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Abstract 

Although it is key to improving acceptability, there is sparse scientific literature on the 

experience of humans as passengers in partially automated cars. The present study 

therefore investigated the influence of road type, weather conditions, traffic congestion 

level, vehicle speed, and human factors (e.g., trust in automated cars) on passenger comfort 

in an automated car classified as Level 3 according to the Society of Automotive Engineers 

(SAE). Participants were exposed to scenarios in which a character is driven by an SAE Level 3 

automated car in different combinations of conditions (e.g., highway × heavy rain × very 

congested traffic × vehicle following prescribed speed). They were asked to rate their 

perceived comfort as if they were the protagonist. Results showed that comfort was 

negatively affected by driving in downtown (vs. highway), heavy rain, and congested traffic. 

Interaction analyses showed that reducing the speed of the vehicle improved comfort in 

these two last conditions, considered either individually or in combination. Cluster analysis 

revealed four profiles: trusting in automation, averse to speed reduction, risk averse, and 

mistrusting automation. These profiles were all influenced differently by the driving 

conditions, and corresponded to varying levels of trust in automated cars. This study 

suggests that optimizing comfort in automated cars should take account of both driving 

conditions and human profiles. 
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1. Introduction 

Driving automation is currently a major issue for both the automotive industry and the 

scientific community. Its development could reduce the number of accidents, traffic 

congestion, and even the carbon footprint of this type of transport (Hartwitch et al., 2018). It 

could also extend the mobility of older people, which is a major challenge in aging societies. 

Higher levels of automation could also allow drivers to relax and engage in nondriving 

activities. These higher levels of automation will soon be available to the general public, 

starting with automated cars classified as Level 3 by the Society of Automotive Engineers 

(SAE, 2016). This level of automation will allow drivers to delegate control of the vehicle to 

the automated system, without the need to supervise it, although they will have to be ready 

to take over control if necessary. The driving activity will thus be shared over time between 

the vehicle and the human behind the wheel. In this context, the latter will become a 

drivenger, alternating between driver and passenger status. 

The drivenger as driver has been extensively documented in the scientific literature. Peak 

criticality for this status occurs during the transfer of control from the automated system to 

the human. Owing to factors such as the loss of situational awareness, this takeover phase 

can prove difficult for drivers (Navarro, 2018). In addition, this inherent criticality can be 

exacerbated by both human and environmental factors. For instance, Li et al. (2018) showed 

that takeover quality is poorer for older drivers and in adverse weather conditions. Driving 

performance has also been shown to be impaired immediately after takeover, illustrated for 

instance by erratic visual exploration of the environment (Navarro, 2018). 

There is therefore no shortage of research on the drivenger as driver, regarding takeover 

and post-takeover driving performances. By contrast, very few studies have focused on the 



drivenger as passenger. Nevertheless, ensuring that the latter has a positive experience is 

crucial to the acceptance and use of this technology (Hartwich et al., 2018). It can thus be 

regarded as one of the keys to ensuring that the expected benefits of driving automation can 

be fully realized (Banks & Stanton, 2016). 

In order to understand how the drivenger’s experience as a passenger could be improved, it 

is useful to look at the more abundant scientific literature concerning higher levels of 

automation, where the human is always a passenger. In this context, comfort is the most 

frequently studied factor (e.g., Bellem et al., 2018). According to these authors, comfort is 

commonly associated with a feeling of wellbeing and the attribution of a positive valence to 

the eliciting entity. It can also be associated with the absence of discomfort and uneasiness. 

Along with safety and efficiency aspects, enhanced comfort is considered by some industry 

experts, research providers and public authorities to be one of the main motivations for the 

development of automated driving (ERTRAC, 2019). A close relationship has been 

highlighted between comfort, trust, and acceptance of automated vehicles (Bellem et al., 

2018). While both trust and acceptance are vital to the use of a system, comfort can be 

regarded as a potential lever of automated vehicle adoption (Bellem et al., 2018). 

The most relevant approach to improving comfort during automated driving would appear 

to be to look at the factors that ensure passenger comfort in manually driven cars.  

Passenger comfort has been shown to depend mainly on the driver’s driving style (Bellem et 

al., 2016). Transferring these results to automated driving, we can assume that it is 

important to identify the automated driving styles that provide the best experience for 

passengers (Hartwich et al., 2018). In this perspective, Beggiato et al. (2020) have for 

instance investigated participants’ automated driving style preferences, giving them a choice 



between a dynamic or defensive style or a replay of their own manual driving style. Results 

showed that passengers felt more comfortable with a more defensive driving style, 

characterized by a lower speed, smoother accelerations, and earlier decelerations. 

