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Abstract We expose an efficient strategy to deal with shape optimization
of dynamical systems exhibiting flutter-type instability induced by friction,
such as the considered disc-pad system. The stability of such systems can be
analysed through Complex-Eigenvalue Analysis, through which we present a
squeal noise criterion to be minimized as a computationally expensive black-
box function. The computational domain is discretized through Isogeomet-
ric formulation for its advantages in optimization and superior approxima-
tion properties which are well studied in structural dynamics. To be com-
putationally efficient with the expensive black-box function, we defined the
optimization based on Efficient Global Optimization scheme in the context
of multi-objective optimization, with the integration of Isogeometric design-
through-analysis methodology. As gradient information is hard to access for
such black-box functions, in addition to the presence of constraints, we relied
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on meta-heuristic approach as a more generic strategy for realizing optimiza-
tion of such functions in multi-objective context. As one such scheme with its
own advantages was observed to provide lack of resolution to define Expected
Improvement (ET) with a single reference value, we propose a multi-reference
acquisition strategy which can be defined through a fast and efficient algorithm
with fewer adaptation to the existing scheme. Results show the efficiency of
this approach for our applicative example, which can be extended to other
such applications as well.

Keywords Dynamic instability - Friction - Isogeometric analysis - Meta-
model - Shape optimization - Bayesian optimization - Multi-objective
optimization - Meta-heuristic optimization

1 Introduction

Flutter-type dynamic instability typically defines a self-excitation behaviour
in the presence of non-conservative forces. In structural dynamics, this is un-
derstood as coalescence of modes, where two modes exist at a same frequency
leading to self-excitation between the modes under favorable conditions in the
presence of non-conservative forces. We consider shape optimization of braking
system through a simple disc-pad representation, where this type of systems
can exhibit flutter-type dynamic instability in the presence of friction, per-
ceived as squeal noise (Akay, 2002; Ibrahim, 1994a,b; Kindkaid et al, 2003;
Ouyang et al, 2005; Shintani and Azegami, 2014).

Typically, friction induced dynamic instabilities are highly nonlinear phe-
nomena which can be computationally expensive when defined through tran-
sient analyses and hence, unrealistic to be considered for optimization. The
definition of follower force model for friction makes it possible to define this
type of systems as a time-independent linear dynamical system around a fixed
point defined through quasi-static hypothesis, which otherwise requires sat-
isfying non-holonomic constraints with strong time dependence (Herrmann,
1971; Hibbit, 1979). Hence, the stability of such linearized systems around
a fixed point can be defined through its eigenvalues, commonly known as
Complex-Eigenvalue Analysis (CEA) (Abu-Bakar and Ouyang, 2006; Mar-
tins et al, 1999; Mottershead and Chan, 1995). Through CEA, we define a
black-box function which is adversely expensive for computation, to describe
a criterion for stability in shape optimization. Further, for evaluation of the ex-
pensive black-box function, we define a parallel computation strategy through
dynamic model reduction.

To realize an efficient generic strategy to deal with shape optimization
of an arbitrary domain for computationally expensive black-box functions,
we encompass Isogeometric approach for discretization (Hughes et al, 2005),
and Efficient Global Optimization (EGO) (Jones et al, 1998) approach in the
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context of Multi-Objective Optimization (MOQ) —commonly known as Multi-
Objective Bayesian Optimization (MOBO).

Systems with complex domain are solved through numerical methods like
Finite Element Method (FEM) which demands a robust meshing scheme in an
optimization loop without human intervention. The limitation of discretisation
with classical FEM for optimization is well known. The problem is overcome
by Isogeometric approach for discretization where an initial design parameter-
ization and its subsequent analysis-suitable parameterization are defined with
in the same parametric space, which avoids the bottle-neck in communica-
tion between the two parameterizations and hence, robust meshing could be
achieved (Hughes et al, 2005; Nguyen et al, 2011; Ngrtoft and Gravesen, 2013;
Philipp et al, 2016). Further, with Isogeometric approach, the approximation
properties of Non-uniform rational B-spline (NURBS) basis functions lead to
better convergence per degree-of-freedom compared to classical finite element
class of basis functions, which has been discussed for structural dynamics in
(Cottrell et al, 2006). This provides better accuracy to work in high frequency
domains which is especially more deemed in vibro-acoustic applications.

Unfortunately numerical methods can still be very computationally expen-
sive in optimization to explore a design space efficiently for convergence consid-
ering loop iteration, which is especially more true in MOO. Hence, we define a
strategy based on Efficient Global Optimization (EGO) for MOO where the op-
timal solutions are defined through Pareto-optimal/Non-dominated solutions
(NDS). The complexity in accessing gradient information for the black-box
function and the presence of constraints make it highly infeasible to define
a gradient based optimization scheme and hence, we relied on meta-heuristic
approach to define a more generic strategy.

The EGO approach defines optimization through an acquisition function
Expected Improvement (ET) which characterizes improvement of a reference
value for a given Gaussian prediction from the Gaussian process (GP)/Kriging
meta-model (Rasmussen and Williams, 2005) typically used to approximate a
computationally expensive function. For a single objective optimization, the
reference value corresponds to the known minimum of the function (Utopian
value).

The direct extension of this in MOO corresponds to seeking improve-
ment considering an empirical NDS for a multi-variate Gaussian prediction in
the objective space, commonly known as Expected hypervolume improvemet
(EFHVI) (Emmerich et al, 2011). The other approach is to define EI inde-
pendently for all the GP meta-models with their respective reference value
and optimising in the context of MOO, where Utopian value was used as ref-
erence in (Jeong and Obayashi, 2006). Though this approach is more simple
and versatile to implement, it was found to provide less resolution to define
improvement in MOO with a single reference value, detailed in section 5.2.
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Hence, with the aim of preserving the simplicity of the approach, we provide
an extension of this concept with multiple reference values for a GP meta-
model in MOO, through a simple strategy with fewer adaption to the existing
method of FI.

