N
N

N

HAL

open science

Using the SPEM 2.0 kind-based extension mechanism to
define the SPEM4MDE metamodel

Samba Diaw, Mamadou Lakhassane Cisse, Alassane Bah

» To cite this version:

Samba Diaw, Mamadou Lakhassane Cisse, Alassane Bah. Using the SPEM 2.0 kind-based exten-
sion mechanism to define the SPEM4MDE metamodel. International Conference on Computing for

Engineering and Sciences (ICCES 2017), Jul 2017, Istanbul, Turkey. pp.63-69. hal-03622696

HAL Id: hal-03622696
https://hal.science/hal-03622696
Submitted on 29 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03622696
https://hal.archives-ouvertes.fr

OATAO

Cipen Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in:
http://oatao.univ-toulouse.fr/25026

Official URL
DOl : https://d0oi.org/10.1145/3129186.3129199

To cite this version: Diaw, Samba and Cisse, Mamadou L akhassane
and Bah, Alassane Using the SPEM 2.0 kind-based extension
mechanism to define the SPEM4MDE metamodel. (2018) In:
International Conference on Computing for Engineering and Sciences
(ICCES 2017), 22 July 2017 - 24 July 2017 (Istanbul, Turkey).

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

Using the SPEM 2.0 kind-based extension mechanism to define
the SPEM4AMDE metamodel

Samba Diaw
Polytechnic Institute (ESP)@Cheikh
Anta Diop University, UMMISCO

Mamadou L. Cisse
Polytechnic Institute (ESP)@Cheikh
Anta Diop University, UMMISCO

Alassane Bah
Polytechnic Institute (ESP)@Cheikh
Anta Diop University, UMMISCO

Laboratory Laboratory Laboratory
DAKAR DAKAR DAKAR
Senegal Senegal Senegal

samba.diaw@ucad.edu.sn

ABSTRACT

The objective ' of the OMG’s standard SPEM is to propose
shared concepts for describing software and even
systems processes. The =~ SPEM 2.0 metamodel proposes
concepts that are quite generic to describe model-driven
development processes. Indeed, the artifacts of those
processes are essentially models and relationships between
them are numerous (e.g. impact,
matching, overlap and so on). We notice that is difficult to have
a process modeling language that is suitable to define any
kind of process including MDE ones. To overcome this
lack, we
propose in this paper an extension of SPEM4MDE based on the
SPEM 2.0 kind-based extension mechanism. It allows
process designer to refine SPEM concepts in order to define
the model- driven processes. To illustrate our approach, the
MDE-based
VUML process for models composition has been used.

KEYWORDS

Model-Driven Engineering (MDE), Model Transformations,
Process Modeling Language (PML), VUML (View based
Unified Modeling Language

https://doi.org/10.1145/3129186.3129199

lakhassane.cisse@ucad.edu.sn

alassane.bah@ucad.edu.sn

1 INTRODUCTION

MDE (Model-Driven Engineering) [4, 10] is a software
engineering discipline that advocates the use of models and
transformations in the heart of software development. The term
MDE was proposed first by Kent in [16] and is derived from the
OMG’s Model Driven Architecture (MDA) initiative [5, 22].

With the emergence of MDE, many organizations have been
starting to transform their traditional software development
processes into model-driven ones [19].

Kleppe et al. define a model-driven software process as “a process
of developing software using different models on different levels of
abstraction with (automated) transformations between these
models” [17]. Therefore, the model-driven software development
process [9, 19, 28, 30]— called MDE software process — may be
seen as a transformation chain, each transformation consuming
one or several input models and producing one or several output
models.

The description of a software process is called process model. It
can be expressed through any specific language or notation,
which is called Process Modeling Language (PML). A process
model can be enacted when a development team follows the
process model during the development life cycle. One of the
major advantages of software process modeling is to help
developers using a unified and consistent terminology in order
to communicate around the process. Software process modeling
should also make possible understanding, reuse, evolution,
management, and standardization of processes [15]. One of the
major advantages of software process enactment is to allow best
guidance of development, checking of activities’ and
transformations’ constraints, and managing consistency between
artifacts/models.

