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Abstract
Subshifts are sets of colourings – or tilings – of the plane, defined by local constraints. Historically
introduced as discretizations of continuous dynamical systems, they are also heavily related to
computability theory. In this article, we study a conjugacy invariant for subshifts, known as the
projective fundamental group. It is defined via paths inside and between configurations. We show
that any finitely presented group can be realized as a projective fundamental group of some SFT.
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1 Introduction

A d-dimensional subshift is a set of colourings of Zd by a finite number of colours which avoid
some family of forbidden patterns. If the family is finite, it is called a subshift of finite type
(SFT). Most problems concerning subshifts in dimension d ≥ 2 are undecidable [6, 20, 19],
due to the fact that sets of Wang tilings are SFTs.

Together with the shift action σ, a subshift forms a dynamical system. Interesting dynam-
ical aspects are usually invariant by conjugacy, which is the isomorphism notion for subshifts.
Most conjugacy invariants of subshifts in dimensions d ≥ 2 are linked to computability
theory or complexity theory. Historically, the first example was the characterization of the
topological entropies of multi-dimensional SFTs as the upper semi-computable numbers [25].
Afterwards, many other computational characterizations of conjugacy invariants have been
obtained: growth-type invariants [30], subactions [23, 4, 14] and so on.

Links between groups and subshifts have recently seen a surge in interest with several
different approaches: subshifts can be defined on groups instead of Zd [1, 3] and some
properties of the group are linked to decidability questions on the subshifts on it [26, 2, 15].
Analogies between groups and subshifts have allowed new characterizations to be proved for
subshifts [27].

Another avenue is to associate a group to a subshift in order to construct conjugacy
invariants in several ways [29, 22, 17]. The most well-known such group is the automorphism
group, which is still not very well understood: for instance, while it is known that SFTs
with positive entropy have very complex automorphism groups [24] or that SFTs whose
automorphism group has undecidable word problem can be constructed [18], it is still not
known whether the automorphism groups of the full shifts on 2 and 3 symbols are the same.
Apart from the low complexity setting [13, 12] not much is understood about it.
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2 Finitely presented groups as fundamental groups of subshifts

In this article, we study another group-related conjugacy invariant called the projective
fundamental group introduced by Geller and Propp [17]. Fundamental groups are an
object of interest in several fields of theoretical computer science, in particular graph
reconfigurations [37], which bear links with a particular class of subshifts called hom-shifts [10]
which are defined with a graph of allowed adjacency of colours. These are subshifts with a
computable language that still exhibit interesting behavior [16]. An essential tool in their
study is their universal cover, a graph which has strong ties to their projective fundamental
group. Fundamental groups are also of interest when studying the “defects” in tilings [33, 5],
or obstruction to the tileability of finite, untiled “holes” in tilings [11, 36]. In particular,
provided that an SFT satisfies some mixing-like hypothesis, there is an explicit link between
its fundamental cocycles [35, 34] and its projective fundamental group.

In the usual topological setting (see for example [21]), the fundamental group π1 (X) of
a space X is a topological invariant which describes the number of holes and the general
shape of X. It is defined as the group of equivalence classes of loops through continuous
deformation, together with the composition operation. In this setting, the fundamental group
is well-defined only when X is path-connected.

When viewed as subspaces of the Cantor space, subshifts are totally disconnected.
Nevertheless, one can still define a notion of projective fundamental group using paths
and deformations (see Subsection 3.1 for details). As in the classical setting, this notion
is only well-defined in the case of projectively connected subshifts, the appropriate notion
of path-connectedness. This property resembles mixing properties (see for instance [9]
or [32]), but it is not known whether any of the mixing properties defined in [9] imply
projective connectedness of an SFT, although some partial results exist [33, 35]. Projective
connectedness is undecidable but we do not know how hard: it is open whether it belongs to
the arithmetical hierarchy.

As a conjugacy invariant, the fundamental group allows one to distinguish between some
subshifts which share the same entropy and periodicity data. It is also better understood
than the automorphism group in the sense that the authors in [17] explicitly compute it for
several well-known subshifts: the full shifts on any alphabet always have trivial fundamental
group, the square-ice has Z and k-to-1 factors of full shifts – i.e. in which every point has
exactly k preimages by the factor map – always have a fundamental group with finite order
k. They also prove that any group of finite order is realizable as a fundamental group of
some SFT.

The main result of this article is that any finitely presented group can be the fundamental
group of an SFT:

I Theorem 1. Let G = 〈S|R〉 be a finitely presented group. Then, there is a subshift of
finite type X satisfying:

X is projectively connected,
the projective fundamental group of X is isomorphic to G.
We do not think that this constitutes a characterization of projective fundamental groups

of SFTs, as we do not have a matching upper bound on the hardness its word problem.
However, this theorem implies that the hardness of the word problem of the fundamental
group – i.e. given a SFT, decide the word problem of its fundamental group – can be
any recursively enumerable degree [8], and in particular that its upper bound is at least
Σ0

1-hard [31, 7]. It also implies that any undecidable property on finitely presented groups is
undecidable for projective fundamental groups.

The main construction of the paper is quite different from other constructions used in
undecidability results on tilings and subshifts: it does not use an aperiodic subshift.
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The paper is organized as follows. After recalling the symbolic dynamics background in
Section 2, we introduce the projective fundamental group in Subsection 3.1, some examples
in Subsection 3.2 and finally in Section 4 we prove Theorem 1.

2 Definitions

A d-dimensional full shift on some finite alphabet Σ is the set ΣZd , together with the
shift-actions σu : ΣZd → ΣZd defined for u ∈ Zd by σu(x)(v) = x(u + v) = xu+v. The
underlying topology is the one induced by the Cantor distance, defined on ΣZd by

d(x, y) = 2−min{‖u‖∞ | xu 6=yu},.

Two configurations are close in this topology if they agree on a large central square. A
subshift is a closed, shift-invariant subset of some full shift. We call configurations of a
subshift X the points of X.

Alternatively, subshifts can be defined using forbidden patterns. We call pattern any
element P ∈ ΣU where U ⊂ Zd is finite and is the support of P , denoted by supp(P ). For
a configuration x, we say that P appears in x if there exists u ∈ Zd such that σu(x)|U = P .
Let F be a collection (finite or not) of patterns. Then the set

XF =
{
x ∈ ΣZd

∣∣∣ ∀P ∈ F , P does not appear in x
}

is a subshift. In fact, for any subshift X, there exists a family of patterns F such that
X = XF . A subshift X is a subshift of finite type (SFT) if there exists a finite F such
that X = XF .

For a given subshift X defined by a fixed family of forbidden patterns F , a pattern
P ∈ ΣU is locally admissible if it contains no forbidden patterns F ∈ F . It is globally
admissible or extensible if it appears in some configuration x ∈ X.

