
HAL Id: hal-03622708
https://hal.science/hal-03622708

Submitted on 29 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Working set size estimation techniques in virtualized
environments: One size does not fit all

Vlad-Tiberiu Nitu, Aram Kocharyan, Issa Hannas Yaya, Alain Tchana, Daniel
Hagimont, Hrachya Astsatryan

To cite this version:
Vlad-Tiberiu Nitu, Aram Kocharyan, Issa Hannas Yaya, Alain Tchana, Daniel Hagimont, et al..
Working set size estimation techniques in virtualized environments: One size does not fit all. ACM
International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS 2018),
ACM, Jun 2018, Irvine, United States. pp.1–22, �10.1145/3179422�. �hal-03622708�

https://hal.science/hal-03622708
https://hal.archives-ouvertes.fr

Official URL
DOI : https://doi.org/10.1145/3179422

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24817

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Nitu, Vlad and Kocharyan, Aram and Hannas

Yaya, Issa and Tchana, Alain-Bouzaïde and Hagimont, Daniel and

Astsatryan, Hrachya Working set size estimation techniques in virtualized

environments: One size does not fit all. (2018) In: ACM International

Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS 2018), 18 June 2018 - 22 June 2018 (Irvine, United States).

Working Set Size Estimation Techniques in Virtualized
Environments: One Size Does not Fit All

VLAD NITU, ARAM KOCHARYAN∗, HANNAS YAYA, ALAIN TCHANA, and
DANIEL HAGIMONT, Toulouse University, France
HRACHYA ASTSATRYAN, Institute for Informatics and Automation Problem, Armenia

Energy consumption is a primary concern for datacenters’ management. Numerous datacenters are relying
on virtualization, as it provides flexible resource management means such as virtual machine (VM) check-
point/restart, migration and consolidation. However, one of the main hindrances to server consolidation is
physical memory. In nowadays cloud, memory is generally statically allocated to VMs and wasted if not
used. Techniques (such as ballooning) were introduced for dynamically reclaiming memory from VMs, such
that only the needed memory is provisioned to each VM. However, the challenge is to precisely monitor the
needed memory, i.e., the working set of each VM. In this paper, we thoroughly review the main techniques
that were proposed for monitoring the working set of VMs. Additionally, we have implemented the main
techniques in the Xen hypervisor and we have defined different metrics in order to evaluate their efficiency.
Based on the evaluation results, we propose Badis, a system which combines several of the existing solutions,
using the right solution at the right time. We also propose a consolidation extension which leverages Badis in
order to pack the VMs based on the working set size and not the booked memory. The implementation of all
techniques, our proposed system, and the benchmarks we have used are publicly available in order to support
further research in this domain.

 Key Words : Cloud Computing, Virtualization, Energy consumption optimization

1 INTRODUCTION
Energy consumption is a primary concern for datacenter (DC) management. Its cost represents a
significant part of the total cost of ownership (about 80% [2]) and it is estimated that in 2020, US
DCs will spend about $13 billion on energy bills [3].

A majority of DCs implements the Infrastructure as a Service (IaaS) model where customers buy
(from providers) VMs with a set of reserved resources. The VMs host general purpose applications

∗
Also affiliated with the Institute for Informatics and Automation Problem

Authors’ addresses: Vlad Nitu; Aram Kocharyan; Hannas Yaya; Alain Tchana;

Daniel Hagimont, {first.last}@enseeiht.fr, Toulouse University, Toulouse Institute of Computer Science Research, Toulouse,

France; Hrachya Astsatryan, hrach@sci.am, Institute for Informatics and Automation Problem, Yerevan, Armenia.

https://doi.org/10.1145/3179422

https://doi.org/10.1145/3179422

0 50 100 150 200 250 300

0

500

1,000

1,500

Time

M
e
m
o
r
y
(
M
B
)

Static provisioning On-demand provisioning

Fig. 1. Static provisioning vs on-demand provisioning.

(e.g. web services), as well as High Performance Computing applications. In such IaaS DCs, virtu-

alization is a fundamental technology which allows optimizing the infrastructure by colocating

several VMs on the same physical server. Such colocation can be achieved at deployment time by

starting as many VMs as possible on each physical machine, or at runtime by dynamically migrating

VMs on a reduced set of physical machines, thus implementing a consolidation strategy [4].

Ideally, consolidation should lead to highly loaded servers. Although consolidation may increase

server utilization by about 5-10%, it is difficult to actually observe server loads greater than 50%

for even the most adapted workloads [5–7]. The main reason is that VM collocation is memory

bound, as memory saturates much faster than the CPU. This situation was accentuated over the

last several years, as we have seen emerging new applications with growing memory demands,

while physical platforms had an opposite tendency; they provide more CPU capacity than physical

memory. This mismatch is referred to as the memory capacity wall [8].
However, the existing consolidation systems [37, 47] take the CPU as a pivot, i.e. the central

element of the consolidation. The memory is considered constant (i.e. the initially booked value)

all over the VM’s lifetime. Nevertheless, we consider that the memory should be the consolidation

pivot since it is the limiting resource. In order to reduce the memory pressure, the consolidation

should consider the memory actually consumed (i.e. the VM’s working set size) and not the booked

memory (see Fig. 1). Thereby, we need mechanisms to (1) evaluate the working set size (WSS) of

VMs, (2) to anticipate their memory evolution and (3) to dynamically adjust the VMs’ allocated

memory. Numerous research papers propose algorithms to estimate the WSS of VMs. However,

most of them are able to follow either up-trends (the increase) or down-trends (the decrease) of

WSS. The few of them which are able to follow both trends are highly intrusive. Moreover, to the

best of our knowledge, no previous work has shown the implications of dynamically adjusting the

VM’s allocated memory according to the WSS estimation. Finally, as far as we know, no previous

consolidation algorithm considers the WSS as a pivot. In this paper we address all the above

limitations.

In summary, the contributions of this paper are the following:

• We define evaluation metrics that allow to characterize WSS estimation solutions.

• We evaluate existing WSS techniques on several types of benchmarks. Each solution was

implemented in the Xen virtualization system.

• We propose Badis, a WSS monitoring and estimation system which leverages several of the

existing solutions in order to provide high estimation accuracy with no codebase intrusiveness.

Badis is also able to dynamically adjust the VM’s allocated memory based on the WSS

estimations.

• We propose a consolidation system extension which leverages Badis for a better consolidation

ratio. Both the source and the data sets used for our evaluation are publicly available [1], so

that our experiments can be reproduced.

The rest of this article is structured as follows: Section 2 covers a quick background overview.

Section 3 presents the general functioning of a WSS estimation solution. Section 4 presents the

existing WSS estimation techniques that we analyze and evaluate in this article. Section 5 reports

the evaluation results for the main studied techniques. Section 6.1 exposes the details of Badis while

Section 6.2 presents the way we integrated Badis in an OpenStack cloud. Section 6.3 evaluates our

solution. After a review of related works in Section 7, we present our conclusions in Section 8.

2 BACKGROUND ON VIRTUALIZATION: ILLUSTRATIONWITH XEN
2.1 Generalities
The main goal of virtualization is to multiplex hardware resources between several guest operat-

ing systems also called Virtual Machines (VMs). Xen [10] is a well-known virtualization system

employed by Amazon [11] to virtualize its DCs. Xen relies on a hypervisor which runs on the

bare hardware, and a particular VM (the dom0) which includes all OS services. The latter are not

included in the hypervisor in order to keep it as lightweight as possible. The other (general purpose)

VMs are called domUs. In the next subsections, we provide details about memory management and

I/O management in Xen, necessary for understanding the WSS techniques we study in this paper.

2.2 Memory and I/O virtualization
In a fully virtualized system, the VM believes it controls the RAM. However, the latter is actually

under the control of the hypervisor which ensures its multiplexing between multiple VMs. In this

respect, one of the commonly used techniques is the following. The page frame addresses presented

to the VM and used in its page tables are fictitious addresses (called pseudo-physical). They do not

designate a page frame’s actual location in the physical RAM. The real addresses (i.e. host-physical)

are known only by the hypervisor which maintains for each guest page table in the VMs (mapping

guest-virtual→ pseudo-physical), an equivalent called shadow page table (mapping guest-virtual

→ host-physical). Each shadow page table is synchronized with its equivalent guest page table.