In the literature, most of Process-centered Software Engineering
Environments (PSEEs) and processes modelling languages
(PMLs) have been proposed but none of them has gained much
attention from the software community.

Indeed, PSEES offer means to define, model, analyze, improve,
and automate software processes. An important problem
encountered in PMLs/PSSEEs is that software development
processes are subject to permanent evolution during enactment.
Without managing this evolution (i.e. having an approach that

will be able to describe the process in real life), PSEEs are
condemned to fail in being adopted in software industry.

For instance, a process designer wants to define a MDE process
with a SPEM language that is not suitable to do this. Then, it is
important to give to the process designer, a way that helps him
to refine the SPEM concepts at modeling time.

To fulfill this objective, we propose in this article an extension of
the SPEM4MDE metamodel based on the SPEM 2.0 kind-based
extension mechanism. It allows process designer at modeling
time to refine SPEM 2.0 concepts in order to define any kind of
model-driven processes. To illustrate our approach, the MDE-

based VUML process for models composition has been used

The remainder of the paper is organized as follows: section 2
introduces the objectives and the methodology of this work.
Section 3 presents our novel approach. Section 4 presents the
architecture of the prototype to be developed. Section 5
illustrates our approach through a MDE-based VUML process,
which we model using this prototype. Section 5 discusses related
works, while section 6 concludes and introduces some
perspectives.

2 OBJECTIVES AND METHODOLOGY

The objective of this paper is twofold: (1) provide an extension of
SPEM that reifies the MDE concepts; (2) provide a prototype of a
PSEE (Process-centered Software Engineering Environment) that
guides process designer at modeling phase and developers at
enactment time. One of the major advantages of reification of
MDE concepts is to allow on one-hand process designers to
explicitly describe specific aspects of MDE development, on the
other hand to ensure the consistency between models produced
by MDE process activities.

To fulfill the first objective, we have defined an extension of the
SPEM4MDE metamodel based on the SPEM 2.0 extension
mechanism.

To fulfill the second objective, we have designed a prototype of a
PSEE based on a methodology that is composed of four steps (see
Figure 1).

Figure 1: Methodology for modeling and enacting MDE
processes

The first step, which is done by a process designer, consists in
describing structural and behavioral models, which are
compliant with SPEM4MDE.

Afterwards, these models are validated with respect to the OCL
constraints defined in the SPEM4MDE metamodel.

The third step consists in instantiating models defined in the
previous step to a specific project and assigning necessary
resources for enactment (developers, rules, tools, workspaces,
etc.).

The fourth and last step of this methodology is the enactment of
the instantiated process model. Developers that use MDE tools
realize this stage. Developers are assisted in their tasks by the
enactment environment on the basis of process behavior models.
This stage produces the deliverables of the project (code, models,
documentation, etc.).

To validate our approach a MDE-based process for models
composition VUML [1], which is dedicated to viewpoint-oriented
multi-modeling has been used.

3 OUR APPROACH: THE EXTENSION OF
THE SPEM4AMDE METAMODEL

The extension of SPEM4MDE is structured in the form of four
packages (ActivityKind, TaskUseKind WorkProductUseKind, and
RoleUSeKind. They provide concepts that are able to describe
any kind of process including model-driven development ones.
To define their packages, we reuse the SPEM 2.0 kind-based
extension mechanism. It allows process designers to refine the

SPEM concepts such as Activity, TaskUse, RoleUe
and
WorkProductUse to define model-driven development processes.

3.1 ActivityKind Packaage

Figure 2 shows the ActivityKind package that aims at describing
activities in a process (e.g. Design a system). The different kinds
of activities are Phase, Iteration and Process. A MDE Process is a
kind of process that encompasses only transformations.
The following constraint rules are used to define the static
[WF01]: A phase should be decomposed only into Iterations
Context Phase inv:
self.nestedBreakDownElement—

forAll (a: Activity | a.oclIsTypeOf
(Iteration))

[WF02]: An Iteration should be decomposed only into Activities
Context Iteration inv:

self .nestedBreakDownElement—= forAll (a:
Activity a.oclIsTypeOf (Activity))

