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Abstract7

Subshifts are sets of colourings - or tilings - of the plane, defined by local constraints. Historically8

introduced as discretizations of continuous dynamical systems, they are also heavily related to9

computability theory. In this article, we study a conjugacy invariant for subshifts, known as the10

projective fundamental group and we show that any finitely presented group can be realized as a11

projective fundamental group of some SFT.12

2012 ACM Subject Classification Theory of computation → Models of computation; Mathematics13

of computing → Discrete mathematics14

Keywords and phrases Subshifts, Wang tiles, Dynamical Systems, Computability, Subshift of Finite15

Type, Fundamental Group16

Funding This research was partially funded by ANR JCJC 2019 19-CE48-0007-0117

Acknowledgements The authors would like to thank the anonymous referees of a previous version18

of this paper for their remarks which helped improve the exposition.19

1 Introduction20

A d-dimensional subshift is a set of colourings of Zd by a finite number of colours which21

avoids some family of forbidden patterns. If the family is finite, it is called a subshift of finite22

type (SFT). Subshifts can also be defined topologically: they are the closed shift-invariant23

subsets of ΣZd , where Σ is the finite set of colours. Most problems concerning subshifts in24

dimension d ≥ 2 are undecidable [3, 12, 11], which is due to the fact that sets of Wang tilings25

are SFTs.26

Together with the shift action σ, a subshift forms a dynamical system. Interesting27

dynamical aspects are usually invariant by conjugacy, which is the isomorphism notion for28

subshifts: two subshifts are conjugate if there exists a continuous shift-commuting bijection29

between them. As a matter of fact, most dynamical aspects of subshifts are linked to30

computability theory or complexity theory in dimensions d ≥ 2. These links were first31

explored when the possible values of the topological entropy of multi-dimensional SFTs was32

characterized as the upper semi-computable numbers [16], afterwards many other conjugacy33

invariants followed: growth-type invariants [21], periodicity data [18, 17], subactions [14, 2, 8]34

and so on.35

Recently, the links between subshifts and groups have seen a surge in study [1, 19, 22],36

however, the most well known group associated with a subshift, its automorphism group, is37

still not very well understood: while we know that SFTs with positive entropy have very38

complex automorphism groups [15] or that SFTs whose automorphism group has undecidable39

word problem can be constructed [10], we still do not know whether the automorphism40

groups of the full shifts on 2 and 3 symbols are the same. Apart from the low complexity41

setting [7, 6] not much is understood about it.42

Here, we contribute to the study of another group-related conjugacy invariant called the43
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projective fundamental group introduced by Geller and Propp [9]. In the classical setting44

(see for example [13]), the fundamental group π1 (S) of a surface S is a topological invariant45

which describes the number of holes and the general shape of S. It is constructed using46

loops on the surface : it is the group of the equivalence classes of loops through continuous47

deformation together with the composition operation. In the case of subshifts, as they48

are not surfaces in the classical sense, the definition is not as straightforward but is still49

based on loops, their composition and their deformations as will be seen in more detail in50

Subsection 3.1.51

The projective fundamental group of a subshift is well defined only in the case of52

projectively connected subshifts, a property that resembles mixing properties: properties53

which essentially state that if two patterns appear in different configurations they may appear54

in the same configuration (see for instance [5] or [24] for more precise definitions of mixing55

properties in dimensions d ≥ 2). As a matter of fact, projective connectedness is implied by56

all mixing properties defined in [5].57

As a conjugacy invariant, the fundamental group allows to distinguish between some58

subshifts which share the same entropy and periodicity data. It is also better understood59

than the automorphism group in the sense that the authors in [9] explicitly compute it for60

several well-know subshifts: the full shifts on any alphabet always have trivial fundamental61

group, the square-ice has Z and factors of full shifts always have a fundamental group with62

finite order. They also prove that any group of finite order is realizable as a fundamental63

group of some factor of a full shift.64

The main result of this article is that any finitely presented group is the fundamental65

group of an SFT:66

I Theorem 1. Let G = 〈S|R〉 a finitely presented group. Then, there is a subshift of finite67

type X verifying:68

X is projectively connected,69

the projective fundamental group of X is isomorphic to G.70

We do not think this is a characterization. As a matter of fact, we do not know how hard71

the word problem is for the projective fundamental group of SFTs apart from the fact that it72

is at least Σ0
1-hard since finitely presented groups have Σ0

1-complete word problem [23, 4].73

The same is true for projective connectedness, we know it is undecidable but do not know74

how hard. It is open whether any of these properties is in the arithmetical hierarchy.75

The paper is organized as follows. After recalling the symbolic dynamics background in76

Section 2, we introduce the projective fundamental group in Subsection 3.1, some examples77

in Subsection 3.2 and finally in Section 4 we prove Theorem 1.78

2 Definitions79

A d-dimensional full shift on some finite alphabet Σ is the set ΣZd , together with the80

shift-action σu : ΣZd → ΣZd defined by σu(x)(v) = x(u + v) = xu+v, an element of a full81

shift is called a configuration. A subshift is a closed, shift-invariant subset of some full82

shift. We call points of a subshift X the configurations belonging to X. The underlying83

topology is the one induced by the Cantor distance, defined on ΣZd by84

d(x, y) = 2−min{‖u‖∞ | xu 6=yu},85

two configurations are close in this topology if they agree on a large central square.86

Alternatively, subshifts can be defined using forbidden patterns. We call pattern any87

element P ∈ ΣU where U ⊂ Zd is finite and is the support of P . For a configuration x, we88
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say that P appears in x if there exists u ∈ Zd such that σu(x)|U = P . Let F be a collection89

(finite or not) of patterns. Then the set90

XF =
{
x ∈ ΣZd

∣∣∣ ∀P ∈ F , P does not appear in x
}

91

is a subshift. In fact, for any subshift (defined as a closed, shift-invariant set) X, there exists92

a family of patterns F such that X = XF . A subshift X is a subshift of finite type (SFT)93

if there exists a finite F such that X = XF .94

For a given subshiftX, a pattern P ∈ ΣU is locally admissible if it contains no forbidden95

patterns. It is globally admissible or extensible if it appears in some configuration x ∈ X.96

SFT can also be defined using Wang tiles. Let C be a finite set of colours. A set of97

Wang tiles T is a finite set of tiles, which are mapping τ : {t, b, l, r} → C. A Wang tiling by98

