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Abstract Argumentation in Dynamic Logic:

Representation, Reasoning and Change

Sylvie Doutre, Andreas Herzig and Laurent Perrussel

Abstract We provide a logical analysis of Dung’s abstract argumentation 
frameworks and their dynamics. We express attack relation and argument status by 
means of propositional variables and define acceptability criteria by formulas of 
propositional logic, which enables us to formulate the standard reasoning problems 
in logic. While the approaches in the literature express these problems as boolean or 
quantified boolean formulas, we here take advantage of a variant of Propositional 
Dynamic Logic PDL: Dynamic Logic of Propositional Assignments DL-PA, whose 
atomic programs are assignments of propositional variables to truth values. One of 
the benefits is that algorithms computing extensions of argumentation frameworks 
can be viewed as particular DL-PA programs. This allows us to formally prove the 
correctness of these algorithms. Another benefit is that in the same logic we can also 
design and study programs which modify argumentation frameworks. Indeed, the 
basic operations on these propositional variables, viz. change of the truth values of the 
attack variables and the argument status variables, are nothing but atomic programs 
of DL-PA. We mainly focus on how the acceptance of one or more arguments can 
be enforced and show how this can be achieved by changing the truth values of the 
propositional variables describing the attack relation in a minimal way.

1 Introduction

Argumentation is a reasoning model based on the construction and on the evalua-
tion of arguments. The seminal approach by Dung [31] defines an argumentation
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framework (henceforth abbreviated AF) as a set of arguments along with an attack
relation between them. The arguments are abstract: their structure and origin are
left unspecified. Dung and his followers defined various semantics for the evaluation
of the acceptability of arguments. We here focus on semantics in terms of exten-
sions: subsets of the set of arguments that are collectively acceptable. Several such
semantics were proposed and discussed in the literature. We refer to [5, 6] for a
comprehensive overview of the principles underlying extension-based AF semantics
as well as other AF semantics.

Extension-based semantics were analysed in several logical frameworks, includ-
ing propositional logic [12], Answer-Set Programming [35], Alternating-time Tem-
poral Logic [11], and quantified Boolean formulas QBF [2, 27]. Their encodings of
AFs in logic typically make use of two kinds of propositional variables: attack vari-
ables such as ra,b express that argument a attacks b and acceptance variables such
as ina express that a is accepted. The various semantics can then be characterised
in that language by boolean formulas built from attack and acceptance variables,
constraining the valuations to correspond to the extensions under the semantics:
each model of the formula stands for an extension of the AF.

In the present paper we advocate another logical framework: Dynamic Logic of
Propositional Assignments, abbreviated DL-PA [4]. DL-PA is a simple instantiation of
Propositional Dynamic Logic PDL [36, 37] whose atomic programs are assignments
of propositional variables to either true or false. Complex programs are built as
usual from atomic programs by the standard PDL program operators of sequential
composition, nondeterministic composition, converse, and test. It is shown in [4]
that every DL-PA formula can be reduced to an equivalent propositional formula.
The aim of our paper is to show that DL-PA provides an interesting tool to reason
about AFs and their modification.

There are two immediate benefits of the DL-PA framework. The first that a given
semanticsσ can be characterized by means of a DL-PA formula. While this is a priori
not surprising—given that DL-PA and propositional logic have the same expressive
power—, it is of interest because DL-PA formulas are sometimes more compact.
This applies in particular to the preferred semantics: it is one level higher in the
polynomial hierarchy than the other semantics and can therefore not be captured by
a polynomial propositional logic formula; we provide a polynomial DL-PA formula.

The second benefit is that, being a dynamic logic, DL-PA can account for the
dynamics that is at work in the construction of extensions. To start with, we can
define a general family of non-deterministic DL-PA programs building all extensions
of a given AF. These programs are parametrized by a given semantics σ and follow a
generate-and-test schema: they generate all logically possible extensions and then test
the (propositional or DL-PA) formula characterizing the semantics. Such programs
exist for every semantics that can be characterised by a DL-PA formula. When
executed in a valuation describing an AF they build all the extensions of that AF.
The above generic algorithm can be improved by recasting specific more efficient
algorithms into DL-PA programs, enabling formal verification of correctness.

The third and main benefit of DL-PA is that it provides a suitable framework
to account for the dynamics of AFs. Indeed, authors from several places recently



investigated that issue, including [8, 7, 9, 10] from Leipzig, [15, 14, 16, 13, 47]
from Toulouse, [22, 20, 23, 21, 44, 25] from Lens, [17] from Luxembourg, [32]
from London, [26] from Vienna, and [45, 48] from Helsinki. They are all based on
a representation of AFs in propositional logic. They start by distinguishing several
kinds of AF modifications, such as the addition or the removal of attacks, or the
enforcement of the acceptability of a given argument a, as well as several kinds of
success criteria, e.g. such that a is part of at least one extension, or of all extensions.
All these papers build on previous work in belief change, either referring to AGM
theory [1], such as [17, 22], or to KM theory [41], such as [14]. They express the
modification as a logical formula describing some goal, i.e., a property that the AF
should satisfy: the task is to revise/update the AF so that this formula is true. An
overview of the contributions on the dynamics of AFs can be found in [30].

The above papers do not provide a single framework encompassing at the same
time an AF, the logical definition of the enforcement constraint and the change
operations: there is usually one language for representing AFs and another language
for representing constraints, plus some definitions in the metalanguage connecting
them. As we are going to show, DL-PA provides a general, unified logical framework
for both the representation and the update of AFs. We start by showing that the
construction of extensions under a given semantics can be performed by a DL-PA

program that is parametrized by the formula describing the semantics. Then we
consider modifications of the attack relation and/or of the extensions. Modifications
of the extensions are enforced by changing the attack relation only (addition or
removal of attacks between the existing arguments). This can be achieved by changing
the truth values of the attack variables. More precisely, to every input formula ϕ
describing the desired modification we associate a DL-PA program πϕ implementing
the update by ϕ. We can then check whether a formula ψ is true in all (resp. in some)
extensions of (the AF resulting from) the update of the AF by the goal ϕ.

The paper is organized as follows. In the next section we introduce DL-PA. In
Section 3 we recall the definitions of an AF and of various semantics as well as their
encoding in propositional logic and in DL-PA. In Section 4 we show how extensions
can be built by means of DL-PA programs. In Section 5 we discuss several possible
kinds of modifications of an AF. We then focus in Section 6 on the most challenging
kind of operation: modifications enforcing a goal either in all extensions or in some
extension. We apply it to the modification of the attack relation and of the extensions
(Section 7). After that, we discuss several ways to extend our framework in order to
capture other kinds of modifications (Section 8). The last section concludes.

The present paper extends and generalises previous work that was presented at
KR’2014 [28] and complemented in [29]. We have in particular elaborated how the
semantics can be compactly described by means of DL-PA formulas and how it can
be computed by means of DL-PA programs.



2 Dynamic Logic of Propositional Assignments

We now introduce our logical framework: Dynamic Logic of Propositional Assign-
ments DL-PA [39, 4, 3, 38]. DL-PA is an instance of Propositional Dynamic Logic
PDL [36, 37]. It has the same program operators: sequential and nondeterministic
composition, converse, iteration, and test. However, the atomic programs of DL-PA

are not abstract as in PDL, but concrete assignments of truth values to propositional
variables: the assignment of true to p is written p←⊤ and the assignment of false to
p is written p←⊥. The formulas of DL-PA express what holds after the execution of
a program.

We here base our work on the star-free version of DL-PA of [39] that we extend by
the operator of converse execution of programs as done in [38]. We keep on calling
that logic DL-PA.

In the rest of the section we define syntax and semantics of DL-PA, state its
relevant properties and introduce some useful programs.

2.1 Language

The language of star-free DL-PA is defined by the following grammar:

ϕ F p | ⊤ | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

π F p←⊤ | p←⊥ | π; π | π ⊔ π | π− | ϕ?

where p ranges over the set of propositional variables P.
The key formula 〈π〉ϕ reads “ϕ holds after some execution of π”. The atomic

programs p←⊤ and p←⊥ respectively make p true and make p false. The operators
of sequential composition (“;”), nondeterministic composition (“⊔”) and test (“(.)?”)
are familiar from PDL. The operator “(.)−” is the operator of converse execution. So
〈π−〉ϕ can be read “ϕ was true before some execution of π”.

An expression is a formula or a program. We use ǫ to denote expressions.
Let P ⊆ P be a set propositional variables. The set of DL-PA formulas that can

be built from P is noted Lang(P). Given an expression ǫ , the set of variables from
P occurring in ǫ is noted P(ǫ). So P(ϕ) is the set of propositional variables from P
occurring in the formula ϕ. For example, P(p←⊤⊔ q←⊥) = {p, q} = P(〈p←⊥〉q).

