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Inverse Regge poles problem on a warped ball

Jack Borthwick∗, Nabile Boussaid†, Thierry Daudé‡

Abstract

In this paper, we study a new type of inverse problem on warped
product Riemannian manifolds with connected boundary that we name
warped balls. Using the symmetry of the geometry, we first define the
set of Regge poles as the poles of the meromorphic continuation of
the Dirichlet-to-Neumann map with respect to the complex angular
momentum appearing in the separation of variables procedure. These
Regge poles can also be viewed as the set of eigenvalues and resonances
of a one-dimensional Schrödinger equation on the half-line, obtained
after separation of variables. Secondly, we find a precise asymptotic
localisation of the Regge poles in the complex plane and prove that
they uniquely determine the warping function of the warped balls.

1 Introduction

1.1 The model of warped balls and the statement of the in-
verse problem

This paper is devoted to the study of an inverse problem on warped product
manifolds with connected boundary from a new set of spectral data that we
refer to as Regge poles.

Precisely, let K be a compact (n − 1)-dimensional (n ≥ 2) Riemannian
manifold with metric gK and consider the warped product:

M = (0, 1]×K,

with interior M = (0, 1)×K and boundary ∂M = {1} ×K, equipped with
the metric:

g = c2(r)
(
dr2 + r2gK

)
,
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for some function c > 0. Setting x = − ln r brings the metric g into the
form:

g = c(e−x)2e−2x
(
dx2 + gK

)
≡ f(x)2g0,

so that g is conformally equivalent to the product metric:

g0 = dx2 + gK ,

on [0,+∞)×K. The conformal factor is defined for x > 0 by

f(x) = c(e−x)e−x > 0.

We emphasise that under these general assumptions, the above metrics are
not necessarily regular, but can have a conical singularity at r = 0. Actually,
this is, in some sense, the generic situation as one proves1 that the metric g
is regular if and only if:

1. the odd-order derivatives c(2k+1)(0) vanish for every k ∈ N,

2. K = Sn−1 and gK = dΩ2 where dΩ2 is the round metric on Sn−1.

Our ultimate goal is to determine the conformal factor c (or equivalently
f) from the knowledge of the Regge poles (see Definition 1) in addition to
some boundary datum. For simplicity we shall make the assumption that
the conformal factor c is a small perturbations of 1, in the sense that:{

c = 1 + Ṽ > 0, Ṽ ∈ L∞comp((0, 1]),

∃d ∈ R∗+, Ṽ > −1 + d.
(CF1)

Or, in terms of f : {
f = e−x + V > 0, V ∈ L∞comp(R+),

∃d ∈ R∗+, exV > −1 + d.
(CF1’)

We shall require some minimal regularity in the sense that:

V ∈ C1
c (R+), V ′ ∈W 1,∞(R+). (CF2)

The starting point towards defining the Regge poles is to consider the
Dirichlet-to-Neumann operator, a natural quantity in the study of inverse
problems. In fact, we shall consider a slight generalisation of this allowing
for fixed non-zero energy λ > 0. Consider first, for any φ ∈ H

1
2 (∂M),

the (non-homogenous) Dirichlet boundary condition problem in the natural
Hilbert space: L2(M): {

−∆gu = λu on M,

u = φ on ∂M.
(1)

1see [Pet16, Section 4.3.4]
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Recall that: L2(M) = L2(R+ ×K, fndxdK).
Under the assumptions (CF1’, CF2), we will show that given any φ ∈

H
1
2 (∂M) there is a unique solution uφ to problem (1) in H1(M) and define

the Dirichlet-to-Neumann operator (at fixed energy λ) to be the operator:

Λ(λ) : H
1
2 (∂M)→ H−

1
2 (∂M),

mapping any φ ∈ H
1
2 (∂M) to the boundary value of the (outgoing) normal

derivative of the solution to problem (1), in other words:

Λ(λ)φ = −∂xuφ(0, ·).

Since g is conformally equivalent to the product metric, the Laplacian
∆g is closely related to the product Laplacian ∆g0 . In fact, the change of
variable v = f

n
2
−1u, shows that problem (1) is equivalent to:{

−∆g0v + qfv = λf2v, x > 0,

v(0, ·) = f
n
2
−1(0)φ.

(2)

with v ∈ L2(R+ ×K, f2dxdK) = L2(R+, f
2dx)⊗L2(K)2. The potential qf

is given by:

qf =
(f

n
2
−1)′′

f
n
2
−1

. (3)

The symmetry of the overall manifold can now be used to its full advan-
tage. Indeed, the Laplacian −∆K on the compact manifold K has compact
resolvent and L2(K) can be decomposed onto an orthonormal basis of eigen-
vectors (Yk)k∈N. Let (µ2

k)k∈N denote the eigenvalues of −∆K , counted with
multiplicity and ordered such that 0 = µ2

0 < µ2
1 ≤ µ2

2 ≤ . . . . Recall now
that:

∆g0 = ∂2
x + ∆K .

Since the coefficients of −∆g0v+ qf −λf2 depend only on the coordinate x,
the operator is stable on any of the subspaces:

Ek ≡ L2(R+, f
2dx)⊗ span {Yk}.

On each Ek it reduces to a 1-dimensional Schrödinger operator and (2) can
be written in terms of the components of the decompositions:

φ =
∑
k∈N

φkYk, v =
∑
k∈N

vkYk,

as: {
−v′′k + (qf − λf2)vk = −µ2

kvk,

vk(0) = f
n
2
−1(0)φk.

(4)

2Because f depends only on x.
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A key point is that introducing:

Qf = qf −
(n− 2)2

4
− λ(f − e−x)(f + e−x),

z2
k = µ2

k +
(n− 2)2

4
,

the equation on each component can be rewritten as the Schrödinger equa-
tion on the halfline:

− v′′ + (Qf − λe−2x)v = −z2v, (5)

where we have dropped, for convenience, explicit dependence on the index
k. Assumptions (CF1’, CF2) ensure that the potential Qf ∈ L∞comp(R+).
The Schrödinger operator:

H = − d2

dx2
+Qf (x)− λe−2x,

with Dirichlet boundary conditions at x = 0 will have a central importance
in this work; it will be referred to as the associated Schrödinger operator.

Lastly, we point out that our spectral study will put emphasis on the
spectral parameter −z2 appearing in (5) as opposed to the more natural pa-
rameter λ which will be fixed throughout. In particular, (−z2) will be not
be restricted to the discrete values −z2

k and we will be especially interested
in what happens for complex values. From this perspective, it can be nat-
urally viewed as a complex angular momentum coming from the separation
of variables.

Let us now take a closer look at the Dirichlet-to-Neumann operator in
terms of v. It is also stable on any of the subspaces Ek and its restriction
can be written:

Λk(λ)φk = −u′k(0) = −
u′k(0)

uk(0)
φk = −

[
v′k(0)

vk(0)
−
(n

2
− 1
) f ′(0)

f(0)

]
φk.

Let φ ∈ H
1
2 (M) as in the previous paragraph, in Section 2.4 we will show

that when n ≥ 3 the components vk of v = f
n
2
−1uφ satisfy: vk, v

′
k ∈ L2(R+).

Hence, the term
v′k(0)

vk(0) is in fact the value of the Weyl-Titchmarsh function

for the Dirichlet Schrödinger operator H at −z2
k. We will use the usual

4



notation3:
v′k(0)

vk(0)
= M(−z2

k),

for the Weyl-Titchmarsh function associated to (5).
In summary, the Dirichlet-to-Neumann operator Λ(λ) can thus be diago-

nalized onto the Hilbert basis of eigenvectors (Yk)k∈N and on each invariant
subspace Ek, it acts as an operator of multiplication by:

Λk(λ) = Λ(λ, zk) = −
[
M(−z2

k)−
(n

2
− 1
) f ′(0)

f(0)

]
.

Note that Λ(λ) is completely determined by the Weyl-Titchmarsh function
M , the shifted eigenvalues z2

k of the transversal Laplacian −∆K and the

quotient f ′(0)
f(0) .

We will prove that in our particular model, the Weyl-Titchmarsh func-
tion M(−z2) is meromorphic on C. By analogy with scattering potential
problems [Reg59; AR65], we then define:

Definition 1. The Regge poles are the poles of the meromorphic extension
to C of the Weyl-Titchmarsh function M(−z2) of the operator H.

It is well known (see for instance [RS00]) that these poles can be equiv-
alently defined as the set of Dirichlet eigenvalues and resonances of the
operator H. They can therefore be thought of as resonances with respect to
the shifted “angular momentum” z.

The question we want to address in the present work is then the following:
does the knowledge of the Regge poles of a warped ball (M, g) determine
uniquely the warping function c (or f) ?

According to the previous observation, this problem amounts to studying
an inverse resonance problem for the half-line Schrödinger operator H. Note
that, in the case of compactly supported potentials, such problems have been
studied thoroughly in [Kor04; MSW10]. One of the novelties of this work
consists in considering non-compactly supported potentials of the form:

Qf − λe−2x, Qf ∈ L∞comp(R+).

3A way one can understand this notation is as follows, let S be the Riemann surface
S = {(w, z) ∈ C2, w + z2 = 0}. S is in fact diffeomorphic to C and the variable z is a
global coordinate. The Weyl-Titchmarsh function can first be defined as a function on the
open set U = S ∩ {(z, w) ∈ C2,<z > 0}, on which we could use the variable w = −z2 as
local coordinate. The notation M(−z2) denotes the value of M defined on U at the point
(−z2, z) ∈ U . We will show that M has a meromorphic extension to all of S ∼= C, and,
in order to avoid confusion and simplify notation in later analysis, we will write m(z) to
denote the value of the meromorphic extension of M at any point (−z2, z) of S. This is
equivalent to expressing M in the global coordinate chart given by z.
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1.2 The results and strategy of the proof

Our results on the Regge poles problem are twofold. First, we give a positive
answer to the uniqueness inverse Regge poles problem:

Theorem 1. If two warping factors f and f̃ satisfying (CF1’) and (CF2)
have the same Regge poles {(αk)k≥0 ∪ (βj)j∈Z∗} then:

Qf = Qf̃ .