[WF03]: An Activity should be decomposed only into sub-
activities

Context Activity inv:
self.nestedBreakDownElement=

forAll (a: Activity | a.oclIsTypeOf
(Activity))

package ActivityKind]

Kind
{from SPEM 2.0)

ActivityKind

+applicableMetaClass

ExtensibleElement | Phase | ! Iteration !

from SPEM 2.0)] | | \

Activity
(from SPEM 2.0)

MDEProcess

Figure 2: ActivityKind package

3.2 TaskUseKind Package

Figure 3 shows the TaskUseKind package that aims at describing
tasks in process. A task is an activity assigned to a single person
(e.g. transform a model). The different kinds of tasks are
transformation and merging. It is possible to define at modeling
time others kinds of TaskUse by used the extension mechanism.
The following constraint rule is used to define the static
semantics of the TaskUseKind package.

[WF01]: input and output parameters of a transformation task
should be models

Context Transformation inv:
self.ownedProcessParameter—>collect (p|

p.parameterType) >forall (p|
p.oclIsKindOf (Model))

[WF02]: input and output parameters of a merging task should
be models

Context Merging inv:
self.ownedProcessParameter—collect (p|

p.parameterType) >forall (p|
p.oclIsKindOf (Model))

package TasklJsekind)

Kind
{from SPEM 2.0)

]

TaskUseKind

TaskUse
(from SPEM 2.0)

1 -

rapplicableMetaClass

47 i

ExtensibleElement Transformation Merging
(from SPEM 2.0}

Figure 3: TaskUseKind package

3.3 WokProductUseKind Package

Figure 4 shows the WorkProductKind package that aims at
describing any artifact/products consuming or producing within
a process. The different kinds of products are models and text
(code or documentation. The package describes also the
relationships between models (overlap, matching, impact,
compliance). For compliance relationship, a model should
comply with a metamodel (ie. a model at the M2 level).
Similarly, a metamodel should comply with a meta-metamodel
(i.e. a model at the M3 level).
The following constraint rule is used to define the static
[WF01]: WorkProducts that are used in an overlap (respectively,
matching, impact) relationship should be models

Context Overlap/Matching/Impact inv:
self.source.oclIsTypeOf (Model))
and
self.target—> forAll (p: WorkProductUse
p.oclIsTypeOf (Model))

package \WorkProduciUseKind

ExtensibleElement

(from SPEM 2.0) | WorkProductUseRelationship
el

fffom SPEW 2.)
Kind
ffrom SPEW 24 1| +applicahlehetaClas
WorkProductlse | 1 . [| |*
[from SPEM 2.0) WorkProductUseKind WorkProductUseRelationshipkind
sapplicableMetaClass 1
| |
Model Text Impact| | 2verlap | | [Watching
Compliance
letalfodel Metalletallodel Code Documentation|
|
]

Figure 4: WorkProductUseKind Package

3.4 RoleUseKind Package

In the RoleKind package (see Figure 5), two main kinds of roles
[13] are depicted: meta-level roles and application design roles.
On the meta-level we distinguish the following roles: domain
expert, language engineer, transformation specialist, platform
expert, and software factory architect whereas the application
level proposes the following roles: business engineer, solution
architect, test engineer, and data modeler.
The following constraint rule is used to define the static
[WF01]: A transformation specialist should participate only in
transformation tasks.

Context TransformationSpecialist inv:
self.ProcessPerformer—collect(p| p-linkedActivity)—forall(p|
p-oclIsTypeOf(Transformation))

package FioleUseKind

ExtensibleElement Kind
[from SPEM 2.0) (from SPEM 2.0)
RoleUse 1 N .
(from SPEM 2.0} RoleUseKind

+applicableMetaClass

- \ﬁhl

LanguageEngineer| ’—‘—‘ Transformation
‘ PIaformExnert‘ Specialist Develaper
1 [|

DomainExpert

TestEngineer

SoftwareFactoryArchitect
‘ BusinessEngineer | ‘ Soluti
| | |

Figure 5: RoleUseKind Package

4 THE PROTOTYPE OF THE PSEE

To validate our approach, we have developed a prototype
SPEM4MDE-PSEE under the PolarSys environment [31]. As
shown by Figure 6, SPEM4MDE-PSEE is divided into two
components: SPEM4MDE Process Editor, and SPEM4MDE Process
Enactment Engine.