Guidelines on how automated vehicles should drive in order to ensure passenger comfort 

are therefore gradually emerging from the scientific literature. However, there are still many 

gaps that remain to be closed. First, the majority of studies investigating comfort during 

automated driving have focused on SAE Levels 4 and 5, with very few looking at the lower 

levels of automation (i.e., SAE Levels 1-3). Second, one of the main limitations of these 

studies is that they have not considered factors encountered in real-life driving situations, 

such as adverse weather conditions or traffic congestion. And yet these factors have an 

effect on comfort during manual driving (e.g., Beggiato et al., 2020; Faria et al., 2018), and 

could also have an effect on comfort during automated driving. As argued by Rossner and 

Bullinger (2020), factors that influence perceived safety in manual driving are also factors 

that influence perceived safety during highly automated driving. 

The aim of the present study was thus to examine the effects of road type, weather 

conditions, traffic congestion level, and vehicle speed on the perception of comfort in a 

partially automated car. Road type, weather conditions and traffic congestion level were 

selected because they are known to influence driving task complexity (Fuller, 2000), and are 

encountered by drivers on a daily basis. Vehicle speed was selected because it is one of the 

main parameters of automated driving styles, and influences driving task complexity (Fuller, 

2000). The present study was conducted online using a scenario-based method (see Section 

2.2.1 for more details). 



We also examined participants’ profiles, as previous studies had shown that they can 

influence perceived comfort. Alongside manual driving style (e.g., Bellem et al., 2018) and 

trust in automated cars (Monsaingeon et al., 2020), we considered driver locus of control 

(Özkan & Lajunen, 2005), as this might influence the perception of comfort in automated 

vehicles. A driver with a high internal locus of control may not be comfortable delegating 

control to the vehicle, and this effect could be accentuated under unfavorable driving 

conditions, where control is even more important. 

In summary, the main objectives of our study were to (a) investigate the impact of different 

driving conditions on the perception of comfort in a partially automated vehicle, and (b) 

examine how far this perception relies on manual driving styles, trust in automated cars, and 

driver locus of control. 

 

2. Method 

2.1. Participants 

Participants were all French speakers, and were recruited via Facebook groups or by email 

(professional and personal networks). The only condition for taking part was to have a valid 

driver’s license. Participants were not remunerated for taking part. The sample consisted of 

201 participants (135 women and 66 men; Mage = 33.08 years, SD = 15.33, range = 18-82). 

Their mean driving experience was 13.57 years (SD = 14.77), 76.6% drove more than once a 

week, and 55.9% more than three times a week. Finally, 16.9% had already used automatic 

cruise control (ACC) or a lane centering system, and 7% had already used ACC coupled with a 

lane centering system. 

 



2.2. Materials 

2.2.1. Scenarios 

2.2.1.1. Rationale 

Studies focusing on comfort in autonomous cars have been based on experiments either on 

real roads (Bellem et al., 2016; Oliveira et al., 2019) or in a simulator (Bellem et al., 2018; 

Hartwich et al., 2018; Scherer et al., 2015; Siebert & Wallis, 2019; Trende et al., 2019). Using 

these kinds of technologies to explore how different factors may interact to affect the 

perception of comfort requires substantial investment in both time and money. Anderson's 

experimental protocol (Anderson, 1982, 1996) therefore offers a viable alternative. This 

methodology, based on information integration theory, allows several factors and their 

mutual interactions to be investigated at the same time. It relies on scenarios where 

participants are asked to evaluate combinations of factors, rather than individual ones. A 

complete factorial plan is necessary to determine the impact of each individual factor on the 

overall judgments, and to study all possible interactions (Anderson, 2008). Anderson's 

methodology has been successfully implemented and validated in various research areas 

(Hurgobin et al., 2020), including automated driving (Monsaingeon et al., 2020). We 

therefore used it in the present study to examine comfort in automated vehicles.  

 

 

2.2.1.2. Scenario composition 

The first names and gender of the protagonists in the scenarios were adapted to those of 

each participant, using common French names, so as to make it easier for participants to put 



themselves in the protagonists' shoes. The first names were taken from the methodology 

described in Monsaingeon et al. (2020). Marie was used for women over the age of 40 years, 

and Julie for those aged 40 or under. Jean was used for men over 40, and Julien for those 

aged 40 or under.  

We constructed 24 written scenarios (in French), according to four within-participant 

factors: Type of road (highway vs. secondary vs. downtown) × Vehicle speed (prescribed 

speed vs. 20 km/hr below prescribed speed) × Weather conditions (clear weather vs. very 

rainy) × Traffic congestion level (few vehicles vs. many vehicles). 