T is a mapping w : Z2 → T which verifies for all (i, j) ∈ Z2,99

w(i, j)(r) = w(i+ 1, j)(l)100

w(i, j)(t) = w(i, j + 1)(b)101

The set W (T ) = {w,w is a wang tiling by T } is a SFT.102

3 Projective Fundamental Group103

3.1 Intuitions and definitions104

The Projective Fundamental Group, introduced by Geller and Propp [9] resembles the usual105

fundamental group construction of the topological setting: it is defined through paths, loops,106

and, more generally, a homotopy notion. However, instead of directly considering paths107

between points of the subshift, they are defined between finite patterns with the same support.108

By doing so, one actually constructs a family of fundamental groups, potentially different for109

each finite support B ⊂ Z2. In order to obtain a single group, the projective fundamental110

group, one takes their inverse (also known as projective) limit. We will construct a subshift111

by defining a set T of Wang tiles. A configuration will then be a mapping x : Z2 → T112

associating a tile to each point of the plane and which verifies some adjacency rules depending113

on T . Contrary to the usual convention, we will consider than when embedding such a114

configuration in the euclidean plane R2, the tile in position (i, j) is a unit square whose115

bottom-left corner is placed on (i, j), as opposed to its center. This is merely a discussion116

about conventions, but it will make some definitions substantially simpler.117

Fix a support B ⊂ Z2, in what follows B will be called an aperture window. Most118

of the time, we will restrict ourselves to the windows Bn = J−n, n− 1K2. We choose119

this asymmetrical window to simplify some definitions, but also for consistency with the120

aforementioned convention. Indeed, when embedded into R2, Bn is a square of side 2n,121

whose center is the point (0, 0) ∈ R2. In any configuration x, the tile x(0,0) in position (0, 0)122

will therefore be seen as the square whose bottom-left (resp. top-right) corner is (0, 0) (resp.123

(1, 1)).124

Consider P, P ′ two extensible patterns of support B and two points of the grid v,v′ ∈ Z2.125

A path between (P,v) and (P ′,v′) is a sequence of pairs of vectors and patterns (or126

equivalently, two sequences of the same length). The first one represents an actual, "geometric"127

path, called its trajectory, that is to say a sequence of 4-adjacent vertices of Z2 starting128

at v and ending at v′. The second associates with each one of those vertices vt a pattern129

Pt, that needs to be coherent with the path: when moving to the next vertex vt+1 on the130

trajectory, the next pattern Pt+1 needs to be coherent with Pt. For example, in the full shift,131
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and for B = B1, take the following pairs:132

P1 =
(

0 0
00
, (0, 0)

)
, P2 =

(
0 1

10
, (1, 0)

)
, P3 =

(
1 1

11
, (1, 0)

)
133

The tile in position (0, 0) is represented in red. The sequence (P1, (0, 0)), (P2, (1, 0)) is134

a valid path, as the overlapping parts of the support are equal in both patterns, but135

(P1, (0, 0)), (P3, (0, 0)) is not because e.g., the point (1, 0) is tiled by 0 in the first pattern136

but by 1 in the second one. Moreover, the pattern obtained by "merging" two consecutive137

patterns also needs to be an extensible pattern.138

I Definition 2 (Path). Let B ⊂ Z2 a finite set, a path of aperture window B is a finite139

sequence (Pt,vt)0≤t≤N of pairs from ΣB × Z2, such that for any t with 0 ≤ t ≤ N :140

Pt is an extensible pattern of X,141

vt is adjacent to vt+1, i.e., they are at distance exactly 1,142

Pt(u) = Pt+1(u) for any u ∈ (B + vt) ∩ (B + vt+1), i.e., consecutive patterns overlap,143

the pattern Pt ∪ Pt+1 obtained by merging Pt and Pt+1 is extensible in X.144

The first and last element of the sequence are respectively called the starting point and145

the ending point of the path. If they are equal, the path is called a loop. The path146

(PN−t,vN−t)0≤t≤N is called its inverse path. If p is a path, its inverse will be denoted by147

p−1
148

The sequence (vt)0≤t≤N is called the trajectory of the path.149

When one path ends where another path starts, they may be composed:150

I Definition 3 (Path composition). Given p = (Pt,vt)0≤t≤N and p′ = (P ′t ,v′t)0≤t≤N ′ two151

paths such that (PN ,vN) = (P ′0,v′0) we note p ∗ p′ the path152

p ∗ p′ = (P0,v0) . . . (PN ,vN)(P ′1,v′1) . . . (P ′N ′ ,v′N′).153

If there exists a point x ∈ X such that for all t, x|B+vt = Pt., we say that p can be traced154

in the configuration x. If a path p = (Pt,vt)0≤t≤n is defined with an aperture window B,155

then for all B′ ⊂ B, we refer to the path p = (Pt|B′ ,vt)0≤t≤n as the restriction of p to the156

window B′.157

One can now define a corresponding homotopy notion, using what we call an elementary158

deformation: let p = p1 ∗ p2 ∗ p3 be a path and suppose that p2 can be traced in a single159

configuration x ∈ X. Then, for any p′2 traced in x with the same starting and ending point160

as p2, one can deform p into p1 ∗ p′2 ∗ p3. As paths might consist of a single point, they can161

be deformed by inserting or removing loops traced in a single configuration at any step.162

I Definition 4 (Homotopy). Two paths p, p′ are said to be homotopic if there exists a163

finite sequence of elementary deformations from p to p′. This defines an equivalence relation164

between paths, and we denote by [p] the equivalence class of p. If p and p′ are paths with an165

aperture window B ⊂ Z2, we denote by p ∼B p′ the fact that they are homotopic.166

I Remark 5. When two paths are homotopic, they necessarily have the same starting and167

ending points. When B is clear from the context, we will simply note p ∼ p′168

With this definition of a path and of homotopy, we can define a fundamental group for169

each possible aperture window B ⊂ Z2.170

I Definition 6 (Fundamental Group). Let B ⊂ Z2 be an aperture window, x0 ∈ X and171

v ∈ Z2. The fundamental group of X based at (x0,v) for the aperture window B, denoted172

by πB
1 (X, (x0,v)), is the group of all the equivalence classes of loops starting and ending at173

(x0|B ,v) for the homotopy equivalence relation, along with the ∗ operation.174
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Although our paths follow the Z2 grid and seem to be discrete and combinatorial objects,175

it is legitimate to refer to those objects as homotopy and deformations, which usually suppose176

some kind of continuity. In fact, this simplification does not entail any loss of generality,177

compared to paths drawn in R2, and subshifts seen as Z2-invariants subsets of ΣR2 . For178

more details, one can refer to [9, Straightening Lemma]. In order to obtain a single object179

associated with the subshift, we need to get rid of this reference to an aperture window.180