The shadow page tables are the ones used by the MMU
1
. The guest page tables play no role in the

address translation process. However, how the hypervisor ensures this synchronization knowing

that the VM is a "black box"? In this respect, the hypervisor runs each guest kernel at Ring 3 and

sets as read-only the address ranges corresponding to guest page tables. Thereby, any attempt

(from the guest kernel) to update a guest page table or the guest %cr3 traps to the hypervisor. Based

on the trap error, the hypervisor updates the corresponding shadow page table (in the case of a

guest page table write attempt) or switches the execution context (in the case of a guest %cr3 write

attempt).

By leveraging this mechanism, a WSS estimation technique can monitor a VM’s memory activity

in a transparent way, in the hypervisor (see Section 3).

2.3 Ballooning
Memory ballooning [10, 12] is a memory management technique that allows to dynamically reclaim

memory from a VM to the hypervisor. Most of the nowadays hypervisors implement this technique

in order to reclaim unused memory from VMs, thus avoiding resource waste. In such systems, every

VM is equipped with a balloon driver which can be inflated or deflated from the hypervisor/dom0.

1
The shadow page table’s address is loaded into %cr3 at context switch. The CR3 register enables the processor to translate

virtual addresses into physical addresses.

Fig. 2. Memory ballooning principles.

Fig. 2 presents the general functioning of the balloon driver. Balloon inflation raises memory

pressure on the VM, as follows. As soon as the balloon driver receives a higher balloon target

size, it allocates a portion of memory and pins it, thus ensuring that memory pages cannot be

swapped-out by the VM’s OS. Then, the balloon driver reports the addresses of the pinned page

to the hypervisor so that it can use them for other purposes (e.g. assigned them to a VM which is

lacking memory). In the case of a balloon deflation order, the balloon driver reclaims the pinned

pages from the hypervisor and deallocates them. Thereby, the pages reenter under the control

of the VM’s OS. In Xen, the command xl mem-set VM_id memory_size can be used to adjust the

balloon target size from the dom0.

3 ON-DEMAND MEMORY ALLOCATION
3.1 General functioning
As argued in the introduction, the memory is the limiting resource when performing VM collocation.

To alleviate this issue, the commonly used approach consists of managing the memory in the same

way as the processor, by doing on-demand allocation. Indeed, considering a VM whose booked

memory capacity ismb (representing the SLA that the provider should meet) but which actively

usesmu (mu ≤ mb), the on-demand approach would assign onlymu memory capacity to the VM

(instead ofmb as in a static strategy);mu is called the WSS of the VM. This approach requires the

implementation of a feedback loop which operates as follows. The memory activity of each VM is

periodically collected and services as the input of a WSS estimation algorithm. Once the latter has

estimated the WSS (notedwssest), the VM’s memory capacity is adjusted towssest . In short, the

implementation of the on-demand memory allocation strategy raises thee main questions:

• (Q1) How to obtain the VM’s memory activity knowing that the VM is a "black-box" for the

cloud provider?

• (Q2) How to estimate the VM’s WSS from the collected data?

• (Q3) How to update the VM’s memory capacity during its execution?

Regarding Q3, the solution is self-evident. Indeed, it leverages the balloon driver inside the VM
(see the previous section). Furthermore, the hypervisor provides an API to control the balloon
driver’s size. Thus, by inflating or deflating the balloon, the actual memory capacity of the VM can
be updated at runtime. The rest of the section focuses on Q1 and Q2, which are more complex.

Answering Q1 raises two challenges. The first one relates to the implementation of the method
used for retrieving the memory activity data. The method is either active or passive. An active
method modifies the execution of the VM (e.g. deliberately inject page faults) while a passive
method does not interfere in the VM’s execution process. The active method could impact the VM’s
performance. For instance, a naive way for capturing all memory accesses may be to invalidate all

memory pages in the VM’s shadow page table. All subsequent accesses would result in page faults

which are trapped by the hypervisor. This solution would be catastrophic for the VM’s performance

because of the page faults’ overhead. The second challenge is related to the level where the method

is implemented. Three locations are possible: exclusively inside the hypervisor/dom0, exclusively

inside the VM, or spread across both. In the last two locations, the method is said to be intrusive
because the "black-box" nature of the VM is altered. In this situation, the implementation of

the method requires the end-user’s agreement. Otherwise, one could exploit only the memory

activity data available at the hypervisor/dom0 level. ConcerningQ2, two main challenges should be

tackled: the accuracy of the estimation technique (a wrong estimation will either impact the VM’s

performance or lead to resource waste) and the overhead. In the rest of the paper, the expression

"WSS estimation technique" is used to represent a solution to both Q1 and Q2.

3.2 Metrics
With respect to the above presentation, the metrics we propose for characterizing a WSS estimation

technique are the following: the intrusiveness (requires the modification of the VM), the activeness
(alters the VM’s execution flow), the accuracy, the overhead on the VM (noted vm_over), and the

overhead on the hypervisor/dom0 (noted hyper_over). Both the intrusiveness and the activeness
are qualitative metrics while the others are quantitative. Among the qualitative metrics, we consider

the intrusiveness as the most important. We note that the balloon driver alone is not considered

an intrusiveness since it is de facto accepted and integrated in most of the OSs. Concerning

the quantitative metrics, the ranking is done as follows. Metrics which are related to the VM

performance (thus the SLA) occupy higher positions since guaranteeing the SLA is one of the most

important provider’s objectives. In this respect, we propose the following ranking:

(1) vm_over : it directly impacts the VMperformance. It could be affected by both the intrusiveness
and the activeness .

(2) accuracy: a wrong estimation leads to either performance degradation (under-estimation) or

resource waste (over-estimation).

(3) hyper_over : a high overhead could saturate the hypervisor/dom0, which are shared compo-

nents. This could lead, in turn, to the degradation of VMs’ performance (e.g. the I/O intensive

VMs). In this paper we mainly focus on the CPU load induced by the technique.

The metrics presented above characterize the WSS estimation techniques. Apart from these, we

also define a metric which characterizes the WSS itself, namely the volatility. The latter represents
the degree/speed of WSS variation and is very important for the VM consolidation (see Section 6.2).

4 STUDIED TECHNIQUES
This section presents the main WSS estimation techniques proposed by researchers up to the

writing time of this paper. We have thoroughly studied them both qualitatively and quantitatively.

This section focuses on the former aspect while Section 5 is dedicated to the latter aspect. The

presentation of each technique is organized as follows. First, we present the technique description,

while highlighting howQ1 andQ2 are answered. Second, we explain (whenever necessary) the way

in which we implement the technique in Xen (our illustrative virtualization system). Last but not

least, we present both the strengths and the weaknesses of the technique, knowing that they are

validated in Section 5.

4.1 Self-ballooning
Description. Self-ballooning [13] entirely relies on the VM, especially the native features of

its OS. It considers that the WSS of the VM is given by the Committed_AS [14] kernel statistic

vo id main (vo id) {

char ∗ t a b =(char ∗) ma l l o c (2 ∗ 1 0 2 4 ∗ 1 0 2 4 ∗ 1 0 2 4) ;

do {

t a b [1]= g e t c h a r () ;

} wh i l e (t a b [1] ! = ' a ') ;

f r e e (t a b) ;

}

Fig. 3. The Committed_AS value increases with the amount of malloc-ed memory even if it is not backed by
physical memory.

(cat /proc/meminfo), computed as follows. The OS monitors all memory allocation calls (e.g.
malloc) - Q1 - and sums up the virtual memory committed to all processes. The OS decrements
the Committed_AS each time the allocated pages are freed. For illustration, let us consider a
process which runs the C program presented in Fig. 3. After the execution of line 2, the value of
Committed_AS is incremented by 2GB, even if only one octet is actively used. In summary, the
Committed_AS statistic corresponds to the total number of anonymous memory pages allocated by
all processes, but not necessary backed by physical pages.
Implementation. No effort has been required to put in place this technique since it is the default
technique already implemented in Xen. The balloon driver (which runs inside the VM) periodically
adjusts the allocation size according to the value of the Committed_AS.
Comments. As mentioned above, this technique completely depends on the VM. In addition, the
implementation of the feedback loop is shift from the hypervisor/dom0 to the VM, making this
technique too intrusive. The heuristic used for estimating the WSS is not accurate for two reasons.
First, Committed_AS does not take into account the page cache, and thus may cause substantial
performance degradation for disk I/O intensive applications [15]. Second, this technique could lead
to resource waste since the committed memory is most of the times greater than the actively used
memory. These two statements are also validated by the evaluation results. The only advantage of
the Committed_AS technique is its simplicity.