After reading each scenario (e.g., “Julien is on the highway. His vehicle is driving at the 

prescribed speed. The weather is clear. There are few vehicles on the road”), participants 

were asked the following question: “If you were Julien, how comfortable would you feel?” 

They indicated their responses on a 20-point scale ranging from 1 (Not at all) to 20 

(Absolutely).  

To avoid a number preference bias, no numbers were displayed on the response scale 

(Hurgobin et al., 2020). The questionnaires were developed on the Qualtrics online platform. 

The order of presentation of the different scenarios was randomized. 

 

 

 

2.2.1.3. Scenario instructions 

During the instruction phase, participants were asked to read each scenario of the 

questionnaire carefully, and to answer by taking into account all the information contained 



in the stories. They were informed that they would be able to modify their answers during 

the first (familiarization) phase, but not during the subsequent (experimental) phase. Finally, 

participants were told that after reading each scenario, they would have to estimate how 

comfortable they would be if they were the protagonist. Being comfortable was defined as a 

sense of wellbeing and the absence of uneasiness and discomfort. 

The vehicle in which the story protagonist was seated was described as partially automated, 

that is, capable of automatically maintaining the speed and position of the vehicle on the 

road. However, the system might ask the driver to resume manual driving if necessary. 

 

2.2.2. Multidimensional Driving Style Inventory (MDSI) 

Participants’ manual driving style was assessed using the Multidimensional Driving Style 

Inventory (MDSI; Taubman et al., 2004). This scale consists of 44 items relating to driving 

situations. These items are divided into eight factors corresponding to different driving styles 

(Taubman et al., 2004): dissociative driving style (8 items), anxious driving style (7 items), 

risky driving style (5 items), angry driving style (5 items), high-velocity driving style (6 items), 

distress-reduction driving style (4 items), patient driving style (4 items), and careful driving 

style (5 items). Participants were asked to rate how closely these situations matched their 

feelings, thoughts and behaviors while driving on a 6-point scale ranging from 1 (Not at all) 

to 6 (Absolutely). 

The 44 items of the original version were translated into French by three expert researchers: 

two native French speakers and one English–French bilingual. Their translations were 

compared and a final version of the French questionnaire was agreed. 

 



2.2.3. Traffic Locus of Control Scale (T-LOC) 

Participants’ type of driver locus of control was assessed using the Traffic Locus of Control 

Scale (T-LOC) developed by Özkan et al. (2005), and adapted to Western culture by Warner 

et al. (2010). It is an adaptation of the concept of locus of control (Rotter, 1966) to the field 

of driving. 

The scale consists of 17 items, divided into four factors: other drivers (6 items), self (5 items), 

vehicle/ environment (3 items), and fate (3 items). Participants are asked to rate the 

possibility othat these 17 items had caused or would cause an accident in relation to their 

own driving style and conditions. Responses were expressed on a 5-point scale ranging from 

1 (Not at all possible) to 5 (Highly possible). 

The T-LOC was translated in French using the same method as for the MDSI.  

 

2.3. Procedure 

Participants clicked on the link they had received via social media or email, and carried out 

the study online without the experimenter.  

The experimental procedure followed the recommendations given by Anderson (2013). The 

experiment began with a general description of the study and a free and informed consent 

form. Participants were then asked to provide their gender, age, and driving expertise (i.e., 

years with a driving license, frequency of car use in the past 6 months, number of miles 

driven in the past 6 months). Instructions were then given to participants. This step was 

followed by a familiarization phase featuring 12 scenarios, including the most extreme ones, 

in order to induce a wide spectrum of responses. The subsequent experimental phase 



comprised the full 24 scenarios. Once this phase was completed, participants were invited to 

complete the T-LOC and MDSI. They were then asked to indicate their level of confidence in 

automated cars on a scale ranging from 1 (Low) to 5 (High), and their past experience with 

automated driving systems (None, ACC or lane centering, ACC and lane centering). 

 

2.4. Data analysis  

In accordance with Anderson’s methodology (Anderson, 2008), we submitted the data to an 

analysis of variance (ANOVA). We examined the main effects of the four factors (i.e., type of 

road, vehicle speed, weather conditions, and traffic congestion level) and their possible 

interaction effects on the perception of comfort. In cases where Mauchly's sphericity test 

indicated that the assumption of sphericity had been violated, and epsilon was > .75, we 

applied the Greenhouse-Geisser correction. Given the multiplicity of comparisons, the 

significance threshold was set at .001, and the Bonferroni correction was used for post hoc 

tests (Jafari & Ansari-Pour, 2019). 