Hence, assuming f(0) = f̃(0) and f ′(0) = f̃ ′(0), we have:

f = f̃ .

The second part of our results pertain to the distribution of the Regge
poles. However, we need to make another assumption on the warping func-
tion f = e−x + V . Precisely, we assume additionally that:

Assumption (CF3).

• suppV = [0, a],

• There exists p ∈ N∗, such that V ∈ Cp(R+) ∩ACp+1(R+),

• ∂p+1
x V is continuous R+ except at a where it has distinct left and right

limits.

Assumption (CF3) entails that the corresponding potential Qf satisfies:

suppQf = [0, a], Qf ∈ Cp−2(R+) ∩ACp−1(R+),

and ∂p−1
x Qf is continuous on R+ except at a where it has a jump. (If p = 1,

we will understand this to mean that Qf is continuous on R+ except at a
where it has a jump.)

With this assumption, we obtain precise asymptotics of the Regge poles.
Precisely, we have:

Theorem 2. The set of Regge poles is given by the union of two sequences

{(αk)k≥0 ∪ (βj)j∈Z∗},

where:

1. The αk’s are real numbers asymptotically close to the negative integers
−k as k →∞, i.e. for any 0 < δ < 1

2 , there exists N such that for all
k ≥ N ,

|αk + k| < δ.
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2. The βj’s are complex numbers which form a set that is symmetric with
respect to the real axis and satisfies for all j >> 1,

β±j = ±i π
2a

(
2|j|+ p− 1

2
± (sgn(A) + 1)

)
− p+ 1

2a
log
|j|π
a

+
1

2a
log |A|(p− 1)! + o(1),

for a certain explicit constant A.

Roughly speaking, the first sequence of Regge poles (αk) is due to the
exponentially decreasing potential −λe−2x in the Schrödinger operator H,
whereas the second, (βj), is due to the compactly supported perturbation
Qf .

Remark 1. We emphasize that the large Regge poles (αk)k≥0 seem to be
quite stable under compactly supported perturbations. We mean by this
that if we replace Qf ∈ L∞([0, a]) by another potential Q̃f ∈ L∞([0, ã]),
then the corresponding α̃k’s remain asymptotically close to the negative
integers −k.

In opposition with the above corollary, the Regge poles (βj) are quite
unstable under compactly supported perturbation. This can be seen from
the precise asymptotics given in Theorem 2. Indeed, slight modifications
in the support [0, a] of the perturbation, or in the value of the jump of
Qf at a, entail dramatic changes in the asymptotics. This is a well-known
phenomenon for scattering resonances [DZ19] and black holes quasinormal
modes [Des+21].

Theorem 1 will be proved according to two distinct strategies, the first
will not require assumption (CF3) and will provide a general uniqueness
result. The second will avail of (CF3) in order to follow the strategy
of [BKW03; BW04]. This will enable us to obtain a formula for the Weyl-
Titchmarsh function in terms of the Regge poles:

Theorem 3. Under the assumptions given in the text, and assuming, for
readability that all the Regge poles are simple then:

M(−z2) = −z +
∑
k≥0

ak
z − αk

+
∑
j∈Z∗

bj
z − βj

.

Similar expressions exists when the poles are not simple.

The strategy is then as follows:

• Step 1: We consider the Jost solution ψ(x, z) of the one-dimensional
Schrödinger equation, that is the unique solution (up to multiplicative
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constant) of (5) that is L2 at x = +∞. The Weyl-Titchmarsh function
M(−z2) is then defined for <z > 0 by:

M(−z2) =
ψ′(0, z)

ψ(0, z)
.

When V = 0, the Jost function ψ(0, z) turns out to be explicitly given
by a Bessel function. When V 6= 0, using the notion of transformation
operators introduced by Marchenko (see for instance the presentation
given in [Lev18]), and a perturbation argument, we will show that the
map z 7→ ψ(0, z) is an entire function of order 1 and infinite type.
Moreover, we obtain precise asymptotics of ψ(0, z) for |z| large in the
complex plane. These asymptotics allow us to locate the zeros ψ(0, z)
by a standard Rouché argument and classical results on the location of
zeros of Laplace transforms due to Hardy, Cartwright [Car30; Car31;
Har05] (we refer to Zworski [Zwo87, p. 287] for a similar application
of these results). The zeros of ψ(0, z) being the Regge poles of (M, g),
Theorem 2 will be proved.

• Step 2: Thanks to Step 1, the Weyl-Titchmarsh function M(−z2) has
a meromorphic extension to the Riemann surface:

{(w, z) ∈ C2, w + z2 = 0} ∼= C,

with poles given by the Regge poles. Using a Cauchy theorem on a
well-chosen contour, we are able to express this function as in Theo-
rem 3:

M(−z2) = −z +
∑
k≥0

ak
z − αk

+
∑
j∈Z∗

bj
z − βj

,

where, in the above, we assume that all Regge poles are simple for
readability. Moreover, using essentially the Hadamard factorisation
theorem for entire functions of finite order [Lev+96], we can prove
that the residues ak and bj only depend on the Regge poles {(αk)k≥0∪
(βj)j∈Z∗}. Consequently, we prove that the Weyl-Titchmarsh function
M is uniquely determined by the Regge poles. However, it is well-
known that the potential Qf is uniquely determined from the Weyl-
Titchmarsh function by the Borg-Marchenko theorem [Ben01; GS00;
Sim99].

1.3 Some bibliographical comments

In this section, we give some references that solve inverse problems on
warped product Riemannian manifolds similar to the one studied in this
paper.

In [DKN21; Gen20; Gen22], it is shown that the Steklov spectrum, i.e.
the eigenvalues of the Dirichlet-to-Neumann map Λ(0) at frequency 0, of a
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warped product with connected and disconnected boundary uniquely deter-
mines the warping function f . Moreover, logarithmic stability estimates are
provided.

In [IK17; IK21], some inverse spectral problems on compact and non-
compact rotationally symmetric manifolds are studied. These are similar
to the warped product Riemannian manifolds considered in this paper. In
[IK17] for instance, it is shown that the spectral data consisting in the eigen-
values and norming constants of a family of one-dimensional Sturm-Liouville
operators, corresponding to the diagonalisation of the Laplace-Beltrami op-
erator onto a fixed spherical harmonic, determines uniquely the compactly
supported potential. Moreover, the authors give an analytic isomorphism
from the space of spectral data onto the space of functions describing the
warping function, hence answering the inverse characterisation problem. In
[IK21], a similar uniqueness inverse result is obtained for a class of non-
compact warped product Riemannian manifolds. Here, the spectral data are
given by the set of eigenvalues and resonances of a family of one-dimensional
Schrödinger operators, corresponding to the diagonalisation of the Laplace-
Beltrami operator onto a fixed spherical harmonic.

The results in [IK21] are the closest in spirit to the ones presented in this
paper. The main difference with our work is that the authors only consider
Schrödinger operators with compactly supported potentials and their spectral
data does not correspond to the Regge poles considered here.

1.4 Content of the paper

In Section 2, we provide some additional results on the geometric models
of warped product Riemannian manifolds. In particular, we give the proof
of the existence and uniqueness of a solution u to the Dirichlet problem
(1). In Section 3.1, we study in detail the unperturbed model, that is the
case V = 0. The Jost function is shown to be merely a Bessel function and
its behavior with respect to the complex angular momentum z is studied.
In Section 3.2, we extend the analytic properties of the Jost function from
the unperturbed case to the perturbed case. The main technique used here
consists in using the so-called transformation operators that connect the
solutions of the unperturbed Schrödinger equation to the solutions of the
perturbed Schrödinger equation. Eventually, in Section 4, we put together
all the previous results and prove our main theorems.

2 Preliminary results

2.1 The relationship between ∆g and ∆g0

To begin this section, we explain the equivalence between problems (1)
and (2) in a geometric manner by means of the conformal Laplacian. For
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this, recall that, in terms the coordinate x = − ln r ∈ R+, warped-balls are
described as M = R+ ×K equipped with the metric:

g = f(x)2g0,

where f(x) = c(e−x)e−x > 0 and g0 = dx2 + gK . g and g0 are therefore in
the same conformal class.

For any w ∈ R, let E [w] denote the module of sections of the bundle
of conformal densities4 of weight w. The conformal Laplace operator is the
operator acts from E [1− n

2 ] into E [−1− n
2 ] and can be calculated using any

metric g in a given conformal class according to the formula:

gab∇ga∇
g
b −

(n− 2)

4(n− 1)
gabRgab.

In this expression Rgab is the Ricci tensor for the given metric g and g is the
conformal metric g = (σg)

2g where σg is the unique density of weight 1 that
evaluates to 1 along the section g; unlike g; g is conformally invariant.

Using the conformal invariance of the conformal Laplacian in the specific
case g = f2g0 and using bold letters to indicate that the conformal metric
is used in contractions as opposed to a given metric in the conformal class,
we find that for any conformal density σ ∈ E [1− n

2 ]:

∆gσ = ∆g0σ −
(n− 2)

4(n− 1)
(Rg0 −Rg)σ.

Now:

Rg −Rg0 = σ−2
g0

[
(4− n)(n− 1)

(
f ′(r)

f(r)

)2

− 2(n− 1)
f ′′(r)

f(r)
.

]
,

hence:

∆gσ = ∆g0σ − σ−2
g0

[
(n− 4)(n− 2)

4

(
f ′(r)

f(r)

)2

+
n− 2

2

f ′′(r)

f(r)

]
σ,

= ∆g0σ − σ−2
g0

(
(f

n
2
−1)′′

f
n
2
−1

)
σ.

