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Abstract
This paper presents a global mesh optimization framework for 3D

triangular meshes of arbitrary topology. The mesh optimization task
is formulated as an energy minimization problem including data at-
tached terms measuring the fidelity to the original mesh as well as a
shape potential favoring high quality triangles. Since the best solu-
tion for vertex relocation is strongly related to the mesh connectivity,
our approach iteratively modifies this connectivity (edge and vertex
addition/removal) as well as the vertex positions. Good solutions for
the energy function minimization are obtained by a discrete graph cut
algorithm examining global combinations of local candidates. Results
on various 3D meshes compare favorably to recent state-of-the-art al-
gorithms regarding the trade-off between triangle shape improvement
and surface fidelity. Applications of this work mainly consist in reg-
ularizing meshes for numerical simulations, for improving mesh ren-
dering or for improving the geometric prediction in mesh compression
techniques.
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1 Introduction

Nowadays, 3D triangular meshes are commonly used in many fields, as the
hundreds of thousands of existing 3D triangular models can attest. They are
of interest in visual effects, video games, scientific visualization, 3D animation
and medical surgery simulation based on finite element methods, to say a few.
Most of the existing triangular meshes are of unsatisfying quality because of
their inappropriate vertex sampling, which is responsible for inequilateral
triangles and irregular connectivity. The origin of this irregular sampling
may be due to the scanning device, to 3D interactive solid modelling software
or to simplification algorithms.

This poor quality causes instability and divergence of various mesh pro-
cessing applications [1]. Basically, general triangle quality criteria include
triangle angles (min and max), area and aspect ratio. Precisely, interpo-
lation and conditioning quality measures have been proposed to deal with
shape, size and conditioning of mesh elements. Such element quality criteria
implicitly suppose that the ideal mesh element is nearly the same over the
whole mesh. An ideal mesh should therefore have a nearly isotropic ver-
tex sampling such that triangle features vary slowly over the domain. This
sampling would ideally be curvature-adapted (or/and adapted to numerical
simulation accuracy), since curved regions need more primitives in order to
better represent the initial surface.

In that context, several remeshing techniques have been introduced in
the literature, they consist of improving some quality requirements under
constraint conditions, where constraints are soft, not hard. The targeted
goals vary according to the application [2]. Simplification techniques tend
to preserve the overall shape of the mesh while removing as many triangles
as possible. Mesh smoothing methods consist in removing high frequency
noise so as to fair the mesh. Finally, Mesh optimization aims at improving
the mesh quality, i.e. the regularity of the sampling and of the connectivity,
which is precisely the objective of our algorithm.

1.1 Related work

Two classes of approaches have been identified in the vast mesh optimization
literature. The first group consists of methods which completely discard the
initial geometry and connectivity so as to sample new points on the surface.
Variational partitioning frameworks [3, 4, 5] are based on vertex/triangle
clustering and are often used to produce a coarser mesh with a high approx-
imation quality. This coarse mesh is then usually refined using subdivision
techniques. Parameterization methods [6] optimize 2D patches instead of a
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3D surface, but they generally suffer either from distortion produced by the
global parameterization, or from patch boundary post-processing resulting
from local parameterization. Semi-regular remeshing [7] uses an initial coarse
mesh partition and treats each patch separately using subdivision rules. This
produces a few irregular vertices (those of the coarse mesh), well-shaped tri-
angles, and a small geometric error. However, it is sensitive to the patch
structure and the resulting vertex sampling is difficult to control. Geodesic
front propagation techniques [8, 9] consider geodesic equidistant curves over
the surface and allow to get well-shaped triangles (vertices can be distributed
according to the local curvature). However, some pre-processing steps are
needed to avoid artifacts when the curve topology is complex. All these
methods give an overall good triangle shape, but they suffer from a lack of
geometric error control when the new points are sampled on the surface.

