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Robust Global Asymptotic Stabilization of Linear Cascade Systems with

Hysteresis Interconnection

Alessandro Bosso1, Luca Zaccarian2, Andrea Tilli1, and Matteo Barbieri1

Abstract— We address the problem of setpoint regulation
for cascaded minimum-phase linear systems interconnected
through a scalar hysteresis, modeled as a Prandtl-Ishlinskii
operator. Employing well-posed constrained differential in-
clusions to represent the hysteretic dynamics, we formulate
the control problem in terms of stabilization of a compact
set of equilibria depending on the hysteresis states. For our
design, we firstly consider a proportional-integral controller
for linear systems with hysteretic input, and provide model-free
sufficient conditions based on high-gain arguments for closed-
loop stability. Then, the controller is dynamically extended to
obtain an inversion-free stabilizer of the overall cascade. For the
presented schemes, we prove robust global asymptotic stability
of a compact set that ensures setpoint regulation, regardless of
the hysteresis states.

I. INTRODUCTION

Smart materials are becoming widespread nowadays due

to their unique sensing and actuation capabilities [1], leading

to innovative solutions in several application domains such

as next-generation mechatronic technologies. For control sys-

tems involving smart materials, one of the major challenges

is the typical presence of hysteretic behaviors, causing per-

formance deterioration if not correctly addressed. In this con-

text, the control-theoretical literature has dedicated several

works to hystereses represented with the Prandtl-Ishlinskii

(PI) operator [2], particularly useful given the existence of

its analytical inverse [3]. Numerous control strategies have

been developed based on the explicit inversion of the PI

operator [4], [5], [6]. However, the computational burden or

the inversion inaccuracy has led to inversion-free or implicit

inversion solutions, involving integral control [7], adaptive

control [8], or adaptive conditional servo-compensation [9].

All the works mentioned above consider systems with

hysteretic inputs. In this note, instead, we address inversion-

free setpoint regulation for linear cascade systems where

a finite-dimensional PI operator affects the interconnection.

This problem is inspired by operator-based models of thermal

shape memory alloys (SMAs), comprising a thermal and a

mechanical subsystem where the temperature influences the

elastic behavior through a hysteresis [10], [11]. Although

highly nonlinear and coupled models typically describe ther-

mal SMAs, we believe that the methodologies developed

in this work are instrumental in addressing those systems,
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Fig. 1. Block representation of system (1).

paving the way towards robust controllers for a large class

of smart actuators. Specifically, we consider a cascade where

the system affecting the hysteresis input is an integrator (see

Fig. 1). This choice is made to streamline the presentation,

as the proposed strategy is straightforwardly extended to

any linear system that can be robustly stabilized by output

feedback. On the other hand, we require that the system with

hysteretic input has minimum phase and relative degree 1,

while we aim to relax this assumption in future works.

Our design is based on the representation of the PI

operator as a sum of stop operators, which can then be

modeled as a well-posed differential inclusion constrained

in a compact set [12, Ch. 2]. In this setting, we develop a

setpoint regulation framework based on the analysis tools

for hybrid dynamical systems [13]. We firstly address the

scenario wherein the hysteresis input can be assigned as a

control input. In that context, we show that a proportional

controller ensures practical regulation, whereas the inclusion

of an integral action enables global exponential stabilization.

As compared to the integrator-based approach of [7], we

do not rely on an LMI to tune the control gains. Instead,

we provide high-gain arguments that ensure quadratic sta-

bility without any knowledge of the system matrices and

of the hysteresis. The proportional-integral controller is then

combined with a high-gain filter of the regulation error to

obtain the design for the overall cascade. For the closed-

loop dynamics, we prove the existence of a globally robustly

asymptotically stable attractor ensuring setpoint regulation,

regardless of the hysteresis states.

The paper is organized as follows. First, in Section II,

we introduce the considered class of systems, present the

state-space hysteresis model, and define the control problem.