Following introduction, the second section describes the squeal noise prob-
lem as our applicative example for flutter-type dynamic instability. The third
section introduces Isogeometric formulation as an approach to finite element
discretization of computational domains, with a brief description of contact
and friction formulation specific for modelling this type of dynamic instabil-
ity as a time independent definition. In the fourth section, we give a brief
explanation about CEA and a stability criterion for shape optimization re-
alized through CEA. The fifth section details optimization setting for shape
optimization with Isogeometric approach, given with the objectives for opti-
mization and description of parameterization for the disc-pad system domain.
The sixth section provides an overall frame work for MOBO with the defi-
nition of a new acquisition function. The proposed approach is then applied
for optimization of the disc-pad system and the results are exposed in section
seven before concluding in the last section.

2 Model description

Brake squeal phenomenon is an important concern when working on automo-
tive brake designs, where squeal noise can be characterized with a frequency
range of 1-16 KHz. The squeal noise can lead to customer complaints which
can be detrimental for automotive manufacturers. As a complex phenomenon,
many parameters can be studied and optimized for squeal noise during its
design phase (Denimal et al, 2018; Nechak et al, 2018). We focus on shape of
the system, which has not been widely considered.

Our proposed applicative example is the simple disc-pad system as a brake
model. The system consists of a disc defined as a solid annulus geometry fixed
at the inner cylindrical face. The pad is constrained to be in contact with
the disc and with additional constraints to avoid any rigid body modes in the
system. The description of pad shapes in optimization is detailed in section
4. As an initial approximation, the simple system allows to make interesting
studies by avoiding the complexity of boundary conditions present in a real
braking systems.

2.1 Isogeometric formulation

The Isogeometric approach was developed to merge design and analysis de-
scriptions of a geometry through a same class of basis functions (Bazilevs et al,
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2010; Hughes et al, 2005), where the basis functions used for defining a geom-
etry is also used for approximation of solutions in the context of finite element
approach. The parameterization of a geometry defined with mapping from a
parametric space is achieved through NURBS with a set of basis functions,
where its subsequent analysis-suitable parameterization which is usually more
refined with a new set of increased number of basis functions is defined with
in the same parametric space.

We provide a concise explanation for the finite element approach to ap-
proximation and NURBS basis functions in annex section 10.1.

2.2 Continuum description to Isogeometric discretization

The continuum description of the dynamics around a quasi-static fixed point
u for the perturbation u can be defined as follows,

ol + Vior(ug) =0 in £
ur =0 on FD,k C O (1)
a’k(uk).ﬁn = Fck, O'k(uk).’f)t = ka on FC7k C (991(

where o (u) represents constitutive equations as a function of displacement
vector u : 2 — R? in an infinitesimal volume with isotropic material prop-
erties and strain tensor defined by infinitesimal strain theory, 02 defines the
boundary of {2 and, ¥, and 0; define a normal unit vector and a tangential
unit vector respectively on 9f2. The subscript k distinguishes the domains in
contact.

The parameterization of the domain (2 as an initial geometric description
is defined through NURBS as X, X : 2 — 2 which defines the mapping
from the parametric domain (2 to the physical domain {2 — for simplicity, we
consider the parameterization of the domain (2 through a single patch. The
analysis-suitable parameterization of X — X is achieved through one or sev-
eral of the refinement methods (h, p and k), where the refinement of Xy is
defined as X to take in to account of the modified knot vectors and additional
control points — more on parameterization and refinement for the disc-pad sys-
tem domain is discussed in Section 4.2 .

The Isogeometric approach for approximation of the solution uy is achieved
through the same NURBS bases R; ; which was used to achieve an analysis-
suitable parametrization X, where R; ; x defines trivariate spline bases for the
approximation of u. And in abstract sense, the bases R; ; i in parametric space
is transformed to the bases ¢; ;1 in physical space using the push-forward
operator o, where the bases ; for approximation is defined with the property

~ 1 . . . .
¢i = @ijr = RijroX . Hence, the approximation of a field variable in
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{2 is defined through ¢y ;, Vi, spanning the finite dimensional function space
P = H&y rp . (). With the approximation of uy € @y as Uy ~ uy, and with
the application of Galerkin’s method to Eq. (1) leads to following the weak
form:

/ pkﬁk.(pk’i A + V.O'k(ﬂk>.(pk,i Ay =0 V(pk,i € oy (2)
2 2k

The above weak form through expansion of the term V.o (uk).¢x;i by
Green’s identity for ny domains in contact, is given as

Ny

Z {/ PP A8 +/ ok (Tx) : Vi di2y
2 £k

k=1
— / FCk.ng71 chk —/ ka~§0k,i chk } = 0
rn Ie

ck

(Fey ki) (Fpy5x,i)
VQDkJ € oy (3)

where the inner products (Fe,,¢r,:) and (Fy,,@p,) define the weak form
for contact and friction respectively, which are defined independently on their
respective domains. When F,, = Fy_ = 0, the classical expression for dynamics
can be deduced independently for the domain {2 as

MkUk + KUy =0 (4)

where M and K represent the classical mass and stiffness matrices. The
definition of traction forces require a system level description of the disc-pad
ensemble, which is briefed in the next sub-section.