To reinterpret this relation in terms of functions set5 σ = uσ
1−n

2
g = vσ

1−n
2

g0 .
Note that:

v = f
n
2
−1u.

4A conformal density of weight w can be thought of as a function on M depending on
the metric and homogeneous in the sense that: f(x,Ω2g) = Ωwf(x, g). Since any metric
g on M defines a canonical volume density Volg, and that VolΩ2g = ΩnVolg, one has a
correspondence (that depends on the choice of metric) between the usual 1-density bundle
and conformal densities of weight −n via the map: φ 7→ φ

Volg
.

5σg is parallel for the Levi-Civita connection of g and similarly for σg0 .
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In particular, for any λ ∈ R+:

−∆gu = λu⇔ −∆gσ = λσ−2
g σ,

⇔ −∆g0σ + σ−2
g0

(
(f

n
2
−1)′′

f
n
2
−1

)
σ = λf2σ−2

g0
σ,

⇔ −∆g0v +

(
(f

n
2
−1)′′

f
n
2
−1

)
v = λf2v.

2.2 A few properties of Bessel functions

Bessel functions will play an important role in the sequel and we will need
a few results regarding their behaviour as functions of their order. We
state and prove the relevant properties here. We first recall an integral
formula [Wat95, Schläfi’s formula, Equation (4), §6.2 p.176 ]:

∀z ∈ C, t ∈ R∗+, Jz(t) =
1

2π

∫ π

−π
e−izθeit sin θdθ − sin(πz)

π

∫ ∞
0

e−sze−t sh sds,

from which it is straightforward to see that ψ0 : z 7→ Jz(t) is an entire
function. In fact, from this representation we will show that ψ0 is of finite
order, this is contained in the following lemmata:

Lemma 1. For any compact interval I = [α, β] ⊂ R∗+, there are constants
c1, c2 > 0 such that:

|Jz(t)| ≤ c1e
c2z ln(z),

uniformly in t ∈ I, for |z| large enough.

Proof. Since for any θ ∈ [−π, π], |e−izθeit sin θ| = e=zθ ≤ e|z|π, the first
integral is bounded by e|z|π. Therefore it will satisfy an estimate of the
required form for |z| large enough. The second part of the formula can be
estimated roughly by:

e|z|π

π

∫ ∞
0

es|z|−t sh sds.

It remains to determine the behaviour of the integral

∫ ∞
0

es|z|−t sh sds for

large values of |z|. For this we notice first that when |z| ≥ t, the map
s 7→ s|z| − t sh s has a global maximum at:

smax(|z|) = argch
|z|
t

= ln

(
|z|
t

+

√
|z|2
t2
− 1

)
.

Its maximum value is given by:

φmax(|z|) = |z| argch
|z|
t
−
√
|z|2 − t2.

11



Now: ∫ ∞
0

es|z|−t sh sds = e2φmax(|z|)
∫ ∞

0
es|z|−2φmax(|z|)e−t sh sds

For fixed s > 0, the map |z| 7→ s|z| − 2φmax(|z|) has a global maximum
attained when |z| = t ch s

2 , so that for any s > 0 and any |z| ≥ t > 0:

s|z| − 2φmax(|z|) ≤ 2t sh
s

2
.

Hence: ∫ ∞
0

es|z|−t sh sds ≤ e2φmax(|z|)
∫ ∞

0
et(2 sh s

2
−sh s)ds,

the integral on the right converges and this estimate concludes the proof.

Remark 2. In fact for any ε > 0, there is C > 0, such that one has:∫ ∞
0

es|z|−t sh sds ≤ Ce(1+ε)φmax(|z|),

Lemma 2. Let 0 < δ < 1
2 , et let Uδ = C \

+∞⋃
n=1

D(−n, δ), then uniformly for

t ∈ [α, β] ⊂ R∗+:

Jz(t) =

(
t
2

)z
Γ(z + 1)

(
1 + O

|z|→∞

(
1

|z|

) )
. (FA)

Proof. Recall the more usual series representation of the Bessel function for
t > 0 given by:

Jz(t) =

(
t

2

)z +∞∑
m=0

(−1)m

Γ(m+ 1)Γ(z +m+ 1)

(
t

2

)2m

.

Using that Γ(z + 1) = zΓ(z), this can be rewritten:

Jz(t) =

(
t
2

)z
Γ(z + 1)

(
1 +

+∞∑
m=1

(−1)m

m!(z + 1)(m)

(
t

2

)2m
)
,

where (x)(n) denotes the Pochhammer symbol, or increasing factorial:

(x)(n) = x(x+ 1) . . . (x+ n− 1).

On Uδ one certainly has:

(z + 1)(m) ≥ |z + 1|δm−1,

so that: ∣∣∣∣∣
+∞∑
m=1

(−1)m

m!(z + 1)(m)

(
t

2

)2m
∣∣∣∣∣ ≤ δ

|z + 1|
e
t2

4δ .

12



From these two lemmata it now follows that:

Corollary 1. For fixed t > 0, the entire function z 7→ Jz(t) is of finite order
ρ = 1.

The asymptotics (FA) are fundamental and will be used extensively in
what follows.

2.3 Gelfand-Levitan transformation operators

As previously mentioned, the operator:

H = − d2

dx2
− λe−2x +Qf ,

is of central interest in this work. This is clearly a perturbation of the
Schrödinger operator:

H0 = − d2

dx2
+ q0, q0(x) = −λe−2x, x ∈ R+.

In this section we will write: q = q0 + Qf . Our assumptions on f ensure
that the perturbation Qf = q − q0 is bounded and of compact support. For
definiteness we assume:

supp Qf ⊂ [0, a], a ∈ R∗+

Finally, let D(H0) (resp. D(H)) denote the maximal domain in L2(R+,dx)
of H0 (resp. H):

D(H0) = {g ∈ L2(R+, dx), g, g′ ∈ AC(R+), H0g ∈ L2(R+,dx)},

and similarly for H.
Since H is a very reasonable perturbation of H0 solutions of Hg = −z2g

can be related to those of H0g = −z2g by means of a transformation op-
erator [Lev18, Chapter 1]. This is in all points analogous to a scattering
operator but in a slightly different context.

The result is that one can find an integral kernelK such that the operator
X defined by:

(Xf)(x) = f(x) +

∫ +∞

x
K(x, t)f(t)dt, x > 0,

maps D(H0) into D(H) and satisfies the interlacing relationship:

HX = XH0.

The kernel K is defined as a fixed point:

K(x, t) =
1

2

∫ ∞
t+x

2

Qf (s)ds+

∫ ∞
t+x

2

∫ t−x
2

0
(q(α−β)−q0(α+β))K(α−β, α+β)dβdα,

13



for 0 ≤ x ≤ t.
We will now reformulate and refine a little the results of [BW04, Sec-

tion 5]. Below we will omit the dependence on f but emphasise on the
dependence in Q. We assume:

Mq,q0 := sup

{∫ t−x
2

0
|q(α− β)− q0(α+ β)|dβ, t− x

2
≤ α ≤ a, 0 ≤ x ≤ t

}
<∞.

Remark 3. We can consider KQ continuous on R+×R+ with the requirement

KQ(x, t) = 0 if x+ t ≥ 2a or x ≥ t.

Note however that the condition that KQ has support on x ≤ t does not seem
to be fulfilled by the term

∫∞
t+x

2
Q(s)ds while it is for the others as, by conven-

tion, the integrals vanish whenever the lower bound is larger than the upper
one. So from this point of view, below we could consider 1

21x≤t
∫∞
t+x

2
Q(s)ds

instead.
We will actually consider KQ continuous on Ω = {(x, t) ∈ R2, 0 ≤ x ≤ t}

with the requirement

KQ(x, t) = 0 if x+ t ≥ 2a.

The proof will be the same and up to a multiplication by 1x≤t which only
affects the first term, the solutions will coincide.

Let Ea be the set of continuous functions on Ω with support in Ω0 =
{(x, t) ∈ R+ × R+, 0 ≤ x ≤ t, x+ t ≤ 2a}. This space is endowed with the
supremum norm. We consider the map FQ:

FQ(L)(x, t) :=
1

2

∫ ∞
t+x

2

Q(s)ds+

∫ ∞
t+x

2

∫ t−x
2

0
(q(α−β)−q0(α+β))L(α−β, α+β)dβdα.

If Q is integrable then Ea is stable under FQ.

Remark 4. Note that KQ is the unique fixed point of FQ if and only if KQ

is the unique fixed point of FnQ for some n ∈ N.

Lemma 3. Let a > 0 and and Q integrable with support in [0, a]. Let
q := q0 + Q. Then there exists N > 0 such that for n ∈ N and n > N , FnQ
is a contraction mapping on Ea.

Proof. One can write:

FnQ(L) =
n∑
k=1

KQ,n + GQ,n(L),

14



with:

GQ,1(L)(x, t) :=

∫ ∞
t+x

2

∫ t−x
2

0
(q(α− β)− q0(α+ β))L(α− β, α+ β)dβdα,

GQ,n+1(L) := GQ,1(GQ,n(L)) = Gn+1
Q,1 (L),

KQ,1(x, t) :=
1

2

∫ ∞
t+x

2

Q(s)ds,

KQ,n+1 := GQ,1(KQ,n) = GQ,n(KQ,1),

with the convention that GQ,0 is the identity. Moreover, for L ∈ Ea, we
have:

|GQ,n(L)(t, x)| ≤
Mn
q,q0

n!

(
a− t+ x

2

)n
+

‖L‖∞. (6)

This is proved by induction on n following for instance [BW04, Lemma 1].
Hence, for n sufficiently large, GQ,n is a contraction on Ea endowed with
supremum norm L∞ and so is FnQ

From Banach’s fixed point theorem, FnQ and FQ have a unique fixed
point on Ea which is given by the convergent series in Ea:

KQ =
∑
n∈N

KQ,n,

defined in the proof of Lemma 3. Notice that the smaller Q is, the smaller
KQ is, and this ensures the invertibility of X.