3 Projective Fundamental Group

3.1 Intuitions and definitions
The Projective Fundamental Group, introduced by Geller and Propp [17], resembles the
usual fundamental group construction in the topological setting: it is defined through paths,
loops, and a homotopy notion. However, instead of directly considering paths between points
of the subshift, they are defined between finite patterns with the same support. By doing so,
one actually constructs a family of – potentially different – fundamental groups, for each
finite support B ⊂ Z2. In order to obtain a single group, the projective fundamental group,
one takes their inverse (also known as projective) limit. We will construct a subshift by
defining a set T of tiles. A configuration will then be a mapping x : Z2 → T associating a tile
to each point of the plane and which verifies some adjacency rules depending on T . Contrary
to the usual convention, we will consider that when embedding such a configuration in the
Euclidean plane R2, the tile in position (i, j) is a unit square whose bottom-left corner is
placed on (i, j), as opposed to its center. This is merely a discussion about conventions, but
it will make some definitions substantially simpler.

Fix a support B ⊂ Z2. In what follows B will be called an aperture window. Most
of the time, we will restrict ourselves to the windows Bn = J−n, n− 1K2. We choose
this asymmetrical window to simplify some definitions, but also for consistency with the
aforementioned convention. In any configuration x, the tile x(0,0) in position (0, 0) will
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therefore be seen as the square whose bottom-left (resp. top-right) corner is (0, 0) (resp.
(1, 1)).

Consider P, P ′ two extensible patterns of support B and two points of the grid v,v′ ∈ Z2.
A path between (P,v) and (P ′,v′) is a sequence of pairs of patterns and of points of Z2 (or
equivalently, two sequences of the same length). The sequence of points represents an actual,
“geometric” path, called its trajectory, that is to say a sequence of vertices of Z2 starting
at v and ending at v′, where consecutive vertices are at euclidean distance exactly 1. The
sequence of patterns associates with each one of those vertices vt a pattern Pt, that needs to
be coherent with the path: when moving to the next vertex vt+1 on the trajectory, the next
pattern Pt+1 needs to be coherent with Pt, that is to say, they should be equal where their
supports overlap (see Definition 2 for a precise statement). For example, in the full shift over
two symbols {0, 1}, and for B = B1, take the following patterns:

P1 =
(

0 0
00
, (0, 0)

)
, P2 =

(
0 1

10
, (1, 0)

)
, P3 =

(
1 1

11
, (1, 0)

)
The tile in position (0, 0) is represented in red. The sequence (P1, P2) is a valid path, as the
overlapping parts of the support are equal in both patterns, but (P1, P3) is not because the
point (0, 0) is tiled by 0 in the first pattern but by 1 in the second one. Moreover, the pattern
obtained by “merging” two consecutive patterns also needs to be an extensible pattern.

I Definition 2 (Path). Let B ⊂ Z2 be a finite set, a path of aperture window B is a finite
sequence (Pt,vt)0≤t≤N such that for any t with 0 ≤ t ≤ N :

Pt is an extensible pattern of X of support B + vt,
vt is adjacent to vt+1, i.e., dt = vt+1 − vt has euclidean norm exactly 1,
Pt(u) = Pt+1(u) for any u ∈ B ∩ σdt(B), i.e., consecutive patterns overlap,
the pattern Pt ∪ Pt+1 obtained by merging Pt and Pt+1 is extensible in X.

The first and last element of the sequence are respectively called the starting point and
the ending point of the path. If they are equal, the path is called a loop. The path
(PN−t,vN−t)0≤t≤N is called its inverse path. If p is a path, its inverse will be denoted by
p−1

The sequence (vt)0≤t≤N is called the trajectory of the path.

Two paths may be composed when the first one ends where the second one starts:

I Definition 3 (Path composition). Given p = (Pt,vt)0≤t≤N and p′ = (P ′t ,v′t)0≤t≤N ′ two
paths such that (PN ,vN) = (P ′0,v′0) we denote by p ∗ p′ the path

p ∗ p′ = (P0,v0) . . . (PN ,vN)(P ′1,v′1) . . . (P ′N ′ ,v′N′).

I Definition 4 (Coherent path). A path p = (Pi,vi)i≤N is coherent if all its patterns are equal
on the points where their supports overlap, and furthermore, the pattern obtained by merging
all the Pi is globally admissible in X. In that case, for any x ∈ X containing

⋃
i≤N Pi, we

say that p can be traced in x.

I Definition 5 (Coherent path decomposition). A coherent decomposition of a path p is a
sequence p1, . . . , pL of coherent paths such that p = p1 ∗ p2 . . . ∗ pL, and L is called the length
of the decomposition.

One can now define a corresponding homotopy notion: let p = p1 ∗ p2 ∗ p3 be a path and
suppose that p2 can be traced in a single configuration x ∈ X. Then, for any p′2 traced in x
with the same starting and ending point as p2, the path p1 ∗ p′2 ∗ p3 is called an elementary
deformation of p. As paths might consist of a single point, they can be deformed by
inserting or removing loops traced in a single configuration at any step.
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I Definition 6 (Homotopy). Two paths p, p′ are said to be homotopic if there exists a
finite sequence of elementary deformations from p to p′. This defines an equivalence relation
between paths, and we denote by [p] the equivalence class of p. If p and p′ are paths with an
aperture window B ⊂ Z2, we denote by p ∼B p′ the fact that they are homotopic.

I Remark 7. When two paths are homotopic, they necessarily have the same starting and
ending points. When B is clear from the context, we will simply write p ∼ p′.

With this definition of a path and of homotopy, we can define a fundamental group for
each possible aperture window B ⊂ Z2.

I Definition 8 (Fundamental Group). Let X be a SFT, B ⊂ Z2 an aperture window, x0 ∈ X
and v ∈ Z2. The fundamental group of X based at (x0,v) for the aperture window B,
denoted by πB1 (X, (x0,v)), is the group of all the equivalence classes of loops starting and
ending at (x0|B ,v) for the homotopy equivalence relation, along with the ∗ operation.

Although our paths follow the Z2 grid and seem to be discrete and combinatorial objects,
it is legitimate to refer to those objects as homotopy and deformations, which usually suppose
some kind of continuity. In fact, this simplification does not entail any loss of generality,
compared to paths drawn in R2, and subshifts seen as Z2-invariants subsets of ΣR2 (see [17,
Subshifts and albums] for more details). In order to obtain a single object associated with
the subshift, we get rid of this reference to an aperture window by considering the projective
limit of those groups to define the Projective Fundamental Group of the subshift.

I Definition 9 (Restriction maps). For any B′ ⊆ B ⊂ Z2, the map

restrB,B′ : ΣB → ΣB
′

P 7→ (i ∈ B′ 7→ P (i))

is called the canonical restriction map from B to B′. We can naturally extend it to⋃
v∈Z2

ΣB+v so that supp(P ) = B + v =⇒ supp(restrB,B′(P )) = B′ + v.

Intuitively, these maps simply “forget” some parts of the pattern. We also extend these
maps to paths: if B′ ⊆ B, the image of a path p with aperture window B is a path with the
same trajectory with aperture window B′, obtained by mapping restrB,B′ element-wise on p.

I Definition 10 (Projective path class). Let x, x′ ∈ X and v,v′ ∈ Z2. A projective path
class between (x,v) and (x′,v′) is a sequence ([pn])n>0 along with the canonical restriction
maps, such that pn is a path of aperture window Bn between (xBn ,v) and (x′Bn

,v′), and for
each n > n′ > 0, restrBn,Bn′ (pn) ∼Bn′ pn′ .