2.3 Contact and friction formulation to model flutter-type dynamic
instability

We provide a brief explanation for the contact and friction formulation de-
fined through a holonomic constraint and a follower force model, and the
characteristics of the matrices K¢ and K/ obtained through such definitions.
The definition of a follower force can be largely said as implicit for modelling
flutter-type dynamic instability. In the case of flutter-type instability arising
from friction between solids, the main hypothesis for CEA is that the onset
of instability occurs at perturbations very close to the quasi-static state such
that the non-linearities from contact separation can be effectively ignored and
hence, the friction phenomenon at the perturbed states can be modelled with
the contact conditions of the quasi-static state purely by displacement depen-
dent forces which are also known as follower forces. This defines the system
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as holonomic and autonomous since the nature of the follower forces depend
only on generalized coordinates without explicit time dependence. Further,
we expand the weak formulation of contact and friction. More on the topic of
perturbations around a quasi-static state can be found in (Martins et al, 1999).

Even though classically, the constraints are defined independently for con-
tact and friction, the follower force model for friction can be modelled without
explicit definition of constraints for friction, but as a direct extension of the
contact constraint to be defined. Hence, with the above considered hypothesis,
the constraint to model contact and friction is given as holonomic rather than
in a conventional sense which are given through inequalities such as Signorini
conditions for contact and Coulomb-Amontons law for friction.

We introduce the contact and friction forces F. and F as externally ap-
plied traction forces independently on their respective domains. Though the
inner products (Fe,,¢k,i) and (Ff,, ki) are of the linear form, the definition
of the forces F,. and Fy through the constraint, with discretization lead to
bilinearity. For simplicity, we give a concise explanation for arriving at F, and
F¢ through an example by considering two domains {2, and {2, in contact,
with the derivation of traction forces on §2,. The holonomic constraint for the
domains in contact at Iy, : £2, N {2 is given as

(ug —up).0p =0 on I, (5)

where the holonomic constraint characterizes the property of no contact
separation for the perturbed displacement field. The kinematic relation for the
contact is satisfied through the outward normal projection v,, from I, of one of
the domains to the other. The constraint is enforced by penalty method where
the degree of violation of the constraint is penalized by a factor «y, which can
be interpreted as normal contact stress F., on I,_, given as

F., =~v((uq — up).0p).0n on I, (6)

The value of  is usually determined experimentally rather than conven-
tionally where it is sufficient to be high enough concerning numerical stability.
The tangential stress Fy, by friction is defined through follower force model
(Hibbit, 1979) with Coulomb’s law, where the stress is prescribed in the direc-
tion of motion ¥, which is tangent to the contact stress F,, given as follows

Fr, = pu(y(uqg —up).0y).0¢ on I, (7)

where p is the coefficient of friction. Through discretization of the displace-
ment field v —similar to arriving at equation (2)— for the continuum description
of F., and Fy, as I, and F'y, respectively, the weak formulations (F._, ¢.;)
and (F'y,, ¢k ;) can be expressed as

<Fca7§0a,i> = / (V(Ea - ﬂb)~QA)n)~S0a,i"lA)n cha V@a,ief% S éa (8)
T

Ca
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Froooud = [ wy(@ = W)60) oty AT, Vpwier, €@a (9)

I,
Similarly, the traction forces on I, can be defined as F.,, = —F., and
Fy, = —Fy, . There are several methods through which the above integrals
can be solved which we do not focus here, but the following reference can help

with special focus on Isogeometric approach for contact (De Lorenzis et al,
2014).

The above formulations can be extended for the ny domains, where the
bilinear form for Y " (F,,, o) and > 1 (F,, ¢k;) define the matrices K¢
and K/ for contact and friction respectively for the system. The matrix K¢
is symmetric and hence, K + K¢ leads to a positive definite matrix where
the eigenvalues given by CEA mostly define a stable system — with K being
the stiffness matrix of the system for the n, domains. While, the matrix K7 is
non- symmetric from the non-conservative model of friction defined as follower
force. Hence, the matrix K+K°+K7 in a sense models material stiffness along
with the augmented stiffness to model contact and friction characteristics for
perturbations around a quasi-static state.

3 Stability: analysis and description of criterion

Considering brake squeal, it is well known that squeal noise can be linked to
the modal behaviour of a system (Soobbarayen et al, 2013, 2014). Hence, it
seems quite obvious to build an optimization criterion to characterize squeal
noise on the importance of these unstable modes which defines flutter-type
instability. The definition of such a criterion called ”Stability criterion” is de-
fined through CEA, detailed in this section as follows.

3.1 Complex-eigenvalue analysis (CEA)

From the expansion of Eq. (3), with the weak form from the Egs. (8) and (9),
the matrix form of the dynamics with contact and friction definition for the
considered disc-pad system ”d — p” is defined as

Md—pUd—p + (Kd—p + Kg—p + Kgfp)Ud—p =0 (10)

With the assumption of a feasible solution of the form Ye* for U, the
characteristics eigenvalue problem can be defined as

(WMap + (Kap + K, + K ,))Y =0 (11)

where A and Y represents an eigenvalue and an eigenvector respectively
for the system. It is evident that the value of A determines the outcome of the
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solution U as the power of exponent, hence the stability of the steady-state
system. With the definition of non-conservative forces in the model, the value
of X\ may take a complex value, where the imaginary part $(\) defines the
oscillatory behaviour of the dynamical system and the real part ®(\) charac-
terizes the stability of the steady-state.

Hence, depending on the value of R()\), the stability of the system char-
acterized by a mode of eigenfrequency A can be categorized into one of the
following:

— R(A) > 0 unstable system, which can indicate the presence of Squeal noise.

— R(A) < 0 stable system

— R(A) = 0 neutrally stable. This is usually not a physical steady-state be-
havior.