The second group of methods works directly on the initial mesh simplices
(vertices, edges and resulting triangles), which allows a better control of the
geometric fidelity to the original 3D surface. Local approaches to mesh opti-
mization consist of using a set of local legal moves (e.g. towards barycenters
or angle-bisectors) and connectivity modifications (topological operators) to
decrease an energy function. Such an approach may lead to a local minima
configuration, especially if used with a greedy optimization (e.g. gradient
descent). Surazhsky and Gotsman [10] use local operations such as edge-
collapse, edge-split, edge-flip and vertex relocation to regularize the mesh
connectivity. Surazhsky et al. [10, 11] apply area-based smoothing to con-
trol both triangle quality and vertex sampling over the mesh. To achieve
a precise isotropic vertex placement, Surazhsky et al. [11] use a centroidal
Voronoi tessellation. Global approaches to mesh optimization attempt to re-
solve the optimization problem in a global way, most of the time solving a
sparse linear system [12, 13] or using least squares approximation [14]. The
main idea in the global approaches using a so-called Laplacian global operator
[12, 13, 14], is to infinitely apply a Laplacian operator such that applying it
one more time will not change the current vertex positions. That allows a
direct formulation as a linear system. Then other constraints are added to
take into account invariant vertex positions or to avoid the shrinking effect
due to Laplacian smoothing. All these techniques depend on the initial sam-
pling and connectivity, and the triangle shape may therefore be difficult to
improve in case of vertex configurations that are not adapted to the surface.

1.2 Our approach and contribution

The mesh optimization problem in this paper can be seen as follow: given an
initial mesh M, we try to find another mesh M’ with improved triangle qual-
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ity (a high amount of almost equilateral triangles) as well as high fidelity to
the initial 3D surface (same topology and a small geometric error). The key
idea of the proposed algorithm is to globally optimize this trade-off between
quality improvement and surface fidelity, using discrete optimization tech-
niques. The optimization is separated into two different iteratively executed
steps:

• Finding new vertex positions which globally minimize a well-chosen
energy while keeping sharp features.

• Smoothly improving the mesh connectivity.

During the remeshing process, corners and sharp edges are preserved (see
section 4.2). The mesh connectivity is smoothly improved using local moves.
After each mesh connectivity modification, relaxation of the vertex positions
allows to speed up convergence towards better global configurations. The
remeshing pipeline is illustrated in figure 1.

Our contributions are:

• An optimization algorithm which searches the globally optimal combi-
nation of the locally proposed vertex positions based on the calculation
of the minimum st-cut/maximum flow in a graph.

• A relaxation technique of vertex positions for better global convergence.

• A simple and fast detection method for sharp features based on a two
thresholds hysteresis.

This paper is organized as follows: in section 2, we present our global en-
ergy minimization framework for optimizing mesh vertices and connectivity
as well as the global optimization algorithm. Section 3 deals with connectiv-
ity optimization and convergence improvement through relaxation. Section 4
integrates the global method and explains how the method copes with sharp
features. In section 5, we give experimental results and compare them with
other recent algorithms from the state of the art. In section 6, we conclude
and discuss some future work.

2 Global energy minimization problem

In this work the initial mesh M is copied and kept as reference geometry
during the remeshing process. The optimized mesh M’ thus starts with the
same vertices and connectivity as M. The two 3D triangular meshes we deal
with, i.e. the original as well as the optimized one, are considered as a single
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Figure 1: The remeshing pipeline: at every iteration, new vertex positions
are chosen using a good global energy minimum approximation; every five
iterations the mesh connectivity is modified and relaxed to favor better global
vertex configurations

undirected graph G = {V,E}, where V is a set of vertices and E is a set
of edges. The vertices V are partitioned into a set X of vertices of the new
(optimized) mesh, and a set y of positions of the original mesh. All variables
are vector valued continuous variables taking values from Λ = R3. y remains
constant during the remeshing process, but X may evolve (addition/removal
of elements) since the initial sampling is not necessarily adapted to the surface
being represented. x thus denotes the current values of the whole set of
remeshed model vertices X. Each vertex of the remeshed model is linked to
a position of the original mesh (the closest one). This link is usefull to keep
track of the geometric distance between a vertex of the optimized mesh and
the surface represented by the original mesh (cf. figure 2).

In this paper the mesh optimization is presented as an energy minimiza-
tion problem, where the energy is expressed in terms of a scalar combination
of positive energy potentials which measure the criteria (quality, surface ap-
proximation) that we aim to improve. Potentials may depend on one, two, or
three vertices of the optimized mesh M’ and on vertices of the original mesh
M (reference geometry). In the following, S will denote the set of simplices
of the remeshed model, which are in this paper limited to points, edges and
triangles (0,1 and 2-simplices).