In the case where (x,v) = (x′,v′), we instead say that ([pn])n>0 is a projective loop class
based at (x,v).

I Definition 11 (Projectively connected subshift). A subshift X is projectively connected
if for any two points x, x′ ∈ X, there exists a projective path class between (x, (0, 0)) and
(x′, (0, 0)).

As before, projective loop classes based at the same (x,v) can be concatenated component-
wise, to obtain another projective loop class.

I Definition 12 (Projective Fundamental Group). The projective fundamental group based
at the point (x0,v) ∈ X × Z2 of a subshift X is the group of projective loop classes based at
(x0,v), with the group operation being the component-wise concatenation of projective loop
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classes, and is denoted by πproj1 (X, (x0,v)). If X is projectively connected, then its projective
fundamental group does not depend on the chosen basepoint (x0,v), and we denote it by
πproj1 (X).

This is a usual construction of what is called a projective (or inverse) limit in category
theory. However, we do not use general properties of inverse limits in the rest of the article.

3.2 First example
We slightly modify an example of [17]. Consider the two-dimensional subshift X on the
alphabet {0, 1} of all the configurations containing at most one 1. We show how some paths
can be deformed to the trivial path. It is then easy to show that all paths are homotopic to
the trivial path. Take an aperture window of size 1, i.e., only one cell is visible at a time.
Consider the following path p, starting at (0, (0, 0)) (we see a 0 at the origin of the Z2 plane).
The path then moves in the Z2 grid while only seeing 0’s, and comes back to the origin where
it now sees a 1. Then it moves away from the origin while only seeing 0’s, and finally comes
back to (0, 0) with a 0 in the window. For simplicity, we also suppose that the path does
not pass through the origin at any other time. To sum up, the path is a loop, starting and
ending at (0, (0, 0)), which only sees 0 along the way except at one time (t2 on the figure)
where it sees a 1 at the origin. This is illustrated in Figure 1a.

0
t0 and t4

0 t1

1
t2

0t3

all 0’s

all 0’s

all 0’s

all 0’s

(a) Example of a path that cannot be traced in
a single configuration.

0
t0 and t4

0 t1

1
t2

0t3

all 0’s

all 0’s

all 0’sall 0’s

(b) A homotopic deformation to a path that can
entirely be traced in the all-0 configuration.

Figure 1 Example of a path and of a deformation of this path. Notice that the central 0 and 1
windows at t0 and t2 are actually located at the same point of the plane, although the figure depicts
them on top of each other for the sake of clarity. Red wires can be traced in x0, and blue wires in
x1. The wire of alternating colours can be traced within both, and so it is both homotopic to the
initial path, and to the trivial path.

Let x0, x1 respectively be the all-zero configuration, and the configuration containing a
1 at the origin. The path p can be homotopically deformed in the following way: between
the times t1 and t3, it can be considered to be entirely in x1. It can thus be deformed
in this configuration by completely avoiding the origin, and joining the same points, as in
Figure 1b. By definition of x1, this new path will now see only 0’s. The resulting loop then
also sees 0’s at any point, and so it can be homotopically contracted to the trivial path in
the configuration x0. This proof can be extended to make any 1 on a path “disappear”, and
so any path can be contracted. In this case, this shows that πproj1 (X, (x0, (0, 0))) = {e} is
trivial, as the same argument works for arbitrary large Bn.

4 Realization of projective fundamental groups

We are now going to prove our main result: any finitely presented group is the fundamental
projective group of some SFT.

I Theorem 1. Let G = 〈S|R〉 be a finitely presented group. Then, there is a subshift of
finite type X satisfying:
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X is projectively connected,
the projective fundamental group of X is isomorphic to G.

4.1 The construction
The subshift X that we construct will informally consist of oriented wires, drawn on an
empty background, each wire corresponding to a generator s ∈ S of the group G = 〈S|R〉.
We only authorize the wires to go up, perhaps in some kind of “zigzag” manner, but never
down or horizontally. More precisely, we define the following tiles: first of all, a tile that we
call empty, visually represented by , and we denote by Tempty the singleton containing
this tile. We denote by x� ∈ X the configuration which only contains empty tiles, and its
patterns are called empty patterns. Then, for each element s ∈ S̄ = S ∪ {s−1|s ∈ S}, we
also consider the set Ts of the 5 following tiles:

If s 6= s′, then Ts ∩ Ts′ = ∅. Distinct Ts will be represented by wires of different colours in
the figures. These tiles will, intuitively, be used to represent generators of the group in valid
configurations of X. Finally, we use some other tiles that will play the role of representing
the group relations. We can always assume that R contains the trivial relators ss−1 and s−1s
for all s ∈ S. Now, for each relator r = r1r2 . . . rn ∈ R, we let Tr be the tiles described by
Figure 2.

r1

r1

(a) Start

Ri−1 Ri

ri

(b) For 2 ≤ i < n

Rn−1

rn

(c) End

Figure 2 The relation tiles.

The wire exiting from the right side of the tile Figure 2a does not have the same colour
as the one exiting from the top. The former colour is denoted by r1, to differentiate it from
the actual r1 wires. In the other tiles, Ri = r1r2 . . . ri. Hence, for each relator r1 . . . rn, we
have one tile of type Figure 2a and one of type Figure 2c, and n− 2 tiles of type Figure 2b.
Tiles belonging to some Tr are called relation tiles. Note that if u ∈ R is such that it is the
prefix of two different relators, i.e., there exists v, v′ ∈ S̄∗ such that uv ∈ R, uv′ ∈ R then the
colours u are shared by the tiles used to represent those relators and so Tuv ∩ Tuv′ 6= ∅. X
is the subshift generated by the tileset T = Tempty ∪

⋃
s∈S̄
Ts ∪

⋃
r∈R
Tr along with the obvious

adjacency rules: any wire must be extended, by a wire with the same orientation given by
the arrows – e.g., and are forbidden patterns, but is allowed (assuming the two
tiles contain a wire of the same colour).

We now formalize what we really mean by a wire.

I Definition 13 (Wire). A wire is a sequence U = (Tt,vt)t∈I , I ⊆ Z a non-necessarily finite
interval, of pairs of non-empty tiles and Z2 points, such that
‖vt+1 − vt‖1 = 1,
The tile Tt+1 in position vt+1 extends the wire of tile Tt in position vt: placing a tile

above or below another tile does extend it, while placing it on its right or left side
does not, although they are valid patterns of X.
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U does not contain two consecutive relation tiles.

I Remark 14. We do not prevent a wire from moving back and forth: it is possible to have
(Tt,vt) = (Tt+2,vt+2).

I Definition 15 (Coherent wire). We say that a wire is coherent if there exists a configuration
x ∈ X such that for any tile (Ti,vi) of the wire, xvi = Ti.

I Remark 16. Valid configurations of X can contain non-intersecting infinite wires, and
possibly some relation tiles with wires originating from them. Any relation tile belongs to
one horizontal line of k relation tiles, corresponding to a valid relator r1 . . . rk.