In our system, the coefficient of friction p is the driving parameter which
determines the stability, such that increase in the value of p can drive the
system from stable to unstable behaviour (Bigoni and Noselli, 2011; Hoffmann
et al, 2002; Sinou and Jézéquel, 2007). This type of instability is characterized
by Hopf-bifurcation where the presence of a limit cycle is determined by the
occurrence of a pair of eigenvalues as =R(\,)+3(\y), with A, being an eigen-
frequency of two modes undergoing coalescence at . The presence of this type
of limit cycle defines a self-excitation behaviour leading to flutter-type insta-
bility. This is physically understood for our system as follows, the bifurcation
leads to two modes with £J(),, ) for a same frequency (A, ) at the point of

bifurcation p, and when p > p,, the two modes +%(X“>NO) + %(X,DHO) and

o~ ~

~R(Ap>p,) + S(Ap>p,) characterize stable and unstable behaviours respec-
tively, leading to mode-coalescence phenomenon. The presence of this type of
instability is correlated to the magnitude of brake squeal noise proportional to
+¥(\,) as a contribution to squeal noise by the unstable mode of frequency
Xu among the other modes in A, which is a set of eigenvalues of the d — p
system. Hence, we define a stability criterion Cs through the magnitude of
such type of unstable modes +3R(\,) in A, for all the values of p, detailed in
3.2.

Example of mode shapes for the disc-pad system obtained through CEA
are shown in the Figures 1 and 2.

From post-processing, the following observations were made: normally at
low frequencies, the mode shape of the pad follows the shape of the disc
with correspondence in magnitude for displacement field at the contact region.
While at higher frequencies, the behaviour is complicated to understand, but
relatively larger difference in magnitude for displacement between the disc and
pad were observed. We also remind that the results are subjective and depend
on the value of 7 which is usually determined experimentally, where we used an
arbitrary suitable value considering numerical stability and convergence. Fur-
ther, the unstable modes lead to definition of eigenvectors in complex-plane
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9.4e01
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—04

I 02
0.0e+00

Fig. 1: Example of disc-pad stable modes

Displacement

(a) Mode no. 5, Frequency:1476 Hz

for displacement field to understand its behaviour, which was not considered
for representation in Figure 2. For an intuition, a complex eigenvalue, along
with the natural frequency defines the phase-lag in the displacement field for
an eigenvector and hence the stable equilibrium position of the displacement
field for an eigenvector is never achieved simultaneously.

3.2 Stability criterion

In the context of shape optimization, the idea is to reduce the influence of the
friction parameter g in determining the shape of the system to characterize
instability, since the parameter p is mostly uncertain in the real world and
also the instability could be easily avoided at lower values of p. Hence to
define a criterion which characterizes the instability for a geometric shape X
of the system independent of the coefficient of friction, we define the criterion
as follows

Cu(X) = / max{R(A(X, 1))} (12)
"

which estimates the maximum of the real part of the eigenvalues of the
d — p system at a given value of p, integrated over all the values of p.

(b) Mode no. 26, Frequency:9245 Hz

99e01

—06

—04

02

0.0e+00

Displacement (Pad)

Displacement (Disc)
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1.6e+01
14
12

|
e
Displacement (Pad)

Displacement (Disc)

(a) Mode no. 45, Frequency:12236 Hz

Fig. 2: Example of disc-pad unstable modes, where the displacement field is
considered only for real-part of the eigenvector

When defined through numerical integration, the criterion demands eval-
uation at several values of p and hence is computationally expensive. But
this can be evaded through taking advantage of parallel computation with re-
duced dynamical models using Craig-Bampton reduction (Bampton and Craig,
1968), where the computation of the matrices in physical coordinates followed
by dynamic model reduction are achieved on the main core. The only vary-
ing parameter in the parallel cores is p and hence, the calculation of the re-
duced friction matrix Kﬁ_p matrix —i.e., the reduced matrix represented in the
Craig-Bampton coordinates— is defined with g = 1 on the main core and the
parallelization is defined for distinct values of p for uIA{gfp. This means that

in addition to the definition of uf{f;_p, the computation on the parallel cores
is limited to solving the eigenvalue problem (11) with the reduced dynamical
model for evaluation of the criterion (12), which makes it computationally
efficient.

4 Optimization setting

In this section, we detail the shape optimization defined through NURBS pa-
rameterization of shapes for the pad, with its associated constraints and the
objectives for the optimization. We also provide a short description of the pa-

I

(b) Mode no. 82, Frequency:17259 Hz

1.8e-01
0.16
014
012

01

008
006
004
002
0.0e+00

Displacement (Pad)

Displacement (Disc)
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rameterization and refinement strategy for the disc-pad system domain.

4.1 Shape optimization

The optimization is defined for the boundary 0I%,,, of the planar surface of
the pad I, which is in contact with the disc, where the thickness of the pad
and the design parameters of the disc are constant. The geometry of I, , is
parameterized through NURBS as

Xpad (&m) ZZR i,p (mPi,; (13)

=0 j=0

Hence, in our setting, the shape optimization is defined for the shape of
the NURBS curves Xc(l)(s),XC(2)(t),XC(3)(u)and xM (v) which parameterizes
OI.,., that encloses the surface X724(¢,n), as shown in Figure 3, where the
curves can be expressed as

XPed(g,nle = 0) = XM(s)
xPed(g nln = 0) = X2(t) (14)
XPod(g,ple =1) = X (u)
XPed(g nln =1) = X (v)

The parameterization X %(¢,n) from the above four curves defined for
optimization was realized through discrete Coon’s patch method, given by the
following relation

X4 m) = X (s)(1 =€) + X () (€) + X ()(1 = ) + XD (0) (1)
XP0)(1 =61 —n) = X (D)1~ &)
= XPO)©)(1 —n) — XP W) n) (15)

The Coon’s patch method is an explicit linear method and hence com-
putationally efficient in realizing parameterization, but the method doesn’t
guarantee injective mapping. In our experience, the shapes realized through
Coon’s patch method that doesn’t satisfy injective mapping are largely too
conceptual for pad shapes and hence, given the complexity of realizing pa-
rameterization for such shapes, we stick with only the shapes realized through
Coon’s patch method for which injective parameterization exists.