Section III is dedicated to the control design for linear

systems with hysteretic input. Next, Section IV develops the

overall control scheme and provides the main stability result.

Finally, Section V reports numerical simulations and Section

VI concludes the paper.

II. LINEAR CASCADE SYSTEMS WITH HYSTERESIS

INTERCONNECTION

A. Model Description

We consider a class of systems comprising two linear

subsystems, having states ξ ∈ R
n and ζ ∈ R, interconnected
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Fig. 2. Left: representation of a play operator. Right: behavior of a Prandtl-
Ishlinskii operator with input ζ(t) = 0.04t sin(t).

through a scalar hysteresis Γ[·], as shown in Fig. 1:

ξ̇ = Aξ + bΓ[ζ]

ζ̇ = u
ya :=

[

y

ζ

]

:=

[

c⊤ξ

ζ

]

, (1)

with control input u ∈ R and available output ya ∈ R
2.

In (1), matrix A and vectors b and c have appropriate

dimensions, while hysteresis Γ[·] has been indicated in square

brackets to highlight its intrinsically dynamic behavior.

For plant (1), we design a controller ensuring asymptotic

setpoint regulation of constant reference signals for the

output y of the ξ-subsystem, without any knowledge of

matrices A, b, and c (except for the sign of c⊤b) or of

the hysteresis Γ[·]. This objective is addressed under the

following assumptions.

Assumption 1. Pair (A, b) is reachable and pair (c⊤, A) is

observable.

Assumption 2. System ξ̇ = Aξ + bv with output y = c⊤ξ
has relative degree 1 and is minimum phase. Furthermore,

it holds that c⊤b > 0.

B. Prandtl-Ishlinskii Operator

We model hysteresis Γ[·] in (1) as a finite-dimensional

Prandtl-Ishlinskii (PI) operator, given by a weighted sum of

basic hysteresis functions known as play operators. Specifi-

cally, following [14] and [7], for any continuous input ζ(·)
that is monotone in each interval t ∈ [ti−1, ti] of the partition

0 = t0 < t1 < . . . < tj = T , the output φ(·) of a play

operator Pr[·], with constant radius r ≥ 0, is given by:

φ(t) = max{min{ζ(t) + r, φ(ti−1)}, ζ(t)− r}. (2)

See Fig. 2 for a depiction of the play operator. The finite-

dimensional Prandtl-Ishlinskii operator is then defined as [7]:

Γ[ζ] := µ0ζ +

p
∑

i=1

µiPri [ζ], (3)

where Pri [·], i ∈ {1, . . . , p}, are play operators with constant

radii ri, while µi, i ∈ {0, . . . , p}, are constant scalar weights.

Note that the linear term multiplying µ0 corresponds to the

output of a play operator with radius r0 = 0. For simplicity,

we consider the case where the radii satisfy 0 < r1 < . . . <
rp, while for weights µi we require the following property.

Assumption 3. The weights of the Prandtl-Ishlinskii oper-

ator in (3) satisfy µi > 0, for all i ∈ {0, . . . , p}.

In Fig. 2, we report the behavior of a Prandtl-Ishlinskii

operator for an illustrative input signal.

C. State-Space Representation via Constrained Differential

Inclusions

We provide a state-space representation of the PI operator

(3) based on the reformulation proposed in [12, Ch. 2]

of the play operator as a constrained differential inclusion.

Specifically, we employ the complement of the play operator

Pr[·], called stop operator and denoted by Sr[·]. Indeed, for

all i ∈ {1, . . . , p} and for an appropriate initialization of the

operators, it holds that Pri [ζ]+Sri [ζ] = ζ, where δi := Sri [ζ]
has a dynamic behavior modeled as [12, Ch. 2]:

δ̇i ∈







co{ζ̇,max{ζ̇, 0}} δi = −ri,

ζ̇ δi ∈ (−ri, ri),

co{ζ̇,min{ζ̇, 0}} δi = ri,

δi ∈ ∆i := [−ri, ri],

(4)

where co{·} denotes the closed convex hull operation. Sys-

tem (4) can be rewritten in compact form as the constrained

differential inclusion δ̇i ∈ Fri(δi, ζ̇), δi ∈ ∆i, where the

set-valued map Fri(δi, ζ̇) is outer semicontinuous, locally

bounded relative to ∆i×R, and for each (δi, ζ̇) ∈ ∆i×R it

is nonempty and convex. These properties are particularly

meaningful because, with the selection of an appropriate

control strategy, it is possibile to obtain a closed-loop system

whose data satisfy the so-called hybrid basic assumptions

[13, As. 6.5]. Under these assumptions, global asymptotic

stability of a compact set implies robust global KL asymp-

totic stability in the presence of fairly general perturbations

of the dynamics [13, Def. 7.18]. From (4), Γ[ζ] in (3) can

be defined through the dynamical system

δ̇ ∈ FΓ(δ, ζ̇) :=







Fr1(δ1, ζ̇)
...

Frp(δp, ζ̇)






, δ ∈ ∆ :=

p
∏

i=1

∆i, (5)

having state δ := (δ1, . . . , δp) and output map

Γ[ζ] :=

p
∑

i=0

µiζ −

p
∑

i=1

µiδi = γζ − µ⊤δ, γ :=

p
∑

i=0

µi, (6)

where µ := [µ1 · · · µp]
⊤ is a constant vector of positive

parameters. Note that γ > 0 in (6) by Assumption 3.

The state-space representation of system (1) is given by

the following well-posed constrained differential inclusion:

ξ̇ = Aξ + b(γζ − µ⊤δ)

δ̇ ∈ FΓ(δ, u)

ζ̇ = u






ξ

δ

ζ




 ∈ R

n ×∆× R. (7)

D. Problem Statement

For systems expressed in the form (7), we consider the

problem of output-feedback setpoint regulation of constant

references for the output y := c⊤ξ. More specifically, our

objective is to design an output feedback control law for

u, based on the available signals ya := (c⊤ξ, ζ) and under

Assumptions 1, 2, and 3, such that:

lim
t→∞

y(t) = y⋆, (8)



for any constant reference y⋆ ∈ R. We intend to achieve

this objective through robust asymptotic stabilization of a

compact set depending on y⋆, so that suitable stability

properties will be ensured, in addition to the convergence

in (8). Among other things, stability will imply uniformity

of the convergence (8). To this aim, we inspect the effect of

δ on the equilibria of (7) ensuring y = y⋆. By Assumptions

1 and 2, the system of equations

Aξ + bv = 0, c⊤ξ − y⋆ = 0, (9)

admits a unique equilibrium pair (ξ⋆, v⋆). To evaluate the

steady-state value for ζ, we consider then equation

γζ − µ⊤δ = v⋆, (10)

which can be solved because γ > 0 by Assumption 3,

but whose solution is not unique due to the presence of

the hysteresis state δ. More precisely, all equilibria of (7)

satisfying (10) correspond to elements of the compact set

Eδ := {(δ, ζ) ∈ ∆× R : γζ = µ⊤δ + v⋆}. (11)

Note that Eδ is a set of equilibria because, by Assumption

3 and δ̇i ∈ co{0, ζ̇}, the definitions of γ and µ in (6) (with

µ0 > 0) imply that (δ, ζ) ∈ Eδ (satisfying γζ̇ = µ⊤δ̇) holds

only if δ̇ = 0 and ζ̇ = 0.

Therefore, we can reformulate goal (8) by ensuring ap-

propriate attractivity properties of the following compact

regulation set:

E :={(ξ, δ, ζ) ∈ R
n ×∆× R :

Aξ + b(ζ − µ⊤δ) = 0, c⊤ξ = y⋆} = {ξ⋆} × Eδ,
(12)

for which we will also achieve a suitable stability property.

We are now ready to provide a precise statement for the

considered control problem.