One important concept associated to paths on this subshift is the idea that paths can
cross wires. Informally, this is what happens when the window, and in particular, its center,
moves from one side to the other of a given wire in a path.

I Definition 17 (Crossing a wire tile). Let n > 0, and let v,v′ ∈ Z2 be two adjacent points,
and P, P ′ two patterns of respective support v + Bn,v′ + Bn such that (P,v), (P ′,v′) is a
valid path. For (i, j) ∈ Bn, let T(i,j) be the tile whose bottom-left corner is on (i, j) in P . We
say that this path crosses a wire tile if

v′ − v = e0 = (1, 0) (resp. −e0) and the tile Tv (resp. Tv−e0) was of one of the following
forms:

v′ − v = e1 = (0, 1) (resp. −e1) at the next step t+ 1 and the tile Tv (resp. Tv−e1) was
of one of the following form:

In the following, we let Bn = {−n, . . . , n − 1}2. Unless stated otherwise, all the aperture
windows considered will be of this form.

I Definition 18 (Seeing a wire). A path p = (Pi,vi)i≤N sees a wire U if there exists a
timestep i ≤ N , and (Tj ,vj) ∈ U such that the tile in position vj in Pi is Tj.

I Definition 19 (Crossing a wire). A path crosses a wire if it crosses one of its tiles.

4.2 Only Crossed Wires Matter
Our final goal is to prove that the projective fundamental group of this subshift X is the
group G = 〈S|R〉. To do so, the idea will be to associate an element of the group to each
path, according to the wires that it crosses. The following lemmas can be seen as a procedure
to put paths in some kind of normal form via homotopies, depending only the sequence of
crossed wires, regardless of the underlying geometry of the path. All the lemmas consider
paths that both start and end in empty patterns, but this is not really a restriction as we
will later prove that the subshift X is projectively connected, and so we will only consider
loops based at x�. Unless stated otherwise, all the considered paths are using some Bn as
aperture window. We start with some easy statements about patterns of support Bn, and
the wires they may contain.

I Lemma 20 (Wire Order Lemma). Let x ∈ X, and let U ,V be two infinite wires in x.
Suppose that U ,V do not contain relation tiles.

For all z ∈ Z, there exists between one and two z0
U ∈ Z such that U passes through

the position (z0
U , z). If there are two such z0

U , then they are necessarily adjacent, e.g.,
side-by-side.



L. Paviet Salomon and P. Vanier 9

Let z ∈ Z, and z0
U , z

0
V ∈ Z as in the previous point respectively for U and V. If z0

U < z0
V ,

then for all zU , zV , z ∈ Z such that (zU , z) ∈ U , (zV , z) ∈ V, we have zU < zV . Intuitively,
this means that wires can globally be ordered from left to right.

If U or V contains a relation tile, then the previous claims are true only for z large enough.

I Remark 21. Note that the previous lemma is true because we consider wires U ,V belonging
to some configuration. It is clearly false for arbitrary wires.

I Lemma 22. Let P be a globally admissible pattern of support Bn for some n > 0. Let U
be a wire in P without relation tiles. Suppose that U passes to the right (resp. left) of (0, 0)
in P . Then, U neither enters nor exits P on its left (resp. right) edge.

Proof. This directly follows from the fact that no tile contains a horizontal wire, and that
Bn is a square. J

I Corollary 23. If P is a globally admissible pattern that sees a wire U with no relation tiles,
and x ∈ X is such that x|Bn

= P , then σ4n
(0,1)(x)|Bn

and σ−4n
(0,1)(x)|Bn

do not see U .

In order to show that the homotopy class of a path p is indeed only determined by the
wires it crosses, we will need several lemmas in which the proof will always be similar: an
induction on the length L of a Coherent path decomposition of p:

for L = 1 (i.e. p is coherent), we explicitly show how to deform p to obtain the required
property.
for L = 2 we use the Path Co-extensibility Lemma to “normalize” both coherent subpaths
of p using the base case L = 1.
In general, if p = p1 ∗ . . . ∗ pN , we can deform both p1 and p2 so that p ∼ p′1 ∗ p′2 ∗ . . . ∗ pN ,
in such a way that we can apply the base case to p′1, and the induction case to p′2 ∗ . . .∗pN .

The key step is therefore to properly show how to deal with the case L = 2; this is the
purpose of the Path Co-extensibility Lemma that we now show, after some preliminary
results.

I Lemma 24 (Finite Extension Lemma). Let P be an extensible finite pattern of X, there
exists x ∈ X containing P , such that x contains a finite number of wires.

I Definition 25 (Cone). For n ∈ N, we define the cones

C−n = {(i, j) | j ≤ 0,−|j| − n ≤ i < |j|+ n} C+
n = {(i, j) | j ≥ 0,−j − n ≤ i < j + n}

We denote ∂Cn = Cn ∩ ((Cn + e0) ∪ (Cn + e1)) the border of a cone.

I Lemma 26 (Extensibility Lemma). Let n > 0. There exists k > 0 such that for any x ∈ X,
there exists x′ ∈ X with:

x′|C±n
= x|C±n

x′|σ(0,k)(C∓n ) = x
�|σ(0,k)(C∓n )

Proof. We prove the case where x′ is empty in a cone above the y = 0 line, and equal to x
below it, the other case being similar. Let r be the length of the longest relator in the finite
presentation of G = 〈S|R〉. Let W ⊂ Z2 be the set of positions of tiles that are part of a
wire of x that:

either passes by C−n
or originates from a relation tile which is itself part of a relator intersecting C−n .

Now, construct x′ as follows:
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for (i, j) ∈ C−n+r ∩W , set x′(i,j) = x(i,j). The other tiles of C−n+r are empty.
for (i, j) ∈ ∂C−n+r ∩W and j < 0, extend the wire above (i, j) using only tiles and if
i < 0, or and if i > 0.
each wire of W passing by (i, 0) with |i| ≤ n+ r is extended by n− |i|+ r tiles , and
then by tiles of the form and if i < 0, or and if i ≥ 0.
all the other tiles are empty.

Then, x′ is a valid configuration of X and:
By definition of W , x′, x coincide on C−n .
∂C−n+r contains no relation tile, by definition of W and r.
(0, n+ r + 1) + C+

n is empty. See for example Figure 3 or Figure 7.

C−n

x�

r

C−n

C−n+r

ke1 + C+
n

Figure 3 Construction of x′ (on the right) from x (on the left). In both figures, the central dot is
the origin (0, 0).

