f ∗(u))≤M+
| f ∗(u)|−

∣∣ f ∗D j(u)
∣∣

2

dL( f ∗(D j(u)), f ∗(u))≤M′−
| f ∗(u)|−

∣∣ f ∗D j(u)
∣∣

2
.

Then F is M+M′
| f | -Lipschitz.

2. Let F be any dill map with diameter θ , and x be such that for every i ∈N,
∣∣ f (xJi,i+θJ)

∣∣≥ L. Then,
for every y ∈ AN,

dL(F(x),F(y))≤ (2θ −1)
‖ f‖

L
dL(x,y).

For example, if f is a substitution τ and x is such that for every i ∈ N, |τ(xi)| ≥ L, then for every
y ∈ AN,

dL(τ(x),τ(y))≤
‖τ‖
L

dL(x,y).

3. In particular, any dill map with diameter θ and lower norm | f | is (2θ −1)‖ f‖
| f | -Lipschitz.

For example, any substitution τ yields a ‖τ‖|τ| -Lipschitz dynamical system.

Proof.
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1. Since, for all x ∈ AN, all i ∈ N, we have
∣∣ f (xJi,i+θJ)

∣∣≥ | f |, then according to Lemma 38, we find
that F is M+M′

| f | -Lipschitz.

2. Let u ∈ A2θ−1. Then according to Remark 18 we have:

dL( f ∗(u), f ∗(D j(u)))≤
| f ∗(u)|+

∣∣ f ∗(D j(u))
∣∣

2
.

Hence,

dL( f ∗(u), f ∗(D j(u)))≤ | f ∗(u)|−
| f ∗(u)|−

∣∣ f ∗(D j(u))
∣∣

2
≤ θ −

| f ∗(u)|−
∣∣ f ∗(D j(u))

∣∣
2

.

Also,

dL( f ∗(u), f ∗(D j(u)))≤
∣∣ f ∗(D j(u))

∣∣− ∣∣ f ∗(D j(u))−| f ∗(u)|
∣∣

2
≤ (θ −1)+

| f ∗(u)|−
∣∣ f ∗(D j(u))

∣∣
2

.

The result follows from Lemma 38.

3. Since, for all x ∈ AN we have
∣∣ f (xJi,i+θJ)

∣∣≥ | f |, then we deduce the result from 2.

4.3 Equicontinuity

Finally, we study some dynamical properties since the study of some other properties brings us to some
unsolved problems of word algorithmics and other with exponential complexity.

We can already derive from Corollary 27 (since the Besicovitch topology is less fine) that all uniform
substitutions yield equicontinuous dynamical systems in the Feldman space. The following theorem
generalizes the result by establishing a characterization of equicontinuous substitutions.

Theorem 40. Let τ be any substitution. Consider the dynamical system τ over the Besicovitch space.
Then:

1. The infinite words of A+
τ

N are equicontinuous.

2. The infinite words of (A+
τ

C
)N are not equicontinuous.

The following corollary can directly be derived from the theorem, by noting that A+
τ is never empty.

Corollary 41.

1. A substitution is equicontinuous if and only if all of its terminal components are maximum.

2. This is the case for irreducible substitutions, and uniform substitutions.

3. Every substitution admits at least one equicontinuous infinite word.

Proof of Theorem 40. Let τ be a substitution, M(τ) its matrix and ρ+ its spectral radius. In particular,
‖τ t‖ ≤ αρ t

+ for some α > 0.

1. Let x ∈ A+
τ

N, i.e. there exists β > 0 such that for every i ∈ N and t ∈ N, |τ t(xi)| > βρ t
+. From

Point 2 of Corollary 39, for every y ∈ AN,

dL(τ
t(x),τ t(y))≤ ‖τ

t‖
βρ t

+

dL(x,y)

≤ α

β
dL(x,y).

So all iterates τ
t are Lipschitz with a uniform coefficient: τ is equicontinuous.
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2. Consider any infinite word x ∈ (A+
τ

C
)N. By definition of A+

τ , ρ− = maxi∈N ρxi is strictly smaller
than the spectral radius ρ+ of M(τ). Let k ∈N\{0}, and y defined by yi = xi for every i /∈ kN, and
yi be any letter from a terminal maximal component, if i ∈ kN. Note that dL(x,y)≤ dH(x,y)≤ 1

k .
Besides, if u ∈ (A+

τ

C
)∗, then for every v ∈ A∗ of the same length, dL(u,v)≥ |{ i|J0, |v|J}vi ∈ A+

τ |,
because every edition sequence must delete at least all letters of A+

τ from v, and as many letters
from u. Also remark that if a is from a terminal maximal component, then τ t(a) contains no
letter from A+

τ

C, by definition. By combining the previous two arguments, we get that for every
u ∈ (A+

τ

C
)∗ and v ∈ A∗ such that |u|= |τ t(v)|, dL(u,τ t(v)) is at least the sum, for all vi that come

from a terminal maximal component, of the |τ t(vi)|. In particular, for every m ∈ N,

dL

(
τ

t(x)J0,|τ t(yJ0,kmJ)|J,τ
t(yJ0,kmJ)

)
≥

m−1

∑
i=0

∣∣τ t(yki)
∣∣

≥
∣∣τ t(yJ0,kmJ)

∣∣−m−1

∑
i=0

∣∣τ t(yKki,(k+1)iJ)
∣∣

≥
∣∣τ t(yJ0,kmJ)

∣∣
1− 1

1+ ∑
m−1
i=0 |τ t(yki)|

∑
m−1
i=0 |τ t(yKki,(k+1)iJ)|

 .