The length of an expression ǫ , noted |ǫ |, is the number of symbols used to write
down ǫ , without “〈”, “〉”, and parentheses. For example, |¬(q ∨ ¬r)| = 1+(1+1+2) =

5, |〈q←⊤〉(q ∨ r)| = 3+3 = 6, and |p←⊥; p?| = 3+1+2 = 6.
Conjunction (∧), implication (→) and equivalence (↔) are considered with their

usual meaning. We also make use of the exclusive disjunction ϕ⊕ψwhich abbreviates
(ϕ∧¬ψ) ∨ (¬ϕ∧ψ). The formula [π]ϕ abbreviates ¬〈π〉¬ϕ. So [π]ϕ has to be read
“ϕ holds after every execution of π”.



2.2 Semantics of DL-PA

Models of DL-PA formulas are nothing but models of classical propositional logic,
i.e., subsets of the set of propositional variablesP, alias valuations. We use v, v′,. . . for
valuations. We sometimes write v(p) = 1 when p ∈ v and v(p) = 0 when p < v.

DL-PA formulas ϕ are interpreted as sets of valuations | |ϕ| | ⊆ 2P. When v ∈ ||ϕ| |

we say that v is a model of ϕ, or a ϕ-model. DL-PA programs π are interpreted as
relations between valuations | |π | | ⊆ 2P×P. The definitions of | |ϕ| | and | |π | | are by
mutual recursion just as in PDL, where the atomic programs p←⊤ and p←⊥ are
interpreted as update operations on valuations. Table 1 gives the interpretation of the
DL-PA connectives. For instance, suppose P is the singleton {p}. Consider the atomic
program π = p←⊤ and the two valuations v1 = ∅ and v2 = {p}. The execution of π
relates v1 to v2, and v2 to itself. So π is interpreted as | |π | | = {(v1, v2), (v2, v2)}.

Two formulas ϕ1 and ϕ2 are formula equivalent if | |ϕ1 | | = | |ϕ2 | |. Two programs
π1 and π2 are program equivalent if | |π1 | | = | |π2 | |. In that case we write π1 ≡ π2.
For example, the program equivalence π; skip ≡ π holds. When we say that two
expressions are equivalent we mean program equivalence if we are talking about
programs, and formula equivalence otherwise.

A formula ϕ is valid if it is equivalent to⊤, i.e., if | |ϕ| | = 2P. It is satisfiable if it is
not a formula equivalent to ⊥, i.e., if | |ϕ| | , ∅. For example, the formulas 〈p←⊤〉⊤
and 〈p←⊤〉ϕ↔ ¬〈p←⊤〉¬ϕ are both valid.

| |p←⊤| | = {(v1, v2) : v2 = v1 ∪ {p}}

| |p←⊥| | = {(v1, v2) : v2 = v1 \ {p}}

| |π; π′ | | = | |π | | ◦ | |π′ | |

| |π ⊔ π′ | | = | |π | | ∪ | |π′ | |

| |π− | | = | |π | |−1

| |ϕ? | | = {(v, v) : v ∈ | |ϕ | | }

| |p | | = {v : p ∈ v}xxxxxxy

| |⊤ | | = 2P

| |⊥ | | = ∅

| |¬ϕ | | = 2P \ | |ϕ | |

| |ϕ ∨ ψ | | = | |ϕ | | ∪ | |ψ | |

| | 〈π 〉ϕ | | =
{
v : there is v

′ such that (v, v′) ∈ | |π | | and v
′ ∈ | |ϕ | |

}

Table 1 Interpretation of the DL-PA connectives



2.3 Properties of DL-PA

As in any reasonable logic, replacement of equivalents is valid in DL-PA: equivalence
is preserved under replacement of one or more sub-expressions by an equivalent
expression [4].1

The fact that DL-PA formulas are interpreted through classical propositional logic
valuations indicates that modal operators can be eliminated. Indeed, every DL-PA

formula is equivalent to a boolean formula.

Theorem 1 ([4, 38]) For every DL-PA formula there is an equivalent boolean for-

mula.

The proof uses valid equivalences that together make up a complete set of reduc-
tion axioms. For example, 〈p←⊥〉q is equivalent to ⊤ if p and q are identical, and
is equivalent to q otherwise. For a more complex example, consider two different
propositional variables r and p and the formula 〈p←⊥〉(p ∨ r). It is successively
equivalent to 〈p←⊥〉p∨ 〈p←⊥〉r , to ⊥∨ r , and to r . Note that the boolean formula
resulting from the reduction might be exponentially longer than the original formula.

The satisfiability problem is to decide whether | |ϕ| | , ∅ for a given formula ϕ;
the model checking problem is to decide whether v ∈ ||ϕ| | for a given formula ϕ and
valuation v.

Theorem 2 ([3]) The satisfiability problem and the model checking problem for

DL-PA are both PSPACE complete.

2.4 Some Useful DL-PA Programs

We now define some DL-PA programs that will be useful in the rest of the paper.
The first programs are familiar from PDL: if ϕ then π1 else π2 abbreviates

(ϕ?; π1)⊔(¬ϕ?; π2) and while ϕ do π abbreviates (ϕ?; π)∗;¬ϕ?. Moreover, we define
πn and π≤n inductively by

πn =

{
skip if n = 0

π; πn−1 if n ≥ 1

π≤n =

{
skip if n = 0

( skip ⊔ π); π≤n−1 if n ≥ 1

where skip stands for ⊤? (“nothing happens”).
Next, we define assignments of literals to variables:

1 Note that replacements cannot be applied to variables in assignments such as to p in p←⊤: the
result would not be well-formed.



p←q = (q?; p←⊤) ⊔ (¬q?; p←⊥)

p←¬q = (q?; p←⊥) ⊔ (¬q?; p←⊤)

The former assigns to p the truth value of q, while the latter assigns to p the truth
value of ¬q. So p←p does nothing and p←¬p flips the truth value of p. Note that
both abbreviations have constant length, viz. 14.

mkTrueOne(P) =
⊔
p∈P

(p?; p←⊥) = (p1?; p1←⊤) ⊔ · · · ⊔ (pn?; pn←⊤)

mkFalseOne(P) =
⊔
p∈P

(¬p?; p←⊤) = (¬p1?; p1←⊥) ⊔ · · · ⊔ (¬pn?; pn←⊥)

flipOne(P) =
⊔
p∈P

(p←¬p) = p1←¬p1 ⊔ · · · ⊔ pn←¬pn

mkTrueSome(P) = ;
p∈P

(p←⊤⊔ skip) = (p1←⊤⊔ skip) ; · · · ; (pn←⊤⊔ skip)

mkFalseSome(P) = ;
p∈P

(p←⊥⊔ skip) = (p1←⊥⊔ skip) ; · · · ; (pn←⊥⊔ skip)

flipSome(P) = ;
p∈P

(p←⊤⊔ p←⊥) = (p1←⊤⊔ p1←⊥) ; · · · ; (pn←⊤⊔ pn←⊥)

Table 2 DL-PA programs modifying variables in P = {p1, . . . , pn }

It will be useful to associate sequences of atomic assignments to sets of proposi-
tional variables P = {p1, . . . , pn} by identifying ;p∈P p←⊤with p1←⊤; · · · ; pn←⊤

and likewise ;p∈P p←⊥ with p1←⊥; · · · ; pn←⊥. Note that the interpretation does
not depend on the order of the variables in P. Note also that this no longer holds if
we generalise from atomic assignment programs to complex programs.

Finally, Table 2 collects programs that are going to be instrumental in the rest of the
paper. They modify the truth values of one or more propositional variables in a given
finite subset P = {p1, . . . , pn} of P: We understand that all these programs equal skip

when n is zero. The program mkTrueOne(P) makes exactly one variable true that
was not true yet; symmetrically for mkFalseOne(P). flipOne(P) nondeterministically
chooses a variable from P and nondeterministically sets it to either true or false. It is
equivalent to mkTrueOne(P)⊔mkFalseOne(P). The program mkTrueSome(P)makes
zero or more variables of P true; symmetrically for mkFalseSome(P). flipSome(P)

nondeterministically sets the value of each variable pi to either to true or false.
Observe that the length of each program is linear in the cardinality of P. Observe

also that the order of the variables in P does not matter. This can be seen from the
following lemma characterising the behaviour of the programs. It uses the symmetric
difference between two valuations, which is the number of variables whose truth
values differs: v1 Û−v2 is the set of all those p such that v1(p) , v2(p). This is formally
defined as v1 Û−v2 = (v1 \ v2) ∪ (v2 \ v1). For example, the symmetric difference
between the valuations {p, q} and {q, r, s} is {p, r, s}.