Problem 1. Under Assumptions 1, 2, and 3, design a

controller for the input u such that the closed-loop system

admits a compact attractor that is robustly globally KL
asymptotically stable in the sense of [13, Def. 7.18] and

whose projection in the plant state directions coincides with

the regulation set (12).

III. SETPOINT REGULATION FOR SYSTEMS WITH

HYSTERETIC INPUT

This section considers a simplified scenario wherein ζ of

(7) can be assigned algebraically as a differentiable control

input (so that ζ̇ is well defined). In other words, we address

the setpoint regulation objective y → y⋆ in (8) for system

ξ̇ = Aξ + b(γζ − µ⊤δ)

δ̇ ∈ FΓ(δ, ζ̇)

y = c⊤ξ

[

ξ

δ

]

∈ R
n ×∆, (13)

with control input ζ ∈ R. Given the equilibrium pair (ξ⋆, v⋆)
of (9), define ξ̃ := ξ − ξ⋆, e := y − y⋆. From Aξ⋆ + bv⋆ =
0 due to (9), we compute the error dynamics for the ξ-

subsystem as

˙̃
ξ = Aξ̃ + b(γζ − µ⊤δ − v⋆), e = c⊤ξ̃. (14)

Due to the relative degree 1 assumption, under a suitable

change of coordinates [15, Rem. 4.3.1], [16, §1.5], system

(14) can be rewritten as

ż = Azz + bze

ė = c⊤z z + αe+ β
(

ζ − (µ⊤δ + v⋆)/γ
)

,
(15)

where z ∈ R
n−1 is the state of the internal dynamics, Az ,

bz , cz , and α are matrices of suitable dimensions, while β :=
γc⊤b > 0 is the high-frequency gain. Due to Assumption 2,

Az is Hurwitz, thus there exists Pz = P⊤
z > 0 such that:

PzAz +A⊤
z Pz = −In−1. (16)

A. Proportional Control Law

Consider the proportional controller

ζ = −ke, (17)

where k is a positive gain. The resulting closed-loop system,

obtained from the interconnection between (13) and (17), is

the following constrained differential inclusion

ż = Azz + bze

ė = c⊤z z − (βk − α)e− β(µ⊤δ + v⋆)/γ

δ̇ ∈ FΓ(δ,−k(c
⊤
z z − (βk − α)e − β(µ⊤δ + v⋆)/γ)),

(18)

with (z, e, δ) ∈ R
n × ∆. Since δ belongs to the compact

set ∆, the (z, e)-subsystem is a linear system with bounded

input disturbance µ⊤δ+v⋆. Due to its structure, it is possible

to choose k sufficiently large to ensure that its solutions

are bounded. To show this property, consider the Lyapunov

function Vk(z, e) := z⊤Pzz+e
2, with Pz = P⊤

z > 0 selected

as in (16). Choose the proportional gain

k > k⋆ := 1
β
(α+ |Pzbz + cz|

2). (19)

Then, along the solutions of (18), we obtain

V̇k =− |z|2 + 2z⊤(Pzbz + cz)e− 2(βk − α)e2

− 2βe(µ⊤δ + v⋆)/γ

≤− 1
2 |z|

2 − 2β|e|((k − k⋆)|e| − |µ⊤δ + v⋆|/γ),

which implies, from the boundedness of δ ∈ ∆ and v⋆:

|e| > eM :=
maxδ∈∆{|µ

⊤δ + v⋆|}

γ(k − k⋆)
=⇒ V̇k<0,

|z| >
2maxδ∈∆{|µ

⊤δ + v⋆|}

γ
√

(k − k⋆)/β
=⇒ V̇k<0,

(20)

with the second inequality obtained by splitting the analysis

in |e| ≥ eM and |e| ≤ eM . From (20), (z, e) eventually con-

verges to compact sublevel sets of Vk , thus the solutions of

(18) are bounded. Moreover, (z, e) approaches an arbitrarily

small neighborhood of (0, 0) (i.e., ξ approaches an arbitrarily

small neighborhood of ξ⋆) for k > 0 sufficiently large.