Now there exist α,β > 0 such that, for t ∈ N large enough, we have |τ t(a)| < αρ t
− for every

a ∈ (A+
τ

C
)N and |τ t(a)|> βρ t

+ for every a ∈ A+
τ

N. After renormalizing, we get:

dL

(
τ

t(x)J0,|τ t(yJ0,kmJ)|J,τ
t(y)J0,|τ t(yJ0,kmJ)|J

)
∣∣τ t(yJ0,kmJ)

∣∣ ≥ 1− 1

1+ β

(k−1)α

(
ρ+

ρ−

)t

Overall, we obtain:

dL(x,y)≥ limsup
m→∞

dL

(
τ

t(x)J0,|τ(yJ0,kmJ)|J,τ
t(y)J0,|τ t(yJ0,kmJ)|J

)
∣∣τ(yJ0,kmJ)

∣∣ = 1.

Since k was taken arbitrary, y is arbitrarily close to x, so that x is 1−-unstable.

Apart from the subalphabet argument from Point 2 of Theorem 40, it is usually quite hard to prove
lower bounds for the Feldman pseudo-metric. In particular, we have no example of a dill map without
equicontinuous infinite word.

Example 42. The Fibonacci substitution τ is primitive, so τ is equicontinuous in the Feldman space,
though almost no point is equicontinuous in the Besicovitch space (see Example 23).

Example 43. Let F be the Xor CA. Then neither FdL nor FdH is equicontinuous. Indeed, let us prove that
0∞ is 1−-unstable. Let k ∈ N, and y = 02k−11. Then dL(x,y)≤ dH(x,y)≤ 1

2k . A classical induction on k

gives that F2k−1(y) = 1∞ (for more details see [Kůr03, Example 5.6]). Hence:

dH(F p(x),F p(y)) = dL(F p(x),F p(y)) = 1.

Figure 1 illustrates that 1∞ is also a nonequicontinuous point.
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Figure 1: A non-equicontinuous point with respect to dL and dH .

Example 44. Let τ be a substitution defined as follows :

τ : 0 7→ 1

1 7→ 00.

Then, M(τ) =

[
0 1
2 0

]
and M(τ)2 =

[
2 0
0 2

]
. Hence, M(τ) is irreducible. So, according to Corollary 41,

we deduce that τdL is equicontinuous. More precisely, τ2 is actually the doubling substitution, proven to
be 1-Lipschitz by Corollary 39. Besides, it can be shown that the latter is even an isometry: the longest
common subword of τ2(u) and τ2(v) is always obtained from doubling a common subword of u and v.

Though primitive or uniform substitutions behave smoothly in our paces, other substitutions may be
more pathological.

Example 45. Let τ be a substitution defined over A = {0,1}N as follows :

τ : 0 7→ 0

1 7→ 11.

We can remark that, M(τ) =

[
1 0
0 2

]
, and, Mn(τ) =

[
1 0
0 2n

]
. Hence there are two compenents, {0} and

{1}, the latter being the the maximal compenent, so A+
τ = {1}. Then, according to Theorem 40, 1∞ is

an equicontinuous point of τdL and 0∞ is not, as illustrated in Figures 45 and 45 (where 1 is represented
in black, and 0 in red).

Figure 2: 1∞ is equicontinuous point for τ .
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Figure 3: 0∞ is a non-equicontinuous point for τ .

We have seen in the Besicovitch space (see 29) that the orbits a dill map may not converge towards
its classical limit set. We conjecture that this does not occur in the Feldman space. [GRK20, ORW82b],
prove together, among other results, that the limit set of a primitive substitution is a singleton in the
Feldman space. The tools involved may be useful to understand our question.

4.4 Expansiveness

For the case of Besicovitch space, it is already proved in [BFK97] that there is no expansive CA over
this space. By the same method, we prove that there is no expansive CA over the Feldman space. Note
that it does not derive directly from the corresponding result in the Besicovitch space, because some
infinite words could be in the same Feldman class, hence not concerned by the expansiveness property,
but not in the same Besicovitch class.

Theorem 46. There is no expansive CA in the Feldman space.

Proof. Let F be a CA with diameter θ and local rule f . Let ε > 0 and p ∈ N such that 1
1+p < ε . To

prove that F is not expansive it is enough to find two infinite words at nonzero Feldman pseudo-metric
such that dL(Fn(z),Fn(z′)) < ε,∀n ∈ N. From the proof of the case of Besicovitch space [BFK97] we
can take x,y ∈ AN such that :

x = 0n1
1n0

0n3
1n2 · · · .

y = 1n1
0n0

1n3
0n2 · · · .

We now distinguish four cases, depending on the image of 0θ and 1θ .