Geller and Propp consider the projective limit of those groups to define what they refer to as181

the Projective Fundamental Group of the subshift.182

I Definition 7. We define an equivalence relation on X × Z2, denoted by ≡B, as follows:183

(x,v) ≡B (x′,v′) ⇐⇒ v = v′ and x|B+v = x′|B+v with (x,v), (x′,v′) ∈ X × Z2.184

We denote XB the quotient space (X × Z2)/ ≡B. In order to simplify the notation, we will185

sometimes use (x|Bn+v ,v) to denote the equivalence class of (x,v) for the relation ≡Bn
.186

Notice that with this definition, a path is now an element of X<N
B for some B ⊂ Z2, which187

also verifies some additional constraints. One can then consider the fundamental groups of188

all those spaces, and take their inverse limit to obtain this subshift’s projective fundamental189

group.190

I Definition 8 (Projective Limit). Let (I,≤) a partially ordered set, and let (Gi)i∈I a family191

of groups. Suppose that we have a family of homomorphisms fij : Gj → Gi for all i ≤ j ∈ I,192

which satisfies the two following properties:193

For all i ∈ I, fi,i = idGi
194

For all i ≤ j ≤ k ∈ I, fi,k = fi,j ◦ fj,k195

Then, the projective limit (sometimes also called inverse limit) of the projective196

system ((Gi)i∈I , (fi,j)i≤j∈I) is a subgroup of the (potentially infinite) direct product of all197

the Gi’s, denoted here by G∞198

G∞ = lim←−
i∈I

Gi =
{
~g ∈

∏
i∈I

Gi

∣∣∣∣∣ gi = fi,j(gj) for all i ≤ j in I
}

199

I Definition 9 (Projectively connected subshift). A subshift X is projectively connected if200

for any two points x, x′ ∈ X, there exists an inverse system of paths (pn)n∈N, such that pn201

is a path between (xBn
, (0, 0)) ∈ XBn

and (x′Bn
, (0, 0)), and for each n > 0, the image of pn202

under the canonical restriction map to XBn−1 is homotopic to pn−1.203

Let X∞ be the inverse limit of the system (XB)B⊂Z2 along with the canonical restriction204

maps (x|B+v , v) ∈ XB 7→ (x|B′+v , v) for each B′ ⊆ B ⊂ Z2.205

I Lemma 10 (Sequence Lemma [9]). X∞ is the inverse limit of the system (XBn
)n∈N.206

I Definition 11 (Projective Fundamental Group). The projective fundamental group based on207

the point (x0,v) ∈ X × Z2 of a subshift X is the inverse limit of (πB
1 (X, (x0,v)))B⊂Z2 , and208

is denoted by πproj
1 (X, (x0,v)). If X is projectively connected, then its projective fundamental209

group does not depend on the chosen basepoint (x0,v), and we denote it simply by πproj
1 (X).210

I Definition 12 (Projective path-class). A projective path class is a family ([pn])n∈N∗ ,211

where each pn is a path of aperture window Bn, such that for any n ≤ n′, the restriction of212

the path pn′ to the window Bn is homotopic to pn. Elements of πproj
1 (X) can then naturally213

be called projective loop-classes.214
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3.2 First example215

We slightly modify an example of [9]. Consider the two-dimensional (sofic) subshift on the216

alphabet {0, 1} of all the configurations containing at most one 1. We show how some paths217

can be deformed to the trivial path. It is then easy to show that all paths are homotopic to218

the trivial path. Take an aperture window of size 1, i.e., only one cell is visible at a time.219

Consider the following path p, starting at (0, (0, 0)) (we see a 0 at the origin of the Z2 plane).220

The path then moves in the Z2 grid while only seeing 0’s, and comes back to the origin where221

it now sees a 1. Then it moves away from the origin while only seeing 0’s, and finally comes222

back to (0, 0) with a 0 in the window. For simplicity, we also suppose that the path does223

not pass through the origin at any other time. To sum up, the path is a loop, starting and224

ending at (0, (0, 0)), which only sees 0 along the way except at one time (t2 on the figure)225

where it sees a 1 at the origin. This is illustrated in Figure 1a.226

0
t0 and t4

0 t1

1
t2

0t3

all 0’s

all 0’s

all 0’s

all 0’s

(a) Example of a path that cannot be traced in
a single configuration.

0
t0 and t4

0 t1

1
t2

0t3

all 0’s

all 0’s

all 0’sall 0’s

(b) A homotopic deformation to a path that can
entirely be traced in the all-0 configuration.

Figure 1 Example of a path and of a deformation of this path. Notice that the central 0 and 1
windows at t0 and t2 are actually located at the same point of the plane, although the figure depicts
them on top of each other for the sake of clarity. Red wires can be traced in x0, and blue wires in
x1. The wire of alternating colours can be traced within both, and so it is both homotopic to the
initial path, and to the trivial path.

Let x0, x1 respectively be the all-zero configuration, and the configuration containing a227

1 at the origin. The path p can be homotopically deformed in the following way: between228

the times t1 and t3, it can be considered to be entirely in x1. It can thus be deformed229

in this configuration by completely avoiding the origin, and joining the same points, as in230

Figure 1b. By definition of x1, this new path will now see only 0’s. The resulting loop then231

also sees 0’s at any point, and so it can be homotopically contracted to the trivial path in232

the configuration x0. This proof can be extended to make any 1 on a path "disappear" and233

show how any path can be contracted. In this case, it is sufficient to show that the projective234

fundamental group based at x0 of this subshift is trivial.235

4 Realization of projective fundamental groups236

We are now going to prove our main result: any finitely presented group is the fundamental237

projective group of some SFT.238

I Theorem 1. Let G = 〈S|R〉 a finitely presented group. Then, there is a subshift of finite239

type X verifying:240

X is projectively connected,241

the projective fundamental group of X is isomorphic to G.242

4.1 The construction243

The subshift X that we construct will informally consist of oriented wires, drawn on an244

empty background, each wire corresponding to a generator s ∈ S of the group G = 〈S|R〉.245



L. Paviet Salomon and P. Vanier 7

We only authorize the wires to go up, perhaps in some kind of "zigzag" manner, but never246

down or horizontally. More precisely, we define the following tiles: first of all, a tile that we247

call empty, visually represented by and denoted by Tempty. We denote by x� ∈ X the248

configuration which only contains empty tiles, and its patterns are called empty patterns.249

Then, for each element s ∈ S̄ = S ∪{s−1|s ∈ S}, we also consider the set Ts of the 5 following250

tiles:251

252

Notice that if s 6= s′, then Ts ∩Ts′ = ∅. Distinct Ts will be represented by wires of different253

colours in the figures. Those tiles will, intuitively, be used to represent generators of the254

group in valid configurations of X. In order to have some kind of representation for the255

relations, we need to use additional tiles. We start by adding all the trivial relators ss−1 and256

s−1s to R for all s ∈ S. Now, for each relator r1r2 . . . rn ∈ R, we add the tiles of Figure 2 to257

our set of tiles.258

r1

r1

(a) Start

Ri−1 Ri

ri

(b) For 2 ≤ i < n

Rn−1

rn

(c) End

Rk

(d) None of this type

Figure 2 The relation tiles.