Below for O an open subset of Rd with closure S, d ∈ N, Ck(S) is the
set of functions F with are Ck(OF ) for some open set of Rd with S ⊂ OF .
This is equivalent to the fact that F belongs to Ck(O) and its derivatives of
order k have a limit at any point of ∂O.

Lemma 4. Let Q ∈ L1
a. Let k ∈ N. If Q is in Ck(R+) then KQ is in

Ck+1(Ω) and (even if k = 0) the derivatives

∂ t+x
2
∂ t−x

2
KQ, ∂ t−x

2
∂ t+x

2
KQ,

exist and are both equal to (q(x)− q0(t))KQ(x, t) and

(∂2
tKQ − ∂2

xKQ)(x, t) = (q(x)− q0(t))KQ(x, t), (7)

in a distributional sense on the interior of Ω if k = 0, or, in the strong sense
for any (x, t) ∈ Ω if k ∈ N.

If, moreover, ∂kxQ is continuously differentiable except at a where it has
distinct right and left derivatives then:

(x, t) 7→ HQ(x− t) := KQ(x, t)− 1

2

∫ ∞
t+x

2

Q(s)ds,

15



is Ck+2(Ω) and for any x ∈ [0, 2a] :

∂k+2
x KQ(x−, (2a− x)−) = −1

4
∂k+1
x Q(a−).

Proof. Let us first consider Q ∈ L1
a. For L ∈ Ea, due to continuity of

translations in L1, the quantity:∫ t−x
2

0

(
q

(
t+ x

2
− β

)
− q0

(
t+ x

2
+ β

))
L

(
t+ x

2
− β, t+ x

2
+ β

)
dβ,

is continuous in β and absolutely continuous in x+ t whilst:∫ ∞
t+x

2

(
q

(
α− t− x

2

)
− q0

(
α+

t− x
2

))
L

(
α− t− x

2
, α+

t− x
2

)
dα,

is continuous in α and absolutely continuous in t− x.
From the fundamental theorem of calculus, we deduce that

∂ t+x
2
GQ,1(L)(x, t) = −

∫ t−x
2

0
(q(

t+ x

2
−β)−q0(

t+ x

2
+β))L(

t+ x

2
−β, t+ x

2
+β)dβ

(8)
and, using first Fubini’s theorem, we deduce similarly:

∂ t−x
2
GQ,1(L)(x, t) =

∫ ∞
t+x

2

(q(α− t− x
2

)−q0(α+
t− x

2
))L(α− t− x

2
, α+

t− x
2

)dα.

(9)
In a distributional sense on the interior Ω we obtain:

∂ t−x
2
∂ t+x

2
GQ,1(L)(x, t) = ∂ t+x

2
∂ t−x

2
GQ,1(L)(x, t) = (q(x)−q0(t))L(x, t). (10)

It follows then that KQ satisfies the wave equation:

(∂2
tKQ − ∂2

xKQ)(x, t) = (q(x)− q0(t))KQ(x, t),

again, in distributional sense on the interior of Ω.
Recall KQ is continuous on Ω and q0 is smooth on R. Thus, if Q is

continuous on R+ (q is too), from the fundamental theorem of calculus KQ

satisfies (7).
Assume moreover that Q is in Ck(R+) and let ` ∈ N. From (8), (9)

and (10), we infer that GnQ maps C`(Ω) to Cmin(`+n,k+1)(Ω). It follows then

that KQ,n is in Ck+1(Ω) for any n ∈ N and KQ is in Ck+1(Ω).
To conclude the proof, let us remark that if Q is Ck+1

pw (R+) (piecewise

Ck+1) then (8) and (9) provide that if L ∈ C`(Ω) then ∂ t+x
2
GQ,1(L) and

∂ t−x
2
GQ,1(L) are Cmin(`,k+1) in t+x

2 and t−x
2 respectively. If (moreover) Q

is Ck(R+) then the right hand side of (10) is actually Cmin(`,k)(Ω) so that
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GQ,1(L) is Cmin(`+1,k+2)(Ω). For L = KQ this provides KQ−KQ,1 is Ck+2(Ω)
as announced. Since the supports of KQ and KQ − KQ,1 are contained in
Ω0, we deduce that for x ∈ [0, 2a],

∂k+2
x KQ(x−, (2a− x)−) = −1

4
∂k+1
x Q(a−)

which concludes the proof.

We conclude this paragraph with a continuity result.

Lemma 5. Let a > 0 and L1
a be the space of integrable functions with

support on [0, a] endowed with the L1-norm. The map

Q ∈ L1
a 7→ KQ ∈ Ea,

is continuous.

Proof. We consider another potential Q̃ integrable with support in [0, a] and
q̃ = q0 + Q̃ such that

Mq̃,q0 := sup

{∫ t−x
2

0
|q̃(α− β)− q0(α+ β)|dβ, t− x

2
≤ α ≤ a, 0 ≤ x ≤ t

}
<∞.

Let KQ̃ ∈ Ea be the fixed point of FQ̃. Then(
KQ̃ −KQ

)
(x, t) =

1

2

∫ ∞
t+x

2

(
Q̃−Q

)
(s)ds

+

∫ ∞
t+x

2

∫ t−x
2

0
(q̃(α− β)− q0(α+ β))

(
KQ̃ −KQ

)
(α− β, α+ β)dβdα

+

∫ ∞
t+x

2

∫ t−x
2

0
(Q̃(α− β)−Q(α− β))KQ(α− β, α+ β)dβdα

= JQ̃−Q,1(x, t) + GQ̃,1(KQ̃ −KQ)(x, t).

In the above:
JQ̃−Q,1 := KQ̃−Q,1 +HQ̃−Q(KQ),

with:

HQ̃−Q(L)(x, t) :=

∫ ∞
t+x

2

∫ t−x
2

0
(Q̃(α− β)−Q(α− β))L(α− β, α+ β)dβdα.

Let, for n ∈ N,
JQ̃−Q,n+1 = GQ̃,1(JQ̃−Q,n),
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then:

KQ̃ −KQ =

n∑
k=1

JQ̃−Q,k + GQ̃,n(KQ̃ −KQ).

Recall now (6) to deduce that for L ∈ Ea:

‖GQ,n(L)‖∞ ≤
Mn
q,q0a

n

n!
‖L‖∞.

Similarly, for L ∈ Ea, we have:

‖HQ̃−Q(L)‖∞ ≤ mQ̃−Qa‖L‖∞,

where:

mQ̃−Q := sup

{∫ t−x
2

0
|Q̃(α− β)−Q(α− β)|dβ, t− x

2
≤ α ≤ a, 0 ≤ x ≤ t

}
<∞.

Therefore, we obtain:

‖JQ̃−Q,1‖∞ ≤
1

2
‖Q̃−Q‖1 +mQ̃−Qa‖KQ‖∞,

and:

‖JQ̃−Q,n‖∞ ≤
(

1

2
‖Q̃−Q‖1 +mQ̃−Qa‖KQ‖∞

)
Mn−1
q̃,q0

an−1

(n− 1)!
.

Overall we obtain:

‖KQ̃ −KQ‖∞ ≤
n∑
k=1

‖JQ̃−Q,k‖∞ + ‖GQ̃,n(KQ̃ −KQ)‖∞

≤

(
n∑
k=1

Mk
q,q0a

k

k!

)(
1

2
‖Q̃−Q‖1 +mQ̃−Qa‖KQ‖∞

)

+
(Mq,q0 +mQ̃−Q)nan

n!
‖KQ̃ −KQ‖∞

and hence, for mQ̃−Q bounded and n sufficiently large, there exists C > 0
such that:

‖KQ̃ −KQ‖∞ ≤ C
(

1

2
‖Q̃−Q‖1 +mQ̃−Qa‖KQ‖∞

)
,

≤ C
(

1

2
+ a‖KQ‖∞

)
‖Q̃−Q‖1,

and so KQ is continuous in L∞-norm with respect to Q in L1-norm.
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2.4 Existence and uniqueness

In this section, we prove that there exists a unique solution u of the Dirich-
let problem (1) and show that the Dirichlet-to-Neumann operator is well-
defined. Due to the possibility of a conical singularity at r = 0, we cannot
appeal to the well-known existence and uniqueness theorems for regular
Riemannian manifolds, however the basic results we require follow through
without essential modification.

For clarity, we define H
1
2 (∂M) as the completion of C∞(∂M) for the

following norm based on the spectral data of the Laplacian on K by:

‖φ‖2
H

1
2 (∂M)

=
∑
k

(1 + µ2
k)

1
2 |φk|2.

We mean by H1(M), the closure of D = {u ∈ C∞(M), ||u||H1(M) < +∞}6
for the natural H1(M) norm, which we recall is:

||u||2H1(M) =

∫
M

(
|u|2 + g(∇u,∇u)

)
dVolg,

=

∫
R+

∫
K

(|u|2 +
1

f2

(
|∂xu|2 + |∇Ku|2

)
fndxdK

We begin by showing the following lemma:

Lemma 6. The trace operator γ : H1(M) → H
1
2 (∂M) is a well-defined

bounded operator.

Proof. Using that: |∇KYk|2 = (−∆KYk, Yk) = µ2
k, the norm in H1(M) can

be expressed in terms of the decomposition u =
∑

k∈N ukYk as:

||u||2H1(M) =

+∞∑
k=0

ak(u),

ak(u) = ||uk||2L2(R+,fndx) + µ2
k||f−1uk||2L2(R+,fndx) + ||f−1u′k||2L2(R+,fndx).

(11)
Working on the dense subset D we have:

|f
n
2
−1(0)uk(0)|2 = −(n−2)

∫ +∞

0

f ′

f
|f−1uk|2fndt−2<

∫ +∞

0
f−1u′kf

−1ukf
ndt.