The specific form of our energy function U(x, y) is defined through feature
functions (each of them expressing the capacity to improve a property):
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Figure 2: Representation of the graph used for constructing the remeshed
model: each vertex of the optimized mesh xs is linked to its current closest
initial mesh vertex ys and has access to whole initial mesh if needed.

U(x, y) =
∑

(r,s,t)∈S2

λshapeψshape(xr, xs, xt)

+
∑
s∈X

λdataψdata(xs, y)
(1)

where S2 is the set of triangles (2-simplices) of the remeshed model. λshape

and λdata are positive scalars.
U(x, y) evaluates the global configuration of a mesh, and it depends on

the vertex position and on the mesh connectivity. Therefore at each vertex
relocation or at each mesh connectivity modification, U(x, y) may vary.

2.1 The feature functions

Our model contains two different kinds of positive feature functions: shape
functions encoding the prior knowledge on the quality of the mesh connec-
tivity as well data attached functions encoding the approximation quality of
the new surface. The role of the former is to favor equilateral mesh triangles,
therefore they are calculated on triangles:

ψshape(xr, xs, xt) =
R(xr, xs, xt)

min(||xr − xs||, ||xr − xt||, ||xs − xt||)
(2)

where R denotes the cicumradius associated to the triangle (xr, xs, xt)
and ||.|| is the usual Euclidean norm. Note that these feature functions do
not depend on the initial vertices y and that they are scale invariant.

The data attached feature functions are calculated between a new vertex
xs and the (potentially) whole set of initial vertices:
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ψdata(xs, y) = F (xs, y) (3)

where F (xs, y) is the square of the shortest distance between xs and a
patch of a continuous surface approximated by a subset of the initial vertices
y close to the label xs (geometric distance).

The function F is hard to calculate but may be approximated up to
second order [15, 16]:

F (xs, y) ≈ d

d+ |%min|
x̃2

s1 +
d

d+ |%max|
x̃2

s2 + x̃2
s3 (4)

where x̃s is the point xs expressed in coordinates of the Frenet frame on
a surface point ys′ closest to xs. The Frenet frame is defined through the
following coordinate axis: the surface normal at point ys′ (z-axis) as well as
the two orthogonal vectors defining the principal curvature directions (x and
y-axis). %min and %max are the local principal curvature radii at ys′ , and d > 0
is the z-coordinate (in the Frenet frame) of the reference point p = [ 0 0 d ]T

used for the Taylor expansion of the quadratic distance, which we set in our
case to min(ε, | < xs − ys′ , ~z > |), where ε is a small constant (usually 0.01)
and <,> denotes the usual scalar product. This function is scale invariant
if the curvatures and the coordinates are scaled. We experimentally found
that geodesic-based principal curvature extraction and normal computation
using the one-ring triangle normals weighted by triangle area give the best
results.

The location of the point ys′ is efficiently found by local search. For each
vertex xs of the remeshed model, the current closest initial point ys′ ∈ y to
xs is stored (at the beginning it is initialized to the initial vertex ys position),
and at each iteration it is checked whether one of the neighbors of ys′ is closer
to xs and the reference updated accordingly.

2.2 Iterative vertex repositioning

The goal of this step is to find out a good estimate for the new vertex posi-
tions, given the initial variables y, and the current mesh connectivity.

Unfortunately, the function U(x, y) is not convex and standard gradient
descent methods will most likely return a suboptimal solution. In addition, a
least-square or linear system approach will return an oversmooth mesh, even
if some constraints are added. This suggests a discrete approach for obtaining
high fidelity meshes. Our work benefits from recent advances in optimization
theory for discrete Markov Random Fields (MRFs) [17] by transforming the
continuous problem into a discrete problem, similar to the technique proposed
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for optical flow by Lempitsky et al. [18]. However, instead of employing
a global discrete optimizer to merge several solutions obtained by existing
techniques applied with different parameters, in our case the global discrete
optimizer takes decisions on candidates calculated at each step. At each
iteration and for each vertex of the remeshed model, a new candidate position
is proposed and the optimal decision for the whole set of vertices is calculated,
i.e. the decision minimizing (1).