In order to highlight participants’ profiles, we then performed a cluster analysis based on 

their comfort ratings in the different experimental conditions (see Section 3.3 for more 

details on clusters formation). We followed the procedure advocated by Hofmans and 

Mullet (2013) for data collected with Anderson’s methodology, and used a nonhierarchical 

centroid-based method (Euclidean distances) called K-means clustering. This algorithm uses 

all the data points and is less susceptible to outliers than other techniques. K-means clusters 

are constructed so that the mean behavior of each group is distinct from that of all the other 

groups (MacQueen, 1967). Finally, using ANOVAs and χ2 tests, we tested the clusters for 

statistically significant differences in profiles. All statistical analyses were carried out using 



IBM SPSS (version 25) software. All reported statistics were cross-checked for consistency 

with statcheck.io (Epskamp et al., 2016). 

 

3. Results 

3.1. Participants’ characteristics 

Participants’ characteristics at the whole sample and cluster levels are summarized in 

Table 1.  

 

Table 1. Participants’ characteristics for the whole sample and each cluster 

 Clusters  

Participants’ 

characteristics 

Cluster 1  

(n = 51) 

Cluster 2  

(n = 29) 

Cluster 3  

(n = 75) 

Cluster 4  

(n = 46) 

Total  

(N = 201) 

      

Sex (%)      

Female 25 (49.0) 21 (72.4) 53 (70.7) 36 (78.3) 135 (67.2) 

Male 26 (51.0) 8 (27.6) 22 (29.3) 10 (21.7) 66 (32.8) 

      

Age in years (SD) 35.59 (17.96) 28.83 (9.83) 33.57 (15.48) 32.20 (14.55) 33.08 (15.33) 

      

Years with driver’s 

license (SD) 

16.04 (16.97) 9.69 (8.82) 13.75 (15.17) 12.98 (14.35) 13.57 (14.77) 

      

Trust in automated 

cars (SD) 

3.47 (1.12) 2.66 (1.23) 2,43 (1.00) 1,74 (1.02) 2.57 (1.23) 

      



Prior experience with 

ADS (%) 

     

None 38 (74.5) 25 (86.2) 54 (72.0) 36 (78.3) 153 (76.1) 

ACC or lane centering 10 (19.6) 2 (6.9) 14 (18.7) 8 (17.4) 34 (16.9) 

ACC + lane centering 3 (5.9) 2 (6.9) 7 (9.3) 2 (4.3) 14 (7.0) 

      

Car use frequency (%)      

< Once a week 12 (23.5) 7 (24.1) 21 (28.0) 7 (15.2) 47 (23.4) 

 1-3 times a week 11 (21.6) 3 (10.3) 18 (24.0) 9 (19.6) 41 (20.4) 

3-5 times a week 11 (21.6) 5 (17.2) 10 (13.3) 15 (32.6) 41 (20.4) 

> 5 times a week 17 (33.3) 14 (48.3) 26 (34.7) 15 (32.6) 72 (35.8) 

      

T-LOC* (SD)      

Other drivers 3.88 (.77) 4,07 (.54) 4,02 (.56) 4,12 (.56) 4.01 (.62) 

Self 2.62 (.97) 2,48 (.97) 2,55 (.94) 2,57 (.87) 2.56 (.93) 

Vehicle and 

environment 

3.37 (.80) 3,62 (.82) 3,57 (.66) 3,52 (.76) 3.51 (.74) 

Fate 2.46 (.84) 2,83 (.77) 2,78 (1.03) 2,57 (1.05) 2.66 (.96) 

      

MDSI** (SD)      

Dissociative DS 1.99 (.58) 2.06 (.65) 2.02 (.69) 2.03 (.62) 2.02 (.64) 

Anxious DS 2.46 (.87) 2.35 (.63) 2.50 (.73) 2.53 (.90) 2.48 (.79) 

Risky DS 1.70 (.89) 1.72 (.68) 1.75 (.85) 1.56 (.67) 1.69 (.80) 

Angry DS 2.50 (1.07) 2.57 (1.07) 2.49 (1.02) 2.38 (1.02) 2.48 (1.03) 

High velocity DS 2.20 (.78) 2.23 (.69) 2.32 (.78) 2.21 (.89) 2.25 (.79) 

Distress reduction DS 2.36 (.69) 2.52 (89) 2.38 (.85) 2.15 (.70) 2.34 (.79) 

Patient DS 4.38 (.96) 4.45 (.86) 4.51 (.88) 4.52 (.99) 4.47 (.92) 

Careful DS 4.81 (.74) 4.87 (.63) 4.83 (.69) 4.88 (.69) 4.84 (.69) 



Note. ADS = automated driving system; ACC = automatic cruise control; T-LOC = Traffic Locus of Control Scale; 
MDSI = Multidimensional Driving Style Inventory; DS = driving style. 
Percentages may not be equal to 100, owing to rounding. 
* Ratings were given on a 5-point scale. 
** Ratings were given on a 6-point scale. 