Multiply by (1 + µ2
k)

1
2 and sum over k, then estimate the first term by:

(n− 2)

∥∥∥∥f ′f
∥∥∥∥
∞

∑
k≥0

(1 + µ2
k)‖f−1uk‖2L2(R+,fndx),

6It should be understood here that these are smooth functions such that all successive
derivatives extend continuously to the boundary.
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and the second term, using the Cauchy-Schwarz inequality, by:

2

∑
k≥0

‖f−1u′k‖2L2(R+,fndx)

 1
2
∑
k≥0

(1 + µ2
k)||f−1uk||2L2(R+,fndx)

 1
2

,

thus: ∑
k≥0

(1 + µ2
k)

1
2 fn−2(0) |uk(0)|2 ≤ C||u||2H1(M).

with, C = max((n − 2)
∥∥∥f ′f ∥∥∥∞ ‖f−1‖2∞, (n − 2)

∥∥∥f ′f ∥∥∥∞ , ||f−1||2∞). We con-

clude by a standard density argument.

We shall now prove the existence and uniqueness of the unique u ∈
H1(M) solution of (1). In fact, we shall instead work with variable v =
f
n
2
−1u and solve (2). We begin with an important lemma:

Lemma 7. Let n ≥ 3, λ 6∈ σpp(−∆g)
7, φ ∈ H

1
2 (M). If v is a solution

of (2) such that u = f−
n
2

+1v ∈ H1(M) then the components vk are uniquely
determined and satisfy vk, v

′
k ∈ L2(R+, dx). In particular, v is unique.

Proof. Let us first begin by expressing ||u||H1(M) in terms of v and its com-
ponents vk. We have (see Equation (11)):

ak(u) = ||vk||2L2(R+,f2dx) + µ2
k||vk||2L2(R+,dx) + ||(1− n

2
)
f ′

f
vk + v′k||2L2(R+,dx),

≡ ||vk||k.

Decomposing onto harmonics, we see that vk must satisfy (4) and lie in the
Hilbert space Hk with norm || · ||k defined by the above expression. For
k ≥ 1, µk 6= 0 so that Hk ↪→ L2(R+, dx), continuously. Standard theory of
ODE’s then imply that vk exists and is uniquely determined thus proving
Lemma 7 for these harmonics.

The case k = 0 requires further analysis of the behaviour of solutions
for large values of x, existence and unicity being guaranteed by standard
ODE results. Furthermore, according to our assumptions (CF1’,CF2), x 7→
f(x) − e−x is compactly supported so working away from its support we
can assume: f(x) = e−x. We are therefore interested in the asymptotic
behaviour of solutions of the equation:

−v′′0 − λe−2xv0 = −z2
0v0,

where z2
0 = (n−2)2

4 .

7It should be understood here that −∆g is viewed as an operator on L2(M) with
homogenous Dirichlet boundary condition.
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Setting x = − ln t√
λ

, the function y defined by y(t) = v0(x(t)) satisfies

the Bessel equation:

t2y′′(t) + ty′(t) + (t2 − z2
0)y(t) = 0.

According to the parity of the integer n ≥ 2, z0 is either a positive integer
or half-integer:

• If z0 is a half-integer ≥ 3
2 then the generic solution is a linear combi-

nation of:

v±(x) = J±z0(
√
λe−x)

=

(√
λ

2

)±z0
e∓z0x

∑
m≥0

(−1)m

m!Γ(z0 +m+ 1)

(√
λe−x

2

)2m

.

At infinity, one has:

v±(x)2e−2x ∼
x→+∞

(√
λ

2

)±2z0

e2(∓z0−1)x,

from which it follows that all solutions that are in L2(R+, e
−2xdx) are

constant multiples of v+ and therefore also belong to L2(R, dx).

• In the special case z0 = 1
2 (n = 3), both solutions are in L2(R, e−2xdx).

However, we also require v′ + v ∈ L2(R+, dx). Now:

J− 1
2
(t) =

√
2

πt
cos(t), J 1

2
(t) =

√
2

πt
sin(t),

and:

v′+(x) + v+(x) =

√
2

πλ

(
3

2
e

1
2
x sin(

√
λe−x)− e−

1
2
x
√
λ cos(

√
λe−x)

)
,

v′−(x) + v−(x) =

√
2

πλ

(
3

2
e

1
2
x cos(

√
λe−x) + e−

1
2
x
√
λ sin(

√
λe−x)

)
,

therefore only v+ satisfies the additional condition. So all solutions
that satisfy the required condition are constant multiples of v+ and
are additionally elements of L2(R+,dx).

• When z0 is a non-zero positive integer, then the solution v+(x) =
Jz0(
√
λe−x) is clearly in L2(R+,dx) ↪→ L2(R+, e

−2xdx) furthermore
v′+ ∈ L2(R+, dx). Another linearly independent solution is given by
means of Bessel functions of the second kind:

v−(x) = ez0x

(√
λ

2

)−z0 z0−1∑
r=0

Γ(z0 − r)
Γ(r + 1)

(√
λe−x

2

)2r

+ 2xJz0(
√
λe−x)

+
∞∑
r=0

(−1)r

Γ(r + 1)Γ(z0 + r + 1)
(ψ(r) + ψ(n+ r))

(√
λe−x

2

)z0+2r

,
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with ψ(r) = [ d
dt ln Γ(t+1)]t=r. Hence all solutions that are in L2(R+, e

−2xdx)
are constant multiples of v+.

• Finally, in the special case z0 = 0, (n = 2), the solution v+ satisfies
v+ ∈ L2(R+, e

−2xdx) and v′+ ∈ L2(R+,dx). A linearly independent
solution is given by:

v−(x) = −xJ0(
√
λe−x) +

+∞∑
r=1

(−1)r−1

Γ(r + 1)2

(√
λe−x

2

)2r

ψ(r).

Whilst it satisfies L2(R+, e
−2xdx) it does not satisfy v′ ∈ L2(R+,dx),

hence all solutions that satisfy the required condition are constant
multiples of v+. Note however that in this very specific case v+ 6∈
L2(R+, dx).

We conclude this section with the existence result:

Lemma 8. Let n ≥ 3, λ 6∈ σpp(−∆g), φ ∈ H
1
2 (M) and (vk)k∈N be the func-

tions given by Lemma 7, then u =
∑

k f
1−n

2 vkYk is an element of H1(M)
and is therefore the unique solution of (1).

Proof. We must show that
∑

k ||vk||2k < +∞, for which it will be sufficient
to show that there are positive constants C1, C2 > 0 such that for large
enough k ∈ N,

||vk||2L2(R,dx) ≤
C1

zk
|φk|2, (12)

||v′k||2L2(R,dx) ≤ C2zk|φk|2. (13)

Let K be the transformation operator of Section 2.3 and define:

ψ(x, z) = Jz(
√
λe−x) +

∫ +∞

x
K(x, t)Jz(

√
λe−t)dt,

using the properties of K, one sees that:

vk(x) =
ψ(x, zk)

ψ(0, zk)
f
n
2
−1(0)φk, zk =

√
µ2
k +

(n
2
− 1
)2
. (14)

We begin with a rough estimate of |ψ(x, zk)|. Note that the condition λ 6∈
σpp(−∆g) guarantees that it does not vanish for any k. Using Lemma 2,
for large enough k, one has uniformly for t ∈ R+ (since the Bessel functions
t 7→ Jzk are regular at 0),

|Jzk(
√
λe−t)| ≤ 2

λ
zk
2 e−tzk

2zkΓ(zk + 1)
.
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Therefore, for large enough k:

|ψ(x, zk)| ≤ 2
λ
zk
2

2zkΓ(zk + 1)

(
1 +
||K||∞
zk

)
e−xzk .

Hence, for large enough k:∫
R+

|ψ(x, zk)|2dx ≤ 2

zk

(
λ
zk
2

2zkΓ(zk + 1)

(
1 +
||K||∞
zk

))2

.

We also require a lower bound on ψ(0, z), for this we use (in advance)
Lemma 18 that enable us to show that, for large enough k, one has :

|ψ(0, zk)| ≥
1

2

λ
zk
2

2zkΓ(zk + 1)
. (15)

Thus:

||vk||2L2(R+,dx) ≤
8

zk

(
1 +
||K||∞
zk

)2

|f
n
2
−1(0)|2|φk|2.

This proves the first estimate. For the second, write:

ψ′(x, zk) =
√
λe−xJ ′zk(

√
λe−x)−K(x, x)Jzk(

√
λe−x)+

∫ +∞

x
∂xK(x, t)Jzk(

√
λe−t)dt.

Then, using the recurrence relation for Bessel functions, one has:

J ′zk(
√
λe−x) =

zk√
λe−x

Jzk(
√
λe−x)− Jzk+1(

√
λe−x).

So that first term can be estimated for k large enough by:∣∣∣zkJzk(
√
λe−x)−

√
λe−xJzk+1(

√
λe−x)

∣∣∣ ≤ 2
λ
zk
2 e−zkx

2zkΓ(zk + 1)
(zk +

λe−2x

2zk
),

≤ 4zk
λ
zk
2 e−zkx

2zkΓ(zk + 1)
.

The second and third terms can respectively be estimated for large k by:

|K(x, x)Jz(
√
λe−x)| ≤ 2

λ
zk
2 e−zkx

2zkΓ(zk + 1)
||K||∞,∣∣∣∣∫ +∞

x
∂xK(x, t)Jzk(

√
λe−t)dt

∣∣∣∣ ≤ 2
λ
zk
2 e−zkx

2zkΓ(zk + 1)

||∂xK||∞
zk

.

Hence for large enough k:

|ψ′(x, zk)| ≤
8zkλ

zk
2
e−zkx

2zkΓ(zk + 1)
.