For simplicity owing to the initial phase of our analysis, in order to limit
the parameters in optimization, we restricted the degree of each curve to 2 and
hence, this leads to the surface X7%4(¢,n) with the property p = ¢ = 2, and
each curve is defined only through three control points which are just enough
to define a curve of degree 2. Then for shape optimization, we constrained
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Separates the
domain of the curves

XP(s) and XD (u)
in [ X,y X
(Satisfies Constraint 2)

Design domain
of the Pad

Xy Xy

and 0T

Fig. 3: An illustration describing the parameterization of I, CPad-

Pad

the mid-control point of each curve segment X, to move only normal to the
line joining the end control points of their respective curve segment, such that
the initial configuration of a curve aligns with the line joining its end control
points and that the mid-control points are also aligned, given as Constraint
1. Furthermore, the optimization is defined only for the position of the con-
trol points P; ; for fixed weights (32), i.e, we considered the optimization of
the NURBS geometry only through affine transformation without considering
projective transformation.

The injective parameterization can be achieved if the determinant of the
Jacobian that expresses a transformation X : 2 = 0is positive in all f),
where in our case is tested for X%¢(¢ 7). The set of constraints for testing
this condition was realized geometrically in our case where the mid-control
points are constrained (Constraint 1), and is given as follows
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Constraint set 2:

{XP ()N XP 0} U XD (w) 0 XD (0)} U {XDP () N X (u)}U
(X () N XB ()} u{xE 0 n X ()} u{XE () n XD (0)} =0
Vs, t,u,v € (0,1)

(XD 01 =€) + X OO} N{XV 0+ As)(1 =) + X0+ Au)(€)} = 0
XM=+ XPMEF N {XI (1= A5)(1 =€) + X (1 = Au)(§)} = 0
{XE0)1 =)+ X))} N {XE 0+ A1 —n) + X0+ Av) ()} = 0
KE W =)+ XN {XE (1= A1 —n) + XD (1= Av)(n)} = 0

where A represents an arbitrary small variation for the given parameters.
The first constraint avoids the intersection between the curves except for the
end points, where no self intersection of the curves is implicitly possible with
the constraints on the mid-control points. Satisfying the first constraint which
guarantees a fixed topology does not assure injective parameterization through
Coon’s patch method, for which the last set of four constraints are necessary.

Further, the definition of the pad surface to be with in the bounds of the
disc surface is given through a box constraint as follows

Constraint set 3:

(Xs(lb) < Xf“d(f,n) < Xs(ub)) : {[ c(lb)vXc(ab)]}m{[ c(lb)’ c(ub)]} =0 (17)

where the choice of Xy and X(,p) depends on the design choice for the
domain of the disc to be in contact with the pad. Further, the box constraint
is adapted to limit the redundancies in geometric description i.e, to limit the
scope for a given shape to be represented through more than one way with
in the same design space. To avoid this type of redundancy, we restricted the
domain through box constraints for at least two curves Xéi)(.) and XY )()
of the four curves, such that the intersection of their domains is a null set.
This leads to restriction of the design space with compromise for reducing
the redundancies. Hence, we avoided some of the redundancies such that the
restricted design space has lower chance for more meaningful designs. This
maybe an interesting anomaly to investigate since the redundancies may lead
to larger design space with more severe multi-modality for a function with
shape variables.

We further impose an inequality constraint in order to avoid designs with
smaller contact surface, given as



Title Suppressed Due to Excessive Length 15

Constraint 4:

Area(XP (€, n)) > Apnin (18)

Pad

axFed 9x .

where Area(XF(¢ 7)) : f£ fn | =5 x =55 —|d&dn and the choice of Apin
depends on the minimum contact surface area that is required on the Pareto-
front, since the maximization of the contact surface is to be defined as one of

the objectives.

The definition of the shape of X (¢, n) through this strategy means that
there is no requisite for a reference configuration to define the optimization,
but instead the pad shapes are created through random generation of curves
with C? continuity between them. We assume that this restricts bias to any
particular configuration and hence encouraging more randomness in defin-
ing a meaningful geometry. This highly restricts the use of gradient-based
approaches for optimization, since this can cause apparent discontinuities in-
duced by the constraints. Some of the limitations can also be attributed to lack
of exploring classical shapes such as the annulus sector pad shapes in our ap-
plication even though such shapes are already a subset of the the design space
defined, which can be otherwise defined through a reference configuration, and
also the randomness lead to more probability of failure for the constraints.

Finally, the objectives for the Multi-objective optimization can be posed
as optimization of the following functionals:

— Objective 1: min Cs(XF(&,n)) | S(A(XF(¢,n))) € [I0KHz, 13K Hz]
— Objective 2: max Area(XF(¢, 7))

where the functional optimization is defined over space of NURBS func-
tions. As aforementioned, we fixed the degrees and the number of control points
of the NURBS surface X7%4(¢, ) and hence, the optimization is restricted to
a fixed number of control points P; ;.