A

Process Designer

___ SPEM4MDE Process Editor

=4

Transformation
b =3 Designer

Eclipse-based
Tools

MDE Project Repository

| Code

Documentation

SPEMAMDE Process
Enactment Engine

Developers

Figure 6: Architecture of SPEM4MDE-PSEE.

SPEM4MDE Process Editor allows process designers to describe,
and modify process models. Describing a process model includes
describing its structure and its behavior. Transformation
designers describe transformation rules in a MDE process. Once
the process model is described, the process designer may check it
with respect to the constraints defined in the SPEM4MDE
metamodel, or to additional constraints. There are two ways for
checking MDE process models: checking on demand (i.e. when
the user triggers himself the checking process) or checking
during edition (i.e. checking is done automatically by the tool).
Outcomes of process editing are stored in a repository called
MDE Process Repository. A project manager for instantiating a
MDE process model to a given project may also use this editing
component.

SPEM4MDE Process Enactment Engine allows developers to enact
a project-specific process model by giving them enactment
operators and the current state of any process element. It is
integrated with other eclipse-based tools (ATL, Smart QVT, Code
Management Tool, etc.) in order to execute the activities of the
instantiated MDE process. Developers can then keep track of
what is the current state of each element of the MDE project,
what has been done before and what is left. Outcomes (models,
code, documentation, etc.) are stored in a MDE Project Repository

5 VALIDATION: A MDE-BASED VUML
PROCESS

In this section we illustrate our approach with a MDE
process example: the MDE-based VUML process for models
matching and merging. First, we give an overview of the
MDE-based VUML process, and after we highlight the model
composition process in VUML.

VUML [25] is a viewpoint-based multi-modeling approach
that

aims at reducing the complexity of design software by providing
actors with a way to design a model according to their
viewpoint.

The MDE-based VUML process (see Figure 7) is composed of
four activities.

The first activity aims at identifying the need of each actor in
order to create a requirements model (UML use case diagram).
The second activity is decentralized and consists in developing
separate PIM models, each one representing a viewpoint of the
desired system. The result of this phase is a set of UML models
(class diagrams, state machines, sequence diagrams, etc.), which
are, conform to the UML metamodel.

The third activity (see Figure 8 for detailed information) consists
in composing and merging previous viewpoint models in order
to generate the VUML model.

The last activity transforms the VUML model into an
implementation model according to the target platform. This
activity is carried out by applying an object code generation
pattern as described in [24]. Finally, object code is generated
from this implementation model.

ConformTa h B
=:li e — E)J

UML Metamodel Requirements Model Identify actor's requirements
A
in

%Conf\:rmTo E;)'j

Design System according to ViewPoints
out out
out

b b

Design Model ViewPoint 1 Desian Model ViewPoint 2 asian Model ViewPaint n

in

5
Compose Models

out

3

VUML Model

> #h

VUML Profile

T .. &

VUML To Obiect Model

/Ut

= =|
. t
Object Implementation Model Generate Obiect Code o Obiect Code

Platfarm Description Model

Figure 7: The MDE-based VUML Process

Figure 8 shows the different steps of the models composition
activity in MDE-based VUML process.

The first step is a precomposition that identifies and resolves the
different conflicts between viewpoint models (names, structural,
etc.).

The second step (composition), which is automatic, aims at
composing PIM models. This composition is an exogenous
transformation because it takes input PIM models conform to the
UML metamodel and produces an output VUML model conform
to the VUML profile.

Once the VUML model is generated, the third step
(postcomposition) consists in refining it. A reflexive relation on
the VUML model represents this refinement operation. During
this step, possible dependencies between the view classes of a
given multiview class must be in order to ensure the consistency
of the system model. These dependencies are modeled in VUML
by dependency relationships, which are stereotyped by
“viewDependency”, and annotated by constraints expressed in
OCL language.

The models composition activity in the MDE-based VUML
process has been implemented with two transformation
modules: the first one implements correspondence rules and

generates a correspondence model, whereas the second
implements both merging and translation rules and produces the
VUML target model.