Notice that the wire exiting from the right side of the tile Figure 2a does not have the259

same colour as the one exiting from the top. This colour is denoted by r1, to differentiate it260

from the actual r0 wires. In the other tiles, Ri = r1r2 . . . ri. Hence, for each relator r1 . . . rn, we261

have one tile of type Figure 2a and one of type Figure 2c, and n− 2 tiles of type Figure 2b.262

Let Tr be this set of n tiles. Note that we do not introduce any tile of the form Figure 2d,263

and also notice that if u ∈ R is such that it is the prefix of two different relators, i.e.,, there264

exists v, v′ ∈ S̄∗ such that uv ∈ R, uv′ ∈ R then the colours u are shared by the tiles used to265

represent those relators and so Tuv ∩ T uv′ 6= ∅. X is the subshift generated by the tileset266

T = Tempty ∪
⋃

s∈S̄

Ts
⋃

r∈R

Tr along with the obvious adjacency rules.267

We now formalize what we really mean by a wire.268

I Definition 13 (Wire). A wire is a sequence U = (Tt,vt)t∈I , I ⊆ Z an interval, of pair of269

non-empty tiles and Z2 vectors, such that270

‖vt+1 − vt‖1 = 1,271

The tile Tt+1 in position vt+1 extends the tile Tt in position vt.272

We also require that U does not contain two consecutive relation tiles.273

I Definition 14 (Coherent wire). We say that a wire is coherent if there exists a configuration274

x ∈ X such that for any tile (Ti,vi) of the wire, xvi = Ti.275

Valid configurations of X contain non-intersecting infinite wires, and some relation tiles276

with wires originating from them. Any relation tile belongs to a horizontal line of r relation277

tiles corresponding to a valid relator r1 . . . rr.278
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One important concept associated to paths on this subshift is the idea that paths can279

cross wires. Informally, this is what happens when the window, and its particular, its center,280

moves from one side to the other of a given wire in a path. As the tiles are considered to have281

their corners on the Z2 lattice, the central point of any pattern of support some translation282

of Bn is never directly "on" a wire.283

I Definition 15 (Crossing a wire tile). Let n > 0, and let v,v′ ∈ Z2 be two adjacent points,284

and P, P ′ two patterns of respective support v + Bn,v′ + Bn such that (P,v), (P ′,v′) is a285

valid path. For (i, j) ∈ Bn, let T(i,j) be the tile whose bottom-left corner is on (i, j) in P . We286

say that this path crosses a wire tile if287

v′ − v = e0 = (1, 0) (resp. −e0) and the tile Tv (resp. Tv−e0) was of one of the following288

form:289

290

v′ − v = e1 = (0, 1) (resp. −e1) at the next step t+ 1 and the tile Tv (resp. Tv−e1) was291

of one of the following form:292

293

In the following, we let Bn = {−n, ..., n − 1}2. Unless stated otherwise, all the aperture294

windows considered will be of this form.295

I Definition 16 (Coherent path). A path p = (Pi,vi)i≤N is coherent if all its patterns are296

equal on the points where their support overlap, and furthermore, the pattern obtained by297

merging all the Pi is globally admissible in X.298

I Definition 17 (Seeing a wire). A path p = (Pi, ti)i≤N sees a wire U if there exists a299

timestep i ≤ N , and (Tj ,vj) ∈ r such that the tile in position vj in Pi is Tj.300

I Remark 18. In a finite aperture window, some tiles belonging to a same wire need not be301

adjacent. This is the case exactly when the wires "leaves" the window on its right or left302

edge, and re-enters it higher on this same edge.303

I Remark 19. If a path p sees one relation tile, because such a tile is necessarily part of304

larger pattern involving other relation tiles and other wires in any point of X, we also say305

that p sees those extra wires.306

I Definition 20 (Crossing a wire). A path crosses a wire if it crosses one of its tiles.307

I Definition 21 (Coherent path decomposition). A coherent decomposition of a path p is a308

sequence p1, . . . , pD of coherent paths such that p = p1 ∗ p2... ∗ pL, and L is called the length309

of the decomposition.310

4.2 Only Crossed Wires Matter311

Our final goal is to prove that the projective fundamental group of this subshift X is the312

group G = 〈S|R〉. To do so, the idea will be to associate an element of the group to each313

path, according to the wires that it crosses. The following lemmas are used, in some sense,314

to prove that the only thing that determines the homotopy class of a path is indeed the315

sequence of wires that it crosses, regardless of the underlying geometry of the path. All316

the lemmas consider paths that both start and end in empty patterns. This is not really a317

restriction, as we will later prove that the subshift X is projectively connected, and so we318

will only consider loops based on x�. Unless stated otherwise, all the considered paths are319

using Bn as an aperture window, and patterns have support Bn.320
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I Lemma 22 (Wire Order Lemma). Let x ∈ X, and let U ,V be two wires in x. Suppose that321

U ,V do not contain relation tiles.322

For all z ∈ Z, there exists between one and two z0
U ∈ Z such that U passes through the323

position (z0
U , z). If there are two such z0

U , then they are necessarily adjacent, e.g.,324

side-by-side.325

Let z1 ∈ Z, and z0
U , z

0
V ∈ Z as in the previous point respectively for U and V. If z0

U < z0
V ,326

then for all zU , zV , z ∈ Z such that (zU , z) ∈ U , (zV , z) ∈ V, we have zU < zV . Intuitively,327

this means that wires can globally be ordered from left to right.328

If U or V contains a relation tile, then the previous claims are true only for z1 large enough.329