4.2 Isogeometric parameterization and refinement strategies for the disc-pad
system domain with contact considerations

For the following, we do not focus on the mesh sensitivity for CEA or the
stability criterion, but instead the below refinement strategies can be seen as
to realise the classical mesh refinement considerations for a contact problem,
where more elements are typically defined on I, and at the vicinity of 01
to capture more accurately the contact characteristics and the strong solution
gradient. This is especially more challenging with NURBS parameterization
for local refinement, hence we expose here some strategies to achieve local re-
finement for such applications. From our observations, the refinement at the
I'. and around OI. seems to effect the results of CEA and converges with
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sufficient refinement, but a more qualitative assessment of the sensitivity has
not been developed here.

The planar parameterization X%4(¢, 1) can be easily extended to define
the volume XF?(¢ n, () considering the thickness of the pad, through the
tensor product definition (34), given a NURBS line along the thickness to
achieve the parameterization of 2p,4. For the disc, we used multi-patch pa-
rameterization for 2p;s. as XP¥5¢ = Xfisc(Pl)(&n,C) U thsc(]v) &,n,Q)
to achieve local refinement on I, . The initial surface parameterization for
the disc patches: Xfisc(m)(f, n) and xPiseP2) (&,7m) can be achieved through
the concept of revolved surfaces which is pretty straightforward, detailed in
(Piegl and Tiller, 1996), which assures robust injective mapping since the
curve to be revolved is a straight line perpendicular to the disc axis. The

planar parameterizations XSDiSC(Pl)(f, 7n) and XsDisc(m)({, 1) can be extended

to XEiSC(Pl)(f,T],() and XD (&,m,C) respectively similar to achieving
X7En,€)

For any refinement, the space for parameterization remains the same i.e,
(€,m,¢) : [0,1]® and the refinement is defined only through manipulation or
addition of knots and control point to achieve an analysis-suitable parame-
terization. After an analysis-suitable parameterization, to take in to account
of the additional control points and the manipulated knot vectors, X?¢ and

. ~Pad ~=Di .
XDise can be expressed as X, *“ and X, **°. Hence, the NURBS bases associ-

... —=Pad —Di . S
ated with X, “*and X N * are used to define the space for approximation in
isogeometric approach, detailed in Section 2.2.

Normally across the boundary 07, of a contact domain I, there is drastic
change in the solution gradient and hence, the parameterization needs special
attention owing to the continuity of the NURBS bases. The tensor product
property of the NURBS gives further challenge for local refinement which is
usually desired on I,.. These challenges can be largely overcome by adaptation
of NURBS bases to T-splines (Bazilevs et al, 2010) and THB-splines (Giannelli
et al, 2012), but requires extensive adaptation. Hence, we defined a multi-patch
parameterization strategy through collocation and projection of the properties
defined on control points between two merging surfaces, which was simple and
efficient for our application with fewer adaptation. Even though the consid-
ered multi-patch approach only considers C° solution continuity between the
patches, the post-processing of the mode shapes show sufficient smoothness in
displacement field across the patches for the disc, shown in Figure 4.

The multi-patch parameterization for 2p;s. to break the tensor product
—Disc(P1 .
» peeP) contains

defined through a fine mesh by h-refinement and

definition of NURBS is shown in Figure 5, where one patch

the contact domain chsc(m)

—~Disc(P2)
v

the other patch with a relatively coarse mesh sufficient to capture



Title Suppressed Due to Excessive Length 17

Y

yDisc(P1
Xvuc( )

)_(VDisc(P2) - \

Fig. 4: Anatomy of parameterization for the disc-pad system with arbitrary
dimensions, shown here for Mode 9, Frequency: 3630 Hz

the required dynamic properties. And different strategies were used to reduce

the solution smoothness induced by the continuity of the NURBS approxima-

tion across the boundary 01 where typically strong solution gradient
—Disc(P

exists. For pad shapes where the knot lines on X tec(P1) can be aligned with

Olcp,..pr)» h-refinement can be used with finer refinement around 01, . .,

while the contact domain I, _ ., itself is discretized by h-refinement through
a relatively coarse mesh compared to the refinement around 0I%,, . ,,,, but

finer than the rest of the domain. For pad shapes where the knot lines on

~Disc(P1 . . .
X, #PD cannot be aligned with the boundary 9I%,, ), we purely relied
on h-refinement with much finer refinement. For the shape optimization, we

used the later strategy due to random definition of shapes.

Disc(P1)

Further, in the optimization loop, the dimension of the disc patches were
adapted for changes in I, to realize a more restrictive local refinement

Disc(P1)
on Iy, p, and across Ol Hence, the knot vectors were also adapted

CDisc(P1) "
to have uniform spacing of knots for a given region irrespective of the change

in the dimension of the patches.

5 Optimization process

The stability criterion as previously defined does not allow gradient based opti-
mization schemes and hence, we purely rely on metaheuristic approaches. The
following section aims at describing a strategy for optimization using EGO
for expensive black-box functions and its extension to MOO using a meta-
heuristic approach. Further, we describe a new strategy to improve resolution
for the improvement to be defined with the Bayesian view for MOBO, with
fewer adaptation to existing well-established methods and with focus on a
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)_(VDi.u‘(P 1)

oI’

CDisc(P1)

CDisc(P1)

Yeisc(PZ)

Fig. 5: Multi-patch parameterization of 2p;s. as Xfisc = Xf,jisc(Pl)(f, n,¢)U
xP wc(m)(f ,m,C), with h-refinement at the contact region I,

Disc(P1) "

simple and fast algorithm to implement.