2.3 Candidate proposals

Each candidate position is forced to stay within a small freedom sphere to
prevent too much geometric error and to avoid creating a fold-over. The
more the region around a vertex xs is curved, the smaller its freedom radius
σfreedom is forced to be. Moreover, like the stepwidth in gradient descent, this
radius decreases with time to avoid big moves at the end of the optimization
process. Similarly to simulated annealing techniques [19], we introduce a
temperature parameter T which decreases at each iteration. The radius
σfreedom is related to this temperature T through a sigmoidal function, as
well as to the minimum geodesic radius of the xs one-ring, and to the local
maximal curvature radius measured on the initial mesh:

σfreedom(xs, xNs , y) =
0.5

1 + e−T
.||xs, xNs||g.min(1, ρmax) (5)

where ρmax is the maximum curvature radius at y′s. 0.5||xs, xNs||g is half
the length of minimum geodesic radius from the considered vertex, it al-
lows to globally combine local candidates without creating a fold-over. For
the cooling schedule we used the suggestions in [20] (page 356), setting the
temperature T to T (i) = T (1) · Ki−1 where K is a constant controlling the
speed of the cooling process and i denotes the current iteration. Since the
initial mesh is normalized before processing (and unnormalized at the end),
the maximal mesh dimension does not appear in this equation for curvature
radius normalization purpose.

A candidate must decrease the energy, which can be computed quickly
from the vertex xs and its one-ring neighborhood Ns:

∆ = U
((
x\{xs}

)
∪{xnew

s }, y
)
−U(x, y) = U(xnew

s , Ns, y)−U(xs, Ns, y) (6)

Where xnew
s is the new candidate position and U(xs, Ns, y) is the so-called

local evidence given as:

8



U(xs, xNs , y) =
∑

(r,s,t)∈S2:r,t∈Ns

λshapeψshape(xr, xs, xt)

+ λdataψdata(xs, ys′ , yNs′ )

(7)

Our global optimization technique, which will be given below, admits a
maximum number of two candidate positions, i.e. one new candidate posi-
tion for each vertex additionally to the current vertex position. Furthermore,
the convergence of the algorithm depends on the quality of these new can-
didate positions, so we employ different techniques to calculate them; then
instead of choosing the best candidate among these methods, we ranked them
by empirical convergence quality and for each vertex xs we choose the first
candidate position which satisfies the constraints given above (in freedom
sphere and ∆ < 0, cf. equations (5) and (6)). If no candidate is found, the
old position is kept. The techniques are, in decreasing convergence quality,
angle-based smoothing, Laplacian smoothing, and guided random candidates
(cf. algorithm 1).

The angle-based and Laplacian candidates’ displacement vectors are mul-
tiplied by a small constant γ = 0.06, which allows to accept these candidates
more often, especially in some specific configurations where the vertex is close
to its one-ring boundary and the freedom sphere is therefore rather small.
This process also reduces the distance between the current position and the
proposed one, and thus the geometric error introduced in curved regions.

The smoothing candidates are projected on the tangent plane. The guided
random candidates are circularly chosen on the tangent plane at the begin-
ning of the optimization process, and then along the gradient direction of
the energy function (1) for the last few “greedy” iterations. That allows us
to stick more to the initial surface once the triangle shapes have been well-
optimized. Special care is taken for label positions on sharp edges, for which
candidates along the sharp edge are preferred. Vertices on corners remain
unchanged.

2.4 Candidate decisions

The global decision (i.e. keeping the current position or choosing the new
candidate) on the whole set of vertices is taken by Kolmogorov et al.’s graph
cut technique [17]. This involves constructing an st-graph representing the
energy function (1) such that the minimum cut/maximum flow on this graph
will give the solution which globally minimizes the energy. Since quality is
calculated on triangles, we use the graph construction for the class F3 of
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third order functionals given in [17]. This optimization algorithm is able
to optimize third order functions on binary random variables, i.e. variables
taking values in {0, 1}. For that purpose, it is necessary to associate a binary
labelling to {xs, x

new
s }, for instance the label zero could denote the current

vertex position xs and one the proposed position xnew
s .