Lemma 1 Let P ⊆ P be some set of propositional variables. Then the following hold.

| |mkTrueOne(P)| | = {(v, v′) : v
′
= v ∪ {pk} for some pk ∈ P}

| |mkFalseOne(P)| | = {(v, v′) : v
′
= v \ {pk} for some pk ∈ P}

| |flipOne(P)| | = {(v, v′) : v Û−v
′
= {pk} for some pk ∈ P}

| |mkTrueSome(P)| | = {(v, v′) : v
′
= v ∪ P for some P ⊆ P}

| |mkFalseSome(P)| | = {(v, v′) : v
′
= v \ P for some P ⊆ P}

| |flipSome(P)| | = {(v, v′) : v Û−v
′ ⊆ P}

Proof We only prove the cases of flipSome(P) and flipOne(P). They are stated
without proof in [38, Proposition 5].

For flipSome(P), if the set P = {p1, . . . , pn} is empty then flipSome(P) = skip

and we are done. If it is a singleton then we have

| |flipSome({p1})| | = | |p1←⊤⊔ p1←⊥||

= | |p1←⊤|| ∪ ||p1←⊥||

=

{
(v, v′) : v

′
= v ∪ {p}

}
∪

{
(v, v′) : v

′
= v \ {p}

}
=

{
(v, v′) : v Û−v

′ ⊆ {p}
}

Then the result for the general case of an arbitrary set of variables P should be clear
(even if the proof is a bit lengthy to spell out).

For flipOne(P), if P is empty then flipOne(P) = skip. For a single flip we have:

| |pk←¬pk | | = | |(pk?; pk←⊥) ⊔ (¬pk?; pk←⊤)||

= | |pk?; pk←⊥|| ∪ ||¬pk?; pk←⊤||

=

{
(v, v′) : pk ∈ v and pk < v

′
}
∪

{
(v, v′) : pk < v and pk ∈ v

′
}

=

{
(v, v′) : v Û−v

′
= {pk}

}
Therefore | |flipOne(P)| | equals {(v, v′) : v Û−v

′
= {pk} for some pk ∈ P}. �

Consider the set of propositional variables P = {p, q, r}. The set of valuations
for that language is 2P. Consider the formula ϕ = p ∧ ¬q. Then flipSome(P(ϕ)) =

flipSome({p, q}) = (p←⊤⊔p←⊥) ; (q←⊤⊔q←⊥). Its interpretation varies the truth
values of p and q in all possible ways: | |flipSome(P(ϕ))| | =

{
(v, v′) : v Û−v

′ ⊆ {p, q}
}
.

The interpretation of the test ϕ? is {({p}, {p}), ({p, r}, {p, r})}. The sequential com-
position of flipSome(P(ϕ)) and ϕ? therefore is:

| |flipSome(P(ϕ)); ϕ?| | =
{
(v, v′) : v

′ ∈ ||ϕ| | and v Û−v
′ ⊆ {p, q}

}
.

So the pair ({p}, {q}) is a possible execution of the program flipSome(P(ϕ)); ϕ?.
More generally, programs of the form flipSome(P(ϕ)); ϕ? accesses all relevant

ϕ-models, where ‘relevant’ means that the truth values of variables not occurring in
ϕ are keep constant. It follows that the satisfiability of a boolean formula ϕ can be
expressed in DL-PA. The result below is stated without proof in [38].



Lemma 2 Let ϕ be a DL-PA formula. ϕ is satisfiable iff 〈flipSome(P(ϕ)); ϕ?〉⊤ is

valid.

Proof Suppose 〈flipSome(P(ϕ)); ϕ?〉⊤ is DL-PA valid. Let v be some valuation.
By the interpretation of the dynamic operator there exists a valuation v

′ such that
(v, v′) ∈ | |flipSome(P(ϕ)); ϕ?| |. This means that there exists a valuation v

′′ such that
(v, v′′) ∈ | |flipSome(P(ϕ))| | and (v′′, v′) ∈ | |ϕ?| |. The latter means that v

′ ∈ ||ϕ| |: we
have found a valuation where ϕ is true.

The other way round, suppose ϕ is propositionnally satisfiable, i.e., there is some
model vϕ of ϕ. Let v be an arbitrary valuation. Let v

′
ϕ be the valuation which interprets

the variables of ϕ in the same way as vA and interprets the other variables in the
same way as v:

v
′
ϕ = (vϕ ∩ P(ϕ)) ∪ (v ∩ (P \ P(ϕ)))

This is clearly also an ϕ-model. (Indeed, for every p that does not occur in ϕ we have
v∪{p} ∈ ||ϕ| | iff v\{p} ∈ ||ϕ| |.) As v Û−v

′
ϕ ⊆ P(ϕ)we have (v, v′ϕ) ∈ | |flipSome(P(ϕ))| |

by Item 1 of Lemma 1. And as v
′
ϕ is an ϕ-model we have (v′ϕ, v

′
ϕ) ∈ | |ϕ?| |. So (v, v′ϕ) ∈

| |flipSome(P(ϕ)); ϕ?| |, from which it follows that v ∈ ||〈flipSome(P(ϕ)); ϕ?〉⊤||. As
v was arbitrary, 〈flipSome(P(ϕ)); ϕ?〉⊤ is DL-PA valid. �

3 Describing AFs and their Semantics by Formulas

In the present section we recall the main definitions of abstract AFs. We do so in
terms of the language of DL-PA. We show in particular that minimization-based and
maximization-based semantics can be handled in an elegant way by taking advantage
of the programs of DL-PA.

3.1 AFs and their Representation in Propositional Logic

We suppose given a finite set of arguments A = {a1, . . . , an}. We associate to each
couple of arguments (a, b) ∈ A2 an attack variable ra,b . Furthermore, we associate
to every argument a ∈ A an acceptance variable ina expressing that a is accepted.
So the respective sets of such variables are:

ATTA = {ra,b : (a, b) ∈ A × A}

INA = {ina : a ∈ A}

In the rest of the paper we suppose that the set of propositional variables is
P = ATTA ∪ INA. So our language is Lang(ATTA ∪ INA); the set Lang(ATTA) are the
formulas that can be built from attack variables only, and Lang(INA) are those that
can be built from acceptance variables only.



An abstract AF as defined by Dung in [31] is a pair G = (A, R) where R ⊆ A × A
is the attack relation. So AFs are nothing but finite directed graphs with arguments
as vertices and attacks as edges. The theory of G = (A, R) is the boolean formula

θ(G) =
©­«

∧
(a,b)∈R

ra,b
ª®¬
∧

©­«
∧

(a,b)∈(A×A)\R

¬ra,b
ª®¬
.

We clearly have that ra,b ∈ ||θ(G)| | if and only if (a, b) ∈ R.
Just as θ(G) represents the attack relation in propositional logic, an extension

E ⊆ A can be represented by the formula

θ(E,A) =
∧
a∈E

ina

)
∧

©­«
∧

a∈A\E

¬ina
ª®¬
.

3.2 Semantics of an AF

Many semantics were defined for acceptability. Some of them are extension-based,
some others are labelling-based. We here only consider the first: they prevail in the
literature, and moreover labelling-based semantics have equivalent extension-based
formulations [6].

As proposed in [12] and extensively discussed in [34], many definitions of exten-
sions can be captured in propositional logic. In this paper we consider the following.

A stable extension of (A, R) is a set of arguments E ⊆ A such that it does not exist
two arguments a and b in E such that (a, b) ∈ R (that is, E is conflict-free), and for
each argument b < E , there exists a ∈ E such that (a, b) ∈ R (any argument outside
the extension is attacked by the extension).

An admissible set of (A, R) is a conflict-free set E ⊆ A that defends all its elements:
for all a ∈ E , if there exists b such that (b, a) ∈ R, then there is some argument c ∈ E

such that (c, b) ∈ R.2
A complete extension of (A, R) is an admissible set E ⊆ A that contains all

the arguments it defends, that is: if an argument a is such that, for all b such that
(b, a) ∈ R, there exists some c ∈ E such that (c, b) ∈ R, then a ∈ E .

A preferred extension of (A, R) is an admissible set E ⊆ A that is maximal w.r.t.
inclusion.

A grounded extension of (A, R) is a complete extension E ⊆ A that is minimal
w.r.t. inclusion.

Their definitions in propositional logic are collected in Table 3. Given a definition
of a semantics σ (stable, admissible, or complete) and a set of arguments A, θ(σ,A)
denotes the associated logical characterisation of σ. Computing the extensions of

2 Admissibility is usually considered to be a building brick of other, stronger semantics, but we
consider it here as a semantics on its own, the construction of admissible sets following the same
process as the construction of extensions.