4.2 Zballoond
Description. Zballoond [15] relies on the following observation: when a VM’s memory size is
larger than or equal to its WSS, the number of swap-in and refault (occurs when a previously
evicted page is later accessed) events is close to zero. The basic idea behind Zballoond consists in
gradually decreasing the VM’s memory size until these counters start to become non-zero (the
answer of Q1). Concerning Q2, the VM’s WSS is the lowest memory size which leads the VM to
zero swap-in and refault events.
Implementation. Zballoond is implemented inside the VM as a kernel module which loops on
the following steps. (1) The VM’s memory size is initialised to its Committed_AS value. (2) Every
epoch (e.g. 1 second), the memory is decreased by a percentage of the Committed_AS (e.g. 5%).
(3) Whenever the Committed_AS changes, Zballoond considers that the VM’s WSS has changed
significantly. In this case, the algorithm goes to step (1). Our implementation of Zballoond is about
360 LOCs.
Comments. Like the previous technique, Zballoond is entirely implemented in the VM’s OS.
Furthermore, Zballoond is very active in the sense that it performs memory pressure on the VM.
The overhead introduced by this technique comes from the fact that it actively forces the VM’s OS
to invoke its page reclamation mechanism (every epoch). Therefore, the overhead depends on both
the epoch length and the pressure put on the VM (how much memory to reclaim).

4.3 The VMware technique
Description. The VMware technique [12] is an improvement of the naive method presented in

Section 3. Instead of invalidating all memory pages, it relies on a sampling approach which works as

follows. Let us notemcur the current VM’s memory size. To answerQ1, the hypervisor periodically

and randomly selects n pages from the VM’s memory (e.g. n = 100) and invalidates them. By so

doing, the next access to these pages trap in the hypervisor. The latter counts the number of pages

(noted f) among the selected ones which were subject to a non present fault during the previous

time interval. The WSS of the VM is
f
n ×mcur , thus answering Q2.

Implementation. Two implementations of this technique are possible depending on the way the

memory pages are invalidated. A memory page can be invalidated by clearing either the present

bit or the accessed bit. In the first implementation the hypervisor counts the number of page faults

generated by the selected pages while in the second, it counts the number of pages being accessed

(the accessed bit is set) during the previous time frame. Notice that the access bit is automatically

set by the hardware each time a page is accessed; no trap is triggered in the hypervisor. The

implementation of the two methods requires around 160 LOCs.

Comments. This technique is completely non intrusive. The feedback loop is entirely implemented

in the hypervisor/dom0. However, the technique has two main drawbacks. First, the method used

for answeringQ1 modifies the execution flow of the VM, which could lead to different performance

degradation levels depending on the adopted implementation. The first implementation leads to

higher performance degradation comparing to the second implementation. This is explained by the

cost of resolving a non-present page fault which is higher than the cost of setting the accessed bit

(performed in the hardware). However, the accuracy of the second implementation (the number

of accessed pages) could be biased if the hypervisor/dom0 runs another service which clears the

accessed bit. Such a situation could occur in a KVM environment because the hypervisor (i.e. Linux)

runs services like kswapd (the swap daemon) which monitors and clears the accessed bit. As a

second drawback, this techniques is unable to estimate WSSs greater than the current allocated

memory. In the best case, the technique will detect that all monitored pages are accessed, thus

estimating the WSS as the current size of the VM.

4.4 Geiger
Description. Geiger [16] monitors the evictions and subsequent reloads from the guest OS buffer

cache to the swap device (the answer of Q1). To deal with Q2, Geiger relies on a technique called

the ghost buffer [17]. The latter represents an imaginary memory buffer which extends the VM’s

physical memory (notedmcur). The size of this buffer (notedmдhost) represents the amount of

extra memory which would prevent the VM from swapping-out. Knowing the ghost buffer size,

one can compute the VM’s WSS using the following formula:WSS =mcur +mдhost ifmдhost > 0.

Implementation. The first challenge was to isolate the swap traffic from the rest of the disk IO

requests. In this respect, we forced the VM to use a different disk backend driver for the swap

device (e.g. xen-blkback). This driver is patched to implement the Geiger monitoring technique as

follows. When a page is evicted from the VM’s memory, a reference to that page is added to a tail

queue in the disk backend driver, located inside the dom0. Later, when a page is read from the swap

device, Geiger removes its reference from the tail queue and computes the distance D to the head

of the queue. D represents the number of extra memory pages needed by the guest OS to prevent

the swapping out of that page (i.e. the ghost buffer size at that timestamp). However, to update

the VM’s memory size after each reloaded page from swap would be too frequent. Thereby, we

leverage D values to compute the miss ratio curve [17]. This curve is an array indexed by D which

represents how many times we saw the D distance in the last interval. For example, if the computed

D = 50, we increment array[50] by one. When the timer expires, we iterate through the array
and we sum up its values until we got X% of its total size. In our implementation, we found out
that X = 95 yields good results. The index corresponding to the position where the iterator stops
represents the number of extra memory pages needed by the VM to preserve 95% of swapped out
pages.

Comments. Like the VMware technique, Geiger is also completely transparent from the VM’s point
of view. Thereby it does not require the VM user’s permission. As stated before, the VM has to be
started with a different disk backend driver for the swap device. However, this is not an issue since
the VMs are created by the cloud provider so, he is the one deciding the disk backend drivers to be
used. Additionally, Geiger has an important drawback which derives from its non-intrusiveness. It
is able to estimate the WSS only when the size of the ghost buffer is greater than zero (the VM is in a
swapping state). Geiger is inefficient if the VM’s WSS is smaller than the current memory allocation.

4.5 Hypervisor Exclusive Cache
Description. The Exclusive Cache technique [18] is fairly similar with Geiger in the way that both
of them rely on the ghost buffer to estimate the WSS. In the Exclusive Cache, each VM has a small
amount of memory called direct memory, and the rest of the memory is managed by the hypervisor
as an exclusive cache. Once the direct memory is full, the VM will send pages to the hypervisor
memory (instead of sending to the swap). Thereby, in the Exclusive Cache technique, the ghost
buffer is materialized by a memory buffer managed in the hypervisor.
Implementation. In the same way as Geiger, the Exclusive cache technique is also implemented
as an extension to the XEN disk backend driver. In the vanilla driver, the backend receives the pages
to be swapped through a shared memory between the VM and dom0. Subsequently, the backend
creates a block IO request that is passed further to the block layer. In our implementation, instead
of creating the block IO request, we store the VM’s page content in a dom0 memory buffer. The
latter represents the materialization of the ghost buffer.
Comments. In comparison with Geiger, this technique is more active since it may force the VM in
eviction state. However, the performance impact of the Exclusive cache technique is lower since the
block layer is bypassed and the evicted pages are stored in memory. zo

4.6 Dynamic MPA Ballooning
Description. The Dynamic Memory Pressure Aware (MPA) Ballooning [48] studies the memory
management from the perspective of the entire host server. It introduces an additional set of
hypercalls through which all VMs report the number of their anonymous pages, file pages and
inactive pages to the hypervisor (Q1). Based on this information, the technique defines three possible
memory pressure states: low (the sum of anonymous and file pages for all VMs is less than the
host’s total memory pages), mild (the sum of anonymous and file pages is greater than the host’s
total memory pages) and heavy (the sum of anonymous pages is greater than the host’s total
memory pages); this answers Q2. Depending on the current memory pressure state, the host server
adopts a different memory policy. In the case of low memory pressure, this technique divides the
hypervisor’s free memory to nbV Ms + 2 slices. Each slice (called cushion) is assigned to a VM as a
memory reserve. The two remaining cushions stay in the control of the hypervisor for a sudden
memory demand. The cushion may be seen as the exclusive cache in the Hypervisor Exclusive
Cache technique. In the mild memory pressure state, the hypervisor reclaims the inactive pages
from all VMs and rebalance them in nbV Ms + 1 cushions. In heavy memory pressure, most of the
page cache pages are evicted so the technique rebalance exclusively the anonymous pages.
Comments. This technique has high intrusiveness since it requires additional hypercalls in the

0 50 100150

0

200

400

Time (s)

M
e
m
o
r
y
(
M
B
)

W1

0 100200300

0

200

400

Time (s)

W2

0 100200300

0

200

400

Time (s)

W3

0 50 100 150

0

200

400

Time (s)

W4

0 500

0

200

400

Time (s)

W5

Fig. 4. The set of synthetic workloads.

guest OS. Thereby, it may be effective in the case of a private data center where the cloud manager

has a high degree of control over the guest OS. Additionally, the new hypercalls export precise and

important information about the VM’s memory layout; this may increase the risk of attacks on

VMs.