I Lemma 23. Let P be a globally admissible pattern. Let U be a wire in P without relation330

tiles. Suppose that U passes to the right of (0, 0) in P . Then, U neither enters nor exits P331

on its left edge.332

Proof. This directly follows from the fact that all the tiles with a wire have it move up when333

moving left, and Bn is a square. J334

I Corollary 24. If P is a globally admissible pattern that sees a wire U with no relation tiles,335

and x ∈ X is such that x|Bn
= P , then σ4n(x)|Bn

and σ−4n(x)|Bn
do not see U .336

I Lemma 25 (No Relation Tile Lemma). Let p a coherent path starting and ending on an337

empty pattern. Then there exists p′ ∼ p that does not see any relation tile.338

Proof of the No Relation Tile Lemma. Let x a configuration in which p can be traced, and339

which does not contain any other wire than the ones seen by p. Let (PN ,vN) the final point340

of p. Up to a translation of both p and x we can always assume that p starts at (0, 0),341

and without loss of generality, suppose that vN is on the right, i.e., it has a non-negative342

x-coordinate. This is a legitimate assumption, up to considering the path p−1 instead of343

p, which also starts and ends with empty patterns. Deform p into a path p′ in x, whose344

trajectory only consists of moving right, and then up or down, depending on whether vN is345

above or below (0, 0). Let imin (resp. imax) be the leftmost (resp. righmost) position of a346

relation tile seen by p, and let j be the topmost one. We can deform p′ as follows:347

Move left until the position imin − 2n (or don’t move if imin − n ≥ 0).348

Move up until the position j + 2n349

Move right until imax + 2n350

Finally, move to vN, by moving vertically first and then horizontally.351

Let p′′ the resulting path. Then, p′′ does not see any relation tile. Figure 3 shows this352

process in a simple case, with the first and third steps being trivial.353

J354

The next two lemmas are the main tools needed in the proof of the theorem. Informally,355

they show that the only thing that matters on a path is the set of wires that it crosses, and356

that we can moreover consider all those wires independently from one another.357

I Lemma 26 (Single Wire Lemma). Let p = (Pi,vi)0≤i≤N be a path starting and ending358

with empty patterns. There exists a path p′, homotopic to p, such that the union of any two359

consecutive patterns in p′ contains at most a single wire.360

I Lemma 27 (No Uncrossed Wire Lemma). Let p be a path starting and ending with empty361

patterns, and U some wire seen but not crossed by p. There exists a path p′, homotopic to p,362

which does not see U .363
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p
p′

(a) Deformation of p into an L-shaped path p′.

p′′

p′

(b) Deformation of p′ into p′′ to pass above
relation tiles.

Figure 3 A path that can be traced in a single configuration can always be deformed so as not
to see relation tiles

The proof of the No Uncrossed Wire Lemma can be found in Appendix A.364

Proof of Single Wire Lemma. The result is also proved by induction on the length of a365

path decomposition of p.366

Base case: L = 1 p can be traced entirely in a configuration x ∈ X. Using the No Relation367

Tile Lemma, we may assume that p does not see any relation tile. Without loss of generality,368

we may assume that x does not contain any wire that is not seen by p and that p starts at369

(0, 0) and ends at vN = (v0
N , v

1
N ), with v0

N ≥ 0, v1
N ≥ 0. We can assume that p does not see370

any relation tile using the No Relation Tile Lemma. The Wire Order Lemma ensures that371

each wire is crossed at most once. For simplicity, we assume that the trajectory is a straight372

line, from (0, 0) to some vN ∈ Z2, with v0
N > 0, v1

N = 0. Let U0, ...,Uk be the wires seen from373

right to left by p (so p sees Uk first, then Uk−1 and so on until U0).374

Now consider a configuration x′ verifying (see Figure 4):375

x′ does not contain any other wire than the Ui’s376

for 0 ≤ i ≤ k, let (zi,−n) the position of the only tile of Ui whose second coordinate is377

−n, and whose wire enters it from its bottom edge. Then, for −n− 4ik ≤ z ≤ −n, we378

define x′(zi, z) to be a tile of the form , and all the tiles of Ui below that are of the379

form and . This uniquely determines all the Ui’s below p.380

For z ∈ Z, no pattern of support Bn centered at (z,−4n(k + 1)) can see tiles belonging to381

two different wires at the same time in x′. Therefore, we can deform p in x′ into p′, where p′382

starts by moving down for 4n(k + 1) steps, then right until crossing U0, and finally up and383

either right or left as needed to reach vN. Any two consecutive patterns on this path see at384

most one wire.385

Base case: L = 2 p = p1 ∗ p2386

Using the same notation, let (Pt,vt) the endpoint of p1 and the starting point of p2, with387

vt = (v0
t , v

1
t ). Without loss of generality, we assume v0

t ≥ 0, v1
t ≥ 0. Let vN be the Z2 point388

at which p ends - by assumption, the associated pattern PN is only made of empty tiles.389
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Initial path p

p′

Un U0

2n

4n

Figure 4 Deformation of p into p′ in a single configuration to see only one wire per pattern.

Let x1, x2 ∈ X two configurations such that p1, p2 can respectively be traced entirely within390

them. Consider the path obtained by deforming p1 in x1, so that its trajectory is following391

the same one as in the previous case L = 1: it starts from (0, 0), then goes right until (v0
t , 0),392

and finally up until vt. To lighten the notation, we still call this path p1, and in the rest of393

the proof p1 will refer to this deformed path.394

Consider the loop q = q1 ∗ q−1
1 in x2 that starts from Pt,vt, and which follows the inverse395

trajectory to p1, reaches (0, 0), continues to the left until seeing an empty pattern, and then396

comes back by the inverse path. Let p′1 = p1 ∗ q1 and let p′2 = q−1
1 ∗ p2, so that p = p′1 ∗ p′2.397

By construction, p′2 can be traced entirely within x2, and so can be appropriately deformed398

according to the case L = 1. Like p, p′1 has a decomposition of length 2, but we can further399

simplify it. Indeed, we show that there exists a loop r = r1 ∗ r−1
1 , based on (Pt,vt), such400

that r1 ends in an empty pattern and each of p1 ∗ r1 and r−1
1 ∗ q−1

1 can be traced within401

a single configuration. This is enough to prove the case L = 2, using three times the case402

L = 1. To prove the existence of such a loop r, we construct a part of the upper-half of some403

configuration xcone as follows:404

x
cone
∣∣vt+Bn

= Pt405

all the wires exiting Pt on its left half, i.e., on a tile placed on (v0, v1) with v0 < v0
t , are406

then only made of tiles shaped as and .407

all the wires exiting Pt on its right half, i.e., on a tile placed on (v0, v0) with v0 ≥ v0
t ,408

are then only made of tiles shaped as and409

xcone does not contain any other wire than the ones seen in Pt410

Let Uleft,Uright respectively be the leftmost and rightmost wires of Pt. The tiles located411

to the left of Uleft, to the right of Uright, and below v1
t − n, are not defined in xcone.412
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xcone is then an infinite pattern, whose shape is somewhat similar to a cone.413