Furthermore, the energy function needs to satisfy the so-called submodu-
larity criterion [17]. This criterion requires that, taking one of the vertices of
a given triangle (xr, xs, xt) and fixing the decision to either 0 or 1, the pro-
jection onto the two other vertices satisfies the following constraint (without
loss of generality we suppose that xr has been fixed):

ψshape(xr, 0, 0) + ψshape(xr, 1, 1) <
ψshape(xr, 0, 1) + ψshape(xr, 1, 0)

In our case, the energy function is generally not graph representable, i.e.
this criterion is not satisfied for every triangle. We ressort to a common
technique, namely truncating the energy function: the shape of the non-
submodular triangles is not optimized. We can realistically assume that the
set of submodular triangles changes with each iteration such that most of the
triangles get optimized several times during the optimization process.

The number of submodular triangles depends on the mapping from {0, 1}
to {xs, x

new
s }. Indeed, the turnout can be increased by choosing a different

mapping for each vertex. Two mappings are possible for a single vertex
and 23 = 8 mappings are possible for each triangle, but since vertices are
shared between triangles, calculating the optimal mapping is a non trivial
problem in itself. A solution has been proposed by Schlesinger for energy
functions with 2nd order terms [22] using graph cuts on a graph derived from
the original graph of the problem. Since our function involves 3rd order
terms, we opted for a greedy technique assigning the mappings in a single
pass through the mesh. All possible 8 mappings are checked for the first
triangle, and the combinations on the not yet fixed vertices are checked for
subsequent triangles.

3 Iterative mesh connectivity optimization

Our goal is to optimize the remeshed model connectivity, which will allow us
to significantly improve the final results (greater min and smaller max angles)
as well as to speed up convergence of the vertex repositioning algorithm. In
this paper, the purpose is neither to generate fully regular meshes (those
which are a topologically part of a torus) nor highly regular meshes, since
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such a processing is very time consuming [21] and not needed for high quality
isotropic remeshing.

Our mesh connectivity optimization is divided into two parts:

1. Smooth local connectivity modifications

2. Relaxation of vertex positions

3.1 Smooth local changes

We perform smooth edge-flips/splits/collapses plus smooth vertex-splits (in
that order), i.e. those which improve the quality of the triangulation. A
smooth local operation consists in keeping the new local configuration ob-
tained after applying a local operator, only if it has improved a given quality
criterion. The chosen quality criteria are the minimum angle involved in
the local operation for an edge-flip (six angles) or an edge-collapse, the har-
monic mean of two scale invariant triangle quality measures (interpolation
quality and conditioning quality from [1]) for an edge-split, and the global
improvement of vertex valence for a vertex-split.

This is a complex optimization problem plagued by suboptimal local min-
ima since there exist configurations with inequilateral triangles for which no
direct operation can improve the minimum angle. To decrease the num-
ber of edge and vertex candidates to test for edge-flip, edge-collapse, and
vertex-split, we just select those for which the vertex valence can be directly
improved. Edge-collapse is restricted to short edges (smaller than a thresh-
old emin) and to flat regions (dihedral angle below 10o) to avoid introducing
too much geometric error. Similarly edge-split is applied only if the edge
length is greater than a threshold emax. emin and emax depend on the lo-
cal maximal curvature and on the size of the mesh bounding box. We use
a priority queue based method for the operations on the edges to execute
them in the following order: edge-flips/splits/collapses and also to select the
operation which best optimizes the associated quality criterion. Afterwards,
vertex-splits are applied without any specific order (because their goal is to
improve the global vertex valence).

Note that this set of local operators is not minimal, because the vertex-
split can be done using edge-split and edge-flip. However, it should go
through intermediate unwanted vertex configurations and that is forbidden
for the time being. In fact a more complex combinatorial framework could
be used to authorize intermediate unwanted vertex configurations for better
final results.
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3.2 Relaxation of vertex positions

It consists of applying a modified smoothing operator to the vertex positions
not adjacent to a sharp edge. More precisely, the angle-based smoothing dis-
placement vector is locally computed, then projected onto the local tangent
plane in order to avoid shrinkage. If angle-based smoothing would create
a fold-over, the Laplacian smoothing displacement vector is computed and
projected. If this creates a fold-over, the position remains unchanged.