5 EVALUATION OF THE STUDIED TECHNIQUES
This section presents the evaluation results for most of the techniques described above. We do

not evaluate the Dynamic MPA Ballooning since is not a WSS estimation technique. The memory

utilization values are directly communicated by the VM to the hypervisor.

5.1 Experimental environment
The experiments were carried out on a 2-socket DELL server. Each socket is composed of 12 Intel

Xeon E5-2420 processing units (2.20 GHz), linked to a 8GB NUMA memory node (the machine

has a total of 16GB RAM). The virtualization system on the server is Xen 4.2. Both the dom0 and

the VMs run Ubuntu server 12.04. One socket of the server is dedicated to dom0 in order to avoid

interference with other VMs. Unless otherwise specified each VM is configured with two vCPUs

(pined to two processing units) and 2GB memory (the maximum memory it can use).

Concerning the applications which run inside VMs, we rely on both micro and macro benchmarks.

The former is an application which performs read and write operations on the entries of an array

whose size could be dynamically adjusted in order to mimic a variable workload. Each array entry

points to a data structure whose size is equivalent to a memory page. The micro-benchmark allows

to compare experimental values with the exact theoretical values, necessary for evaluating the

accuracy metric. To this end, we build five synthetic workloads which cover the common memory

behaviors of a VM during its lifetime. Fig. 4 presents these workloads, notedWi , 1 ≤ i ≤ 5. Each

workload is implemented in two ways. In the first implementation (notedWi,s), the array size is

malloced once, at VM start time, to its maximum possible value. In the second implementation

(notedWi,d), the array’s allocated memory size is adjusted to each step value.

In addition, we also rely on three macro-benchmarks, namely DaCapo [19], CloudSuite [20], and

LinkBench [21]. DaCapo is a well known open source java benchmark suite that is widely used by

memory management and computer architecture communities [22]. We present the results for 5

DaCapo applications which are the most memory intensive:

• Avrora is a parallel discrete event simulator that performs cycle accurate simulation of a

sensor network.

• Batik produces a number of Scalable Vector Graphics (SVG) images based on the unit tests in

Apache Batik.

• Eclipse executes some of the (non-gui) jdt performance tests for the Eclipse IDE.

• H2 executes a JDBC-like in-memory benchmark, executing a number of transactions against

a model of a banking application.

• Jython inteprets the PyBench python benchmark

CloudSuite is a benchmark suite which covers a broad range of application categories commonly

found in today’s datacenters. In our experiments, we rely on Data Analytics, a map-reduce ap-

plication using Mahout (a set of machine learning libraries). LinkBench is a database benchmark

developed to evaluate database performance for workloads similar to those at Facebook. The

performance metric of all these applications is the complete execution time. By choosing these

benchmarks, we wanted to cover the most important and popular applications executed in the

cloud nowadays.

5.2 Evaluation with synthetic workloads
As stated above, these evaluations focus on the accuracy metric. Fig. 5 and Fig. 6 present the results

for each workload and each WSS estimation technique. To facilitate the interpretation of the results,

each curve shows both the original workload (notedW o
i) and the actual estimated WSSs (noted

W e
i j), 1 ≤ i ≤ 5 (represents the workload type) and j=s,d (represents the implementation type -

static or dynamic).

Xen self-ballooning, Fig. 5 line 1-2. The accuracy of this technique is very low for all Wi,s (see
line 1) while it is almost perfect for all Wi,d (see line 2). This is because the technique relies on
the value of Committed_AS as the WSS. Thus, it is able to follow all Committed_AS changes. The
accuracy of this technique depends on the implementation (i.e. the memory allocation approach) of
applications which run inside the VM.

Zballoond, Fig. 5 line 3-4. This technique behaves like self-ballooning on all Wi,d (see line 4)
because it tracks all Committed_AS changes. Unlike self-ballooning, Zballoond is also quite efficient
on all Wi,s (see line 3). This is because Zballoond continuously adjusts the VM’s memory size so
that swap-in or refault events occur, thus avoiding resource waste. However, if the WSS reduction
is faster than the memory reclaim percentage (i.e. 5%), the estimation diverges from the real WSS
(see line 3, columns 2 and 4). Even if a higher memory reclaim percentage may solve the problem,
this means more memory pressure on the VM and thereby, it would increase the vm_over .

From now on (Fig. 6), we only discuss Wi,s results because we observed no difference with Wi,d
regardless the WSS technique. In fact, only Committed_AS-based techniques are sensitive to the
way by which the workload is implemented.

VMware, Fig. 6 line 1. Without access to the implementation details of this technique, we considered
two versions according to the way the sampled pages are invalidated: the present bit based version
(noted V Mwarepr esent) and the access bit based version (noted V Mwareaccess). The evaluation
results of these versions show that they have almost the same accuracy. They are only different
from the perspective of other metrics (see the next section). From Fig. 6 line 1, we can see that the
VMware technique has a main limitation. Although it is able to detect WSS when the VM is wasting
memory, it is not able to detect shortage situations. This happens because the percentage of mem-

ory pages (among the sampled ones) which is used for estimating the WSS is upper bounded by 100%.

Geiger, Fig. 6 line 2. Geiger is the opposite of the VMware technique; it is only able to detect
shortage situations. This is because it monitors the swap-in and refault events, which only occur
when the VM is lacking memory. Another advantage of this technique is its reactivity; it quickly
detects WSS changes.

0 50 100150

0

200

400

Se
lf
-b
al
lo
on

in
g

M
e
m
o
r
y
(
M
B
)

-
m
a
l
l
o
c
’
d
o
n
c
e
-

W o
1

W e
1,s

0 100200300

0

200

400

W o
2

W e
2,s

0 100200300

0

200

400

W o
3

W e
3,s

0 50 100 150

0

200

400

W o
4

W e
4,s

0 500

0

200

400

W o
5

W e
5,s

0 50 100150

0

200

400

Se
lf
-b
al
lo
on

in
g

M
e
m
o
r
y
(
M
B
)

-
d
y
n
a
m
i
c
a
l
l
y
a
l
l
o
c
a
t
e
d
-

W o
1

W e
1,d

0 100200300

0

200

400

W o
2

W e
2,d

0 100200300

0

200

400

W o
3

W e
3,d

0 50 100 150

0

200

400

W o
4

W e
4,d

0 500

0

200

400

W o
5

W e
5,d

0 50 100150

0

200

400

Zb
al
lo
on

d
M
e
m
o
r
y
(
M
B
)

-
m
a
l
l
o
c
’
d
o
n
c
e
-

W o
1

W e
1,s

0 100200300

0

200

400

W o
2

W e
2,s

0 100200300

0

200

400

W o
3

W e
3,s

0 50 100 150

0

200

400

W o
4

W e
4,s

0 500

0

200

400

W o
1

W e
5,s

0 50 100150

0

200

400

Zb
al
lo
on

d
M
e
m
o
r
y
(
M
B
)

-
d
y
n
a
m
i
c
a
l
l
y
a
l
l
o
c
a
t
e
d
-

W o
1

W e
1,d

0 100200300

0

200

400

W o
2

W e
2,d

0 100200300

0

200

400

W o
3

W e
3,d

0 50 100 150

0

200

400

W o
4

W e
4,d

0 500

0

200

400

W o
5

W e
5,d

Fig. 5. Evaluation results of self-ballooning and Zballoond with synthetic workloads. The original workload
is notedW o

i while the actual estimated WSSs are notedW e
i j . "j" is s (the static implementation) or d (the

dynamic implementation).