1. The first case is when f (0θ ) = f (1θ ) = 0. We find dL(F(x),0∞)≤ dH(F(x),0∞) = 0, then we take
z = 0∞ and z′ = x, since :

dL(F t(0∞),F t(x))≤ dH(F t(0∞),F t(x))< ε,∀t ∈ N.

2. If f (0θ ) = 0 and f (1θ ) = 1 we find dL(F(x),x)≤ dH(F(x),x) = 0, then:

dL(F t(0∞),F t(x))≤ dH(F t(0∞),F t(x)) =
1

n+1
< ε,∀t ∈ N.

3. If f (0θ ) = 1 and f (1θ ) = 1 we find dL(F(y),1∞)dH(F(y),1∞) = 0, then:

dL(F t(1∞),F t(y))≤ dH(F t(1∞),F t(y))< ε,∀t ∈ N.

4. If f (0θ ) = 1 and f (1θ ) = 0 then :
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• dL(1∞,F(0∞))≤ dH(1∞,F(0∞)) = 0 and dL(F(1∞),0∞)≤ dH(F(1∞),0∞) = 0.

• dL(F(x),y)≤ dH(F(x),y) = 0 and dL(x,F(y))≤ dL(x,F(y)) = 0.

Hence:
dL(F t(0∞),F t(x))≤ dH(F t(0∞),F t(x)) =

1
n+1

< ε,∀t ∈ N.

Then we found two pairs of infinite words (x,0∞) and (y,1∞) such that:

dL(F t(0∞),F t(x))≤ ε, and dL(F t(1∞),F t(y))≤ ε.

On the other hand, we can remark that dL(x,0∞)> 0 and dL(y,1∞)> 0. Hence, F is not expansive.

5 Conclusion and perspective

In this paper, we study CA, substitutions and in general dill maps over two non trivial topological spaces
(Besicovitch space and Feldman space). Those spaces were constructed using two pseudo-metrics de-
pending on two different edit distances over finite words (Hamming distance and Levenshtein distance).
Over the Feldman space, the shift is equal to the identity, there are no expansive CA, every substi-
tution is well-defined and admits at least one equicontinuous point. This topology turns out to be a
suitable playground for the study of the dynamical behavior of dill maps. The construction of the Feld-
man pseudo-metric was made only by changing the Hamming distance with another edit distance. This
makes it natural to suggest global definition, using any distance d over the set of finite words:

Definition 47. We define the centred pseudo-metric, denoted by Cd , as follows:

Cd(x,y) = limsup
l→∞

d(xJ0,lJ,yJ0,lJ)

maxu,v∈Al d(u,v)
,∀x,y ∈ AN.

On the other hand, a similar pseudo-metric known as Weyl pseudo-metric, also based on dH , mea-
sures the density of differences between two given sequences in arbitrary segments of given length. A
general definition, based on any distance d over finite words, would become:

Definition 48. We define the sliding pseudo-metric, denoted by Sd , as follows:

Sd(x,y) = limsup
l→∞

max
k∈N

d(xJk,k+lJ,yJk,k+lJ)

maxu,v∈Al d(u,v)
,∀x,y ∈ AN.

The Weyl space shares many properties with the Besicovitch space; one of the main differences is
that it is not complete, according to [DI88]; in terms of dynamics an open question is whether there
exists an expansive cellular automaton over the Weyl space. A relevant question is now the following:
Which properties of distance d make dill map well-defined in the corresponding pseudometrics?

Generalizations exist of Besicovitch pseudometrics over groups (see for instance [LS16, CGN20]).
An interesting work would be to generalize more of these metrics to this setting. Let us replace (N,+),
generated by 1, by a monoid (M, ·) generated by a finite set G , that we assume without torsion element:
for every g ∈M,

{
gk
∣∣k ∈ N

}
is infinite. A pattern with finite support U ⊂M is u ∈ AU . If U = g ·V ,

then the translate by g ∈M of a pattern u is the pattern σg(u) defined over support V such that σg(u)i =
ug·i. The deletion Dg

j at position j ∈M with respect to generator g ∈ G is the function mapping any
pattern u with some support U into the pattern v defined over support V = U \

{
jgk
∣∣ jgk+1 /∈U

}
∪{

jgk
∣∣ jgk+1 ∈U

}
by v jgk = u jgk+1 , vi = ui otherwise. By torsion-freeness, |V |= |U \{i}|. Now one can

consider, as a variant of the Levenshtein, the following: the distance dM(u,v) between patterns u and
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v is the minimal number m+m′ of deletions such that Dg1
j1 ◦Dg2

j2 ◦ · · ·D
gm
jm (u) and Dg′1

j′1
◦Dg′2

j′2
◦ · · ·Dg′m′

j′m′
(u)

have a common translate. The Feldman-like pseudo-metric over configurations of AM, endowed with a
spanning sequence (Fn)n∈N of finite sets of M, would then be:

dM = limsup
n→∞

dM(xFn ,yFn

|Fn|
.

It is not clear exactly when this pseudo-metric would not behave pathologically, but probably Føolner
conditions should be assumed (see [CGN20]).
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