B. Proportional-Integral Control Law

We have shown that controller (17) ensures global bound-

edness of solutions but cannot achieve (z, e) → 0. Thus, in

place of (17), consider a controller with an integral action:

σ̇ = −he, ζ = σ − ke, (21)

where σ ∈ R is the integrator state and k, h are the pro-

portional and integral gains. Define σ̃ := σ− (µ⊤δ+ v⋆)/γ.

Using (15), the interconnection among (13) and (21) yields:

ż = Azz + bze

ė = c⊤z z − (βk − α)e + βσ̃

˙̃σ ∈−he−
µ⊤

γ
FΓ(δ,−he−k(c

⊤
zz − (βk − α)e + βσ̃))

δ̇ ∈ FΓ(δ,−he− k(c⊤z z − (βk − α)e + βσ̃)),

(22)

with (z, e, σ̃, δ) ∈ R
n+1 ×∆. We now expand the dynamics

of σ̃ in terms of the components δi that lie in the linear

region. Namely, inspired by (4), introduce

qi(δi, ζ̇) :=







0, if |δi| = ri and δiζ̇ ≥ 0,

1, otherwise,
(23)

so that we can write δ̇i = qi(δi, ζ̇)ζ̇ , then define

q(δ, ζ̇) :=
1

γ

p
∑

i=1

µiqi(δi, ζ̇). (24)

Note that, by Assumption 3 and from (6),

0 ≤ q ≤ qmax :=
1

γ

p
∑

i=1

µi < 1. (25)

Using (22) and (24), we obtain

˙̃σ = −he− µ⊤δ̇/γ = −he− qζ̇

= −he− q(−he− k(c⊤z z − (βk − α)e + βσ̃))

= −(h(1− q) + kq(βk − α))e + kβqσ̃ + qkc⊤z z.

(26)

Thus, the (z, e, σ̃)-subsystem in (22) can be written as






ż

ė
˙̃σ




 =








Az bz 0

c⊤z −(βk − α) β

qkc⊤z

(
− h(1− q)+
− kq(βk − α)

)

kβq








︸ ︷︷ ︸

:=As(q)






z

e

σ̃




 ,

(27)

with the time-varying input q ∈ [0, qmax] ⊂ [0, 1) due to (25).

For system (22), we provide the following relevant result.

Theorem 1. Let k = νk̄ and h = ν2h̄, with gains ν > 0,

h̄ > 0, and k̄ such that

k̄ ≥
α+

√

βh̄(2− qmax)

β(1 − qmax)
. (28)

Then, there exists ν⋆ > 0 such that, for all ν > ν⋆,

the compact attractor Aσ := {(z, e, σ̃, δ) ∈ R
n+1 × ∆ :

(z, e, σ̃) = 0} is globally exponentially stable for (22).

Proof: Define σ̄ := σ̃/ν and χ := (e, σ̄) ∈ R
2. Then,

using (27), system (22) can be rewritten as

ż = Azz + [bz 0]χ

χ̇ = νA(q, ν−1)χ+B(q)z, q ∈ [0, qmax]

δ̇ ∈ FΓ(δ,−he− k(c⊤z z − (βk − α)e + βνσ̄)),

(29)

with (z, χ, δ) ∈ R
n+1 ×∆, B(q) := [cz k̄qcz]

⊤ and

A(q, ν−1) :=

[

−(βk̄ − αν−1) β

−h̄(1− q)− k̄q(βk̄ − αν−1) k̄qβ

]

. (30)

Consider the auxiliary switching system:

ψ̇ = A(q, ν−1)ψ, q(t) ∈ Q, (31)

where Q := {q ∈ R : q=
∑

i∈I
µi, I ⊂ {1, . . . , p}}. Below,

we show that the origin of system (31) is GES for all ν ≥ 1
and for any switching sequence t 7→ q(t). Notice that the

characteristic polynomial of A(q, ν−1) is λ2+λ(βk̄(1−q)−
αν−1)+βh̄(1− q), therefore, by (28), A(q, ν−1) is Hurwitz

for all (q, ν) ∈ [0, qmax]× [1,∞) because qmax < 1 and

k̄ >
α

β(1 − qmax)
≥

αν−1

β(1 − q)
, h̄ > 0. (32)

By [7] and [17], (31) admits a Common Quadratic Lyapunov

Function (CQLF) if there exists Pχ = P⊤
χ > 0 such that:

PχA(0, ν
−1) +A(0, ν−1)⊤Pχ ≤ −I2

PχA(qmax, ν
−1) +A(qmax, ν

−1)⊤Pχ ≤ −I2.
(33)

Since rank(A(0, ν−1) − A(qmax, ν
−1)) = 1, from [18], we

have that matrix Pχ exists if and only if the matrix pencil

Π(g) := βh̄A(0, ν−1)−1 + gA(qmax, ν
−1) is invertible, for

all g ≥ 0. Straightforward computations show that

det(Π(g)) = βh̄(1 − qmax)g
2 + βh̄

+((βk̄ − αν−1)(βk̄(1 − qmax)− αν−1)− βh̄(2− qmax))g.

As det(Π(0)) > 0, it is sufficient to verify that (βk̄ −
αν−1)(βk̄(1− qmax)−αν

−1)−βh̄(2− qmax) > 0, which is

ensured for any ν ≥ 1 by choosing h̄ > 0 and k̄ according

to (28). Returning to system (29), define

Vσ(z, χ) := z⊤Pzz + χ⊤Pχχ, (34)

which is positive definite and radially unbounded with re-

spect to Aσ . Along the solutions of (29), it holds that

V̇σ ≤ − |z|2 − ν|χ|2 + 2z⊤(Pzbz[1 0] +B(q)⊤Pχ)χ

≤ − 1
2 |z|

2 − (ν − 4|Pzbz|
2 − 4|PχB(q)|2)|χ|2.

Therefore, selecting ν according to

ν > ν⋆ := 4|Pzbz|
2 + 4|Pχ|

2|cz|
2(1 + k̄2q2max) (35)

ensures that Vσ is a CQLF for Aσ , which implies GES.

From (28), (35), there always exist k > 0, h > 0 sufficiently

large such that attractor Aσ of Theorem 1 is GES. The next

corollary is a direct consequence of the proof of Theorem 1.

Corollary 1. Choose gains k and h so that Theorem 1

establishes GES of Aσ . Then, there exists a CQLF for (22).

Namely, there exists Ps = P⊤
s > 0 such that PsAs(q) +

As(q)
⊤Ps ≤ −In+1, for all q ∈ [0, qmax] ⊂ [0, 1), with

As(q) defined in (27).



IV. SETPOINT REGULATION FOR CASCADE SYSTEMS

WITH HYSTERESIS INTERCONNECTION

We return to the problem of setpoint regulation for system

(1), i.e., we address the problem of designing an input u
such that y → y⋆. The key idea proposed here is to first

generate a reference ζ⋆ that solves the regulation problem

for the reduced plant (13), then impose ζ → ζ⋆ by a suitable

selection of u for the complete plant (7). To achieve this

objective, we require ζ̇⋆ to be well defined and available for

control, which implies that (21) cannot be employed directly

as ė is unknown. Thus, we assign ζ⋆ through a modified

version of (21) comprising a filter of the tracking error:

σ̇ = −hη, η̇ = −ℓ(η − e), ζ⋆ = σ − kη, (36)

where σ ∈ R is the integrator state, η ∈ R is the filter state,

while ℓ, h, and k are positive scalar gains. For convenience

in the analysis, we define the error variables

σ̃ := σ − (µ⊤δ + v⋆)/γ, η̃ := η − e. (37)