θ(stable, A) =
∧
a∈A

ina ↔
∧
b∈A

(rb,a → ¬inb )

)

θ(admissible, A) =
∧
a∈A

ina →
∧
b∈A

(
rb,a →

(
¬inb ∧

∨
c∈A

(inc ∧ rc,b )
)))

θ(complete, A) =
∧
a∈A

((
ina →

∧
b∈A

(rb,a → ¬inb )
)
∧

(
ina ↔

∧
b∈A

(
rb,a →

∨
c∈A

(inc ∧ rc,b )
)))

θ(preferred, A) = θ(admissible, A) ∧
[
mkTrueOne(A); mkTrueSome(A)

]
¬θ(admissible, A)

θ(grounded, A) = θ(complete, A) ∧
[
mkFalseOne(A); mkFalseSome(A)

]
¬θ(complete, A)

Table 3 Argumentation semantics θ(σ, A) in propositional logic, for σ being the stable, admissi-
ble, complete, preferred, or grounded semantics

an AF G under semantics σ amounts to finding the models of the conjunction
G∧ θ(σ,A). The following proposition connects extensions and valuations for all the
above semantics.

Proposition 1 Let G = (A, R) be an AF and let E ⊆ A. Let σ be either the stable,

admissible, complete, preferred or grounded semantics. E is a σ-extension of G if

and only if
(
θ(G) ∧ θ(E,A)

)
→ θ(σ,A) is DL-PA valid.

Proof The result for stable, admissible, and complete semantics follow from propo-
sitions 5, 6, and 8 in [12].

The results for the preferred and the grounded semantics follows from the follow-
ing program equivalences:

| |mkTrueOne(P); mkTrueSome(P)| | =
{
(v, v ∪ P′) : v ⊆ 2P and ∅ ⊂ P′ ⊆ P

}
| |mkFalseOne(P); mkFalseSome(P)| | =

{
(v ∪ P′, v) : v ⊆ 2P and ∅ ⊂ P′ ⊆ P

}
where P is some set of propositional variables. �

Corollary 1 Let G = (A, R) be an AF. Letσ be either the stable, admissible, complete,

preferred or grounded semantics.

1. E ⊆ A is a σ-extension of G if and only if there is a v ∈ ||θ(G) ∧ θ(σ,A)| | such

that E = {a : ina ∈ v}.

2. Let γ ∈ Lang(ATTA ∪ INA) be a formula describing some property of A. All

σ-extensions of G have property γ if and only if θ(G) ∧ θ(σ,A) → γ is DL-PA

valid.

Proof The first item summarises the preceding proposition. (Observe that when
v ∈ ||G| | then E = {a : ina ∈ v} implies that v = vE .)

As to the second item, by Proposition 1, γ is true in all extensions of G if and only
if γ is true in every model of θ(G) ∧ θ(σ,A), i.e., iff θ(G) ∧ θ(σ,A) → γ is DL-PA

valid. �



An AF may have none, one or several extensions, depending on the number of
models of θ(G) ∧ θ(E,A).

Example

Consider the set of arguments A1 = {a, b} and the two AFs G1 = (A1, R1) and
G2 = (A1, R2), with R1 = {(a, b)} and R2 = {(a, b), (b, a)}. They are depicted in
Figure 1.

a ✲ b a
✲

✛ b

Fig. 1 G1 (left) and G2 (right)

The associated propositional theories are:

θ(G1) = ra,b ∧ ¬rb,a ∧ ¬ra,a ∧ ¬rb,b

θ(G2) = ra,b ∧ rb,a ∧ ¬ra,a ∧ ¬rb,b

The AF G1 has a single stable extension {a}, two admissible extensions ∅ and {a},
and one complete extension {a}; that is:

θ(G1) ∧ θ(stable,A1) → ina ∧ ¬inb

θ(G1) ∧ θ(admissible,A1) → ¬inb

θ(G1) ∧ θ(complete,A1) → ina ∧ ¬inb

The justification state of an argument [6] depends on the extensions it belongs
to: it is credulously justified in AF G under semantics σ if it belongs to at least one
of the σ-extensions of G. It is skeptically justified in G under σ if it belongs to every
σ-extension of G.

4 Building Extensions by Programs

In the last section we have seen how to define by formulas what an extension is.
In practice such extensions are constructed by algorithms. The DL-PA programs
provide a means to recast these algorithms in a logical framework. Remember that
such programs modify valuations: our aim is to define programs which when executed
at a valuation describing an AF modify the truth values of the acceptance variables,
leading to valuations where the formula characterizing the semantics holds.



Remember thatATTA(ϕ) andINA(ϕ) respectively are the set of attack variables and
the set of acceptance variables occurring in the formula ϕ. For example, ATTA(¬ra,b∨

ina) = {ra,b} and INA(¬ra,b ∨ ina) = {ina}.

4.1 A Generic DL-PA Program

The generic DL-PA program mkExtσ
A

below is indexed by a set of arguments A and
a semantics σ and builds for every AF G over A the valuations representing the
extensions of G w.r.t. σ:

mkExt(σ,A) = flipSome(INA); θ(σ,A)?

where n is the cardinality of A, σ is some semantics, and θ(σ,A) is the DL-PA

formula characterising σ.

Proposition 2 Let A be a set of arguments. Let σ be either the stable, complete,

admissible, preferred, or grounded semantics. Then

| |mkExt(σ,A)| | =
{
(v1, v2) : v2 ∈ θ(σ,A) and v1 ∩ ATT

A
= v2 ∩ ATT

A
}
.

Proof When (v1, v2) ∈ | |mkExt(σ,A)| | then there is a valuation that is accessible
from v1 via the relation | |flipSome(INA)| | and from which v2 can be accessed via
| |θ(σ,A)?| |. As the test program θ(σ,A)? does not modify any truth value that
valuation must be v2 itself, which moreover must be a model of θ(σ,A). By Item 1 of
Lemma 1, v2 differs from v1 only by the truth values of the INA variables. It therefore
has the same truth values for the ATTA variables, i.e., v1 ∩ ATT

A
= v2 ∩ ATT

A. �

It follows that the DL-PA program mkExt(σ,A) constructs all the extensions of
a given AF w.r.t. σ. Indeed, when the set of attack variables of v1 describes G then
the set of v2 such that (v1, v2) ∈ | |mkExt(σ,A)| | characterises all the extensions of G
w.r.t. σ.

Corollary 2 Let G = (A, R) be an AF and let ϕ be a formula. The formula θ(G) ∧

θ(σ,A) → ϕ is valid if and only if θ(G) → [mkExt(σ,A)]ϕ is valid. Moreover, the

equivalence

θ(G) ∧ θ(σ,A) ↔ 〈(mkExt(σ,A))−〉θ(G)

is valid.

According to Corollary 2, given a description of the attack relation, mkExt(σ,A)

constructs all the valuations where the formula describing the semantics is true,
and so in a way such that only acceptance variables are changed, while the attack
variables do not change. Note that the equivalence takes care of cases where G has
no extension.

Suppose the formula ϕ is a goal, i.e., a formula that should be satisfied by all
or some of the extensions of some AF. By means of the program mkExt(σ,A) one



can check what has been called σ-consistency in [22]: whether there exists an AF G
such that some or every extension w.r.t. σ satisfies ϕ. Adopting the standard terms
for characterizing a justification state, we distinguish the notions of credulous and
skeptical consistency.

Definition 1 Let σ be the stable, admissible, complete, preferred, or grounded se-
mantics. Let ϕ be an Lang(ATTA ∪ INA) formula. Then

• ϕ is σ-credulously consistent for A iff 〈mkExt(σ,A)〉ϕ is satisfiable;
• ϕ is σ-skeptically consistent for A iff [mkExt(σ,A)]ϕ is satisfiable.

Example

Consider the set of arguments A2 = {a, b} and the goal ϕ = ¬ina ∧ ¬inb ∧ ¬ra,a.
Then 〈mkExt(σ,A)〉ϕ is unsatisfiable; in particular, it is false in every valuation for
θ(G2) of Figure 1. Therefore the formula ϕ is stable-credulously inconsistent for A2.

The length of mkExt(σ,A) is linear in the length of the logical description of the
semantics θ(σ,A) and in the cardinality of the set of arguments A, The program
is however heavily nondeterministic. There are other, more efficient algorithms that
can also be implemented in DL-PA. We turn to that in the rest of the section.

4.2 More Efficient Algorithms

The above programs mkExt(σ,A) implement a generate-and-test schema where all
logically possible valuations are generated. An improvement is the program in Ta-
ble 4: before accepting an argument it checks whether this would lead to a conflict
with previously accepted arguments. (Remember that the set of arguments A is
{a1, . . . , an}.)

mkExt1(σ, A) =
(

;
ina∈INA

ina←⊥
)
;

(
skip ⊔

∧
b∈{a1}

(
inb → (¬ra1,b∧¬rb,a1

)
)
?; ina1

←⊤
)
; · · · ;

(
;

ina∈INA
ina←⊥

) (
skip ⊔

∧
b∈{a1, . . .,an }

(
inb → (¬ran,b∧¬rb,an

)
)
?; inan

←⊤
)
; θ(σ, A)?