Applying again (15), we now conclude that, for large enough k:

||v′||2L2(R+,dx) ≤ 16zkf
n−2(0)|φk|2.
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3 Jost functions and Regge poles

We are now ready to address the main objects of our study: the Regge
poles. Recall from Definition 1 that they are the poles of the meromorphic
extension of the Weyl-Titchmarsh function of the Schrödinger operator:

H = − d2

dx2
+Qf (x)− λe−2x,

with Dirichlet boundary conditions at x = 0.
We shall first discuss the reference case in which Qf = 0, and collect in-

formation about the corresponding Jost functions of which zeros are exactly
what we refer to as the Regge poles. We recall the following terminology
from the context of 1-dimensional Schrödinger operators with a potential
q ∈ L1

loc(R+). Let z ∈ C,<z > 0.

• The Jost solution, ψ(·, z) is the unique solution of the Schrödinger
equation:

−ψ′′(x, z) + q(x)ψ(x, z) = −z2ψ(x, z),

that satisfies the condition: ψ(x, z) ∼
x→∞

e−xz. Note that the notation
′ will always indicate derivatives with respect to x.

• The Jost function is defined to be z 7→ ψ(0, z).

It is well-known that (see for instance [Sim99; Ben01]), the Weyl-Titchmarsh
function is then:

M(−z2) =
ψ′(0, z)

ψ(0, z)
.

Thus, if we can extend z 7→ ψ(0, z) to an entire function on the whole
complex plane, M extends meromorphically to the whole Riemann surface:
{(w, z) ∈ C2, w + z2 = 0} ∼= C, and the poles of this extension correspond
to zeros of ψ. For clarity, and since the Riemann surface is holomorphic to
C, we shall view this extension as a meromorphic function on C, that we
denote by: z 7→ m(z).

3.1 The reference case Qf = 0

In this section, we assume that Qf = 0. Referring now to Section 2.4, we
know that in this case, the Jost solution as defined above is given by a
rescaled Bessel function:

ψ̃(x, z) = Γ(z + 1)2zλ−
z
2Jz(
√
λe−x). (16)

We can observe that this normalisation introduces poles in the Jost solution.
However, the Weyl-Titschmarsh function, which is the object of true intrin-
sic interest to our problem, as a quotient, will be insensitive to an overall
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normalisation factor that depends only on z. We will therefore work with
what we shall call the modified Jost solution, which is a rescaling of these
quantities that removes these poles. In the case Qf = 0 we shall simply set:

ψ0(x, z) = Jz(
√
λe−x).

We can now apply the results of Section 2.2, that show that for any
fixed x ∈ R+, ψ0(x, ·) analytically extends to an entire function of order 1
and infinite type. Let us denote by m0 the meromorphic extension of the
Weyl-Titchmarsh function in this case.

We can obtain some basic information about the distribution of the
Regge poles in this case, as zeros of ψ0(0, z). The asymptotics given by
Lemma 2 in Section 2.2 is a key ingredient to our results. We first have:

Lemma 9. There are an infinite number of Regge poles when Qf = 0.
Asymptotically, they are simples poles on the negative real line approaching
the negative integers.

Proof. Appealing to Equation (FA), for |z| sufficiently large in Uδ, we have:∣∣∣∣∣∣Jz(√λ)−

(√
λ

2

)z
Γ(z + 1)

∣∣∣∣∣∣ <
∣∣∣∣∣∣
(√

λ
2

)z
Γ(z + 1)

∣∣∣∣∣∣ .
Rouché’s lemma [Rud87, Theorem 10.36] then shows that the zeros of z 7→

Jz(
√
λ) are same as those of z 7→

(√
λ

2

)z
Γ(z+1) , on any disk completely contained

in the intersection of Uδ and the outside of a large enough disk centered in 0.
Since the second function has no zeros in this region, neither does Jz(

√
λ).

This proves the second point.
Turning this around if δ′ > δ is such that, for any n ∈ Z∗− S(−n, δ′) ⊂ Uδ,

then Rouché’s lemma shows that for large enough |n|, there is exactly one
zero in such a disk. The zeros are in fact symmetric with respect to the real
axis, so it must be on the negative real axis.

Lemma 2 also gives directly the asymptotic behaviour of m0 on Uδ:

Lemma 10. For z ∈ Uδ:

|m0(z)| =

∣∣∣∣∣J ′z(
√
λ)

Jz(
√
λ)

∣∣∣∣∣ = O
|z|→∞

(|z|)

Proof. Let t > 0, starting from the recurrence relation:

J ′z(t) =
z

t
Jz(t)− Jz+1(t),
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one has, for large enough |z|:

J ′z(t)

Jz(t)
=
z

t
− Jz+1(t)

Jz(t)
.

The result then follows from the asymptotics given in Lemma 2, that show
that: ∣∣∣∣Jz+1(t)

Jz(t)

∣∣∣∣ = O
|z|→∞

(
1

|z|

)
.

3.2 The perturbed case Qf 6= 0

By definition of the transformation operator in Section 2.3, the modified
Jost solution in the general case is given by:

ψ(x, z) = Jz

(√
λe−x

)
+

∫ +∞

x
K(x, s)Jz

(√
λe−s

)
ds. (17)

Using the properties of the transformation operator, we can now gener-
alise the lemmata of the previous section:

Lemma 11. Let x ∈ R+, then:

1. z 7→ ψ(x, z) is an entire function,

2. there are constants c1, c2 > 0 such that:

|ψ(x, z)| ≤ c1e
c2|z| ln(|z|),

for |z| large enough.

Proof. The key point is that, since the potential is of compact support,
K(x, ·) is equally of compact support. The first statement then follows from
an easy refinement of the estimates in the proof of Lemma 1 to show that
for any compact subset [α, β] ⊂ R∗+, R ∈ R∗+ one can find M ∈ R∗+,

∀|z| ≥ R, t ∈ [α, β], |Jz(t)| ≤M.

The second statement is also an immediate consequence of the estimate in
Lemma 1 and continuity of the kernel K.

3.2.1 Asymptotics of z 7→ ψ(0, z)

We shall now use the asymptotics of Section 1 to derive asymptotics for ψ,
in particular in the half plane <z < 0.

To begin our development let us first reformulate the asymptotics of
Lemma 2 as follows. For z ∈ Uδ:

Jz(
√
λe−s) =

λ
z
2 e−sz

2zΓ(z + 1)
(1 +R(s, z)) ,
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where, R(s, z) = R̃(
√
λe−s, z) with:

R̃(t, z) =

+∞∑
m=1

(−1)m

m!(z + 1)(m)

(
t

2

)2m

,

and R̃(t, z) = O
|z|→∞

(
1
|z|

)
uniformly for t in a compact set. Injecting this

into equation (17) evaluated at x = 0, we have:

ψ(0, z) =
λ
z
2

2zΓ(z + 1)
(1 +R(0, z) + I1(z) + I2(z)) ,

with:

I1(z) =

∫ 2a

0
K(0, s)e−szds,

I2(z) =

∫ 2a

0
K(0, s)R(s, z)e−szds.

In the half-plane C+ = {<z ≥ 0}, the Riemann-Lebesgue lemma shows,
without any further assumption on the potential Qf , that I1(z) vanishes
in the limit |z| → ∞ and z ∈ C+. Using the estimate on R, we see that

I2(z) = O
|z|→∞

(
1
|z|

)
as long as z ∈ C+. Hence, in summary:

Lemma 12.

ψ(0, z) =
λ
z
2

2zΓ(z + 1)

(
1 + o

|z|→∞
(1)

)
, <z ≥ 0. (18)

Lemma 12 determines some universal asymptotics for Jost solutions
within the class of potentials we consider. Combined with Lemma 11, this
can be used to assert that:

Proposition 1. If two warped balls have the same Regge poles then the
modified Jost function’s of the associated Schrödinger problem are the same.

Proof. The Jost function is entire and of finite order ρ = 1, hence by the
Hadamard factorisation theorem [Lev+96, §4.2]:

ψ(0, z) = zk exp(α+ zβ)
∞∏
j=1

((
1− z

zj

)
e
z
zj

)nj
.

Where, {zj} are the non-zero Regge poles, {nj} their multiplicity and k ∈
{0, 1} according to whether zero is a pole or not. It follows then that:

∞∏
j=1

((
1− z

zj

)
e
z
zj

)nj
∼ λ

z
2

2zΓ(z + 1)
z−ke−α−zβ ,

in the half plane <z ≥ 0. Hence, α, β are determined by the asymptotic
behaviour of the canonical product associated to the {zj} in this same half-
plane, and therefore depends only on their distribution.
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Remark 5. At least in principle, studying the asymptotic behaviour of the
canonical product should enable to determine α and β.

In order to have precise asymptotics in the half-plane <z < 0, where
the dominant terms arise from the Laplace type integrals I1, I2, we require
further assumptions on the potential Qf . As mentioned in the introduction,
we make the assumption that there is a jump in the (p − 1)th derivative
of Qf , p ≥ 1, at the boundary point a of the support of the potential. As
we observed in Section 2.3, this leads to a jump in the pth derivative of the
kernel K. This allows us to handle the Laplace integrals I1, I2 and extract
a dominant term by integration by parts. Indeed, after p + 1 integrations
by parts:

I1(z) =

p+1∑
k=1

1

zk
(∂k−1
s K)(0, 0)− 1

zp+1
∂psK(0, 2a−)︸ ︷︷ ︸

6=0

e−2az

+
1

zp+1

∫ 2a

0
(∂p+1
s K)(0, s)e−szds.

The dominant term is clearly:
1

zp+1
∂psK(0, 2a−)︸ ︷︷ ︸

6=0

e−2az, the other bound-

ary terms from the integration by parts are negligible compared to this in
the half-plane {<z < 0}. Without further hypothesis, the final term is

o
|z|→∞

(
e2az

zp+1

)
. Indeed:

∫ 2a

0
∂p+1
s K(0, s)e(2a−s)zds =

∫ 2a

0
∂p+1
s K(0, 2a− u)euzds,

and the latter integral vanishes in the limit |z| → ∞ if <z ≤ 0 by the
Riemann-Lebesgue lemma.