 

3.2. Analyses conducted on the whole sample 

We ran a 3 (type of road: highway vs. secondary vs. downtown) × 2 (weather conditions: 

clear weather vs. very rainy) × 2 (traffic congestion level: few vehicles vs. many vehicles) × 2 

(vehicle speed: prescribed speed vs. 20 km/hr below prescribed speed) ANOVA on comfort 

ratings.  

Three of the main effects were significant: 

(1) Type of road, F(1.56, 199) = 8.73, p < .001, η²p = .04. Pairwise comparisons were 

conducted to examine differences between types of road. Comfort was higher in the 

highway condition than in the downtown one (see Table 2). 

(2) Weather conditions, F(1, 200) = 172.95, p < .001, η²p = .46. Comfort was higher for the 

clear weather condition than for the very rainy one (see Table 2). 

(3) Traffic congestion, F(1, 200) = 166.03, p < .001, η²p = .45. Comfort was higher when there 

were few vehicles rather than many (see Table 2). 

No significant main effect of vehicle speed was found.  

 

 

Table 2. Mean (standard deviation) comfort ratings reported by the whole sample according 

to type of road, weather conditions, and traffic congestion level 

Factor  M (SD) 



Type of road  

Highway* 10.41 (4.39) 

Secondary  10.22 (4.23) 

Downtown* 9.83 (4.55) 

  

Weather conditions  

Clear 11.76 (4.37) 

Very rainy  8.55 (4.78) 

  

Traffic congestion level  

Few vehicles 11.19
 
(4.22) 

Many vehicles  9.11 (4.55) 

Note. * p < .001. 

 

Three two-way interaction effects and one three-way interaction effect were significant.  

(1) Between type of road and weather conditions, F(2, 195) = 13.70, p < .001, η²p = .06. 

When the weather conditions were clear, comfort ratings were lower for downtown 

than for highway or secondary. However, when the weather was very rainy, comfort 

ratings did not differ between types of road (see Table 3).  

 

 

 

Table 3. Effect of Type of road x Weather conditions interaction on mean comfort ratings 

and standard errors 



Factor   

M SE 

Type of road Weather condition 

Highway Clear weather 12.2 .32 

Very rainy 8.62  .35 

Secondary Clear weather 11.87 .31 

Very rainy 8.56 .34 

Downtown Clear weather 11.21 .33 

Very rainy 8.46 .35 

 

(2) Between weather conditions and vehicle speed, F(1, 197) = 44.43, p < .001, η²p = .18. 

When the weather conditions were clear, comfort ratings were higher if the vehicle was 

driving at the prescribed speed. However, when the weather was very rainy, comfort 

ratings were higher if the vehicle was driving at 20 km/hr below the prescribed speed 

(see Table 4). 

 

 

 

 

 

 

Table 4. Interaction between weather conditions and speed on mean comfort ratings and 

standard errors 



Factors   

M SE 

Weather conditions Speed 

Clear weather Speed limit 12.28 .35 

20 km/hr below speed limit 11.24  .34 

Very rainy Speed limit 8.00 .35 

20 km/hr below speed limit 9.09 .36 

 

(3) Between traffic congestion level and vehicle speed, F(1, 197) = 33.68, p < .001, η²p = .14. 

When there were few vehicles on the road, comfort ratings were higher if the vehicle 

drove at the prescribed speed. However, when there were many vehicles on the road, 

comfort ratings were higher if the vehicle drove at 20 km/hr below the prescribed speed 

(see Table 5). 

 

 

 

 

 

 

Table 5. Effect of Traffic congestion level x Speed interaction on mean comfort ratings and 

standard errors 

Factors   M SE 



Traffic congestion level Speed 

Few vehicles Speed limit 11.5 .33 

20 km/hr below speed limit 10.9  .32 

Many vehicles Speed limit 8.78 .34 

20 km/hr below speed limit 9.45 .34 

 

(4) Between weather conditions, traffic congestion level and vehicle speed, F(1, 193) = 

11.66, p < .001, η²p = .06. When the weather conditions were clear and there were few 

vehicles on the road, comfort ratings were higher if the vehicle drove at the prescribed 

speed. However, if the weather was very rainy with many vehicles on the road, comfort 

ratings were higher if the vehicle drove at 20 km/hr below the prescribed speed (see 

Table 6). 