Table 4 A more efficient DL-PA program

Theorem 3 The program equivalence mkExt1(σ,A) ≡ mkExt(σ,A) holds.

Proof The proof takes the form of a sequence of DL-PA programs that are all DL-PA
equivalent:



1. mkExt1(σ, A)

2.
(
;ina∈INA

ina←⊥
)
;

(
skip ⊔

∧
b∈{a1}

(
inb → (¬ra1,b∧¬rb,a1

)
)
?; ina1

←⊤
)
; · · · ;(

;ina∈A
ina←⊥

)
;

(
skip ⊔

∧
b∈{a1, . . .,an }

(
inb → (¬ran,b∧¬rb,an

)
)
?; inan

←⊤
)
; θ(σ, A)?

3.
(
;ina∈A

ina←⊥
)
;

(
skip ⊔

(
ina1
←⊤;

∧
b∈{a1}

(
(ina1
∧inb ) → (¬ra1,b∧¬rb,a1

)
)
?

))
; · · · ;(

;ina∈A
ina←⊥

)
;

(
skip⊔

(
inan
←⊤;

∧
b∈{a1, . . .,an }

(
(inan

∧inb ) → (¬ran,b∧¬rb,an
)
)
?

))
; θ(σ, A)?

4.
(
;ina∈A

ina←⊥
)
;

(
skip ⊔ ina1

←⊤
)
;
∧

b∈{a1}

(
(ina1
∧inb ) → (¬ra1,b∧¬rb,a1

)
)
?; · · · ;(

;ina∈A
ina←⊥

)
;

(
skip⊔inan

←⊤
)
;
∧

b∈{a1, . . .,an }

(
(inan

∧inb ) → (¬ran,b∧¬rb,an
)
)
?; θ(σ, A)?

5.
(
;ina∈A

ina←⊥
)
;

(
skip ⊔ ina1

←⊤
)
; · · · ;

(
skip ⊔ inan

←⊤
)
;(

;ina∈INA
ina←⊥

)
;

∧
b∈{a1}

(
(ina1
∧inb ) → (¬ra1,b∧¬rb,a1

)
)
?; · · · ;(

;ina∈INA
ina←⊥

)
;

∧
b∈{a1, . . .,an }

(
(inan

∧inb ) → (¬ran,b∧¬rb,an
)
)
?; θ(σ, A)?

6.
(
;ina∈A

ina←⊥
)
;

(
skip ⊔ ina1

←⊤
)
; · · · ;

(
skip ⊔ inan

←⊤
)
; θ(σ, A)?

7. flipSome(INA); θ(σ, A)? �

The above theorem states a program equivalence of the logic that is parametrised
by the cardinality n of the set of arguments A. While the above proof was by hand,
it could as well be done (for a given n) by means of some automated theorem prover
for DL-PA. While theoretical results establishing the complexity of model checking
and satisfiability exist, there is for the time being no implemented theorem prover
for DL-PA.

Actually many algorithms were proposed in the literature to build extensions,
such as those of [19] or of [46] (the latter for the preferred semantics). We claim that
all of them can be implemented in DL-PA. While we do not work this out here and
leave it to future work, we nevertheless sketch how labelling-based algorithms can
be captured in DL-PA. We use new propositional variables deca, standing for “the
status of a is settled (decided)”. The following abbreviations will be useful.

AttackedByAcc(a) =
∨
b∈A

(
decb ∧ inb ∧ rb,a

)

DefendedByAcc(a) =
∧
b∈A

(
rb,a →

∨
c∈A

(
decc ∧ inc ∧ rc,b

))

Then we define the following program:



mkExt2(σ, A) = ;
deca

deca←⊥ ;

(
if

∧
b∈A

¬rb,a1
then ina1

←⊤; deca1
←⊤ else skip

)
; · · · ;

(
if

∧
b∈A

¬rb,an
then inan

←⊤; decan
←⊤ else skip

)
;

while
∨
a

¬deca do

while
∨
a

( (
AttackedByAcc(a) ∨ DefendedByAcc(a)

) )
do

(
if AttackedByAcc(a1) then ina1

←⊥; deca1
←⊤ else skip

)
;(

if DefendedByAcc(a1) then ina1
←⊤; deca1

←⊤ else skip

)
; · · · ;(

if AttackedByAcc(an) then inan
←⊥; decan

←⊤ else skip

)
;(

if DefendedByAcc(an) then inan
←⊤; decan

←⊤ else skip

)
;

if
∧
a

deca then skip else
⊔
a∈A

(
¬deca?; (ina←⊤⊔ ina←⊥); deca←⊤

)
;

θ(σ, A)?

We do not prove the correctness of the program here.

To sum it up, we have seen up to now how extensions of a given AF can be
constructed via DL-PA programs. In the rest of the paper we will use DL-PA programs
to modify an AF and its extensions in order to fulfil some goal.

5 What is Argumentation Framework Modification?

We now introduce and discuss the problem of AF modification. We first distinguish
three different kinds of modification and then discuss whether they correspond to a
revision or to an update operation.

5.1 What changes?

Cayrol et al. [18] proposed to distinguish several kinds of modifications of a given
AF G = (A, R), according to the goal that is pursued:

1. Modifications of the set of arguments A (by adding or removing an argument);
2. Modifications of the attack relation R (by adding or removing an edge between

two arguments);
3. Modifications of the extensions of G in order to satisfy some property.



Modifications of the semantics that is applied to the AF, to produce the set of
extensions, can also be considered, as outlined in [30]. Such modifications are left
for future work.

5.1.1 Changes on the set of arguments

The first kind of modification presented here, viz. adding an argument to the set of
arguments A or removing it, requires additional linguistic resources that have to be
added to our language for it to be implemented.

First of all, we have to add a further ingredient to AFs: let us consider triples
G = (A,AEn, R) where A is the finite background set of all possible arguments,
while AEn ⊆ A is the set of all arguments that are currently under consideration
(arguments that are enabled). We add to the logical language a set of enablement
variables

ENA = {Ena : a ∈ A}

where Ena means that a is enabled (or “considered”). Lang(ATTA∪ENA) being the set
of all formulas that are built from variables ATTA∪ENA, the theory of G = (A,AEn, R)

is the boolean formula

θ(G) =

( ∧
(a,b)∈R

ra,b

)
∧

( ∧
(a,b)<R

¬ra,b

)
∧

( ∧
a∈AEn

Ena

)
∧

( ∧
a<AEn

¬Ena

)

Note that in the theory, ra,b is true even if a or b are not enabled.
The semantic definitions have to be adapted, too, and should only quantify over

arguments in AEn and not over those in A. Also, attacks must be considered only if
they link enabled arguments. To this end, we define the following formula:

ATTEn
a,b = ra,b ∧ Ena ∧ Enb

Now we can easily transform the semantic formulas: we check if the argument is
enabled, otherwise it will not be included in the extension, and we replace attacks
variables ra,b by formulas ATTEn

a,b
to ensure they are indeed present. We illustrate

this transformation to capture the stable semantics. Let Lang(ATTA ∪ ENA ∪ INA) be
the language of formulas built from P = ATTA ∪ ENA ∪ INA. The following formula
captures the stable semantics3:

θ(stable,A) =
∧
a∈A

((
Ena →

(
ina ↔ ¬

∨
b∈A

(inb ∧ ATTEn
b,a)

) )
∧

(
¬Ena → ¬ina

))

3 An equivalent way to express these formulas would be to use the set of enabled arguments. For
example, to describe the stable extensions we would write:

θ(stable, A, AEn) =
∧

a∈AEn

(
ina ↔ ¬

∨
b∈AEn (inb ∧ rb,a)

)
∧

∧
a<AEn ¬ina .

This highlights the fact that when all arguments are enabled, i.e., when AEn
= A, we indeed

retrieve the formulas presented earlier in the paper.



In this setting, the mere addition or deletion of an argument a can be achieved
straightforwardly, viz. by changing the status of a from ‘disabled’ to ‘enabled’
by means of the assignments Ena←⊤ and Ena←⊥. When π is a DL-PA program
describing one or a sequence of modifications of that kind then the modification of
G by π is described in DL-PA by the formula

〈π−〉θ(G)

which says that the program π was possibly executed and θ(G)was true before. Since
attacks are already in the theory even if arguments are not considered, we do not
need to include them in our update: all the attacks from (resp. to) a to (resp. from)
other enabled arguments, are considered. Attack can however be removed or added;
this is the kind of modification that we present in the next section.