Remark 6. Note that the estimate of the remainder can be improved to:

O
|z|→∞

(
e2a(<z)−

|z|p+2

)
, where (x)− = −x+|x|

2 , denotes the negative part8 of x ∈

R, in the intersection of Uδ with any sector of the form:

<z < −ε|=z|,

where ε > 0.

The same method will enable us to treat the remainder term I2(z). We
will need the following Lemma which can be proved in a similar fashion to
Lemma 2:

8which is positive.
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Lemma 13. Let p ≥ 1, then:

∂psR(s, z) = λ
p
2

+∞∑
m=1

(−1)m+pmp

m!(z + 1)(m)

(√
λe−s

2

)2m

,

furthermore for z ∈ Uδ,

|∂psR(s, z)| ≤ λ
p
2 δ

|z + 1|

+∞∑
m=1

mp

m!

(
λe−2s

4δ

)m
.

Therefore,

∂psR(s, z) = O
|z|→∞

(
1

|z|

)
,

uniformly for s ∈ R+.

Now, as before, we can do p+ 1 integration by parts in I2(z) to obtain:

I2(z) = R1(z) +R2(z) +R3(z),

with:

R1(z) =

p+1∑
k=1

1

zk

k−1∑
m=0

(∂ms K)(0, 0)∂k−1−m
s R(0, z),

R2(z) = − 1

zp+1

p∑
k=0

∂ksK(0, 2a−)∂p−ks R(2a, z)e−2az,

R3(z) =
1

zp+1

p+1∑
k=0

∫ 2a

0
∂ksK(0, s)∂p+1−k

s R(s, z)e−szds.

(19)

We estimate each of these terms as follows:

R1(z) = O
|z|→∞

(
1

|z|2

)
, R3(z) = O

|z|→∞

(
e2a(<z)−

|z|p+2

)

R2(z) = − 1

zp+1
∂psK(0, 2a−)R(2a, z)e−2az = O

|z|→∞

(
e2a(<z)−

|z|p+2

)
.

Hence, we have shown that:

Lemma 14. If Qf ∈ Cp−2(R+) ∩ ACp−1(R+) and its (p − 1)th derivative
is continuous, save a jump at the boundary point a, p ≥ 1, then in the open
half-plane <z < 0:

ψ(0, z) =
λ
z
2

2zΓ(z + 1)

(
1 + O

|z|→∞

(
1

|z|

)
− ∂psK(0, 2a−)

e−2az

zp+1

(
1 + o

|z|→∞
(1)

))
.

Which can be improved a little in sectors:
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Lemma 15. Let ε > 0 and 0 < δ < 1
2 . Under the same assumptions on the

potential Qf as in the previous lemma, we have the following asymptotics:

ψ(0, z) =
∂psK(0, 2a−)λ

z
2 e−2az

2zΓ(z + 1)zp+2

(
1 + o

|z|→∞
(1)

)
,

in the domain {<z < −ε|=z| } ∩ Uδ.

We are now in a position to prove Theorem 2.

Proof of Theorem 2. Given ε > 0, we consider first the sector {<z < −ε|=z| }
that contains the negative real axis. Using the asymptotics given in Lemma
15, it follows easily from Rouché’s theorem applied to each diskD(−k, δ), k ∈
N, 0 < δ < 1

2 that for large enough |z|, the zeros of ψ(0, z) are simple, real
and contained in D(−k, δ). These zeros correspond to the (αk)k≥0’s in the
statement of Theorem 2.

Consider now the sectors {<(z) < 0} ∩ {<z > −ε|=z| }. From the
asymptotics given in Lemma 14, the zeros of ψ(0, z) coincide there with the
zeros of the function:(

1 + o
|z|→∞

(1)− ∂psK(0, 2a−)
e−2az

zp+1

(
1 + o

|z|→∞
(1)

))
.

However, it follows from the method of Hardy [Har05] and Cartwright
[Car30; Car31] that these zeros - denoted by (βj)j∈Z∗ - satisfy the asymp-
totics:

β±j = ±i π
2a

(
2|j|+ p− 1

2
± (sgn(A) + 1)

)
− p+ 1

2a
log
|j|π
a

+
1

2a
log |A|(p− 1)! + o(1),

where A = (−1)p∂psK(0,2a−)
(p−1)! . This concludes the proof of Theorem 2.

4 Solving the inverse problem

4.1 The Gelfand-Levitan-Marchenko method

In the introduction of [MSW10], the authors outline a general scheme for
the proof of the uniqueness result we seek, based on the theory of Gelfand-
Levitan-Marchenko [Lev18, Chapter IV]. The advantage of this approach
requires only a rather mild assumption on the overall potential: q(x) =
−λe−2x +Qf (x); that is: ∫ +∞

0
x|q(x)|dx < +∞.
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This condition is clearly satisfied by the class of potentials we consider.
The proof however is based on a different set of spectral data, neverthe-

less we will show that it can be obtained from the knowledge of the Regge
poles. Let us begin by introducing some notation. First, we must revert to
the usual normalisation for the Jost solutions, and define:

ψ̃(x, z) = Γ(z + 1)2zλ−
z
2ψ(x, z). (20)

Consider now the S-function for k ∈ R:

S(k) =
ψ̃(0, ik)

ψ̃(0,−ik)
=
ψ̃(0, ik)

ψ̃(0, ik)
,

and set:

FS(x) =
1

2π

∫
R

[1− S(k)]eikxdk.

Zeros on the positive half-line of the (modified) Jost function correspond
to negative Dirichlet eigenvalues. For nicely decaying potentials like those
we consider, they are finite in number and simple (see for example [Lev18,
§4.2, Property 5, p79]). Let us denote them: 0 < α1 < α2 < · · · < αN .
Corresponding eigenfunctions are given by: φk = ψ̃(., αk). Define now:

mk =

∫ ∞
0
|φk|2dx = − ψ̃

′(0, αk)
˙̃
ψ(0, αk)

2αk
, k ∈ {1, . . . , k}.

In the above ˙ denotes differentiation with respect to z. Now set:

F (x) =

N∑
k=1

e−αkx

mk
+ FS(x).

Lemma 16. Suppose that two warped balls have the same Regge poles, then
their respective S-functions and the coefficients mk coincide.

Proof. In Proposition 1, we have already established equality of the modified
Jost functions, it follows from Equation (20), that the usual Jost functions
coincide also. It follows immediately that the functions S and FS must be
identical.

In order to show that the mk must coincide it suffices to show that
ψ̃′(0, αk) can be determined from the Jost function ψ̃(0, αk). However, the
Wronskian is known independently of the potential Qf to satisfy:

W (ψ̃(0, z), ψ̃′(0,−z)) = 2z.

If αk > 0 is a Regge pole it follows then that:

ψ̃′(0, αk) = − 2αk

ψ̃(0,−αk)
.

Note that the denominator cannot vanish as αk 6= 0. Therefore the mk must
also be identical.
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Corollary 2. If two warped balls have the same Regge poles then the corre-
sponding functions F are identical.

The relevance of the function F for the inverse problem is that if K is
the Gelfand-Levitan transformation operator then it satisfies the so called
basic integral equation:

F (x+ y) +K(x+ y) +

∫ ∞
x

K(x, t)F (t+ u)dt = 0, (y ≥ x).

([Lev18, Equation (4.5.8)])
Based on the theory of this equation they show that:

Theorem 4 ([Lev18, Theorem 4.7.1]). Let two potentials q and q̃ satisfy∫∞
0 x|q(x)|dx < +∞ and assume that the corresponding functions Fq, Fq̃ are

equal then: q = q̃.

The uniqueness result, Theorem 1 which we restate here, then follows
directly:

Theorem 5. If two warped balls have the same Regge poles then the po-
tentials Qf are identical. Assuming that the boundary values f(0), f ′(0) are
also equal, it follows that the warped balls are defined by the same conformal
factor f .

4.2 A formula for the Weyl-Titchmarsh function

We will now solve the inverse problem again following the strategy of [BKW03],
under the Assumption (CF3). Our aim is to choose a sequence γn of contours
that grow in the limit n→ +∞ and such that for fixed z:

lim
n→+∞

1

2iπ

∫
γn

hz(µ)m(µ)dµ = 0.

In the above, hz is an auxiliary function that we will choose after finding
such contours. This will provide the formula stated in Theorem 3. The
choice of contour is based on the study of the asymptotics of m using the
results of the previous section and the relation:

Lemma 17.

m(z) = m(−z)− 2 sin(zπ)

πψ(0, z)ψ(0,−z)
.

Proof. Recall from [Wat95, §3.12, p.43, Equation (2)] that:

W (Jz(t), J−z(t)) = −2 sin zπ

πt
.

Thus:

W (ψ0(x, z), ψ0(x,−z)) = W (ψ0(0, z), ψ0(0,−z)) =
2 sin zπ

π
.
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Since Qf has support [0, a], for any x ≥ a, z ∈ C, ψ(x, z) = ψ0(x, z), so that:

W (ψ(0, z), ψ(0,−z)) = W (ψ(x, z), ψ(x,−z)) =
2 sin zπ

π
.

The desired equality then follows from the definition of the Wronskian.

The asymptotics of m in the half-plane <z ≥ 0 is well-known for a wide
class of potentials, we can nevertheless find these asymptotics here directly.
Note that:

ψ′(0, z) = −
√
λJ ′z(
√
λ)−K(0, 0)Jz(

√
λ) +

∫ ∞
0

∂xK(0, s)Jz(
√
λe−s)ds.

The integral is estimated as before and using Lemma 10 we find that, on
the half-plane <z ≥ 0:

ψ′(0, z) = O
|z|→∞

(
z

λ
z
2

2zΓ(z + 1)

)
.