The rule Class2PartialCorrespondence states that two class
elements will be linked by a partial correspondence relationship
if they are defined in two different models with the same name.
This rule is declared as a specialization of
ModelElementCorrespondenceRule, which is defined as an abstract
rule. The inheritance mechanism allows factorizing common
code among several transformation rules.

The rule PartialCorrespondence2Base specifies that for each
defined partial correspondence relationship which links two
classes, an UML2 element Class is created in the composed
model. This rule implements the merging mechanism.

Finally, the rule Class2Class implements the translation rules
which express that a class having no corresponding class is
copied in the target model.

5

Compose Models

E)J ﬁmshToStart

Precumnusmn

finishToStart Ebj

Compasition - Postcompostion

T
I

Merain Rules
Design Mude\ Vlement 1 Transhztion Rules
\nout "
n

Curresnudance R Generate Corre undence Model Merging Models

Identify and Resolve Inconsiste...
inout
Curresnundence Model

Design Model ViewPaint 2

B
||||||

jout

VUML Model

Figure 8: Models Composition in MDE-based VUML
Process.

6 RELATED WORKS

Works related to our domain of interest mainly focus on
transformations and MDE processes modeling. In the
transformation area, we distinguish between model-to-code and
model-to-model transformation approaches. In general, model-
to-code can be viewed as a special case of model-to-model
transformation; we only need to provide a metamodel for the
target programming language. Among model-to-model
transformation approaches, we distinguish between graph-based,
program-based and template-based approaches. Model
transformation is the central topic of MDE and is essential to
define a MDE process. The first MDE process came with the

[5
::li inout E_‘)j
Refine VUML Model

OMG’s MDA initiative [5, 22], which depicted a general-purpose
process that can be applied to any application domain. Then,
starting from the MDA approach, other MDE processes
dedicated to middleware service [21], web applications [18], e-
learning [33], models composition [1], embedded-systems [11],
and a version of the Open Unified Process for MDD [26] have
been proposed. However, there is a lack of consistent
terminology since there is no unified language to specify MDE
processes: each one adopts ad hoc notations and different
concepts are used to define the activities and artifacts for
software development life cycle.

Many languages and formalisms have been proposed for
modeling software processes [3, 8, 12, 29] however only a few of
them take into account natively MDE concepts [20, 27]. The
SPEM 2.0 standard [29] proposes concepts that are quite generic
to describe any kind of process. To overcome this limitation,
SPEM proposes a kind-based extension mechanism, which we
reused in this paper to define an extension of SPEM4MDE.
Moreover, SPEM does not address the process enactment issue in
its last version. Nevertheless, it clearly suggests two possible
ways of enacting SPEM 2.0 process models: mapping the SPEM
2.0 process models into project plans or linking SPEM 2.0 process
elements with external behavior formalisms. To overcome the
limitations of SPEM regarding enactment, several approaches
based on state-machines (eSPEM [8], xSPEM [2], SPEM4MDE
[6]), Petri nets (e.g. Porres’ approach [27]), and on workflow
(XPDL [35], BPEL [34], BPELAPEOPLE [34], JBPM [13]) have been
proposed.

The QVT standard [23] is suitable for defining model mappings
and executable model transformations, but fails on describing
process design aspects.

In [6] we present a first version of the SPEM4MDE metamodel. It
extends a subset of SPEM 2.0 by adding natively concepts and
semantics relating to MDE. In addition, SPEM4MDE offers a set
of behavioral models described with UML state-machines that
process designers may reuse or adapt for a particular process.
However, SPEM4MDE does not provide a mechanism that allows
to refine its own concepts for a desired MDE process.

In [27], an approach that is targeted towards the development of
software and systems using MDE methods is presented. The
dynamics of this approach is based on Petri Nets. This approach
can be integrated with existing approaches for software process
modeling, but the metamodel contains only one concept
(transformation Tool) that is related to MDE.