Bayesian optimization is an effective strategy for optimising computation-
ally expensive objective functions (Shahriari et al, 2016). The idea is based
on Bayes rule where the prior knowledge P(H) of the hypothesis H and the
likelihood of the evidence £ given the hypothesis P(E|H) are used to infer the
posterior knowledge of the hypothesis given the evidence P(H|E), where the
proportionality is expressed as follows

P(HIE) o P(EIH)P(H) (19)

In our setting, the hypothesis H corresponds to a function f(z) and the
evidence € to F : {f(x1), f(x2),..., f(xn)} where the function was sampled
on D : {x1,x2,...,2,}. The posterior knowledge can be then used to infer the
optimum of the function where the expensive computational model needs to be
evaluated. The new evaluation is then used to update the belief of the prior,
and with the likelihood to infer a new posterior. The process is run subse-
quently for optimization with the expectation of reaching the global optimum
for the function. The most common method to model the prior of a function
is through Gaussian process, which also infers the posterior as Gaussian. This
is more efficient since this presents the prediction and the uncertainty of the
prediction, which provides a decisive knowledge to construct an acquisition
function to sample more efficiently for optimization.
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The modelling of prior, and the inference of posterior, for a function to
be approximated takes the role of surrogate modelling commonly known as
Gaussian process regression or Kriging. There are different context through
which the Gaussian process regression could be presented owing to its diverse
origins. We present in the context of function space view of Gaussian processes,
where with relation (19), we defined the probability directly over the space of
functions. The interested readers can refer to the following articles for more
details (Rasmussen and Williams, 2005) (Forrester et al, 2006). Followed by, we
present an acquisition function where we adapted Expected Improvement(ET)
that defines EGO (Jones et al, 1998).

A Gaussian process can be viewed as distribution over a function contrary
to a Gaussian distribution which is distribution over a random variable or in
the case of a multi-variate gaussian distribution over random variables. Hence,
any sample from a Gaussian process (GP) is a function, where the distribution
constitutes a mean function u(x) and a covariance function k(x, ) given as
follows

’

f(@) = GP(u(x), k(z, 2 )) (20)

In other words, the existence of a function is treated in a mere probabilis-
tic sense. The GP prior P(f(x)) is defined for modelling f(z) through a mean
function which is usually a constant or a polynomial trend function. This can
be seen as the deterministic part which captures the general trend of the func-
tion, while the covariance function k(z, sc/) models the stochastic trend which
is the spatial correlation between any f(x) — pu(z) and f(z') — p(z’). The spa-
tial correlation is modelled by hyperparameters which are the constants in a
covariance function cov(f(x) — u(x), f(z') — pn(z’)). To define the prior over
k(z, zzc,)7 the hyperparameters are estimated a priori, which is usually done by
optimising the likelihood function for argmazg L(F|6).

The conditioning of P(f(z)) with F for the sampled arguments D as
P(f(x)|D,F,0) results in a GP posterior which can be viewed in a finite
dimensional sense as the posterior joint Gaussian distribution of

P(f(x7),P(f(x3)),...,P(f(zk)) across rest of the function where its ar-
guments =} has not been sampled, i.e. zf ¢ D. While, the P(f(z})|D, F,0)
for any x} can be obtained by marginalizing the posterior joint Gaussian dis-
tribution.

To move on from the abstractness of a GP to Gaussian distribution, the
properties of Multi-variate Gaussian distributions allow to isolate a part of
GP to define a joint Gaussian distribution of only the sampled arguments D
and an argument z* where we want to predict, where the joint distribution is
expressed as
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P(f(x1)) w(xy) k(z1,21) ... k(z1,24) k(z1,27)

— N 7 (21)
P(f(xn)) w(xy) k(za,z1) ... k(zq,z0) k(zq, x})
P(f(x)) p@i)]| [k @) .. k(e 2n) k(2] 27)

The above joint distribution can be disassembled to define the mean and
the covariance matrices for the sampled arguments and an argument to be
predicted as

k(z1,21) ... k(z1,2q) k(x1,z¥) w(zy)
k=| . lw=| ¢ =] | @
k(xn, 1) ... k(Tn,Tn) k(xn, x}) p(zn)
where k(zi,2;) = cov(p(xi) — f(xi), u(z;) — f(x;)) is defined through a co-
variance function with the prior estimation of the hyperparameters. We used
Matern 5/2 kernel as the covariance function, since it is more versatile to

characterize spatial correlation in our application and robust in the context of
Cholesky decomposition.

The conditioning of the joint distribution Eq.21 defined by the prior knowl-
edge of 0 with the sampled data D and F gives the prediction for any z} as
follows

P(f(@})IF, D,0) = N(p(a}) + KR (F — (D)), k(a},a}) - KK '&)

axy) 62(x7)

(23)
The conditioning of the prior P(f(x})) with the likelihood F to infer the

K2

posterior P(f(z})|F, D, ) gives the underlying Bayesian view P(H|E).

5.1 Acquisition function definition

While we can infer prediction and the variance of a prediction, to sample,
it is more efficient to quantify with a single scalar value which combines
both to get a better inference. This is achieved through Acquisition func-
tion, where the goal for sampling can be defined based on the optimization
context, for which a wide range of functions exist. In the scope of ”exploration
and exploitation” principle for optimization, we used Expected improvement
(EI) criterion which is simply the expectation E(I(z)) of the improvement
I(z) = f(z)t — f(z), where f(z) : N(fi(z),é(x)) as an outcome of the GP
prediction and f(zT) being the reference value to be improved. The ET func-
tion is given as follows
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fa®) R .
BIw) = [ 1@PDE(f()) df(z) (24

where PDF(.): Probability density function. For a single objective Bayesian
optimization, the problem leads to finding the arg max,FEI(x), which is es-
sentially the approach of EGO (Jones et al, 1998). For MOBO, the concept
can be extended through pareto-optimal solutions, where one or several of the
objectives could be maximising the EI of their respective functions, which was
first proposed in (Jeong and Obayashi, 2006). More strategies and acquisition
functions for MOBO, each with its respective advantages, are given in the
following references (Knowles, 2006)(Luo et al, 2015).