J

I Corollary 27 (Path Co-extensibility Lemma). Let p = ((Pt,ut))t≤Np
and q = ((Qt,vt))t≤Nq

be two paths with the same aperture window Bn, satisfying:
Both p and q are coherent paths
(PNp

,uNp
) = (Q0,v0) (equivalently, p ∗ q is well-defined)

u1
0 = v1

Nq
(i.e. q ends at the same height as p starts)

Then, there exists p′, q′, r paths such that:
r ends on an empty pattern
p′ ∗ r and r−1 ∗ q′ are well-defined and are both coherent paths.
p ∼ p′ and q ∼ q′

Proof. We may assume that u1
0 ≤ u1

Np
, i.e. the ending point of p is higher than its starting

point, the other case being similar. We can also assume that u1
Np

is the highest point in the
entire trajectory of both p and q (we can always homotopically deform p and q so that this is
true), and up to some shift, we can assume that uNp

= (0, 0). Consider now P ⊂ Z2 so that
P contains all the Pt and Qt. Let xp, xq be configurations in which p, q can respectively be
traced. Take N large enough so that P ⊂ C−N . Then, applying the Extensibility Lemma to
xp, N on one hand, xq, N on the other hand, gives two configurations x′p, x′q ∈ X. Let r be
the path obtained by moving up for 2N + 1 steps in either x′p or x′q, starting from the origin,
which is the same path in both cases. Then r satisfies the conditions of Path Co-extensibility
Lemma. J

We are now ready to prove the main lemmas needed to show Theorem 1.

I Lemma 28 (No Relation Tile Lemma). Let p be a path starting and ending on an empty
pattern. Then there exists p′ ∼ p that does not contain any relation tile.
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Proof. As explained above, the proof is by induction on the length of a coherent path
decomposition of p. The base case when p is a coherent path is illustrated in Figure 4. See
Appendix A for the full proof.

p p′

(a) Deformation of p into an L-shaped path p′.

p′′

p′

(b) Deformation of p′ into p′′ to pass above
relation tiles.

Figure 4 A coherent path deformed so as not to see relation tiles

J

I Lemma 29 (Single Wire Lemma). Let p = (Pi,vi)0≤i≤N be a path starting and ending
with empty patterns. There exists a path p′, homotopic to p, such that the union of any two
consecutive patterns in p′ contains at most a single wire.

Proof. As for the No Relation Tile Lemma, we illustrate in Figure 5 the case where p is
itself coherent. For the full proof, see Appendix A. J

Initial path p

p′

Uk U0

2n

4n

Figure 5 Deformation of p into p′ in a single configuration to see only one wire per pattern.

I Lemma 30 (No Uncrossed Wire Lemma). Let p be a path starting and ending with empty
patterns, and U some wire seen but not crossed by p. There exists a path p′, homotopic to p,
which does not see U .

Proof. The idea is that using the previous Single Wire Lemma, we can deal with each wire
independently. In particular, the uncrossed wire U is the only wire seen by some subpath p′
of p, and is not seen by p neither before nor after p′. Hence, it suffices to show the result for
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paths seeing a single wire overall. In that case, one observes that U has to stay in the same
“side” of the aperture window along p′, that can therefore be deformed without crossing U by
moving sufficiently far in the opposite direction. For more details, see Appendix A. J

I Lemma 31 (Cross Anywhere Lemma). Let p be a path starting and ending with empty
patterns. If p sees no relation tiles, but sees and crosses a single wire U exactly once, then
for all v = (v0, v1) ∈ Z2, p is homotopic to a path p′ which crosses U exactly on v.

Proof. The idea is that if U exits the aperture window Bn of p in position (i, j) ∈ Z2, it
can be extended using tiles and , or and , to pass anywhere inside (i, j) + C−n or
(i, j) +C+

n . The path p can then be deformed to cross it anywhere in those two cones. Using
several such deformations, we can deform p so that it crossed U anywhere in the plane. Note
that even if p is initially coherent, it might happen that p′ is not, depending on v and where
p initially crossed U . See Appendix A for the complete proof. J

4.3 Projective connectedness
I Lemma 32 (Projective connectedness). X is projectively connected.

Proof. The proof relies on the Extensibility Lemma. The idea is that starting from any
configuration x, there always exists a configuration x′ containing a infinite cone (see Defini-
tion 25) of x�, and an infinite cone of x. We can then use this configuration to construct for
n > 0 a path pn with aperture window Bn that first moves sufficiently far into the latter
cone in x, then to the former cone in the configuration x′, and finally comes back to the
origin in x�. See Appendix A for the precise proof. J

4.4 Computing the projective fundamental group
We can now compute πproj1 (X), which is independent of the basepoint since X is projectively
connected. Hence, unless stated otherwise, all the loops in this proof are based at (x�, (0, 0)).
With any such loop p, we associate a word JpK on the alphabet S̄ in the following way:

If p does not cross any wire, we associate the empty word with it, JpK = ε.
If p crosses a single wire U , then:

If U is not a horizontal wire found on a relation tile, and s ∈ S̄ is the generator
corresponding to U (see Subsection 4.1)
∗ if p crosses it from left to right, or from top to bottom on a tile shaped as , or

from bottom to top on a tile , then JpK = s ∈ S̄.
∗ if p crosses it in any other direction, we set JpK = s−1 ∈ S̄
Otherwise, U is a horizontal wire on a relation tile. Let Ri = r0 . . . ri be its colour.
∗ If it is crossed from top to bottom, then JpK = r−1

i . . . r−1
0 ∈ S̄∗

∗ Otherwise, JpK = Ri = r0 . . . ri
If p = p1 ∗ p2, then JpK = Jp1K · Jp2K ∈ S̄∗ where · represents the concatenation in S̄∗.

Some examples are given in Figure 6a and Figure 6b.
For any two words w,w′ on S̄, we write w ≡ w′ if they are equal as words on this alphabet,

and w =G w′ if they represent the same element of the group G. Let ↔R be be the relation
defined as the symmetric closure of

{
(uwv, uv) | w ∈ R and u, v ∈

(
S̄
)∗}, corresponding to

the operation of inserting and removing relators to words. We can always suppose that it is
reflexive by adding the empty word ε to the relators. We denote ↔∗R its transitive closure.
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a b c
(a) The word associated with this loop is
bb−1a−1abcc−1b−1 =G 1G.

a ab

(1)
(2)

(3)

(4)

Relation tiles
(b) Widget for the relator abc = 1G. From top to bottom,
the words associated with the paths (1) to (4) are respect-
ively abc = 1G, aa−1(ab)c = 1G, (ab)c = 1G and 1G. For
clarity, the relation tiles are not adjacent on the figure

By definition, w↔∗R w′ ⇐⇒ w =G w′ (see e.g., [28, Theorem 1.1]). For example, if we take
a ∈ S, we have aa−1 =G 1G, but aa−1 6≡ ε.

In order to prove that the projective fundamental group of this subshift is G, we will
prove that the operation JpK entirely characterizes a loop up to homotopy, in the sense that
loops associated with the same element of G are exactly a projective loop-class:

I Lemma 33 (Homotopic Implies Equal). For n > 0 and any two loops pn, p′n starting at(
x�|Bn

, (0, 0)
)
,

pn ∼Bn
p′n =⇒ JpnK =G Jp′nK

I Lemma 34 (Equal Implies Homotopic). For any window Bn, and for any pair of loops pn,
p′n starting at (x�|Bn

, (0, 0)),

JpnK =G Jp′nK =⇒ pn ∼Bn p
′
n.

The full proofs can be found at Appendix A.