In [20] an approach to MDA process specification, based on the
SPEM 2 standard concepts, is proposed. A tool called
Transforms, which can be used to instantiate a MDA process for
a given domain, supports this approach. Developers can describe
steps and associate artifacts to perform MDA modeling and
transformations chain. This approach has however some
limitations, since it is tightly coupled with MDA concepts.
Furthermore, it does not separate the specification of a
transformation from its implementation.

7 CONCLUSION

In the literature, a few PML (Process Modeling Language)
are

natively supported MDE concepts. Reification allows promoting
MDE concepts as first-class citizens.

In this paper, we have presented an extension of SPEM4MDE by
using the SPEM 2.0 kind-based extension mechanism. This
mechanism allows process designers to refine SPEM concepts in
order to flexibly define any kind of process particularly MDE
ones.

To validate our approach, we developed a prototype and used

the MDE-based VUML process for models composition.

Two

important perspectives of this work are under

consideration. Firstly, we intend to use the MDE-based VUML
process for the development of an emergency management
application within a senegalese hospital. Secondly, we envisage

extending the SPEM4MDE metamodel for

handling the

execution of model-based collaborative development processes.

ACKNOWLEDGMENTS
This work was partially supported by CEA-MITIC.

REFERENCES

(1]

(2]

(3]

(4]

[5]

(6]

(8l

[9]

[10]

[11]

[12]

Anwar, A., Ebersold, S., Nassar, M., Coulette, B., Kriouile A., 2010. A Rule-
Driven Approach for composition of Viewpoint-oriented Models. In: JOT
(Journal of Object Technology/

Bendraou, R., Combemale, B., Crégut, X.and Gervais, M.-P., 2007: “Definition
of an eXecutable SPEM2.0”. In: 14th Asia-Pacific Software Engineering
Conference (APSEC), pp. 390-397. IEEE Computer Society, Nagoya, Japan.
David A.Anisi. 2003. Optimal Motion Control of a Bendraou, R., Gervais, M.P.,
and Blanc, X., 2005. “UML4SPM: a UML 2.0-based metamodel for software
process modeling”. In: Briand, L., Williams, C. (eds.) MODELS 2005. LNCS, vol.
3713, pp. 17-38. Springer, Montego Bay, Jamaica

Bézivin, J., and Breton, E., 2004. “Applying the basic principles of model-
engineering to the field of process engineering”. European Journal for the
Informatics Professional. 5, 27-33.

Bézivin, J., and Gerbé, O, 2001. “Towards a precise definition of the
OMG/MDA Framework”. In: Proceedings of the 16th IEEE international
conference on Automated Software Engineering (ASE), pp. 273. IEEE Press,
San Diego, USA.

Diaw, S., Lbath, R., and Coulette, B., 2011. “Specification and Implementation
of SPEM4MDE, a metamodel for MDE software processes” (regular paper). In:
International Conference on Software Engineering and Knowledge
Engineering (SEKE 2011), pp. 646-653. Knowledge Systems Institute, Miami,
USA.

Fall Ibrahima; Diaw Samba: A Metamodel for MDE Process Model-Products
Relationships. 2016 IEEE 25th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE) Pages:
166 - 171.

Elner R, Al-Hilank, S., Bediaga, A., Drexler, J., Jung, M., Kips, D., and
Philippssen, M., 2010. “eSPEM - A spem extension for enactable behavior
modeling”. In: Kuhne, T., Seloc, B., Gervais, M.P., Terrier, F. (eds.) ECMFA
2010. LNCS, vol. 6138, pp. 116-131. Springer, Paris.

Fondement, F., and Silaghi, R., 2004.“Defining model-driven engineering
processes”. In: 3rd UML Workshop in Software Model Engineering (WiSME),
Springer, Lisbonne.

France, R, and Rumpe, R, 2007. “Model-drive development of complex
software: A Research Roadmap” In: Proc. of the International Conference on
Software Engineering (ICSE), pp. 37-54. IEEE Press, Minneapolis, Minnesota,
USA.