A full description and an illustration of the setting presented here for the modifi-
cation of the set of arguments can be found in [29].

5.1.2 Changes on the set of attacks

The second kind of modification, addition and removal of an attack edge between
two arguments a, b ∈ A, is rather simple: we just add or subtract (a, b) from R. In our
logical representation, this operation corresponds to making propositional variables
true or false, which can be immediately captured by DL-PA programs assigning the
attack variables to true and false, ra,b←⊤ and ra,b←⊥. Like for the addition and the
removal of arguments, when π is a DL-PA program describing one or a sequence of
modifications of attacks, then the modification of G by π is described in DL-PA by
the formula

〈π−〉θ(G)

which says that the program π was possibly executed and θ(G) was true before.
To illustrate this let us take up our above AF G2 = (A2, R2) with A2 = {a, b}

and R2 = {(a, b), (b, a)}. The removal of the attack rb,a results in (A2, R
′
2
) with

R′
2
= {(a, b)}. In DL-PA, the modification of G2 by rb,a←⊥ is described by the

formula 〈rb,a←⊥−〉θ(G2).

5.1.3 Changes on the extensions

The third kind of modification, adding arguments to or removing them from exten-
sions, is more involved because it has to be achieved indirectly, by changing the
underlying attack relation of G (or by changing the set of arguments, but as we said,
we disregard this option for the time being). There are moreover two different options
here: when an AF has several extensions one may wish to change the justification
status of a, so that it be skeptically justified (that is, added in all the extensions), or
credulously justified (added in at least one extension), or credulously justified but



not skeptically justified (added in at least one extension, but removed from at least
one), or even not credulously justified (removed from all extensions).

In the rest of the section we explore the issue of extension modification a bit
further. Consider again the above AF G2 = (A2, R2) and the stable semantics. G2 has
two stable extensions Ea = {a} and Eb = {b}. We have seen that the associated
boolean formula θ(G2) ∧ θ(stable,A2) has two Lang(ATTA ∪ INA) models:

va = {ra,b, rb,a, ina}

vb = {ra,b, rb,a, inb}

Suppose we wish to modify G2 such that a is in none of its stable extensions. What
we would like to do is to adapt the attack relation of G2 in a way that is minimal and
that guarantees that a does not occur in any of its extensions. We view minimality
as minimality of the number of modifications of the attack relation; in contrast, the
current extensions may be modified in a non-minimal way. The papers [22, 20] take
a different perspective: the minimization of the changes on the attack relation is
considered to be secondary, whereas the changes on the current extensions should
be minimal.

More generally, we are interested in enforcing some constraint α on an AF G =
(A, R), where we understand that α is a formula in the language Lang(ATTA ∪ INA),
and that enforcing α consists in minimally modifying the attack relation R of G to R′

in a way such that α holds in all of the extensions of G′ = (A, R′).
Another perspective is however possible, where enforcing consists in minimally

modifying R such that α holds not in all but only in some extension of the resulting
G′ = (A, R′). So ‘enforcement’ can be understood in two different ways, leading to
two different definitions.

In both cases, there is a key difference with standard revision and update opera-
tions: in classical belief change, output is limited to one belief set, while here, several
G′ may be produced by the enforcement operations.

To sum it up, we identify two kinds of modification operations ⋄Cred,σ and ⋄Skep,σ .
Both map an AF and a boolean formula of Lang(ATTA ∪ INA) to a set of AFs. The
set G ⋄Cred,σ α is the set of credulous enforcements of α and G ⋄Skep,σ α is the set of
skeptical enforcements of α.4

5.2 Which Postulates?

In line with the classical definitions of belief change operations, we now define some
postulates that ‘reasonable’ operations ⋄ should satisfy. They are mainly inspired by
the work of Coste-Marquis et al. [22].

4 Actually it is possible to refine these operations further. We might e.g. define G ⋄Cred,σ,∃ α where
α is credulously enforced in some G′ ∈ G ⋄Cred,σ,∃ α on the one hand, and G ⋄Cred,σ,∀ α where α
is credulously enforced in every G′ ∈ G ⋄Cred,σ,∃ α on the other.



Definition 2 Let σ be any semantics. Let ⋄ be an operation mapping an AF over A
and an Lang(ATTA ∪ INA) formula to a set of AFs over A.

The operation ⋄σ is a credulous enforcement operation iff it satisfies the following
three postulates:

E1.C θ(G′) ∧ θ(σ,A) ∧ α is satisfiable for every G′ ∈ G ⋄σ α.5
E2.C If θ(G) ∧ θ(σ,A) ∧ α is satisfiable then G ⋄σ α = {G}.

E3 If |= α1 ↔ α2 then for every G1 ∈ G ⋄
σ α1 there exists G2 ∈ G ⋄

σ α2 such that
G1 = G2.

The operation ⋄ is a skeptical enforcement operation iff it satisfies postulate E3

plus the following:

E1.S |= θ(G′) ∧ θ(σ,A) → α for every G′ ∈ G ⋄σ α.
E2.S If |= θ(G) ∧ θ(σ,A) → α then G ⋄σ α = {G}.

The postulates E1.C and E1.S say that success in required for credulous and
skeptical enforcement. E2 represents a minimal change principle: it states that if α
already holds then G is unchanged. Postulate E3 is the postulate of syntax indepen-
dence: enforcement should be based on the logical content of a goal and not on its
syntax.

Additional postulates may be formulated; see [14, 22] for more details. A key
difference is that we do not consider postulates based on the expansion operation.
The main reason is that this operation is actually useless: first, if an attack has to
be changed then expansion cannot be used because, as we have seen above, θ(G)
is complete for Lang(ATTA). Now consider that an argument has to be enforced in
a credulous way. We face two cases: (i) either the argument is already credulously
acceptable and there is no reason to change the AF, or (ii) the argument is not
credulously acceptable. Then as all possible extensions are considered, some attacks
must be changed so that new extensions can be constructed (and α will then hold).
The same reasoning can be made for skeptical acceptance.

5.3 Which Belief Change Operation?

In the literature two different families of belief change operations were studied:
AGM revision operations [1] and KM update operations [41]. In a nutshell, the
former models the incorporation of a new piece of information about a static world,
while the latter models a dynamic world.

Neither AGM theory [1] nor KM theory [41] provide a single, concrete belief
change operation: they rather constrain the set of ‘reasonable’ belief change oper-
ations by means of a set of postulates. Another way of saying this is: both AGM
and KM rely on underlying orderings in order to construct ⋄. In the case of AFs it
is not immediately clear where such information comes from. (One may think of

5 This is the same as: there exists a σ-extension E of G′ such that |=
(
θ(G) ∧ θ(E)

)
→ α.



preference relations between arguments, it is however not clear whether this matches
intuitions.)

Several concrete belief change operations satisfying the AGM or KM postulates
have been defined in the literature. Among the most prominent are Winslett’s ‘pos-
sible models approach’ (PMA) [49, 50], Forbus’s update operation [33], Winslett’s
standard semantics (WSS) [51], and Dalal’s revision operation [24]; see [40, 42]
for an overview. According to Katsuno and Mendelzon’s distinction between update
and revision operations [41], the first three are update operations, usually written ⋄,
while Dalal’s is a revision operation, usually written ∗.

Actually the models of Forbus’s update and Dalal’s revision coincide in the case
of complete belief bases, and the same is the case for Winslett’s update and Satoh’s
revision. Complete bases contain either p or ¬p, for every propositional variable
p. This observation applies to the modification of AFs: the theory θ(G) is complete
for Lang(ATTA), and this is what matters: the variables of Lang(INA) only encode
particular extensions. Therefore the question whether AF modification is an update
or a revision does not really play a role here.

We dedicate the next sections to two problems: modifying the framework and
modifying an extension.

6 Enforcing a Constraint on All/Some Extensions

The aim of this section is to provide a formal definition of two extension change
operations. Both are based on Forbus’s update operation [33], where minimal change
involves counting how many variables change their truth value. Our operations satisfy
the enforcement postulates that we have defined in Section 5.2.

We start by observing that the update of AFs has some specificities: first, we
are going to modify only the attack variables while leaving the accept variables
unchanged; second, the target formula is not going to be a boolean formula, but a
formula saying that α will be the case after building extensions. When we construct
the extensions we are going to minimize the modifications of ATTA(α), while those
of the set INA(α)will not be minimized: given the truth values of the attack variables,
the truth values of the accept variables are determined by the semantics (or rather, the
possible combinations of accept variables, because there may be several extensions).

6.1 The Hamming Distance

The Hamming distance between two valuations v and v
′ w.r.t. a set of propositional

variables P is the cardinality of the set of all those variables from P whose truth
value differs:

H P(v, v′) = card(P ∩ (v Û−v
′)).