Hypervisor exclusive cache, Fig. 6 line 3. This technique behaves like Geiger in the perspec-

tive of the accuracy metric. They are different in terms of the vm_over metric presented in the

next section.

5.3 Evaluation with macro-benchmarks
Table 1 presents the evaluation results of each technique with macro-benchmarks. We only focus on

the vm_over and the hyper_over metrics. The vm_over value represents the normalized runtime

performance of each benchmark while the hyper_over represents the normalized CPU utilization

by the hypervisor. For example, vm_over = 2 means that the benchmark execution time is twice

longer. The interpretation of Table 1 is as follows.

Self-ballooning. It incurs no overhead neither on the hypervisor/dom0 nor on the benchmark.

Zballoond. Like self-ballooning, it incurs no overhead on the hypervisor/dom0. However, the

0 50 100150

0

200

400

600

V
M
w
ar

eo ∗
M
e
m
o
r
y
(
M
B
)

W o
1

W e
1

0 100200300

0

200

400

600

W o
2

W e
2

0 100200300

0

200

400

600

W o
3

W e
3

0 50 100 150

0

200

400

600

W o
4

W e
4

0 500

0

200

400

600

W o
5

W e
5

0 50 100150

0

200

400

G
ei
дe

r
M
e
m
o
r
y
(
M
B
)

W o
1

W e
1

0 100200300

0

200

400

600

W o
2

W e
2

0 100200300

0

200

400

600

W o
3

W e
3

0 50 100 150

0

200

400

600

W o
4

W e
4

0 500

0

200

400

600

W o
5

W e
5

0 50 100150

0

200

400

E
x
cl
u
si
v
e
C
ac
h
e

M
e
m
o
r
y
(
M
B
)

W o
1

W e
1

0 100200300

0

200

400

600

W o
2

W e
2

0 100200300

0

200

400

600

W o
3

W e
3

0 50 100 150

0

200

400

600

W o
4

W e
4

0 500

0

200

400

600

W o
5

W e
5

Fig. 6. Evaluation results of VMware2, Geiger, and Exclusive cache with synthetic workloads.

Self-ballooning Zballoond VMwarepresent
Benchmark and app. vm_over hyp_over vm_over hyp_over vm_over hyp_over

avrora 1 1 1.19 1 2.77 1.06

batik 1 1 1.09 1 15.44 2.0

Dacapo eclipse 1 1 3.67 1 18.79 1.01

h2 1 1 2 1 24.12 2.05

jython 1 1 1.58 1 21.42 1.16

Cloud suite Data Anal. 1 1 1.4 1 45.05 2.06

LinkBench MySQL 1 1 2.92 1 20.17 1

VMwareaccess Geiger Exclusive Cache
Benchmark and app. vm_over hyp_over vm_over hyp_over vm_over hyp_over

avrora 2.14 1.1 1.22 1.2 1 5.06

fop 13.06 2.2 1.41 1.32 1.5 5.6

Dacapo h2 15.63 1 1 1.02 1 5.0

jython 20.51 2 1.12 1.5 1.7 4.9

luindex 18.2 1.5 1.04 1.45 1.08 5.52

Cloud suite Data Anal. 40.22 1.06 1.15 1.22 2.03 6.04

LinkBench MySQL 19.22 2 1.76 1.09 1.80 5.2

Table 1. Evaluation results of each technique with macro-benchmarks.

VMs’ performance is impacted (between 1.09x and 3.67x).

VMware. We can see that the two versions we implemented (V Mwarepr esent and V Mwareaccess)
incur a relatively low overhead on the hypervisor/dom0. However, the two versions severely impact
the benchmark performance (up to 45x degradation in the case of the Data Analytics applica-
tions). As presented in the previous section, this is due to the fact that the VMware technique is
not able to detect memory lacking situations. V Mwarepr esent leads to more impact on VMs than
V Mwareaccess (about 3x).
2
The accuracy of the VMware method is orthogonal to the implementation approach thereby, it is represented only once.

Self-b. Zballoond VMware Geiger Excl. Cache
intrusive yes yes no no no

active no yes yes no yes

addressed all all Smore Sless Sless
situations

Self-b. Zballoond VMware Geiger Excl. Cache
accuracy depends high high in Smore high in Sless high in Sless

on the app. zero in Sless zero in Smore zero in Smore
vm_over nil almost nil in Smore almost almost

nil high in Sless nil nil

hyper_over nil nil almost almost not negligible

nil nil

Table 2. Study synthesis of all WSS estimation techniques according to both qualitative (left) and quantitative
(right) metrics.

Geiger. Its overhead on either the hypervisor/dom0 or the VM is negligible (less than 2x). Even if

the technique does not entirely address the issue of WSS estimation, the VM performance is not

strongly impacted since Geiger never leads the VM to a lacking situation like the VMware technique.

Exclusive cache. Its overhead on the hypervisor/dom0 is not negligible (about 5x). However,

its impact on the VM performance is almost nil (swapped-out pages are store in the main memory).

5.4 Synthesis
Table 2 summarizes the characteristics of each technique according to both qualitative and quantita-

tive criteria presented in Section 3.2. Besides these criteria, the evaluation results reveal that not all

solutions address the issue of WSS estimation in its entirety. Indeed, a WSS estimation technique

must be able to work in the following two situations:

• (Smore) the VM is wasting memory,

• (Sless) the VM is lacking memory.

The VMware technique [12] is only appropriate in (Smore) while Geiger and Hypervisor exclusive
cache are effective in (Sless). Only Zballoond and self-ballooning cover both (Smore) and (Sless). Our
study also shows that each solution comes with its strengths and weaknesses. The next section

presents our solution.

6 BADIS
6.1 Presentation
The previous section shows that the WSS estimation problem is addressed by a wide range of

solutions. However, to the best of our knowledge, none of them are consistently adopted in the

mainstream cloud. We assert that one reason which leads the cloud customers to the denial of such

solutions is their intrusiveness (both from the codebase and from the performance perspective).

This is confirmed by our cloud partner, Eolas [49]. We claim that a solution easily adopted in the

mainstream cloud should provide (1) no codebase intrusiveness and (2) low performance impact. In

order to reduce the performance impact the solution should provide high accuracy and thereby,

address both (Smore) and (Sless).
This section presents Badis, a system which smartly combines existing techniques in such a way

that both (Smore) and (Sless) are covered with no codebase intrusiveness. Indeed, we found that even
if the VMware andGeiger solutions have a fairly high performance impact they have no intrusiveness

in the VM’s codebase. The second observation is that these solutions are complementary (VMware
addresses Smor e while Geiger addresses Sless). The Hypervisor exclusive cache is also a solution that
only addresses (Sless) but it has higher hyper_over. Thereby, a system which is able to combine
VMware and Geiger satisfies our all requirements.

Fig. 7 top presents the architecture of our system. The VMware technique is implemented
at the hypervisor level while Geiger as well as the feedback loop decision module are located
inside the dom0. Concerning the VMware technique, we rely on the accessed bit instead of the
present bit for memory page invalidation. The former introduces less overhead on the VM than
the latter. The decision module is implemented as a kernel module inside the dom0, thus keeping
the hypervisor as lightweight as possible. The communication between Geiger and the decision
module is straightforward since they both run inside the dom0. Concerning the VMware technique,
it communicates with the decision module via a shared memory established between the dom0 and
the hypervisor. To this end, we extend the native Xen share_info data structure, which implements
the shared memory used by the hypervisor to provide the VM with hardware information necessary
at VM boot time (e.g. the memory size). Having described the mechanisms which allow the global
functioning of our system, let us now present how the two WSS estimation techniques are leveraged.
For each VM, the system implements a 3-state finite state machine (FSM), as shown in Fig. 7

bottom. Once setup, the VM enters the V state in which the WSS is estimated using the VMware
technique (Geiger is disabled). In fact, it is more likely that the memory allocated to the VM at boot
time (booked by its owner) is larger than its WSS. While in the V state, if the estimated WSS moves
closer to the VM’s allocated memory, the FSM transitions to the VG state in which Geiger is enabled.
While in the VG state, the WSS of the VM is given by the VMware technique if Geiger does not
measure any swap activity. Otherwise, the WSS is given by Geiger. The FSM transitions from VG to
the G state (in which the VMware technique is disabled) when Geiger reports swap activities during
two consecutive rounds. Finally, the transition from G to V is triggered if Geiger does not observe
any swap activity during two consecutive rounds. One may doubt the need of VG state. However,
we consider it necessary because of a more subtle VMware limitation. As presented before, VMware
chooses a set of sample pages and based on the number of pages accessed during an observation
interval, it computes the WSS as a percentage of the total memory. For example, if VMware chooses
100 sample pages and 60 of them are accessed, it concludes that the WSS size is 60% of the total
VM’s memory. However, in most of the cases this is wrong and not only because of the estimation
error. The VMware technique considers all pages equal and swappable. Nevertheless, some of the
pages are pinned down by the OS. If they are not accessed during a VMware observation interval,
they are considered out of the working set. When the memory is adjusted to the WSS the OS cannot
swap out this pinned pages and thereby, it has to chose from the active pages. This issue is an
important source of performance degradation.