Then, using (15), (24), and ζ = σ−kη+ζ−ζ⋆, we can write

the interconnection between plant (7) and controller (36) as

ż = Azz + bze

ė = −(βk − α)e+ βσ̃ + c⊤z z − βkη̃ + β(ζ − ζ⋆)

˙̃σ = −hη − qζ̇

˙̃η =−(ℓη̃−(βk − α)e+βσ̃+c⊤z z−βkη̃+β(ζ−ζ
⋆))

ζ̇ = u

δ̇ ∈ FΓ(δ, ζ̇),

(38)

with (z, e, σ̃, η̃, ζ, δ) ∈ R
n+3 ×∆.

A. Stability Analysis of the Reduced System

We study system (38) under the assumption that

ζ = ζ⋆ = σ − kη (39)

is satisfied at all times. This reduction argument is instru-

mental to introducing the controller of Section IV-B. Define:

xf := ℓη̃ − (βk − α)e + βσ̃ + c⊤z z. (40)

With (36), (37) we have ζ̇ = ζ̇⋆ = −hη + kℓη̃, and then

using (39), (40) we can follow similar computations to (26)

exploiting µ⊤δ̇/γ = qζ̇ to show that

˙̃σ =− (h(1− q) + kq(βk − α))e + kβqσ̃ + qkc⊤z z

−qkxf − ℓ−1h(1− q)(xf + (βk − α)e − βσ̃ − c⊤z z).
(41)

Define xs := (z, e, σ̃) ∈ R
n+1. Then, in the coordinates

x := (xs, xf), system (38) with condition (39) reads as

ẋs = As(q)xs +Bs(q)xf + ℓ−1Ds(q)x

ẋf = −ℓxf +Df(q, ℓ
−1)x

δ̇ ∈ FΓ(δ, ζ̇)

(42)

where As(q) is found in (27), Bs(q) := [0⊤ 0 −qk]⊤,

while Ds(q) and Df(q, ℓ
−1) are matrices of appropriate

dimensions. In particular, Df(q, ℓ
−1) is an affine function

of ℓ−1, so that its entries are bounded as ℓ→ ∞.

Using ℓ, the analysis of (42) can be performed via

timescale separation, where the xf-subsystem (the fast sub-

system) is made arbitrarily fast with respect to the xs-

subsystem (the slow subsystem) by selecting ℓ > 0 suffi-

ciently large. These arguments lead to the following result.

Proposition 1. Choose gains k and h so that Theorem 1

establishes GES of Aσ . Then, there exists ℓ⋆ > 0 such that,

for all ℓ > ℓ⋆, attractor Aη := {(xs, xf, δ) ∈ R
n+2 × ∆ :

(xs, xf) = 0} is GES for system (42).

Proof: Pick Ps from Corollary 1, then define d :=
2|Ps|

2k2q2max ≥ 2|PsBs(q)|
2 for all q ∈ [0, qmax] and

Vη(x) := x⊤s Psxs + dℓ−1x2f , (43)

which is positive definite and radially unbounded with re-

spect to Aη . Then, we obtain:

V̇η ≤− |xs|
2 + 2x⊤s PsBsxf − 2dx2f

+ 2ℓ−1(x⊤s PsDs + dxfDf)x

≤−min{ 1
2 , d}|x|

2 + 2ℓ−1(|PsDs|+ d|Df|)|x|
2.

(44)

Recalling that limℓ→∞ ℓ−1(|PsDs(q)| + d|Df(q, ℓ
−1)|) = 0,

for ℓ > 0 sufficiently large, V̇η can be made quadratically

negative definite, ensuring that Vη is a CQLF for Aη .