 

 

 

 

 

 

Table 6. Effect of Weather conditions x Traffic congestion level x Speed interaction on mean 

comfort ratings and standard errors 

Factors   M SE 



Weather conditions Traffic congestion level Speed 

Clear weather Few vehicle Speed limit 13.97 .35 

20 km/hr below speed limit 11.99 .39 

Many vehicles Speed limit 10.59 .39 

20 km/hr below speed limit 10.49 .37 

Very rainy Few vehicles Speed limit 9.03 .37 

20 km/hr below speed limit 9.78 .38 

Many vehicles Speed limit 6.97 .35 

20 km/hr below speed limit 8.41 .38 

 

3.3. Cluster analyses 

The cluster analysis yielded two- and four-cluster solutions. After analysis, the differences in 

responses for the two-cluster solution were smaller than the differences in responses for the 

four-cluster one. We therefore opted for the latter, in order to have four very distinctive 

response profiles. Analysis showed a link between trust in automated cars and cluster 

formation, F(3, 197) = 21.71, p < .001, η²p = .25. No other profile factors were related to 

cluster formation. On each cluster, we ran the same analyses we had applied to the whole 

sample: Type of road × Weather conditions × Traffic congestion level × Vehicle speed 

ANOVAs. Means and standard deviations for each condition at cluster level are summarized 

in Table 7.  



Table 7. Mean comfort rating means and standard deviations (in parenthesis) for each 

cluster, regarding type of road, weather conditions, traffic congestion level, and vehicle 

speed 

 Clusters  

 
Cluster 1 

(n = 51) 

Cluster 2 

(n = 29) 

Cluster 3 

(n = 75) 

Cluster 4 

(n = 46) 

Factors M (SD) M (SD) M (SD) M (SD) 

Type of road     

Highway 15.67 (2.10) 10.28 (1.73) 10.56 (1.97) 4.42 (2.16) 

Secondary 15.25 (2.39) 10.63 (1.59) 10.05 (1.80) 4.64 (2.34) 

Downtown 15.47 (2.05) 10.28 (1.73) 9.38 (2,39) 3.98 (2.24) 

     

Weather conditions     

Clear weather 16.14 (2.20) 11.03 (1.45) 12.79 (2.28) 5.69 (2.84) 

Very rainy 14.78 (2.52) 9.84 (2.07) 7.20 (2.44) 3.00 (1.52) 

     

Traffic congestion level     

Few vehicles 16.03 (2.14) 10.95 (1.32) 11.52 (1.80) 5.44 (2.70) 

Many vehicle 14.90 (2.36) 9.92 (1.72) 8.47 (2.04) 3.26 (1.70) 

     

Vehicle speed     

Prescribed speed 15.52 (2.47) 12.33 (2.50) 9.33 (1.62) 4.11 (2.05) 

20 km/hr below prescribed speed 15.40 (2.31) 8.53 (2.67) 10.66 (1.93) 4.59 (2.30) 

 

3.3.1. Cluster 1: Trusting in automation  

The first cluster was called trusting in automation, as its members had the highest level of 

trust in automated cars (M = 3.47, SD = 1.12). Additionally, they expressed a very high 



overall level of comfort (M = 15.45, SD = 2.02). Mean comfort ratings were the highest when 

driving on the highway, with clear weather, few vehicles and at the prescribed speed (max = 

18.49), and remained positive even for the lowest ratings, when driving on secondary roads, 

with very rainy weather, many vehicles and at the prescribed speed (min. = 12.47).  

According to the effect sizes, the order of importance of the factors was as follows for this 

cluster: (1) traffic congestion, F(1, 50) = 16.28, p < .001, η²p = .25, and (2) weather conditions, 

F(1, 50) = 15.35, p < .001, η²p = .24. Mean comfort ratings were higher when (1) there were 

few vehicles on the road, and (2) Weather conditions were clear. Type of road and vehicle 

speed had no significant effect for this cluster.  

Analysis revealed two interactions between factors for this cluster. Weather conditions 

interacted with vehicle speed, F(1, 47) = 23.80, p < .001, η²p = .32. When weather conditions 

were clear, mean comfort ratings were higher if the vehicle was driving at the prescribed 

speed. By contrast, when the weather was very rainy, mean comfort ratings were higher if 

the vehicle drove 20 km/hr below the prescribed speed. Traffic congestion also interacted 

with vehicle speed, F(1, 47) = 17.56, p < .001, η²p = .26, following the same logic. When there 

were few vehicles on the road, mean comfort ratings were higher if the car was driving at 

the prescribed speed. By contrast, when there were many vehicles on the road, mean 

comfort ratings were higher if the car was driving 20 km/hr below the prescribed speed. 

 

3.3.2. Cluster 2: Averse to speed reduction 

The second cluster was called averse to reduced speed. Members of this cluster expressed 

their highest level of comfort when driving on the highway, with clear weather, with few 

vehicles, and at the prescribed speed (max. = 16.93). They expressed the lowest level of 



comfort if, in the same conditions, the car was driving at 20 km/hr below the prescribed 

speed (min. = 6.10). Their overall mean comfort rating was moderate (M = 10.43, SD = 1.25), 

as was their trust in automated cars (M = 2.66, SD = 1.23). 