Further we will present how Badis cope with this problem. When in VG , the VM is in a swapping
state which means that all of its allocated memory is necessary. In this state we still continue to
read estimations from the VMware technique which theoretically should be 100% (i.e. all pages are
accessed during a time frame). However, the estimations are generally less than 100% (e.g. 80%)
because of the pinned pages which are inactive. The difference to 100% (e.g. 20%) should also be
included in the working set because, even if these pages are inactive, they cannot be swapped-out.
This correctional value is stored and leveraged later, in the V state, for a conclusive estimation. The
next section presents the way our estimation system is leveraged in a virtualized cloud.

6.2 Badis in a virtualized cloud
In the last section we presented the advantages of Badis over the state-of-the-art. However, one
may ask which are the benefits of WSS estimation in the cloud? Clearly, there is no benefit in

Fig. 7. (top) The architecture of Badis. (bottom) The finite-state machine used to track a VM’s WSS in Badis.

Fig. 8. "Resource utilization over 30 days for a large production cluster at Twitter managed with Mesos. (a)
and (b): utilization vs reservation for the aggregate CPU and memory capacity of the cluster; (c) CDF of
CPU utilization for individual servers for each week in the 30 day period; (d) ratio of reserved vs used CPU
resources for each of the thousands of workloads that ran on the cluster during this period." [6]

shrinking a VM’s memory unless there is some other VM ready to make use of that. Thereby,

the WSS estimation should be integrated in a higher level system that has a wide image on the

datacenter’s compute resources. Such a system is the cloud manager (e.g. OpenStack [38]). The

latter controls the VMs’ lifetime and takes consolidation decisions.

Generally, the factor that limits the server consolidation is memory, for two main reasons. First,

over the last several years, we have seen new applications with vastly growing memory demands,

while platform evolution continued to offer more CPU capacity growth than memory. This referred

to as the memory capacity wall [8]. Second, in most of the virtualization systems, the booked

memory (mb) is entirely allocated when the VM is booted. This quantity should meet the highest

possible memory demands the VM will have during its lifetime. However, most of the time, the

memory demands are lower thanmb which implies some degree of memory waste (see Fig. 8).

The WSS estimation could help improving the memory efficiency and thereby, increase
the consolidation ratio. However, in some circumstances, the server consolidation based on the

VMs’ current WSS estimation may do more harm than good. If a recently consolidated VM requests

more memory than available on the hosting server, it should be migrated back on a server which

can provide enough memory. This excessive VM dynamics may increase the datacenter’s energy

consumption [35] and impact the hosted applications’ performance [36]. Thereby, the research

question is: how to leverage the WSS estimation techniques not only for a better but also for a

stable consolidation? Further we will present our solution to this problem.

Fig. 9. The integration of Badis in OpenStack. Badis estimates the WSS and sets the id_vm’s allocated
memory toWSS

max_avд
id_vm . It also transmitsWSS

max_avд
id_vm values to the local Neat. The latter collects these

values along with the CPU loads and sends them in batches to the global Neat. The local Neat may also send
consolidation requests to the global Neat in the case of CPU/RAM overload/underload. These consolidation
requests are decomposed into individual VM migrations which are executed by OpenStack Nova.

Our solution is implemented as an extension to a popular consolidation system, namelyOpenStack

Neat [37]. The latter takes consolidation decisions when a server is (1) underloaded or (2) overloaded.

In the first case it relocates all VMs in order to free up the server and switch it to a lower energy

state. In the latter case it migrates one VM, generally the one with the smallest allocated memory,

to reduce the migration time. We mention that Neat places VMs based on the booked memory

and not the WSS estimation. In order to decide when a server is underloaded or overloaded, Neat

has a data collection module that fetches the CPU utilization of all VMs and stores the data in

both, the local datastores on each physical server and a global datastore for the entire datacenter.

However, since Neat does not overcommit memory, it does not collect any memory utilization data.

The underload and overload detection algorithms only take into account the CPU. Further we will

present how Badis adjusts a VM’s allocated memory based on its WSS.

First, Badis continuously computes the moving average of the last n WSS estimation samples

(e.g. n = 5). We monitor the moving average of each WSS using time slices of size s (e.g. s = 1 hour).
The allocated memory of VM id_vm is adjusted to the maximum value of the moving average in the
last time slice, notedWSS

max_avд
id_vm . The latter value is also transmitted to the data collection module

(see Fig. 9). We have modified the Neat’s underload and overload detection algorithms to also take

. SinceWSS
max_avд
id_vminto account the memory load and pack the VMs based on W SSi

m
d
a
_v
x _
m
avд

≤ mb ,
the VM packing is tighter. If the allocated resources of all VMs on a server overpasses the underload
or the overload threshold, Neat will trigger a new consolidation round (see Fig. 11). However, the
volatility of the memory load is generally lower than the CPU. In our experiments only 3% of the
consolidation rounds were triggered because of the memory load (see Section 6.3).

6.3 Evaluations
The experimental environment is the same one presented in Section 5. We evaluated our solution
with both micro and macro benchmarks.

Micro-benchmark based evaluations. We first validated the effectiveness of our solution using
a synthetic workload, see the dashed blue curve in Fig. 10. This workload includes situations a

Self-ballooning Zballoond Badis
Benchmark and app. vm_over vm_over vm_over hyper_over

avrora 1 1.19 1.26 1.8

batik 1 1.09 1.57 1.05

Dacapo eclipse 1 3.67 1 1.68

h2 1 2 1.16 1.3

jython 1 1.58 1.05 1.15

Cloud suite Data Analytics 1.29 1.4 1.16 1.2

LinkBench MySQL 1.11 2.92 1.09 1

Table 3. Evaluation of our solution with macro-benchmarks, and comparison with two existing solutions.

0 500 1,000 1,500 2,000
0

200

400

600

800

Time (s)

M
e
m
o
r
y
(
M
B
)

Real WSS Badis Zballoond

Fig. 10. Badis and Zballoond evaluated with a synthetic workload.

WSS estimation technique should cope with. One can observe that the accuracy of our solution is

comparable with Zballoond but without any VM codebase intrusiveness. In the last part of Fig. 10

we can observe a case where our solution even outperforms Zballoond: the WSS drops quickly and

the inactive pages are still allocated. In this case Badis is able to quickly track the new WSS while

Zballoond slowly decreases the WSS leading to a lot of resource waste.

Macro-benchmark based evaluations.We also evaluated our solution with macro-benchmarks,

see Table 3. The latter focuses on the hyper_over and the vm_over metrics since the accuracy
metric has been evaluated above. We compare our solution with the only solutions which address

the issue of WSS estimation in its entirety, namely self-ballooning and Zballoond. We can see that

our solution leads to a negligible overhead on both the VM and the hypervisor/dom0 (less than 2x).

Simulations on traces from a Google datacenter. In the last sections we have demonstrated

the capability of our solution to follow the WS variation with high precision. This section will

show the effect of WSS estimation on the VM consolidation. In this respect, we leverage traces

from a Google datacenter [40]. They represent the execution of thousands of jobs on a cluster of

about 12,5k servers, monitored for about 29 days. Each job can be composed of several tasks and

each task runs inside a container. For each container, the traces provide data such as the creation

time, the destruction time, the amount of CPU/memory requested at creation time. Moreover the

traces provide the amount of CPU/memory actually assigned to the container
3
. By relying on

GloudSim [39] (a cloud simulator with VMs based on Google traces) we have simulated both, a

consolidation based on the booked memory and a consolidation based on the actually assigned

memory. In the first case the datacenter has an average of 9562 active servers while in the second

case the average number of active servers is 4676. These figures prove that the memory is indeed

the resource which limits the VM consolidation. In the second consolidation type, the packing ratio

is more than 2x higher. Regarding the VM dynamics, there were executed around 2.5M migrations

in total. Only 75k migrations (i.e. 3.17%) were caused by memory overload/underload. These results

3
The sampling time interval for this data is around 5 minutes.

prove that the memory volatility is net inferior to the CPU volatility. However, the paradox is that
most of the popular consolidation systems overcommit CPU but not RAM memory. Our evaluation
results are totally reproducible using the code provided at [1].