Observe now that it follows from Equation (18) combined with Rouché’s
lemma that, for large enough |z|, ψ(0, z) does not vanish and hence:

m(z) = O
|z|→∞

(|z|) , <z ≥ 0. (21)

Lemma 15 enables us to extend this to sectors of the form:

Sε,δ = {<z < −ε|=z| } ∩ Uδ, ε > 0.

Indeed, appealing once more to Rouché’s lemma, Lemma 15 shows that
asymptotically there are no zeros in this region. Moreover, combining the
asymptotics, one has:

ψ(0, z)ψ(0,−z) =
∂pxK(0, 2a−)e−2az

zΓ(z)Γ(1− z)

(
1 + o

|z|→∞
(1)

)
,

=
sin(πz)∂pxK(0, 2a−)e−2az

zπ

(
1 + o

|z|→∞
(1)

)
,

where in the last equality we have used the Complement Formula for the
Gamma function. Therefore, for |z| large enough and z ∈ Sε,δ:

m(z) = m(−z)− 2zp+3e2az

∂pxK(0, 2a−)

(
1 + o

|z|→∞
(1)

)
= m(−z)+ o

|z|→∞
(1) . (22)

We must now treat the regions near the imaginary axis defined by the
inequalities:

0 ≥ <z ≥ −ε|=z|.
This will not be achieved uniformly but instead on specific circular arcs with
increasing radius. Thanks to the asymptotics in Lemma 14, we can refer
to [BKW03, Lemma 6], which can be applied directly to show:
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Lemma 18. Let ε > 0. There is a real τ , such that for all sufficiently large
n ∈ N,

ψ(z, 0) =
λ
z
2

2zΓ(z + 1)
g(z),

where |g(z)| ≥ 1
3 on all circular arcs given by |z| = (2nπ+τ)

2a and −ε|=z| ≤
<z ≤ 0.

The previous lemmata give the required information to construct con-
tours for our Cauchy integral argument, however first we shall pause to make
a remark about non-positive integer zeros.

Lemma 19. Integers n ∈ Z are at most simple zeros of z 7→ ψ(0, z). Fur-
thermore, if z = n is a Regge pole, the residue of m is then given by:

resn(m) =
(−1)n

2
(

d
dzψ(0, n)

)2
Proof. Let us assume that ψ(0, n) = 0 for some n ∈ Z. Observe first that
the Wronskian, W (ψ(0, z), ψ(0,−z)) is given by:

W (ψ(0, z), ψ(0,−z)) =
sinπz

π
.

Differentiating this identity respect to z and evaluating in z = n, it is easily
seen that:

2ψ′(0,−n)
d

dz
ψ(0, n) = cos(πn) = (−1)n.

So that: d
dzψ(0, n) 6= 0.

In the choice of contour we must of course pay attention to the domain
on which we derived our asymptotics: Sε,δ. Let us fix ε > 0, set δ = 1

4 and
choose ε > ε′ > 0. Let:

• τ be the real given by Lemma 18 and N0 ∈ N, be large enough such
that the conclusion holds for any n ≥ N0.

• R0 ∈ R∗+, such that if z ∈ C+ ∩ (C \B(0, R0)), then:∣∣∣∣∣ψ(0, z)− λ
z
2

2zΓ(z + 1)

∣∣∣∣∣ <
∣∣∣∣∣ λ

z
2

2zΓ(z + 1)

∣∣∣∣∣ .
This is possible by Lemma 12.

• R1 ∈ R∗+, such that if z ∈ Sε′,δ, then:∣∣∣∣∣ψ(0, z)− ∂psK(0, 2a−)λ
z
2 e−2az

2zΓ(z + 1)zp+2

∣∣∣∣∣ <
∣∣∣∣∣∂psK(0, 2a−)λ

z
2 e−2az

2zΓ(z + 1)zp+2

∣∣∣∣∣ .
This is possible by Lemma 15.
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Figure 1: Sketch of Sε,δ and a generic curve γn.

Let us denote Ẽ(x) the half-integer closest to x ∈ R; if x is integer we
choose Ẽ(x) = x + 1

2 . Now choose N1 ∈ N such that for every n ≥ N1, we
have:

min

(
Ẽ

(
2πn+ τ

2a

)
,
2πn+ τ

2a

)
≥ max(N0, R0, R1).

For any n ≥ N1, ψ(0, z) none of the zeros of ψ(0, z) are located on the
circular arcs defined by:

Γ1
n = C

(
0, Ẽ

(
2πn+ τ

2a

))
∩ Sε,δ, Γ2

n = C

(
0,

2πn+ τ

2a

)
∩ Scε,δ.

Increasing if necessary N1, we can also assume that there are no zeros on
the line segments of <z = −ε=z that can be used to join these two circular
arcs as in Figure 1, let us denote by γn the obtained closed contour.

Based on our asymptotics for z 7→ m(z), the appropriate auxiliary func-
tion is:

hz(µ) =

(
z

µ

)2 1

z − µ
.

We shall now show that, as desired, for fixed z ∈ C such that z is not a zero
of ψ(0, z):

lim
n→+∞

1

2iπ

∫
γn

hz(µ)m(µ)dµ = 0.

For large enough n, z is completely enclosed by the contour. Denote by sn
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the union of the two line segments that join the circular arcs and write:∫
γn

hz(µ)m(µ)dµ =

∫
sn

hz(µ)m(µ)dµ+

∫
Γ1
n

hz(µ)m(µ)dµ+

∫
Γ2
n

hz(µ)m(µ)dµ.

Γ1
n and sn are completed contained in Sε′,δ, hence using Equation (22),

we see that their contribution vanishes when n → ∞ by the mean value
theorem. Appealing to Lemma 18, it follows that on the circular arcs given
by |z| = 2nπ+τ

2a and −ε|=z| ≤ <z ≤ 0, one has:

m(z) = m(−z) + o
n→∞

(1) ,

combining this with Equation (21) and the mean value theorem, it follows
that the contribution along Γ2

n vanishes also in the limit n→∞.
Let us now assume for the moment that ψ(0, 0) 6= 0. The Cauchy integral

theorem applied for large enough n such that γn encloses z leads to:

1

2πi

∫
γn

hz(µ)m(µ)dµ = −m(z) +m(0) + zm′(0) +
∑

zi Regge pole

enclosed by γn

reszi(hzm).

Since the limit on the left exists and vanishes, it follows that the sum over
all Regge poles converges and:

m(z) = m(0) + zm′(0) +
∑

zi Regge pole

reszi(hzm). (23)

If it so happens that ψ(0, 0) = 0, then this formula should be adjusted to:

m(z) = g′(0) + z
g′′(0)

2
+

res0(m)

z
+

∑
zi 6=0

Regge pole

reszi(hzm), (24)

with g(µ) = µm(µ).

This is in essence the content of Theorem 3:

Proof of Theorem 3. If we assume, for simplicity, that the Regge poles are
all simple, using the well-known asymptotics [Sim99]:

M(−z2) = −z + o(1), z → +∞, z ∈ R,

we obtain from either Equation (24) or (23) a synthetic expression for the
Weyl-Titchmarsh function:

M(−z2) = −z +
∑
zi

Regge pole

ai
z − zi

.
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In order to obtain the desired uniqueness result from our current strategy,
we must now argue that the terms in this expansions can all be determined
either by known asymptotics for the Weyl-Titchmarsh function m, which
is the case for the first order polynomial, or directly from the Regge poles.
As an intermediate step, let us first explain that the residues can all be
determined from the Jost function. If zk 6= 0 is a pole of order j then:

reszk(hzm) =
dj−1

dµj−1

(
(µ− zk)j

z − µ

(
z

µ

)2

m(µ)

)∣∣∣∣∣
µ=zk

.

Sincem(µ) = ψ′(0,µ)
ψ(0,µ) , the only quantities appearing in developing this expres-

sion that have yet to be determined are that of ψ′(0, z) and its derivatives
with respect to z, evaluated at the Regge pole zj . For any possible non-zero
integer poles, we have already seen in Lemma 19 that they are at most sim-
ples poles and that the residue of m is completely determined if we know the
Jost function. For non-integer poles, the required values can be determined
iteratively in the same way by differentiating the Wronskian as many times
as necessary. This method works since sin only vanishes on the integers,
so that ψ(0, z) and ψ(0,−z) cannot vanish simultaneously for non-integer
values. For definiteness let us illustrate this for a non-integer Regge pole zk
of order 2. Recall the following identity:

W (ψ(0, z), ψ(0,−z)) = ψ(0, z)ψ′(0,−z)− ψ′(0, z)ψ(0,−z) =
2 sin zπ

π
,

When evaluating at zk, we obtain:

−ψ′(0, zk)ψ(0,−zk) =
2 sin zkπ

π
6= 0,

from which we can determine the value of ψ′(0, zk). Proceeding identically
after differentiating with respect to z (denoted by ˙ ) we obtain:

−ψ̇′(0, zk)ψ(0,−zk) + ψ′(0, zk)ψ̇(0,−zk) = cos zkπ.

Since ψ(0,−zk) does not vanish and ψ̇(0,−zk) can be calculated if the Jost
function is known, we can infer the value of ψ̇′(0, zk). When the pole is of
higher order, we can repeat this procedure iteratively to calculate all the
z-derivatives of ψ′(0, z) up to the required order.

This argument show that m is completely determined by the Regge poles
if they determine uniquely the Jost function. However, this was established
in Proposition 1. We can now give the second proof of Theorem 1 :

Proof of Theorem 1. It follows from formulae (23) and (24) and the above
discussion that the Weyl-Titchmarsh function M is uniquely determined by
the set of Regge poles zi. Appealing to the well-known Borg-Marchenko the-
orem [Sim99; GS00; Ben01], it follows that the potential −λe−2x +Qf (x) is
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uniquely determined on R+. Finally, using the explicit form of the potential
Qf , and assuming f(0), f ′(0) known, a simple argument using uniqueness
of Cauchy for second order ODEs shows that the warping function f is also
uniquely determined.
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