Relaxation improves the triangle shape and the local configurations. It
thus improves the algorithm’s convergence. Mesh connectivity optimization
is not needed for all vertex repositioning iterations. One pass for only every
five vertex repositioning iterations allows vertices to be correctly relocated
before modifying their adjacency relationships.

4 Outline of the method

The global scheme of our method for optimizing 2-manifold meshes of arbi-
trary genus is presented in figure 1 and in algorithm 1. Even if it does not
explicitly appear in the presented algorithm, sharp features of the original
mesh are detected and kept at their place during all remeshing iterations.

4.1 Description

The general global optimization algorithm consists of using algorithm 1 twice:
the first call is for the non-greedy optimization part when local moves are
longer (high initial temperature); the second call for the greedy optimization
part (gradient descent), for which smoothing candidates and mesh connectiv-
ity optimization are discarded. The first part can be seen as a relaxation part
and the second part as the final geometry fitting. The first part attempts to
regularize the mesh connectivity and the vertex position. The second part
is needed, because the majority of proposed candidates are on local tangent
planes, which may introduce a small geometric error. To limit this geometric
error, a few greedy iterations at the end of the non-greedy optimization step
are sufficient.

4.2 Robust sharp feature detection

Sharp features are the mesh corners and sharp edges where a vertex is consid-
ered as a corner if it has at least three adjacent sharp edges. Mesh edges are
sharp if the dihedral angle between their two adjacent triangles (2-manifold
meshes) is greater than a user-specified threshold θtrue.
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Input: y (initial vertex positions), T (1) (start temperature), C
(cooling speed), kmax (number of iterations), greedy (boolean)

Output: x (new vertex positions)

x← y
T ← T (1)

for k ← 0 to kmax − 1 do
if not greedy and k mod 5 = 0 then

Regularize connectivity
Relax vertex positions

end
for s ∈ X do

σfreedom ←
0.5

1 + e−T
.||xs, xNs||g.min(1, ρmax)

xnew
s ←

first with ∆ < 0
and in sphere, out
of the following:


angle based smoothing
Laplacian smoothing
guided random

end
x← minimum-cut/maximum flow (x, xnew, y)
T ← T · C

end
Algorithm 1: The whole method, including the continuous-discrete solu-
tion to vertex relocation. The graph cut algorithm takes the global decision
for the whole set of vertices, considering for each vertex of the remeshed
model the current positions xs and a new candidate position xnew

s

During the vertex optimization step, corners are kept unchanged and ver-
tices along one or two sharp edges can move only along these edges. During
the connectivity optimization step, sharp edges cannot be flipped and edges
having at least one sharp neighboring edge cannot be collapsed.

A single threshold leads to noisy decisions, more robust detection can
be achieved with two thresholds defining an interval of indetermination,
[θfalse, θtrue] which allows us to regularize the decisions for each edge:

edge←



not sharp if θd < θfalse

sharp if θd > θtrue

sharp if θfalse ≤ θd ≤ θtrue

and ∃ at least 2 neighboring
edges having θd > θtrue

not sharp else

(8)

We experimentally fixed θfalse = 20o and θtrue = 35o.
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5 Experimental results

In order to demonstrate the efficiency of our method, we applied it to sev-
eral mesh models, with unadapted sampling and very irregular connectivity,
which contain smooth parts and sharp features. Some visual results are given
in figures 3, 4 and 5.

We experimentally fixed the quality/fidelity trade-off parameters to λshape =
1 and λdata = 107. We use 150 non-greedy iterations and 20 greedy iterations
in our experiments. 150 iterations are sufficient for obtaining high-quality
mesh triangles, and 20 iterations are sufficient for the final gradient descent.
We used V. Kolmogorov’s code for the implementation of minimum cut in a
graph/maximum flow [23, 17], which is available online1. For the presented
models, the algorithm running time is between 30 seconds and 2 minutes
(depending on the model size) on an Intel Core 2 Duo P8400 (2,26 GHz)
with 4 GB RAM.

To illustrate the mesh quality, average triangle minimum and maximum
angles are presented in table 1. For high-quality meshes, the average min-
imum (resp. maximum) angle should be greater than 30o (resp. less than
90o). The closer to 60o the average minimum and maximum angles are, the
better are the results.