7 RELATED WORK
The reader should refer to Section 4 for the presentation of the main WSS estimation techniques in
virtualized environments. In this section we focus on other studies related to the concept of WSS,
memory management and VM consolidation in a virtualized datacenter.
Working set size estimation. WSS estimation [24] could require large data collection and

complex processing. Weiming Zhao et al. [23] have introduced a working set size estimation system
which computes a VM’s WSS based on its miss-ratio curve (MRC). The latter shows the fraction of
the cache misses that would turn into cache hits if the VM’s allocated memory increases. Moreover,
Weiming Zhao et al. have evaluated the overhead of their solution by providing the relationship
between performance and allocated memory size. Pin Zhou et al. [33] have proposed two similar
methods which dynamically track the MRC of applications at run time. These techniques represent
the hardware and the software implementations of the MattsonâĂŹs stack algorithm. The latter
relies on a "stack" which stores the references to accessed pages (the most recently used page
is on the top of the stack). Similarly to the ghost buffer, this algorithm computes the miss ratio
curve based on the distance to the top of the stack. Carl Waldspurger et al [34] have proposed an
approximation algorithm that reduces the space and time complexity of reuse-distance analysis.
This algorithm is appropriate for online MRC generation due to its modest resource requirements.

Memory optimization techniques. Memory deduplication is one of the most popular memory
optimization techniques. It consists in merging identical memory pages by keeping only one copy
of it. This is mostly useful in case of read-only pages that stay unchanged during the VM run time.
Depending on the algorithm used to identify similar pages, there are several implementations of
page sharing [9, 12, 25, 26]. These techniques are often combined with memory compression tools
to achieve better optimization rates [30–32]. Another memory optimization tool is the transcendent
memory [29] which gathers the VMs’ idle memory and the VMM non-allocated memory to a
common pool.
Memory balancing is a memory optimization technique, that tries to adjust the VM’s allocated

memory depending on its necessities. Memory ballooning is the main concept behind this approach.
The balancing techniques typically rely on working set size estimation techniques to optimize the
memory usage [22]. In a latter work, Zhao et al. [28] leverages inexpensive working set tracking
systems to correctly estimate the working set size for the Memory Balancer (MEB) [22]. Xiaoqiao
Meng et al. [41] leverage the concept of statistical resource multiplexing between multiple VMs.
Specifically, this paper proposes to form pairs of VMs that have complementary temporal behavior
(i.e. the peaks of one VM coincide with the valleys of the other). Thereby, if consolidated together,
the unused resources from the VM with low demands could be lent to the VM with high demands.
These pairs of VMs are found out by computing the correlation between all combinations of two
VMs in the datacenter. As one can notice, this approach requires high amount of computation even
for small datacenters.
Improving Memory balancing drawbacks. Memory balancing techniques have several draw-

backs. First, in the case where several VMs reach their respective memory limit simultaneously,
they will all generate a high amount of I/O requests which may saturate the secondary storage. On
the other hand, memory balancing is not aware of the hosted applications. Thus, memory intensive
applications (e.g. database engines) face serious issues because of memory balancing techniques.
To overcome these issues, [27] extends the VM memory ballooning to user level, for applications
that manage their own memory.

VM consolidation. The VM consolidation is an NP hard problem [42]. Thereby, numerous

papers came up with heuristics for this problem [43–46]. However, few of these projects provide

real implementations to the proposed algorithms [37, 47]. Among the implemented systems, to

the best of our knowledge, no system consistently performs memory overcommitment. Even if

memory is the main consolidation impediment, most of the existing systems consolidate the VMs

based on their booked memory and not on the actually used memory. In this paper, we propose a

system that monitors the WSS of VMs and takes consolidation decisions based on the observed

memory utilization.

8 CONCLUSION
In this paper, we present a systematic review of the main WSS estimation techniques, namely Self-
ballooning, Zballoond, VMware, Geiger and Hypervisor exclusive cache. From far of our knowledge,

this is the first work which deeply compares existingWSS techniques. To this end, we have proposed

a set of qualitative and quantitative metrics allowing the classification of these techniques. We

have evaluated each technique using both micro and macro benchmarks. The evaluation results

revealed the strengths and the weaknesses of each technique. More important, they show that

not all solutions address the issue in its entirety. Unfortunately, those which entirely address the

issue are intrusive, thus requiring the permission of the VM’s owner. This is unacceptable from the

datacenter operator’s point of view. We also propose Badis, a system which combines several of the

existing solutions, using the right solution at the right time. In addition, we have implemented a

consolidation extension which leverages Badis for an improved consolidation ratio. The evaluation

results reveal a 2x better consolidation ratio with only 3% additional VM migrations.

9 ACKNOWLEDGEMENTS
We would like to thank Vishal Misra (our shepherd) and the anonymous reviewers for their helpful

feedback. This work benefited from the support of Europe through the Erasmus+ International

Credit Mobility program.

Appendices
A THE GLOBAL NEAT
Figure 11 presents the consolidation algorithm employed by global Neat (i.e. Best Fit Decreasing).

The VMs are sorted in descending order based on their CPU load and WSS (line 3) while the hosts

(physical machines) are sorted in ascending order based on their available resources (line 4). In

every datacenter, a part of the hosts are inactive (i.e. suspended-to-RAM or shut-down); they are

also sorted in ascending order
4
(line 5). Subsequently, Neat tries to find, for each VM, a host that

have enough available resources (lines 7-16). If no host is able to accommodate the VM, Neat wakes

up an inactive host (lines 17-25). Finally, if all VMs are assigned to corresponding hosts, Neat

transmits the mapping list to Nova which actually executes the VM migrations (lines 26-27).

4
The datacenter may be heterogeneous (i.e. different types of hosts).

1# h o s t _ t u p l e = (host_cpu , host_mem , ho s t _ i d) ; vm_tuple =(vm_cpu , WSSmax_avд
vm_id , vm_id)

2de f g l o b a l _ n e a t (h o s t s _ t u p l e , i n a c t i v e _ h o s t s _ t u p l e , vms_tup le) :

3 vms = s o r t _ d e c r e a s i n g (vms_tup le)

4 ho s t s = s o r t _ i n c r e a s i n g (h o s t s _ t u p l e)

5 i n a c t i v e _ h o s t s = s o r t _ i n c r e a s i n g (i n a c t i v e _ h o s t s _ t u p l e)

6 mapping = { }

7 f o r vm_cpu , vm_ram , vm_id in vms :

8 mapped = F a l s e

9 whi l e not mapped :

10 f o r h o s t _ i d in ho s t s :

11 i f ho s t s_ cpu [ho s t _ i d] >= vm_cpu and hos ts_ram [ho s t _ i d] >= WSSmax_avд
vm_id :

12 mapping [vm_id] = hos t

13 hos t s_ cpu [h o s t _ i d] −= vm_cpu

14 hos t s_ram [ho s t _ i d] −= vm_ram

15 mapped = True

16 break

17 i f not mapped :

18 i f i n a c t i v e _ h o s t s :

19 a c t i v a t e d _ h o s t = i n a c t i v e _ h o s t s . pop (0)

20 ho s t s . append (a c t i v a t e d _ h o s t)

21 ho s t s = s o r t _ i n c r e a s i n g (ho s t s)

22 hos t s_ cpu [a c t i v a t e d _ h o s t [2]] = a c t i v a t e d _ h o s t [0]

23 hos t s_ram [a c t i v a t e d _ h o s t [2]] = a c t i v a t e d _ h o s t [1]

24 e l s e :

25 break

26 i f l en (vms) == l en (mapping) :

27 r e t u r n mapping

28 r e t u r n { }

Fig. 11. The global Neat consolidation algorithm

REFERENCES
[1] https://github.com/papers02/working_set.git

[2] U. Hölzle and L. André Barroso. The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale

Machines. Morgan and Claypool Publishers, 2009.
[3] America’s Data Centers Are Wasting Huge Amounts of Energy. http://anthesisgroup.com/wp-

content/uploads/2014/08/Data-Center-IB-final826.pdf

[4] C. Subramanian, A. Vasan, and A. Sivasubramaniam. Reducing data center power with server consolidation:

Approximation and evaluation. HiPC, 2010.
[5] L. André Barroso and U. Hölzle The Case for Energy-Proportional Computing. IEEE Computer 2007.