Let x′1 be the configuration obtained by extending xcone as follows:414

If (i, j) belongs to xcone, then x′1(i, j) = xcone(i, j).415

If j ≤ v1
t − n, then for any i, x′1(i, j) = x1 = (i, j).416

All the wires on the left of Uleft in x1 are extended in x′1 above the v1
t − n line by only417

using tiles of the shape and .418

All the wires on the right of Uright in x1 are extended in x′1 above the v1
t − n line by only419

using tiles of the shape and .420

All the tiles that are not already defined in x′1 are empty.421

Using Wire Order Lemma, x1′ is well-defined and belongs to X. We define x′2 in the422

same way. Let r1 be the path obtained by following the trajectory starting from vt, and423

moving up for 4n timesteps, up to (v0
t , v

1
t + 4n) in x′1. The loop r = r1 ∗ r−1

1 then extends424

both p′1 and q−1
1 . Indeed, p′1 ∗ r1 is a coherent path, as it can entirely be traced in x′1, and425

r−1
1 ∗ q−1

1 can be traced in x′2. Finally, we have that426

p ∼Bn p1 ∗ r1︸ ︷︷ ︸
traced in x′1

∗ r−1
1 ∗ q1︸ ︷︷ ︸

traced in x′2

∗ q−1
1 ∗ p2︸ ︷︷ ︸

traced in x2

427

General case: L > 2 p = p1 ∗ . . . ∗ pL.428

Consider the timestep t at which p1 ends and p2 starts. By definition of a coherent429

decomposition, there exists x2 ∈ X such that p2 can be entirely traced within x2. We can430

suppose that x2 does not contain any other wire than the ones seen by p2. Consider a loop431

r = r1 ∗ r−1
1 that moves to an empty pattern in x2 by moving left (this is always possible432

according to Lemma 23) and then comes back. We have433

p = p1 ∗ p2... ∗ pL = p1 ∗ r1︸ ︷︷ ︸
p′1

∗ r−1
1 ∗ p2... ∗ pL︸ ︷︷ ︸

p′

434

p′1 and p′ are then respectively paths of length 2 and L− 1, and so using the induction435

hypothesis, they can be deformed so at not to see U . The resulting path then only sees one436

wire at a time. J437

I Lemma 28 (Cross Anywhere Lemma). Let p a path starting and ending with empty patterns.438

If p sees no relation tiles, but sees and crosses a single wire U exactly once, then for all439

v = (v0, v1) ∈ Z2, p is homotopic to a path p′ which crosses U exactly on v.440

The proof can be found in Appendix A.441

4.3 Projective connectedness442

I Lemma 29. X is projectively connected.443

Proof. To prove this, it suffices to show that for any configuration x ∈ X, we can find a444

sequence (pn)n∈N where each pn = (Pn
i ,vi

n)0≤i≤Nn is a path in XBn
between (x|Bn

, (0, 0))445

and (x�|Bn
, (0, 0)), and such that the canonical restriction of each pn+1 is homotopic to pn.446

Suppose first that x contains no wire in some octant. In order to construct a path from447

x to x�, we will simply use this empty octant as follows: For n large enough such that448

Bn intersects the empty octant of x, we define a path pn by moving straight into it while449

staying in the configuration x, far enough so that the aperture window is entirely contained450

in this empty octant. At this point, we can simply come back to the point (0, 0) within the451
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configuration x�. It is moreover easy to deform the restriction of a path pn+1 defined in this452

way into a path pn of the same kind.453

Assume now that x contains wires arbitrarily far in any octant, and let N be large enough454

so that x|BN
contains a wire on the left of (0, 0). Let U be the first such wire, and let (−k, 0)455

be the point at which U crosses the x-axis (if there are two such points, pick the one on the456

right, see the Wire Order Lemma). We will define pn for n ≥ N . Let xn be the configuration457

obtained by extending x|Bn
, only using tiles of the form , , , for its wires: U and458

the wires on its left are extended so that they are moving to the left, and wires on its right459

are extended to move the right, as in the proof of the Single Wire Lemma. We can then460

define a path pn between (x|Bn
, (0, 0)) and (x�|Bn

, (0, 0)) as follows:461

Move left until (−k + 1, 0) in xn462

Follow U until reaching the height n, also in xn463

Move up for 4n steps, reaching an empty pattern, still in xn464

Come back to (0, 0), in x�465

Let ρn be the canonical restriction of pn+1 to the aperture window Bn. We need to show that466

pn ∼Bn ρn. To do so, notice that neither pn nor ρn moves down. Hence, we will deform them467

both in the lower part of a configuration, so that we can apply one of our lemmas for paths468

between empty patterns to conclude that they are homotopic. Let then rn ∗ r−1
n be the loop469

in xn that starts at (0, 0), moves down for 4n steps and comes back. The paths r−1
n ∗ pn and470

r−1
n ∗ ρn are both paths between empty patterns, and cross exactly the same wires, namely,471

the ones crossed by r−1
n . Using the No Relation Tile Lemma, then the No Uncrossed Wire472

Lemma and finally the Cross Anywhere Lemma, they are therefore homotopically equivalent.473

Hence, for any n ≥ N , pn ∼Bn
ρn. Thus, there exists a projective path class between x and474

x�, and so X is projectively connected.475

J476

4.4 Computing the projective fundamental group477

We can now compute πproj
1 (X), which is independent of the basepoint since X is projectively478

connected. Hence, unless stated otherwise, all the loops in this proof are based on (x�, (0, 0)).479

With any such loop p, we associate a word JpK on the alphabet S̄ in the following way:480

If p does not cross any wire, we associate the empty word with it, JpK = ε.481

If p crosses a single wire U on a tile T , then:482

If U is not a horizontal wire found on relation tile, and s ∈ S̄ is the generator483

corresponding to U (see Subsection 4.1)484

∗ if p crosses it from left to right, or from top to bottom on a tile shaped as , or485

from bottom to top on a tile , then JpK = s ∈ S̄.486

∗ if p crosses it in any other direction, we set JpK = s−1 ∈ S̄487

Otherwise, U is a horizontal wire on a relation tile. Let Ri = r0 . . . ri be its colour.488

∗ If it is crossed from top to bottom, then JpK = r−1
i . . . r−1

0 ∈ S̄∗489

∗ Otherwise, JpK = Ri = r0 . . . ri490

If p = p1 ∗ p2, then JpK = Jp1K · Jp2K ∈ S̄∗ where · represents the concatenation in S̄∗.491