Garcia, A., Combemale, B., Crégut, X., Guyot, JN., and Libert, B., 2008.
“TopProcess: A process model-driven approach applied in Topcased for
embedded real-time software”. In: European Congress on Embedded Real-
Time Software (ERTS), Société des Ingénieurs de I’Automobile, Toulouse
Gonzalez-Perez. C. “Supporting Situational Method Engineering with ISO/IEC
24744 and the Work Product Pool Approach”. Situational Method

[13]
[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]
[26]

[27]

[28]

[29]
[30]

[31]
[32]
[33]

[34]

[35]

Engineering: Fundamentals and Experiences, pp. 7-18, 2007.
JBPM-website: www.jbpm.org

Hann , J. D, 2009. Roles in Model-Driven Engineering. Available at:
http://www.theenterprisearchitect.eu/archive/2009/02/04/roles-in-model-
driven-engineering

Humphrey, W., and Kelner, M., 1989. “Software modeling: principles of entity
process models”. SEI - Carnegie Mellon University. Pittsburgh, Pennsylvania
Kent, S., 2002. “Model-driven engineering”. In: Grieskamp, W., Santen, T.,
Stoddart, B. (eds.) IFM 2002. LNCS, vol. 2335, pp. 286-298. Springer, Turku,
Finland

Kleppe, K., Warmer. J., and Bast, W., 2003. “MDA explained the model-driven
architecture: practice and promise”, Addison-Wesley

Koch, N, 2006. “Transformations techniques in the model-driven development
process of UWE”. In: 6th International Conference on Web Engineering
(ICWE), Volume 155 Article N° 3. ACM, California

Larrucea, X., Garcia Diez, A. B., and Mansell, J. X., 2004. “Practical model-
driven development process”. In: Second European Workshop on Model
Driven Architecture (MDA) with an emphasis on Methodologies and
Transformations, pp. 99-108. Computing Laboratory, University of Kent,
Canterbury, UK

Maciel, R.S.P, Silva B.C., Magalhées, A.P.F., and Rosa, N.S, 2009. “An approach
to model-driven development process specification”. In: 11th International
Conference on Enterprise Information Systems ICEIS), pp. 27-32. INSTICC
Press, Milan

Maciel, R.S.P, Silva B.C., and Mascarenhas, L. A., 2006. “An edoc-based
approach for specific middleware services development”. In: 4th Workshop on
MBD of Computer Based System, pp.135-143. IEEE Press, Postdam.

MDA_Spec at, http://www.omg.org/mda/executive_overview.htm

MOF 2.0 QVT 1.0_Spec, http://www.omg.org/spec/QVT/1.0

Nassar M., Anwar, A., Ebersold, S., El Asri, B., Coulette, B., Kriouile, A. Code
Generation in VUML profile: a Model Driven Approach. IEEE/ACS AICCSA
2009. Rabat, May 10-13, 2009. IEEE Computer Society Press.

Nassar, M., Coulette, B., Crégut, X., Ebersold, S and Kriouile., A. Towards a
View based Unified Modeling Language. ICEIS’03, Angers, France, 2003.

OPEN UP at: www.eclipse.org/epf/openup_component/mdd.php

Porres, O., and M. C. Valiente, 2006. “Process definition and project tracking in
model-driven engineering”. In: Miinch, J., Vierimaa, M. (eds.) PROFES 2006.
LNCS, vol. 4034, pp. 127-141. Springer, Amsterdam.

Rios, E., Bozheva, T., Bediaga, A., and Guilloreau, N., 2006. “MDD maturity
model: a roadmap for introducing model-driven development”. In Rensink, A.,
Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 78-89. Springer,
Bilbao (2006)

SPEM 2.0_Spec, http://www.omg.org/spec/SPEM/2.0

Stahl, T., and Volter, M., 2006. “The Model-driven software development
Technology, Engineering, Management”, Translation copyright by John Wiley
& Sons, Ltd

PolarSys_website, www.polarsys.org

UML 2.2_Spec, http://www.omg.org/spec/UML/2.2/

Wang, H., and Zhang, D., 2003. “MDA-based development of E-Learning
system”. In: 27th International Computer Software and Applications
Conference (COMPSAC), pp. 684-689. IEEE Press, Texas.

Web Services Business Process Execution Language Version 2.0. Working
WS-BPEL ~ TC OASIS, April 2007. URL: http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

XPDL-Spec, www.omg.org/bpmn/.../XPDL_BPMN.pdf.