[6] C. Delimitrou and C. Kozyrakis Quasar: resource-efficient and QoS-aware cluster management. ASPLOS 2014.

[7] D. Meisner, B. T Gold, and T. F Wenisch The PowerNap Server Architecture. ACM Transaction on Computer Systems

2011.

[8] K. T. Lim, J. Chang, T. N. Mudge, P. Ranganathan, S. K. Reinhardt, T. F. Wenisch Disaggregated memory for

expansion and sharing in blade servers. ISCA 2009.

[9] G. Milos, D. G. Murray, S. Hand, and M. A. Fetterman Satori: enlightened page sharing. ATC 2009.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A. Warfield Xen and the

Art of Virtualization. SOSP 2003.

[11] Amazon Web Services, Inc. https://aws.amazon.com/ec2/

[12] C. A. Waldspurger Memory Resource Management in VMware ESX Server. OSDI 2002.

[13] https://blog.xenproject.org/2008/08/27/xen-33-feature-memory-overcommit/. visited on May 2017.

[14] https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-proc-

meminfo.html. visited on May 2017.

[15] J. Chiang, L. Han-Lin, and C. Tzi-cker. Memory Working Set-based Physical Memory Ballooning. ICAC 2013.

[16] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Geiger: monitoring the buffer cache in a virtual

machine environment. SIGARCH 2006.

[17] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed prefetching and caching. SOSP

1995.

[18] P. Lu and K. She. Virtual machine memory access tracing with hypervisor exclusive cache. ATC 2007.

[19] Blackburn, S. M., Garner, R., Hoffman, C., Khan, A. M., McKinley, K. S., Bentzur, R., Diwan, A., Feinberg, D.,

Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A., Jump, M., Lee, H., Moss, J. E. B., Phansalkar, A., Stefanovic, D.,

VanDrunen, T., von Dincklage, D., and Wiedermann, B. The DaCapo Benchmarks: Java Benchmarking Development

and Analysis. OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented Programing,

Systems, Languages, and Applications, (Portland, OR, USA, October 22-26, 2006)

[20] CloudSuite. http://cloudsuite.ch/. visited on May 2017.

[21] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan LinkBench: a database benchmark based on

the Facebook social graph. SIGMOD 2013.

[22] W. Zhao and Z. Wang Dynamic memory balancing for virtual machines. VEE 2009.

[23] W. Zhao, X. Jin, Z. Wang, X. Wang, Y. Luo, and X. Li Low cost working set size tracking. ATC 2011.

[24] Melekhova A, Markeeva L. Estimating Working Set Size by Guest OS Performance Counters Means. The Sixth

International Conference on Cloud Computing, GRIDs, and Virtualization 2015.

[25] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum Disco: Running Commodity Operating Systems on Scalable

Multiprocessors. ACM Trans. Computer Systems, vol. 15, no. 4, pp. 412-447, 1997.

[26] Gupta D, Lee S, Vrable M, Savage S, Snoeren C A , Varghese G, Voelker M. G, Vahdat A Difference Engine:

Harnessing Memory Redundancy in Virtual Machines OSDI 2008.

[27] Tudor-Ioan Salomie, Gustavo Alonso, Timothy Roscoe, and Kevin Elphinstone. Application level ballooning

for efficient server consolidation. EuroSys 2013.

[28] Weiming Zhao Zhenlin Wang. Dynamic Memory Balancing for Virtualization. TACO 2016.

[29] Dan Magenheimer, Chris Mason, Dave McCracken, Kurt Hackel. Transcendent Memory and Linux. Ottawa

Linux Symposium (OLS) 2009

[30] Irina Chihaia Tuduce and Thomas Gross. Adaptive Main Memory Compression. ATC 2005.

[31] Gennady Pekhimenko, Todd C. Mowry, and Onur Mutlu. Linearly Compressed Pages: A Main Memory Compres-

sion Framework with Low Complexity and Low Latency. PACT 2012.

[32] Lei Yang Haris Lekatsas Robert P. Dick. High-Performance Operating System Controlled Memory Compression.

DAC 2006.

[33] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman, Yuanyuan Zhou and Sanjeev Kumar.

Dynamic tracking of page miss ratio curve for memory management. ASPLOS 2004.

[34] Carl A. Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan Ahmad. Efficient MRC Construction

with SHARDS. FAST 2015.

[35] Haikun Liu, Cheng-Zhong Xu, Hai Jin, Jiayu Gong, Xiaofei Liao Energy modeling for live migration of virtual

machines. Cluster Computingi.

[36] William Voorsluys, James Broberg, Srikumar Venugopal, Rajkumar Buyya Cost of Virtual Machine LiveMigration

in Clouds: A Performance Evaluation. CloudCom.

[37] Anton Beloglazov, Rajkumar Buyya OpenStack Neat: a framework for dynamic and energy-efficient consolidation

of virtual machines in OpenStack clouds. Concurrency and Computation: Practice and Experience.

[38] Omar Sefraoui, Mohammed Aissaoui, Mohsine Eleuldj Openstack: Toward an open-source solution for cloud

computing. International Journal of Computer Applications.

[39] Sheng Di, Franck Cappello. GloudSim: Google trace based cloud simulator with virtual machines. SPE 2015.

[40] Google Traces. https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md

[41] Meng, Xiaoqiao and Isci, Canturk and Kephart, Jeffrey and Zhang, Li and Bouillet, Eric and Pendarakis,

Dimitrios. Efficient Resource Provisioning in Compute Clouds via VM Multiplexing. ICAC 2010.

[42] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Sviridenko, and A. Tantawi. Dynamic placement for clustered

web applications. In WWW, 2006.

[43] K.H.Kim, A.Beloglazov, R.Buyya. Power-aware provisioning of cloud resources for real-time services. MGC 2009.

[44] A.Beloglazov, R.Buyya. Energy efficient resource management in virtualized cloud datacenters. Cloud and Grid

Computing 2010.

[45] H.S. Abdelsalam, K. Maly, R. Mukkamala, M. Zubair, D. Kaminsky. Analysis of energy efficiency in Clouds.

Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, 2009.

[46] G.Jung, M.A.Hiltunen, K.R.Joshi, R.D.Schlichting, C.Pu Mistral:dynamically managing power, performance, and

adaptation cost in Cloud infrastructures. ICDCS 2010.

[47] Feller E, Rilling L, Morin C. Snooze: a scalable and autonomic virtual machine management framework for private

clouds. CCGrid 2012.

[48] Jinchun Kim, Viacheslav Fedorov, Paul V. Gratz, A. L. Narasimha Reddy Dynamic Memory Pressure Aware

Ballooning. MEMSYS 2015.

[49] Eolas cloud provider. https://www.eolas.fr/

	Abstract
	1 Introduction
	2 Background on virtualization: illustration with Xen
	2.1 Generalities
	2.2 Memory and I/O virtualization
	2.3 Ballooning

	3 On-demand memory allocation
	3.1 General functioning
	3.2 Metrics

	4 Studied techniques
	4.1 Self-ballooning
	4.2 Zballoond
	4.3 The VMware technique
	4.4 Geiger
	4.5 Hypervisor Exclusive Cache
	4.6 Dynamic MPA Ballooning

	5 Evaluation of the studied techniques
	5.1 Experimental environment
	5.2 Evaluation with synthetic workloads
	5.3 Evaluation with macro-benchmarks
	5.4 Synthesis

	6 Badis
	6.1 Presentation
	6.2 Badis in a virtualized cloud
	6.3 Evaluations

	7 Related work
	8 Conclusion
	9 Acknowledgements
	A The Global Neat
	References