To evaluate the surface fidelity of the remeshed models, the Hausdorff
distance and the maximum of the two RMS (Root Mean Square) distances
normalized to the bounding box diagonal are presented in table 1. These
distances have been obtained using the Metro tool [24].

Our method preserves high frequency mesh features (cf. figure 5), while
considerably improving triangle quality. In addition, the vertex positions
tend to adapt themselves to the mesh curvature as it can be observed on the
hand model in figure 4. Let’s note that the number of vertices does not need
to be chosen. It adapts itself to the geometry while maintaining the same
order of magnitude.

We compare our method to those of Valette et al. [5], Surazhsky et al.
[10, 11], and Liu et al. [13]. As can be seen in table 1, our method gives
better results in terms of triangle shape and surface fidelity when compared
to Valette et al. and Liu et al. . Surazhsky et al.’s methods generate more
regular triangles (better averaged min and max angles), but our method bet-
ter approximates the original surface, even when the number of used vertices
is lower. For instance, in reference [10] their proposed method smoothes the
triceratops eye (cf. figure 5) resulting in a significant loss of details.

We have tested our method on CAD (Computer-Aided Design) models

1http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html
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Model #v Irreg Amin Amax ErHaus ErRMS

(%) (deg) (deg) (10−3) (10−3)
Fandisk (init) 6495 20 43.4 86.1 - -
Fandisk (Liu) 6495 20 44.7 82.0 3.3 0.8
Fandisk (our) 6361 14 48.2 77.4 1.3 0.03
Cow (init) 2892 53 30.8 92.4 - -
Cow (Liu) 2892 53 35.1 88.2 5.3 0.9
Cow (our) 2743 36 40.7 83.8 5.0 0.7
Shark (init) 2560 31 20.8 97.4 - -
Shark (Liu) 2560 31 26.2 107.5 3.0 0.3
Shark (Sur1) 2560 30 50.6 71.1 6.8 0.8
Shark (our) 2345 23 32.4 96.3 3.8 0.3
Hand (init) 7950 58 32.3 94.1 - -
Hand (Liu) 7950 58 34.3 92.2 8.8 0.4
Hand (Val) 6802 45 46.1 77.5 2.6 0.2
Hand (our) 6800 28 48.1 76.5 2.0 0.2
Bimba (init) 8857 62 34.2 92.7 - -
Bimba (Liu) 8857 62 38.1 87.0 4.9 0.5
Bimba (Sur1) 8857 20 53.6 67.6 6.0 0.5
Bimba (Val) 8143 48 45.2 78.1 6.0 0.4
Bimba (our) 8143 37 46.9 77.0 3.4 0.2
Egea (init) 8268 74 34.7 93.5 - -
Egea (Liu) 8268 74 38.2 88.3 2.6 0.2
Egea (Sur2) 8705 6.7 52.4 69.1 2.7 0.2
Egea (our) 7229 42 48.9 74.9 2.4 0.4
Triceratops (init) 2832 59 29.6 95.5 - -
Triceratops (Sur2) 2758 13 42.2 82.5 8.4 1.1
Triceratops (our) 2693 37 41.0 83.9 3.9 0.5

Table 1: Statistics on the remeshed models: number of vertices, percent-
age of irregular vertices, averaged minimal angle, averaged maximal angle,
Hausdorff distance and maximum between the 2 RMS distances measured by
Metro normalized to the bounding box diagonal. Liu, Val, Sur1, and Sur2
correspond respectively to [13], [5], [11], and [10].
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(cf. figure 6) and we obtained better min and max angles for the remeshed
models.

6 Conclusion and future work

This paper has presented an original way of computing vertex repositioning
using global combination of locally proposed candidates. Its main advan-
tages are the feature sensitiveness and its ability to improve triangle shapes
while preserving the original surface fidelity. The convergence speed to-
wards a better global configuration is enhanced using smooth local changes
followed by vertex relaxation. The obtained results are better than other
methods in terms of surface fidelity. Our method also offers a good surface
fidelity/triangle quality trade-off.

As future work, we will investigate quadrangular and anisotropic remesh-
ing. We will also tackle combinatorial optimization (when computationally
tractable) in the connectivity processing to improve mesh connectivity con-
figuration.
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