I Theorem 35. πproj1 (X) = G

Proof. Let n > 0 and let Φn : p ∈ πBn
1 (X, (x�, (0, 0))) 7→ JpK ∈ G be the function which

associates with a loop-class with aperture window Bn the corresponding element of G. The
Homotopic Implies Equal and Equal Implies Homotopic show that it is well-defined and
injective. Let [p] , [p′] be two loop-classes based at (x�|Bn

, (0, 0)). We have shown that
[p] ∼Bn [p′] ⇐⇒ Φn([p]) =G Φn([p′]). Now notice that Φn([p ∗ p′]) =G Φn(p) ·G Φn(p′),
i.e., Φn is a group morphism. To show that it is surjective, let g ∈ G any element, and
u1 . . . un ∈ S̄∗ such that u1 . . . u` =G g. Let xg the following configuration:

For 1 ≤ i ≤ ` and j ∈ Z, xg(i, j) is a tile of type and of colour ui
Otherwise, xg(i,j) =

Now, consider the following loop: define pn as the loop based at (x�|Bn
, (0, 0)), which:

moves left for n steps in x�

moves right for 2n+ ` steps in xg – at this point, it sees an empty pattern, after having
crossed all the wires of xg
comes back to (0, 0) in x�.

By definition, JpnK ≡ u1 . . . un =G g.
Furthermore, notice that for any loop-class [pn+1] based at (x�|Bn+1 , (0, 0)), if pn+1

projects down to p then Φn+1([pn+1]) =G Φn([p]). This shows that πproj1 (X, (x�, (0, 0))) is
isomorphic to G, and the final result follows from the fact thatX is projectively connected. J
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A Appendix: proofs

The main lemmas of Subsection 4.2 and Subsection 4.3 are proven in this section. As explained
in Subsection 4.2, the results are proved by induction on the length of path decompositions.

I Lemma 28 (No Relation Tile Lemma). Let p be a path starting and ending on an empty
pattern. Then there exists p′ ∼ p that does not contain any relation tile.

Proof. Let L be the minimal length of a path decomposition of p.

Base case: L = 1 p can be traced entirely in a configuration x ∈ X.
We can assume that x contains a finite number of wires. p being finite, such a configuration

exists by the Finite Extension Lemma. Let (PN ,vN) be the final point of p. Up to a
translation of both p and x we can always assume that p starts at (0, 0), and without loss of
generality, suppose that vN is on the right, i.e., it has a non-negative x-coordinate. This is a
legitimate assumption, up to considering the path p−1 instead of p, which also starts and
ends with empty patterns. Deform p into a path p′ in x, whose trajectory only consists of
moving right, and then up or down, depending on whether vN is above or below (0, 0). Let
imin (resp. imax) be the leftmost (resp. rightmost) position of a relation tile in x, and let j
be the topmost one. We can deform p′ as follows:

Move left until the position imin − 2n (or don’t move if imin − n ≥ 0).
Move up until the position j + 2n
Move right until imax + 2n
Finally, move to vN, by moving vertically first and then horizontally.

Let p′′ be the resulting path. Then, p′′ does not see any relation tile. Figure 4 shows this
process in a simple case, with the first and third steps being trivial: Figure 4b, shows how
deforming p into p′ simplifies the analysis by bounding the positions of the possible relation
tiles seen by p′, that p′′ can then avoid.

Base case: L = 2 p = p1 ∗ p2
Let (Pt,vt) be the endpoint of p1 and the starting point of p2, with vt = (v0

t , v
1
t ). Suppose

that v0
t ≥ 0, v1

t ≥ 0. Let vN be the Z2 point at which p ends – by assumption, the associated
pattern PN is only made of empty tiles. Let x1, x2 ∈ X be two configurations such that
p1, p2 can respectively be traced entirely within them, and containing a finite number of
wires using the Finite Extension Lemma.

In order to be able to use the previous case L = 1, we modify the path as follows: consider
the path q, traced in x2, that:

starts from (Pt,vt)
follows the inverse trajectory to p1
upon reaching (0, 0), continues horizontally until it sees an empty pattern (which always
eventually happens, as x2 contains a finite number of wires)

Let p′1 = p1 ∗ q be and let p′2 = q−1 ∗ p2, so that p = p′1 ∗ p′2. By construction, p′2 can be
traced entirely within x2, and so can be appropriately deformed according to the case L = 1.

Like p, p′1 has a decomposition of length 2, but we can further simplify it. Indeed, using
the Path Co-extensibility Lemma, we obtain a loop r = r1 ∗ r−1

1 , based at (Pt,vt), such that
r1 ends in an empty pattern and each of p1 ∗ r1 and r−1

1 ∗ q−1 can be traced within a single
configuration. This is enough to prove the case L = 2, using three times the case L = 1.

The construction is shown in Figure 7.
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Finally, we have that

p ∼Bn
p1 ∗ r1︸ ︷︷ ︸

traced in x′1

∗ r−1
1 ∗ q︸ ︷︷ ︸

traced in x′q

∗ q−1 ∗ p2︸ ︷︷ ︸
traced in x2

x1
x2vt

v0

vN

p1

p2

q

q−1

(a) After inserting q and q−1 into p = p1 ∗ p2

(Pt,vt)

v0

r1

p1

(b) The x′1 configuration

Figure 7 Red paths are traced in x1, green ones in x2. Wires are drawn in black.

General case: L > 2 p = p1 ∗ . . . ∗ pL.
Consider the timestep t at which p1 ends and p2 starts. By definition of a coherent

decomposition, there exists x2 ∈ X such that p2 can be entirely traced within x2. Using the
Finite Extension Lemma, we can suppose that x2 contains finitely many wires. Consider
a loop r = r1 ∗ r−1

1 that moves to an empty pattern in x2 by moving left (this is always
possible according to Lemma 22) and then comes back. We have

p = p1 ∗ p2 . . . ∗ pL = p1 ∗ r1︸ ︷︷ ︸
p′1

∗ r−1
1 ∗ p2 . . . ∗ pL︸ ︷︷ ︸

p′

p′1 and p′ are then respectively paths of length 2 and L− 1, and so using the induction
hypothesis, they can be deformed so at to avoid any relation tile. J

I Lemma 29 (Single Wire Lemma). Let p = (Pi,vi)0≤i≤N be a path starting and ending
with empty patterns. There exists a path p′, homotopic to p, such that the union of any two
consecutive patterns in p′ contains at most a single wire.

Proof. The result is also proved by induction on the length L of a path decomposition of p.

Base case: L = 1 p can be traced entirely in a configuration x ∈ X. Using the No Relation
Tile Lemma, we may assume that p does not see any relation tile. Without loss of generality,
we may assume that x does not contain any wire that is not seen by p and that p starts at
(0, 0) and ends at vN = (v0

N , v
1
N ), with v0

N ≥ 0, v1
N ≥ 0. For simplicity, we assume that the

trajectory is made out of two straight segments, so that p first moves horizontally from (0, 0)
to (v0

N , 0) and then vertically to vN. Let U0, . . . ,Uk be the wires seen from right to left by p
(so p sees Uk first, then Uk−1 and so on until U0).