According to the effect sizes, the only important factor for this cluster was vehicle speed, 

F(1, 28) = 20.38, p < .001, η²p = .42. Mean comfort ratings were higher when the vehicle 

speed was 20 km/hr below the prescribed speed. Type of road, weather conditions and 

traffic congestion level had no significant effect for this cluster.  

Analysis revealed two interactions for this cluster. Weather conditions interacted with 

vehicle speed, F(1, 25) = 46.49, p < .001, η²p = .62. When weather conditions were clear, 

mean comfort ratings were higher if the vehicle drove at the prescribed speed. However, 

when the weather was very rainy, there was no difference in mean comfort ratings between 

the two vehicle speed conditions. Traffic congestion also interacted with vehicle speed, F(1, 

25) = 20.73, p < .001, η²p = .43. When the car was driving at the prescribed speed, mean 

comfort ratings were higher if there were few vehicles. However, when the car was driving 

20 km/hr below the prescribed speed, mean comfort ratings were higher if there were many 

vehicles. 

 

3.3.3. Cluster 3: Risk averse 

The third cluster was called risk averse, and contained the most participants (n = 75). The 

latter displayed their highest level of comfort when driving on the highway with clear 

weather, with few vehicles on the road, and at reduced speed (max. = 15.89). By the same 

token, they displayed the lowest level of comfort when driving downtown with very rainy 

weather, with many vehicles on the road and at the prescribed speed (Min = 5.11). Their 



overall mean comfort rating was moderate (M = 10.00, SD = 1.49), as was their trust in 

automated cars (M = 2.43, SD = 1.00). 

According to the effect sizes, the order of importance of the factors was as follows for this 

cluster: (1) weather conditions, F(1, 74) = 174.13, p < .001, η²p = .70, (2) traffic congestion 

level, F(1, 74) = 119.76, p < .001, η²p = .62, and (3) vehicle speed, F(1, 74) = 35.35, p < .001, 

η²p = .32. Mean comfort ratings were higher when (1) Weather conditions were clear, (2) 

there were few vehicles on the road, and (3) vehicle speed was 20 km/hr below the 

prescribed speed. Type of road had no significant effect for this cluster. Analysis revealed no 

interaction effects. 

  

3.3.4. Cluster 4: Mistrusting automation 

The fourth cluster was called mistrusting automation, as its members had the lowest level of 

trust in automated cars (M = 1.74, SD = 1.02). In addition, they expressed a very low overall 

level of comfort (M = 4.35, SD = 2.04). Moreover, they felt uncomfortable even in their 

favorite conditions, namely on the highway, with clear weather, few vehicles on the road, 

and at the prescribed speed (max. = 8.11). They expressed the lowest level of comfort when 

driving on the highway, with very rainy weather, with many vehicles, and at the prescribed 

speed (M = 2.04).  

According to the effect sizes, the order of importance of the factors was as follows for this 

cluster: (1) weather conditions, F(1, 45) = 78.3, p < .001, η²p = .64, and (2) traffic congestion 

level, F(1, 45) = 57.45, p < .001, η²p = .56. Mean comfort ratings were higher when (1) 

Weather conditions were clear and (2) there were few vehicles on the road. Type of road 



and vehicle speed had no significant effect for this cluster. Analysis revealed no interaction 

effects. 

4. Discussion 

In the present study, we evaluated the impact of different driving conditions on the 

perceived comfort of a passenger in a partially automated car. We used scenarios in which 

we manipulated the type of road, weather conditions, traffic congestion level, and vehicle 

speed.  

Our first goal was to determine whether these driving conditions influenced perceived 

comfort. At the whole sample level, results showed that perceived comfort in SAE Level 3 

automated cars could be influenced by driving conditions that bring an increased risk of 

critical events (e.g., crowded downtown, reduced visibility and control in heavy rain, 

proximity to other road users in dense traffic). However, interaction analyses revealed that 

reducing vehicle speed could moderate the negative individual and joint influences of heavy 

rain and the presence of many vehicles on the road. These results can be viewed through the 

prism of the task-capability interface (TCI) model of the driving process (Fuller, 2000). 