For example, consider v1 = {ra,b, rb,a, inb} and v2 = {ra,b, ina}. Then v1 Û−v2 =

{rb,a, ina, inb} and thereforeHATT
A

(v1, v2) = 1 andHATT
A∪INA (v1, v2) = 3.

When P equals P thenH P(v, v′) is nothing but the Hamming distance between v

and v
′. Forbus’s update operation is based on minimization of that distance: first, the

Forbus update of a valuation v by α is the set of those α-models whose Hamming
distance to v is minimal; second, the Forbus update of a belief base β by α collects
the Forbus updates of all models of β by α:

v ⋄forbus α =
{
v
′ : v

′ |= α and there is no v
′′ such that v

′′ |= α andHP(v, v′′) < HP(v, v′)
}

β ⋄forbus α =
⋃
v |=β

(
v ⋄forbus

P α

)

6.2 Argumentation Framework Update

Just as the original Forbus update operation, our two update operations are defined
in two steps: first the update of a valuation in terms of the Hamming distance and
then the update of an AF as the union of the updates of each of its models. But first
we need a definition: given a valuation v, the AF associated to v is defined as

G(v) = {(a, b) : ra,b ∈ v}.

Then the skeptical Forbus update by a Lang(ATTA ∪ INA) formula α under se-
mantics σ is defined as follows:

v ⋄σskep α =
{
v
′ : every σ-extension of G(v′) satisfies α and

there is no v
′′ such thatHATT

A

(v, v′′) < HATT
A

(v, v′)

and every σ-extension of G(v′′) satisfies α
}
.

G ⋄σskep α =
⋃

v∈ | |θ(G) | |

v ⋄σskep α

So v ⋄σ
skep

α is the set of valuations whose σ-extensions all satisfy α and whose

Hamming distance to v is minimal w.r.t. the variables in ATTA.6 This can be viewed
as a circumscription policy with fixed and varying propositional variables [43].

Symmetrically we define the credulous Forbus update as:

6 The expression ‘the set of valuations whose σ-extensions all satisfy α’ is a bit imprecise here;
more precisely, it is the set of valuations v

′ such that |=
(
θ((A, v′ ∩ (A × A))) ∧ θ(σ, A)

)
→ α.



v ⋄σcred α =

{
v
′ : some σ-extension of G(v′) satisfies α and

there is no v
′′ such thatHATT

A

(v, v′′) < HATT
A

(v, v′)

and some σ-extension of G(v′′) satisfies α
}
.

G ⋄σcred α =
⋃

v∈ | |θ(G) | |

v ⋄σcred α

Note that these operations resemble the Forbus update operation but cannot be
reduced to them. The reason is that the input would have to be a counterfactual

statement of the form “if the current valuation is transformed into a σ-extension by
modifying the acceptance variables then α results”.

Both operations coincide for updates by attack variables and their negation.

Proposition 3 Let α be an attack literal, i.e., a propositional variable of the form

ra,b or its negation. Then G ⋄σ
skep

α = G ⋄σ
cred

α.

The identity fails to hold for arbitrary formulas.

7 Expressing Extension Modification in DL-PA

The aim of this section is to define modification programs in DL-PA implementing
the two operations of modification of AFs that we have defined. The exposition
follows [38].

7.1 Modifications of the Attack Relation Only

To warm up, observe that addition and removal of an attack edge between two
arguments a, b ∈ A can be directly implemented by the atomic DL-PA programs: the
addition of (a, b) to R is obtained by executing ra,b←⊤, and the removal of (a, b)
from R is obtained by executing ¬ra,b←⊥. Indeed, we have:

G ⋄ ra,b = 〈ra,b←⊤
−〉θ(G)

G ⋄ ¬ra,b = 〈ra,b←⊥
−〉θ(G)

where ⋄ is any of the above belief change operations ⋄σ
skep

and ⋄σ
cred

. Once θ(G) has
been updated by some ra,b or ¬ra,b , the extensions of the resulting framework can
be obtained by conjoining the result with θ(σ,A).

This can be generalised to input formulas α that are conjunctions of literals in
the language Lang(ATTA). More generally, when α is a formula in the language
Lang(ATTA) then it can be shown that both the skeptical and the credulous update of
G by α are nothing but the classical Forbus update.



Proposition 4 Let α be a formula in the language Lang(ATTA). Then

G ⋄σskep α = θ(G) ⋄
forbus α.

7.2 The Hamming Distance Predicate in DL-PA

Let us define the DL-PA formula H(α, P, ≥m), where α is a Lang(ATTA ∪ INA)

formula, P is a set of propositional variables, and m ≥ 0 is an integer:

H(α, P, ≥m) =

{
⊤ if m = 0

¬
〈(

flipOne(P)
) ≤m−1〉

α if m ≥ 1

We call H(α, P, ≥m) the Hamming distance predicate w.r.t. the set of variables P: it
is true at a valuation v exactly when the α-models v

′ that are closest to v in the sense
of the Hamming distance differ in at least m variables from v, where the computation
of the distance only considers variables from P while the other variables in P \ P

cannot be modified.

Proposition 5 Let v a valuation, α a boolean formula, P some set of propositional

variables, and m ≥ 0. Then

1. v ∈ ||H(α, P, ≥m)| | iff the α-models that are closest to v w.r.t. P have Hamming

distance at least m, i.e., iffH(v, v′) ≥ m for every v
′ ∈ ||A| | such that v Û−v

′ ⊆ P.

2. (v, v′) ∈ | |H(α, P, ≥m)?;
(
flipOne(P)

)m
;α?| | iff v

′ is one of the α-models that is

closest to v w.r.t. P, i.e., iff v
′ ∈ ||α | | and H(v, v′) = m for every v

′ ∈ ||A| | such

that v Û−v
′ ⊆ P.

Proof For Item 1, things are clear for m = 0, and we only consider the case m > 1.
From the left to the right, suppose v is a model of H(α, P, ≥m), i.e., of the

formula ¬〈
(
flipOne(P)

) ≤m−1
〉α. Then there is no α-model v

′ such that (v, v′) ∈(
| |flipOne(P)| |

)k , for some k < m. So by Lemma 1, for every valuation v
′ ∈ ||A| |

such that v Û−v
′ ⊆ P we must haveH(v, v′) ≥ m.

From the right to the left, suppose for every valuation v
′ ∈ ||A| | such that v Û−v

′ ⊆ P

we have H(v, v′) ≥ m. Then by Lemma 1, there cannot be a v
′ such that (v, v′) ∈

| |flipOne(P)| |k for some k < m and v
′ ∈ ||α | |. Therefore v must be a model of the

formula ¬〈
(
flipOne(P)

) ≤m−1
〉α.

Item 2 then follows from Item 1 and Lemma 1. �

It follows from the first item of Proposition 5 that when P equals P(α) then
v ∈ ||H(α, P(α), ≥m)| | iff the α-models that are closest to v have Hamming distance
at least m, i.e., iff H(v, v′) ≥ m for every v

′ ∈ ||A| |. This is used in Forbus’s udpate
operation.

The following DL-PA program performs Forbus’s update operation:



forbus(α) =
⊔

m≤card(P(α))

(
H(α, P(α), ≥m)?;

(
flipOne(P(α))

)m)
;α?

The program nondeterministically chooses an integer m, checks if the Hamming
distance to α-models is at least m and flips m of the variables of α. Finally, the test
α? only succeeds for α-models.

Proposition 6 The formula γ is true after the Forbus update of β by α if and only if

β→ [forbus(α)]γ is DL-PA valid.

7.3 Argumentation Framework Update

The update of AFs has some specificities: first, we only modify the attack variables
while leaving the accept variables unchanged; second, the target formula is not a
boolean formula but a formula saying thatαwill be the case after building extensions.

The programs credEnfσ(α) and skepEnfσ(α)minimally modify a valuation w.r.t.
some semantics σ such that the boolean formula α ∈ Lang(ATTA ∪ INA) becomes
true in some/all σ-extensions.

credEnfσ(α) =
⊔

m≤card(ATTA)

(
H
(
〈mkExt(σ,A)〉α, ATTA, ≥m

)
?;

(
flipOne(ATTA)

)m)
;

〈mkExt(σ,A)〉α?

skepEnfσ(α) =
⊔

m≤card(ATTA)

(
H
(
[mkExt(σ,A)]α, ATTA, ≥m

)
?;

(
flipOne(ATTA)

)m)
;

[mkExt(σ,A)]α?

Both programs (1) nondeterministically choose a value m for the Hamming distance
to 〈mkExt(σ,A)〉α, i.e., to valuations of attack variables having extensions satisfying
α, (2) check that m satisfies H

(
〈mkExt(σ,A)〉α, ATTA, ≥m

)
, (3) flip m attack variables,

and then (4) check that either some extension satisfies α (credulous case), or all
extensions satisfy α (skeptical case).