Some examples are given in Figure 5a and Figure 5b.492

For any two words w,w′ on S̄, we will note w ≡ w′ if they are equal as words on this493

alphabet, and w =G w′ if they represent the same element of the group G. Let ↔R be494

be the relation defined as the symmetric closure of
{

(uwv, uv) | w ∈ R and u, v ∈
(
S̄
)∗},495

corresponding to the operation of inserting and removing relators to words. We can always496
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a b c
(a) The word associated with this loop is
bb−1a−1abcc−1b−1 =G 1G

a b c

a ab

(1)

(2)

(3)

(4)

Relation tiles
(b) Widget for the relator abc = 1G. From
top to bottom, the words associated with the
paths (1), (2) and (3) are respectively abc =
1G, aa−1(ab)c = 1G, (ab)c = 1G. For clarity,
the relation tiles are not adjacent on the figure

suppose that it is reflexive by adding the empty word ε to the relators. We denote ↔∗R its497

transitive closure. By definition, w↔∗R w′ ⇐⇒ w =G w′ (see e.g., [20, Theorem 1.1]). For498

example, if we take a ∈ S, we have aa−1 =G 1G, but aa−1 6≡ ε.499

In order to prove that the projective fundamental group of this subshift is G, we will500

prove that the operation JpK entirely characterizes a loop up to homotopy, in the sense that501

loops associated with the same element of G are exactly a projective loop-class:502

I Lemma 30. For n > 0 and any two loops pn, p
′
n starting at

(
x�|Bn

, (0, 0)
)
,503

pn ∼Bn
p′n =⇒ JpnK =G Jp′nK504

The full proof can be found in Appendix A.505

I Lemma 31. For any window Bn, and for any pair of loops pn, p′n starting at (x�|Bn
, (0, 0)),506

JpnK =G Jp′nK =⇒ pn ∼Bn
p′n.507

Proof. Using the No Relation Tile Lemma, we can always start by deforming pn and p′n508

so that they do not see any relation tile. As each elementary deformation is by definition509

occuring in some given configuration, Lemma 30 ensures that we still have JpnK =G Jp′nK. We510

will first prove that JpnK ≡ Jp′nK =⇒ pn ∼Bn p
′
n, which is a stronger assumption. Next, we511

prove that given pn and p′n with JpnK =G Jp′nK, there exists a loop p′′n such that pn ∼Bn
p′′n512

and Jp′′nK ≡ Jp′nK. We then have that p′′n ∼Bn p
′
n according to the first part of the proof, and513

so pn ∼Bn
p′n.514

We show that JpnK ≡ Jp′nK =⇒ pn ∼Bn
p′n. The paths pn and p′n can be deformed using515

No Uncrossed Wire Lemma so that they cross all the wires that they see. The Single516

Wire Lemma can then be used to deform them so that there is at most one of those517

wires per pattern. Let p̂n and p̂′n be the resulting paths, which by assumption cross the518

same wires. Using Cross Anywhere Lemma for each of those crossed wires, we can finally519

deform p̂n into p̂′n, and so pn ∼Bn
p′n.520
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Now, we show the existence of a loop p′′n verifying pn ∼Bn p′′n and Jp′′nK ≡ Jp′nK. By521

definition of =G, there exists a finite sequence (ui)0≤i≤N of words on the alphabet S̄522

such that JpnK ≡ u0, Jp′nK ≡ uN, and for all i < N , ui ↔R ui+1. To prove the result, it is523

therefore enough to show that for any word v such that JpnK↔R v, we can deform pn in524

another loop pv
n such that Jpv

nK ≡ v.525

Suppose that v is obtained from JpnK by deleting a relator. More formally, there exists526

words u1, u2 and a relator r ∈ R such that v ≡ u1u2 and pn ≡ u1ru2. Using the Single527

Wire Lemma, the No Uncrossed Wire Lemma and the Cross Anywhere Lemma as above,528

we can deform pn into a path that crosses wires corresponding to the letters of u1ru2, in529

order, on a horizontal line. Let pu1 (resp. pr, pu2) the part of this path which crosses the530

wires corresponding to u1 (resp. r, u2), starting and ending with empty patterns. Let531

xr ∈ X be such that pr can be traced in xr, and in which all those wires originate from532

the same set of relation tiles (see Figure 5b). We can then deform pr in xr into a path p′r533

that passes pass below the relation tiles. The resulting path pv
n = pu1 ∗ p′r ∗ pu2 is then a534

solution.535

J536

I Theorem 32. πproj
1 (X) = G537

Proof. Let n > 0 and let Φn : πBn
1 (X, (x�, (0, 0))) → G be the function which associates538

with a loop-class with aperture window Bn the corresponding element of G. Lemma 30 and539

Lemma 31 show that it is well-defined and injective. Let [p] , [p′] be two loop-classes based on540

(x�|Bn
, (0, 0)). We have shown that [p] ∼Bn [p′] ⇐⇒ Φn([p]) =G Φn([p′]). Now notice that541

Φn([p ∗ p′]) =G Φn(p) ·G Φn(p′), i.e., Φn is a group morphism. Being obviously surjective, it542

is in fact an isomorphism.543

Furthermore, notice that for any loop-class [pn+1] based on (x�|Bn+1 , (0, 0)), if pn+1544

projects down to p then Φn+1([pn+1]) =G Φn([p]). This shows that the inverse limit of the545

system (πBn
1 (X, (x�, (0, 0))))n>0 is isomorphic to G. J546
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A Proofs612

Proof of No Uncrossed Wire Lemma. We proceed by induction on the length of a coherent613

decomposition of the path, and we assume that U is on the right side of the patterns. Using614

Single Wire Lemma, we can assume that all the patterns of p contain at most a single wire.615

Base case: L = 1 p can be traced entirely in a configuration x ∈ X.616

In that case, we can simply deform p in x by changing its trajectory so that it always617

stays more than n units left from U . This path can then be traced in the configuration x′,618

equal to x except for the tiles of U in x that are empty tiles in x′.619

Base case: L = 2 p = p1 ∗ p2620

Let (Pt,vt) be the final point of p1 and the first one of p2. We also assume that the621

second coordinate of vt = (v0
t , v

1
t ) is non-negative. Let vN = (v0

N , v
1
N ) be the final point of622

the path.623

Let x1 ∈ X (resp. x2) be a configuration, containing only the wires seen by p1 (resp. p2),624

such that p1 (resp. p2) can entirely be traced within it. Let U be the uncrossed wire. We625

can always assume that U appears in Pt, otherwise we could consider it to be made of two626

distinct paths, each appearing entirely either only in p1 or in p2, and so we could directly627

apply the case L = 1.628

We deform p1 into p′1 inside x1 :629

Starting from (0, 0), it first moves to the right, until U appears on the central tile of the630

pattern seen by p1.631

It then moves up, left or right, following U : up if the central tile is , left then up if it632

is , and so on.633

Finally, once it attains the height v1
t , it moves left until vt if needed, which takes at most634

n steps.635

We can also deform p2 into another path p′2 as follows:636

Starting from vt, move left for max(2n, (v0
t − v0

N )) steps. This ensures that we are far637

enough so as to not see U anymore.638

Then, move vertically to height v1
N .639

Finally, move right until vN.640

Let w1 be the last point of p′1 before seeing U , and w2 the first point of p′2 after having seen641