Although this model was developed in the context of manual driving, it could also apply to 

partial automation, where the drivenger has to switch between manual and automated 

driving. According to the TCI model, speed adaptations allow drivers to reduce the difficulty 

of the driving task when facing high task demands or impaired capabilities (e.g., reduced 

visibility), and hence maintain as low a level of crash risk as possible. However, automated 

systems with rigid driving styles (e.g., always following the prescribed speed) do not take 

these variations into account. The resulting dissonance between drivers’ capabilities and 

task demands could thus lead to a feeling of discomfort, owing to an increase in perceived 



risk. Fuller (2000) argued that this discomfort increases as drivers approach the point at 

which they will no longer be able to meet the task demands. In the context of partially 

automated cars, drivers may have to take over control of the vehicle in situations that 

exceed their capabilities (e.g., takeover at high speed with adverse weather conditions), 

which may lead to anxious anticipation, and perhaps explain the poor takeover 

performances highlighted in previous studies (Gold et al., 2016; Li et al., 2018). 

Cluster analysis revealed four behavioral profiles, showing that the influence of driving 

conditions was not homogeneous. Two of the clusters were exact opposites, with 

participants in one of them expressing comfort no matter what (trusting in automation), and 

participants in the other one expressing discomfort no matter what (mistrusting 

automation). The two remaining clusters were opposed on their appreciation of vehicle 

speed, with one of them expressing very low comfort if the vehicle drove at a reduced speed 

in favorable driving conditions (averse to speed reduction), and the other feeling more 

comfortable with the reduced speed in every condition (risk averse). Overall, the comfort of 

85.57% of the participants was negatively influenced (with large effect sizes) by adverse 

driving conditions. For 73.26% of these, however, this effect was lessened by reducing the 

speed of the vehicle.  

The second goal of this study was to determine whether individual factors influenced 

perceived comfort. Cluster analyses revealed an effect of trust in automated cars, with a 

high level of trust for the trusting in automation cluster, medium levels for both the averse 

to speed reduction and risk averse clusters, and a low level for the mistrusting automation 

cluster.  



Previous findings (i.e., Bellem et al., 2018) had suggested that manual driving styles have an 

effect on perceived comfort in automated driving, but this was not the case in the present 

study. For example, we might have been expected individuals in the Averse to speed 

reduction cluster to have higher scores in the high-velocity driving style than the rest of the 

sample had. The absence of any such results can be explained by participants overestimating 

their adaptive driving behaviors (e.g., patient driving style), and underestimating their 

maladaptive driving behaviors (e.g., high-velocity driving style), leading to only minor 

variations across the sample. Similarly, driver locus of control proved to have no influence in 

this study. This may be because the T-LOC questionnaire failed to capture part of the 

experience of being a passenger in a vehicle. Five of the items in this questionnaire are 

dedicated to the self dimension, but this concerns the respondent as an active driver. It 

would be useful to develop a specific drivenger locus of control questionnaire, to consider 

the alternating status of the human behind the wheel of a partially automated vehicle. 

The present study is a new step towards understanding the variables that influence comfort 

in automated vehicles. Yet, these results need to be interpreted in consideration of a few 

methodological limitations. First, this study is based on written scenarios. Further studies 

should thus replicate these findings in simulator and real road studies. In fact, participants 

might for instance experience more discomfort when facing critical events in real driving 

conditions. Another limitation of the present study is the fact that most participants had no 

experience with automated driving systems (ADS). However, previous studies have shown 

that familiarity with ADS has a significant effect on trust with these systems (e.g., Oliveira et 

al., 2019). The same type of effect could therefore be observed with comfort. Finally, the 

scenarios described in this study were quite general regarding the details of the different 

situations. This was an intentional choice, as it allowed for a specific focus on the effect of 



the variables of interest without adding too much noise. Yet, this is also a limitation as 

comfort might change dynamically in the presence of these variables. For instance, 

participants may experience discomfort peaks when the ego-vehicle comes close to other 

vehicles, or due to stop & go in heavy traffic. Further studies replicating these findings on 

simulator or on-road could use a continuous comfort assessment method, such as pressing 

more or less hard on a handset control (e.g., Beggiato et al., 2020).  

5. Conclusion 

In conclusion, our results suggest that driving conditions have an effect on passenger 

comfort during partially automated driving. They also suggest that adapting the speed of the 

automated vehicle in unfavorable driving conditions would help to reduce the resulting 

discomfort for most individuals. Trust in automated cars has been highlighted as a key factor 

when trying to improve comfort in SAE Level 3 automated cars. Future studies should also 

investigate the influence of speed adaptation on the drivenger’s experience and takeover 

performance during partially automated driving. They should also consider the experience of 

the drivenger in greater depth. In addition to comfort, other facets of the drivenger’s 

experience deserve to be explored, such as anxiety and enjoyment. Finally, in line with 

Monsaingeon et al. (2020), the present study confirms the relevance of using a scenario-

based methodology in the context of driving automation, and extends it to the study of 

comfort in partially automated cars. 
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