The length of these two programs is polynomial in the cardinality of A.7
The next theorem provides an embedding of both skeptical and credulous AF

update into DL-PA. It is the main result of our paper.

Theorem 4 Let G be an AF. Let α ∈ Lang(ATTA ∪ INA) be a boolean formula. Then

G ⋄σcred α =
����〈(credEnfσ(α))−

〉
θ(G)

����
G ⋄σskep α =

����〈(skepEnfσ(α))−
〉
θ(G)

����

7 The cardinality of the set ATTA is quadratic in that of A, and the length of (flipOne(ATTA)
)m is

quadratic in that of A.



For α, γ ∈ Lang(ATTA ∪ INA), to check whether γ is true in all extensions
of G modified by α can then be done by checking whether the DL-PA formula
θ(G) → [skepEnfσ(α)]γ is valid. We in particular have the following result, which
says that every possible execution of the two enforcement programs will succeed:

Proposition 7 Let G be an AF. Let α ∈ Lang(ATTA ∪ INA) be a boolean formula.

Then

|=
[
credEnfσ(α)

] 〈
mkExt(σ,A)

〉
α

|=
[
skepEnfσ(α)

] [
mkExt(σ,A)

]
α

The second key property is that an AF remains unchanged if the goal already
holds.

Proposition 8 For every goal α that is credulously justified, the credulous update

program does not change anything:

|= (θ(G) ∧ 〈mkExt(σ,A)〉α ∧ γ) → [credEnfσ(α)]γ.

For every goal α that is skeptically justified, the skeptical update program does not

change anything:

|= (θ(G) ∧ [mkExt(σ,A)]α ∧ γ) → [skepEnfσ(α)]γ.

The modified AFs can be extracted from the formulas 〈credEnfσ(α)−〉θ(G) and
〈skepEnfσ(α)−〉θ(G) representing it in DL-PA (or rather, their reduction) by forgetting
the accept variables, as proposed in [22]. This operation can be implemented in our
framework by the program flipSome(INA).

Definition 3 Let σ be either the stable, admissible, or complete semantics. Let enf

be either the skepEnfσ or the credEnfσ program. Let ⋄σ,enf be an operation mapping
an AF and an Lang(ATTA∪INA) formula to a set of AFs. The update of G by α under
σ and enf is

G ⋄σ,enf α =
{
(A, Rv) : v ∈ ||〈(enf(α))−〉θ(G)| |

}
where Rv is the attack relation extracted from v, defined as Rv = {(a, b) : ra,b ∈ v}.

The two preceding propositions guarantee that our enforcement operations satisfy
the postulates.

Theorem 5 Operation ⋄σ,credEnfσ satisfies E1.C and E2.C. Operation ⋄σ,skepEnfσ

satisfies E1.S and E2.S. Both operations ⋄σ,credEnfσ and ⋄σ,skepEnfσ satisfy E3.

This result is actually not a surprise, given that our tool for enforcement is a
variant of Forbus’s update operation.



Example

Let us take up the AF G2 of Figure 1. Remember that G2 = (A1, R2), withA1 = {a, b}

and R2 = {(a, b), (b, a)} and that θ(G2) = ra,b ∧ rb,a. Let us consider the stable
semantics and suppose we want skeptical enforcement of a, i.e., we want to enforce
that a is always acceptable. We disregard self-attacks for the sake of simplicity. The
nondeterministic part

⊔
m≤card(ATTA)(. . .) of the program skepEnf(ina) changes one

variable from θ(G2), either ra,b or rb,a. This corresponds to two candidate extensions:
one where a only attacks b and one where b only attacks a. Only the former case
gives valuations where a is always acceptable. Hence:

G ⋄stable,skepEnfstable

ina =
{
(A1, {(a, b)})

}
.

8 Going Further

We have illustrated how DL-PA offers a fruitful framework for representing AFs and
reasoning about them. We now sketch several ways of extending our account.

8.1 Checking (odd/even) cycles

One may also wish to identify and modify global properties of argumentation frame-
works, such as the existence of cycles, or the existence of odd or even cycles. In
propositional logic the existence of a cycle in a given AF can be characterised by
means of the propositional formula

ExistsCycleA =
∨

n≤card(A)

∨
a1,...,an ∈A

(ra1,a2
∧ ... ∧ ran−1,an

∧ ran,a1
)

The length of that formula is however exponential in the number of arguments.
Fortunately, the existence of cycles can be characterised in DL-PA by a more succinct
formula: it tests if the execution of a program iterating one transitive closure step
can lead to a self-attack. Such a closure step is performed by the following program:

step =
⋃

a,b,c∈A

(ra,b ∧ rb,c?; ra,c←⊤).

Using that we characterise the existence of a self-attack in an AF by the formula
Loop =

∨
a∈A ra,a, the formula ExistsCycleA = 〈step∗〉Loop then characterises the

existence of a cycle. The length of that formula is polynomial in the number of
arguments.



Actually the Kleene star can be replaced by a bounded iteration up to card(A)−1.
This will be useful to characterise even and odd cycles. Observe that when there
is an odd cycle in an AF then a self-attack can be produced by an even number of
closure steps; symmetrically, an even cycle can be achieved by an odd number of
closure steps. Based on that observation we can check the existence of odd and even
cycles by means of the following DL-PA formulas:

existsEvenCycle =

〈 ⋃
0≤n≤

⌈
card(A)

2

⌉
(
¬〈step2n〉Loop?; step2n+1

)〉
Loop

existsOddCycle = Loop ∨
〈 ⋃

1≤n≤
⌈

card(A)
2

⌉
(
¬〈step2n−1〉Loop?; step2n

)〉
Loop

The formula characterising even cycles checks whether there is an integer n ≥ 0 such
that 2n+1 transitive closure steps may lead to a self-attack. The test ¬〈step2n〉Loop?

makes sure that this is the smallest such number. The formula characterising odd
cycles similarly checks whether there is an n ≥ 0 such that 2n transitive closure steps
may lead to a self-attack. The length of these two formulas is still polynomial in the
number of arguments.

8.2 A Prioritised Version

We may adapt our modification operation in order to accommodate a prioritised
version that was proposed in [23]. While up to now we only minimised modifications
of ATTA, this paper proposes to replace this policy by a “first minimise INA, then
ATTA” policy: first we minimally change INA variables to make 〈flipSome(INA)〉γ

true, ending up in those minimally ATTA-distant states from which an extension
satisfying the goal can be constructed; then we minimally change the ATTA variables
in order to make the goal γ true.

We capture this in DL-PA by two Forbus updates in sequence:(
(A, ATTA) ⋄forbus

INA

(
〈flipSome(INA)〉γ

) )
⋄forbus

ATTA
γ.

We observe that this may lead to multiple extensions and that it might be more
appropriate to rather apply Dalal revision.

9 Conclusion

The main result of this paper is the encoding of AFs and their dynamics in DL-PA,
extending and generalising [28, 29]. More precisely, our contribution is threefold.



First, as long as argument acceptability can be expressed in propositional logic,
finding acceptable arguments and enforcing acceptability can be done in DL-PA.
The DL-PA framework moreover enables formal verification of the correctness of
an algorithm (which however for the time being has to await implemented DL-PA

solvers). Other logical frameworks allow capturing and computing argument accept-
ability (see [19] for an overview), but few of them allow capturing and computing
acceptability change as well.

Second, as DL-PA formulas can be rewritten as propositional logic formulas, the
result of the modification of an AF is described by a propositional formula from
the models of which one may retrieve the modified AFs. Our proposal is hence
more operational than those of other approaches because we use a formal logic
encompassing the representation of change operations. Moreover, we consider not
only credulous acceptability changes, as most of the current approaches do [7], but
skeptical acceptability change as well.

Third, our framework takes advantage of the complexity results for DL-PA: both
model checking and satisfiability checking are in PSPACE. A closer look at the
formulas expressing the modifications shows that the alternation of quantifications
is bounded, which typically leads to complexity bounds at the second level of the
polynomial hierarchy.

The proposed DL-PA encodings may be related to QBF encodings for argumen-
tation [2]. As QBF has the same complexity as star-free DL-PA, all we do in DL-PA

must be polynomially encodable into QBF. However, the availability of assignment
programs makes a difference: update programs such as forbus(α) and extension con-
struction programs such as mkExt(σ,A) capture things in a more general, flexible,
and natural way than a QBF encoding.

To conclude, the richness of our framework makes it expandable to other kinds of
changes, other update semantics, and other argumentation semantics beyond those
that are detailed in the present paper. We plan to investigate this research avenue in
future work.
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