B. Main Result

Differently from (39), we now address the general case

of the augmented plant (38) by removing the assumption

that ζ = ζ⋆. Thus, we define the error ζ̃ := ζ − ζ⋆, whose

dynamics are given, by (38) with (36) and (37), as
˙̃
ζ =

u − ζ̇⋆ = u + hη − kℓ(η − e). Therefore, we can ensure

ζ̃ → 0 by selecting u = ζ̇⋆ − kζ ζ̃ , with gain kζ , leading to:

˙̃
ζ = −kζ ζ̃. (45)

Using (36), this yields the following controller for plant (7):

η̇ = −ℓ(η − e)

σ̇ = −hη

u = −hη + kℓ(η − e)− kζ(ζ − σ + kη),

(46)

with positive gains ℓ, h, k, and kζ . The following statement,

which confirms that controller (46) provides a solution for

Problem 1, is the main result of this work.

Theorem 2. Choose any gain kζ > 0 and positive gains k,

h, ℓ such that Aη of Proposition 1 is GES. Then, attractor

A :={(ξ, δ, ζ, η, σ)∈R
n×∆×R

3 : (ξ, δ, ζ)∈E , η=0, σ=ζ},

with E being the regulation set of (12), is robustly globally

KL asymptotically stable for the interconnection between

system (7) and controller (46).

Proof: The closed-loop system can be seen as the

cascade interconnection of (45) and (42) perturbed by ζ̃.

Namely, the x-subsystem can be rewritten as

ẋ = Ax(q)x+Bx(q)ζ̃ . (47)
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Fig. 3. Closed-loop simulation results. (a): reference y⋆ and output y.
(b): input u. (c): error e and filter state η. (d): reference ζ⋆, state ζ , and
integrator state σ. (e): equilibrium ξ⋆ and states ξ. (f): hysteresis states δ.

Consider the Lyapunov function V := Vη + ρζ̃2, where Vη
is defined in (43) and ρ > 0. By Proposition 1, there exists

a constant matrix Qx = Q⊤
x > 0 such that

V̇ ≤ −x⊤Qxx+ ζ̃Bx(q)x− 2ρkζ ζ̃
2. (48)

Choosing ρ > 0 sufficiently large, we conclude that A is

GES. Finally, we note that system (7), (46) can be regarded

as a hybrid system, with empty jump set and jump map,

satisfying the hybrid basic conditions. Thus, from [13, Thm.

7.21], A is robustly globally KL asymptotically stable.

V. NUMERICAL RESULTS

We perform a numerical analysis to illustrate our theo-

retical results. Following the structure depicted in (1) and

Assumptions 1 and 2, we consider a ξ-subsystem having

transfer function

G(s) =
(s+ 3)(s+ 1)

(s− 5)(s2 + 2s+ 4)
. (49)

Matrices A, b, c are then obtained as the minimal re-

alization of (49) in controllability canonical form. The

Prandtl-Ishlinskii operator Γ [ζ], whose behavior is shown

in Fig. 2, is implemented according to (5) using p =
5 stop operators. The weights are given by µ =
[0.1 0.325 0.55 0.775 1]⊤, µ0 = 1, while the radii

values are ri = µi, i ∈ {1, . . . , 5}. The feedback law is

the one in (46) with tuning parameters selected as ν = 20,

k = 20, h = 200, ℓ = 75, and kζ = 5. Simulations have all

the system states initialized randomly, and setpoint y⋆ = 1.

The results obtained for a single run are shown in Fig. 3.

VI. CONCLUSION

We provided a robust control strategy for linear cas-

cade systems with a hysteretic interconnection. Employing

a well-posed constrained differential inclusion to represent

the Prandtl-Ishlinskii operator, we formulated the regulation

problem by defining a compact set of equilibria depending

on the hysteresis states. Then, relying on high-gain argu-

ments and the properties of well-posed hybrid dynamical

systems, we proved that the closed-loop system admits a

robustly globally asymptotically stable compact attractor for

a simple selection of the controller gains. This result was

achieved without any parametric knowledge of the system or

the hysteresis. Future works will focus on generalizing the

cascade dynamics and the hysteresis model, and applying the

results to thermal shape memory alloy technologies.
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