U for the last time. The Single Wire Lemma ensures that the patterns seen at both w1 and642

w2 are empty. This gives a decomposition643

p ∼ p′1 ∗ p′2 ∼ pstart ∗ pU ∗ pend644

where pstart ends at w1, pU is the part of the path between w1 and w2, and pend starts at645

w2.646

pU can be traced entirely in a configuration x3 whose only wire is U . In this configuration,647

it can be homotopically deformed to p′U which never sees U according to the case n = 1.648

The final path p′ = pstart ∗ p′U ∗ pend does not see U .649

General case: L > 2 p = p1 ∗ . . . ∗ pL650

In that case, the proof is exactly the same as in Single Wire Lemma: we insert a loop651

before p2 starts that extends it, and from a decomposition of length L we obtain two652

decompositions of length respectively 2 and L− 1, which are solved inductively. J653
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Proof of Cross Anywhere Lemma. Let p = (Pi,vi)0≤i≤N be such a path, and let t be the654

timestep at which p crosses U . Without loss of generality, we can then assume that the wire655

is crossed from left to right, i.e. U is on the right side of Pt−1 and on the left side of Pt. Let x656

be any configuration containing Pt−1∪Pt. We can suppose that vt = e0 +vt−1, by deforming657

p in x if needed, and that vt−1 = (0, 0). Let r1 be the path starting from (Pt−1, (0, 0)) which658

moves left for 4n+ 2|v0| steps in x, and let r = r1 ∗ r−1
1 . Let q1 be the path starting from659

(Pt, (1, 0)) which moves right for 4n+ 2|v0| steps in x, and let q = q1 ∗ q−1
1 . We can deform660

p in x by inserting the loops r and q respectively at the timesteps t − 1 and t. Using the661

No Uncrossed Wire Lemma twice, this path can itself be deformed into pstart ∗ p′ ∗ pend662

with p′ = r−1
1 ∗ (Pt, (0, 0)) ∗ q1, and pstart, pend paths that only see empty patterns. The663

trajectory of p′ is a straight horizontal line on the x−axis of length 8n+ 2|v0|+ 1. Let x′664

the configuration obtained by extending U as seen by p′ using only tiles of the form .665

Without loss of generality, suppose that v1 ≤ 0. We can deform p′ in x′ so that it moves up666

for 8n+ 2|v0| steps, then right for 8n+ 2|v0|+ 1 as before and finally down to the endpoint667

of p′. Call p′′ the horizontal part of this path. There exists a configuration x′′ in which U668

passes by v and in which p′ can be traced. Then, p′′ can be deformed in x′′ to cross U on v.669

This finally gives the result. J670

Proof of Lemma 30. As any two homotopic loops can be obtained from one another by a671

sequence of elementary deformations, we can restrict ourselves to the special case of a single672

deformation that is a loop based at (Pt,vt). By definition, this deformation is made in a673

single configuration x ∈ X. We consider two disjoint cases, according to the presence of674

relation tiles in x.675

Suppose that x does not contain any relation tile. Any bi-infinite wire splits the space676

in two disjoint regions (a "left" one and a "right" one). Each time a loop crosses such a677

wire, it has to cross it in the other direction to come back to its initial region. Because678

wires do not intersect, the associated word will be some kind of Dyck word, where each679

s ∈ S̄ can act as an opening or a closing bracket (in which case, the associated closing680

(resp. opening) bracket is s−1), so it is clearly equal to 1G in G. This is the simple case681

depicted in Figure 5a.682

Now, suppose that x does contain some relation tiles. In this case, notice that any two683

relation tiles are either part of the same relator and are therefore linked by a finite684

sequence of horizontal relation tiles, or they are independent (not linked by any wire).685

Hence, we can consider each one of those patterns separately. Consider such a pattern,686

with relation tiles that implement a relator r = r0 . . . rk ∈ R, and a configuration x′ that687

only contains this pattern. Figure 5b represents this in a configuration corresponding688

to relation abc = 1. We show that, due to how J·K has been defined, all the homotopy-689

equivalent paths in x′ are associated with the same element of G. Let U0, . . . ,Uk be the690

wires corresponding respectively to r0, . . . , rk, and suppose that the relation tiles in x′ are691

placed on (0, 0), . . . , (k, 0). We will show that for any p joining (0, 0) to (k + 1, 0) in x′,692

JpK =G 1G. Let R ⊂ Z2 be the set of points above the (Z, 1) line and between U0 and Uk.693

We can always suppose that no wire is crossed consecutively in opposite directions, as694

the word associated to a path that crosses a wire in a direction and immediately crosses695

it in the other direction is ss−1 =G 1G for some s ∈ S̄∗. We can also suppose that p only696

enters and then leaves R once. Otherwise, we can simply split it into several such paths697

and prove the claim for each of them independently.698

If p crosses U0, . . . ,Uk, then JpK ≡ r0 . . . rk =G 1G by definition.699

If p crosses U0, . . . ,Ui,Ur0...ri , where Ur0...ri is a wire of a relation tile which is necessarily700

crossed from top to bottom, by definition, JpK ≡ r0 . . . ri(r−1
i . . . r−1

0 ) =G 1G701



L. Paviet Salomon and P. Vanier 19

Otherwise, p crosses Ur0...ri ,Ui+1, . . . ,Uj ,Ur0...rj , the first relation tile being crossed from702

bottom to top to enter R and the last one being crossed from top to bottom to exit it.703

By definition, JpK ≡ (r0 . . . ri)ri+1 . . . rj(r−1
j . . . r−1

0 ) =G 1G704

This shows that all the paths traced in a single configuration are associated with the same705

element of the group G. As all homotopies are deformations in a given configuration, this706

implies that for any homotopically equivalent paths p, p′, we have JpK =G Jp′K. J707
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