Now consider a configuration x′ satisfying (see Figure 5):



18 Finitely presented groups as fundamental groups of subshifts

x′ does not contain any other wire than the Ui’s
for 0 ≤ i ≤ k, let (zi,−n) be the position of the only tile of Ui whose second coordinate
is −n, and whose wire enters it from its bottom edge. Then, for −n− 4ik ≤ z ≤ −n, we
define x′(zi, z) to be a tile of the form , and all the tiles of Ui below that are of the
form and . This uniquely determines all the Ui’s below p.

For z ∈ Z, no pattern of support Bn centered at (z,−4n(k + 1)) can see tiles belonging
to two different wires at the same time in x′. Therefore, we can deform p in x′ into p′, where
p′ starts by moving down for 4n(k+ 1) steps, then right until crossing U0, and finally up and
either right or left as needed to reach vN. Any two consecutive patterns on this path see at
most one wire.

Base case: L = 2 The proof works in exactly the same way as in the proof of the No
Relation Tile Lemma.

General case: L > 2 p = p1 ∗ . . . ∗ pL.
As before, consider the timestep t at which p1 ends and p2 starts. As p2 is coherent, there

exists x2 ∈ X such that p2 can be entirely traced within x2, and we can assume that x2
contains finitely many wires. Let r1 be any path that reaches to an empty pattern in x2 by
moving horizontally left (this always eventually happens, according to Lemma 22). We have

p = p1 ∗ p2 . . . ∗ pL = p1 ∗ r1︸ ︷︷ ︸
p′1

∗ r−1
1 ∗ p2 . . . ∗ pL︸ ︷︷ ︸

p′

p′1 and p′ are respectively paths of length 2 and L − 1, and the induction hypothesis
ensures that they can be homotopically deformed so at not to see U . The resulting path then
only sees one wire at a time. J

I Lemma 30 (No Uncrossed Wire Lemma). Let p be a path starting and ending with empty
patterns, and U some wire seen but not crossed by p. There exists a path p′, homotopic to p,
which does not see U .

Proof. We proceed by induction on the length L of a coherent decomposition of the path,
and we assume that U is on the right side of the patterns. Using the Single Wire Lemma, we
can assume that all the patterns of p contain at most a single wire.

Base case: L = 1 p can be traced entirely in a configuration x ∈ X.
In that case, we can simply deform p in x by changing its trajectory so that it always

stays more than n units left from U . This path can then be traced in the configuration x′,
equal to x except for the tiles of U in x that are empty tiles in x′.

Base case: L = 2 p = p1 ∗ p2
Let (Pt,vt) be the final point of p1 and the first one of p2. We also assume that the

second coordinate of vt = (v0
t , v

1
t ) is non-negative. Let vN = (v0

N , v
1
N ) be the final point of

the path.
Let x1 ∈ X (resp. x2) be a configuration, containing a minimal number of wires (which

exists according to the Finite Extension Lemma), such that p1 (resp. p2) can entirely be
traced within it. Let U be the uncrossed wire. We can always assume that U appears in Pt,
otherwise, we could consider p1 and p2 separately and apply twice the case L = 1.

We deform p1 into p′1 inside x1:
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Starting from (0, 0), it first moves to the right, until U appears on the central tile of the
pattern seen by p1.
It then moves up, left or right, following U : up if the central tile is , left then up if it is
, and so on.

Finally, once it attains the height v1
t , it moves left until vt if needed, which takes at most

n steps.

We can also deform p2 into another path p′2 as follows:
Starting from vt, move left for max(2n, (v0

t − v0
N )) steps. This ensures that we are far

enough so as to not see U anymore.
Then, move vertically to height v1

N .
Finally, move right until vN.

Let w1 be the last point of p′1 before seeing U , and w2 the first point of p′2 after having seen
U for the last time. The Single Wire Lemma ensures that the patterns seen at both w1 and
w2 are empty. This gives a decomposition

p ∼ p′1 ∗ p′2 ∼ pstart ∗ pU ∗ pend

where pstart ends at w1, pU is the part of the path between w1 and w2, and pend starts at
w2.

pU can be traced entirely in a configuration x3 whose only wire is U . In this configuration,
it can be homotopically deformed to p′U which never sees U according to the case n = 1.

The final path p′ = pstart ∗ p′U ∗ pend does not see U .

General case: L > 2 p = p1 ∗ . . . ∗ pL
In that case, the proof is exactly the same as in the No Relation Tile Lemma and the Single

Wire Lemma: we insert a loop before p2 starts that extends it, and from a decomposition of
length L we obtain two decompositions of length respectively 2 and L− 1, which are solved
inductively. J

I Lemma 31 (Cross Anywhere Lemma). Let p be a path starting and ending with empty
patterns. If p sees no relation tiles, but sees and crosses a single wire U exactly once, then
for all v = (v0, v1) ∈ Z2, p is homotopic to a path p′ which crosses U exactly on v.

Proof. Let p = (Pi,vi)0≤i≤N be such a path, and let t be the timestep at which p crosses U .
Without loss of generality, we can then assume that the wire is crossed from left to right, i.e.
U is on the right side of Pt−1 and on the left side of Pt.

Let x be any configuration containing Pt−1 ∪ Pt. We can suppose that vt = e0 + vt−1,
by deforming p in x if needed, and that vt−1 = (0, 0). Let r1 be the path starting from
(Pt−1, (0, 0)) which moves left for 4n+ 2|v0| steps in x, and let r = r1 ∗ r−1

1 . Let q1 be the
path starting from (Pt, (1, 0)) which moves right for 4n+ 2|v0| steps in x, and let q = q1 ∗ q−1

1 .
We can deform p in x by inserting the loops r and q respectively at the timesteps t− 1

and t. Using the the No Uncrossed Wire Lemma twice, this path can itself be deformed
into pstart ∗ p′ ∗ pend with p′ = r−1

1 ∗ (Pt, (0, 0)) ∗ q1, and pstart, pend paths that only see
empty patterns. The trajectory of p′ is a straight horizontal line on the x−axis of length
8n+ 2|v0|+ 1.

Let x′ be the configuration obtained by extending U as seen by p′ using only tiles of the
form . Without loss of generality, suppose that v1 ≤ 0. We can deform p′ in x′ so that it
moves up for 8n+ 2|v0| steps, then right for 8n+ 2|v0|+ 1 as before and finally down to the
endpoint of p′. Call p′′ the horizontal part of this path. There exists a configuration x′′ in
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which U passes by v and in which p′ can be traced. Then, p′′ can be deformed in x′′ to cross
U on v. This finally gives the result. J

I Lemma 32 (Projective connectedness). X is projectively connected.

Proof. To prove this, it suffices to show that for any configuration x ∈ X, we can find a
sequence (pn)n>0 where each pn = (Pni ,vi

n)0≤i≤Nn
is a path in XBn

between (x|Bn
, (0, 0))

and (x�|Bn
, (0, 0)), and such that the canonical restriction of each pn+1 is homotopic to pn.

For n > 0, let Pn = x|[−n,n−1]×[−3n,−n−1]. Note that all the Pn are included in the cone
C−n .

Using the Extensibility Lemma with x and C−1 , we obtain a configuration x′ and a bound
k and we can then define pn as follows:

Move down for 2n steps in x. This means that the pattern seen at the end of this part is
exactly Pn.
Move up for 4n+ k steps in x′ so as to reach an empty pattern.
Come back in x�.

Now, we need to show that ρn = restrBn+1,Bn(pn+1) is homotopic to pn defined in that way,
but it is clear as x′ does not depend on n. Indeed, ρn can be obtained exactly from pn by:

adding a trivial loop of length 4, drawn inside x, below the first part of pn, as pn+1 moves
down for two more steps than pn.
adding a trivial loop of length 8, drawn inside x�, above the second part of pn, as pn+1
moves up inside x′ for 4 more steps than pn (from (0,−2n) to (0, 2n+ k)).

Therefore, ρn ∼Bn pn, and so every point x ∈ X is projectively connected to x�, so X is
projectively connected. J

I Lemma 33 (Homotopic Implies Equal). For n > 0 and any two loops pn, p′n starting at(
x�|Bn

, (0, 0)
)
,

pn ∼Bn
p′n =⇒ JpnK =G Jp′nK

Proof. As any two homotopic loops can be obtained from one another by a sequence of
elementary deformations, we can restrict ourselves to the special case of a single deformation
that is a loop based at (Pt,vt). By definition, this deformation is made in a single configuration
x ∈ X. We consider two disjoint cases, according to the presence of relation tiles in x.

Suppose that x does not contain any relation tile. Any bi-infinite wire splits the space in
two disjoint regions (a “left” one and a “right” one). Each time a loop crosses such a
wire, it has to cross it in the other direction to come back to its initial region. Because
wires do not intersect, the associated word will be some kind of Dyck word, where each
s ∈ S̄ can act as an opening or a closing bracket (in which case, the associated closing
(resp. opening) bracket is s−1), so it is clearly equal to 1G in G. This is the simple case
depicted in Figure 6a.
Now, suppose that x does contain some relation tiles. In this case, notice that any two
relation tiles are either part of the same relator and are therefore linked by a finite
sequence of horizontal relation tiles, or they are independent (not linked by any wire).
Hence, we can consider each one of those patterns separately. Consider such a pattern,
with relation tiles that implement a relator r = r0 . . . rk ∈ R, and a configuration x′ that
only contains this pattern. Figure 6b represents this in a configuration corresponding to
relation abc = 1.
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We show that, due to how J·K has been defined, all the homotopy-equivalent paths in x′ are
associated with the same element of G. Let U0, . . . ,Uk be the wires corresponding respect-
ively to r0, . . . , rk, and suppose that the relation tiles in x′ are placed on (0, 0), . . . , (k, 0).
We will show that for any p joining (0, 0) to (k + 1, 0) in x′, JpK =G 1G. Let R ⊂ Z2 be
the set of points above the (Z, 1) line and between U0 and Uk. We can always suppose
that no wire is crossed consecutively in opposite directions, as the word associated to a
path that crosses a wire in a direction and immediately crosses it in the other direction is
ss−1 =G 1G for some s ∈ S̄∗. We can also suppose that p only enters and then leaves R
once. Otherwise, we can simply split it into several such paths and prove the claim for
each of them independently.

If p crosses U0, . . . ,Uk, then JpK ≡ r0 . . . rk =G 1G by definition.
If p crosses U0, . . . ,Ui,Ur0...ri , where Ur0...ri is a wire of a relation tile which is necessarily
crossed from top to bottom, by definition, JpK ≡ r0 . . . ri(r−1

i . . . r−1
0 ) =G 1G

Otherwise, p crosses Ur0...ri ,Ui+1, . . . ,Uj ,Ur0...rj , the first relation tile being crossed from
bottom to top to enter R and the last one being crossed from top to bottom to exit it.
By definition, JpK ≡ (r0 . . . ri)ri+1 . . . rj(r−1

j . . . r−1
0 ) =G 1G

This shows that all the paths traced in a single configuration are associated with the same
element of the group G. As all homotopies are deformations in a given configuration, this
implies that for any homotopically equivalent paths p, p′, we have JpK =G Jp′K. J

I Lemma 34 (Equal Implies Homotopic). For any window Bn, and for any pair of loops pn,
p′n starting at (x�|Bn

, (0, 0)),

JpnK =G Jp′nK =⇒ pn ∼Bn
p′n.

Proof. Using the No Relation Tile Lemma, we can always start by deforming pn and p′n
so that they do not see any relation tile. As each elementary deformation is by definition
occurring in some given configuration, Homotopic Implies Equal ensures that we still have
JpnK =G Jp′nK. We will first prove that JpnK ≡ Jp′nK =⇒ pn ∼Bn p′n, which is a stronger
assumption. Next, we prove that given pn and p′n with JpnK =G Jp′nK, there exists a loop p′′n
such that pn ∼Bn p

′′
n and Jp′′nK ≡ Jp′nK. We then have that p′′n ∼Bn p

′
n according to the first

part of the proof, and so pn ∼Bn
p′n.

We show that JpnK ≡ Jp′nK =⇒ pn ∼Bn
p′n. The paths pn and p′n can be deformed using

the No Uncrossed Wire Lemma so that they cross all the wires that they see. The Single
Wire Lemma can then be used to deform them so that there is at most one of those wires
per pattern. Let p̂n and p̂′n be the resulting paths, which by assumption cross the same
wires. Using the Cross Anywhere Lemma for each of those crossed wires, we can finally
deform p̂n into p̂′n, and so pn ∼Bn

p′n.
Now, we show the existence of a loop p′′n satisfying pn ∼Bn

p′′n and Jp′′nK ≡ Jp′nK. By
definition of =G, there exists a finite sequence (ui)0≤i≤N of words on the alphabet S̄
such that JpnK ≡ u0, Jp′nK ≡ uN, and for all i < N , ui ↔R ui+1. To prove the result, it is
therefore enough to show that for any word v such that JpnK↔R v, we can deform pn in
another loop pv

n such that Jpv
nK ≡ v.

Suppose that v is obtained from JpnK by deleting a relator. More formally, there exists
words u1, u2 and a relator r ∈ R such that v ≡ u1u2 and JpnK ≡ u1ru2. Using the Single
Wire Lemma followed by the No Uncrossed Wire Lemma, we obtain a loop q ∼ pn, such
that q crosses exactly wires of the same type as pn, but it only ever sees one wire at a
time, and crosses all the wires that it sees. The Cross Anywhere Lemma then ensures
that we can deform q into a loop that crosses wires corresponding to the letters of u1ru2,
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in order, on a horizontal line. Let pu1 (resp. pr, pu2) be the part of this path which crosses
the wires corresponding to u1 (resp. r, u2), starting and ending with empty patterns. Let
xr ∈ X be such that pr can be traced in xr, and in which all those wires originate from
the same set of relation tiles (see Figure 6b). We can then deform pr in xr into a path
p′r that passes below the relation tiles. The resulting path pv

n = pu1 ∗ p′r ∗ pu2 is then a
solution.

J
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