5.2 Multiple reference values acquisition strategy

We extend the work of (Jeong and Obayashi, 2006), by defining multiple ref-
erence values with ET in the context of MOO to achieve MOBO. For a sin-
gle objective optimization, we look for the improvement EI(z|f(x")) where
f(z™) usually corresponds to the Utopian value. While, in the MOO context,
the Utopian value known for a function to seek improvement can sometimes be
too unrealistic on some parts of the objective space. This demands the improve-
ment to be defined locally in an objective space through NDS. As well-known,
a single objective ET can be extended to MOO through FHV I where the im-
provement for a multi-variate gaussian prediction® is defined through the NDS
in an objective space rather than a specific value from the NDS, which leads
to definition of improvement in the hypervolume metric. But the evaluation
of integration to define the FHVI for a multi-variate gaussian prediction is
cumbersome and nearly impossible for large number of objectives. Hence, we
follow the approach similar to defining max FI independently for GP meta-
models for MOBO through non-dominated principle of genetic algorithms like
Non-dominated sorting genetic algorithm-2 (NSGA-2), but with muliple ref-
erence values rather with a single reference value. This means that different
regions of an objective space can constitute its own reference value as goal
for improvement. This requires a precise definition for realistic goal/reference
value to seek improvement, for which we define in a probablistic sense with
the following explanation.

The proposed approach is generic, since it preserves the generic character-
istics of NSGA-2 for MOO and the analytical evaluation of ET criterion, even
though we make modifications for EI with the new approach to be efficient
in MOO. Constraints can also be handled easily as part of NSGA-2, based
on ranking for the degree of violation of the constraints or even completely
removing the individuals violating the constraints from the population and

1 Multi-variate Gaussian prediction is obtained through defining a joint distribution of
independent univariate Gaussian predictions from GP meta-models in MOO
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hence discouraging such individuals for future generations.

While a pareto front could be achieved with a single reference value f(z)
for max E1(x|f(zT)) as one of the objectives, the resolution to define im-
provement is only efficient for a subset of the decision space depending on the
GP prediction relative to f(zT). This can be seen through the following cases

where E{( : is defined for minimization of f(x), as follows:

Casel: For ji(z) £6(z) > f(z%), EI (z|f(z"))=0

(25)
Case2: For ji(z) £ 6(z) < f(zt), FEI (x|f(z)) =~ f(z1) — fi(x)

We here consider that f(x) is an objective of a MOO and hence for MOBO,
the optimization is defined for ~EI in the place of f(z). Case 1 shows that

the choice of the utopian value f(z1) to seek improvement for a subset of =
in some regions of the objective space where ji(z) 4+ 6(x) > f(z") can have
no probabilistic chance for improvement and hence, to seek for improvement
in this case can be said as being too greedy. While, this is insignificant in the
context of single objective optimization where these measures can be ignored,
the zero or the infinitesimal values provide less resolution for comparison to
define NDS for MOO.

Case 2 shows that the measure of improvement is simply given by the
distance between the prediction fi(z) and the reference f(z™), which is only
acceptable in cases where there is no realistic reference to seek improvement.
This is possible when choosing the Nadir value as reference for improvement,
which can be said as being too pessimistic to seek improvement. The pes-
simistic sense of seeking improvement can be seen as lack of risk for exploration
in the regions of the objective space where ji(z) + 6(z) < f(z) and hence

the absence of the uncertainty term () in evaluating Eff( ) The above two
mainj(x

cases show the limitation of using a single reference value for EI and hence, it
is efficient to define improvement locally considering the NDS for MOO. The
above cases are graphically shown in Figure 6.

Choosing the reference value f(z%) to define ET depending on where f (z)
lies in the objective space makes the improvements hard to be compared since
there is not a fixed reference value on the span of f (z) for the comparisons to
be based on. Hence, we augment the ET to have a common frame of reference
for comparison, where we consider the axes of the objective space itself as
the frame of reference for comparison. The comparison is essential for defining
NDS for optimization in the context of MOO. Hence, the augmentation of ET
defined for a function f(x) with f(z™1) as reference value is given through the
criterion Expected Value (EV) as follows
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Case 1 Case 2
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Fig. 6: Variation of EfI( )(f(x+)|x) for change in reference value f(z1)
mainj(x

EV (z[f(z7)) = f(a¥) — EI (a|f(a™)) (26)
minf(x) minf(x)
The definition of EV avoids the problem of comparing improvements with
several reference values on the span of f(z). But the above two cases take a
different role for the EV criterion (see Figure 7), given as follows

Casel: For ji(z) £6(x) > f(zt), EV (z|f(z")) = f(a™)

minf(x)
(27)
Case2: For j(z) £ 6(z) < f(z1), EV (z|f(z™)) =~ a(z)

minf(x)

For Case 1, in the context of EI, the improvement becomes infinitesimal
or zero for comparison. While in the context of EV, this leads to a prob-
lem of ”over-estimation” for improvement, where the value of EV becomes
the reference value itself and hence, an unrealistic reference value can lead to
overestimation of improvement.

Similarly, the difference in context between EI and EV can be seen for
Case 2. Here, we give the explanation in avoiding the above cases regarding
the E'V criterion since it is much easier to work with the coordinates of the
objective space. As defined before, the Case 1 can be avoided by seeking for
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Fig. 7: Variation of EV (f(z")|z) for change in reference value f(z™)

improvement in regard to a reference value which is more realistic for improve-
ment rather than being too greedy. The realistic scope of improvement consid-
ering f(z %) can be defined through the CDF P[f(z) < f(z )] of the GP pre-
diction f(z): N(ji(z),&(x)). We here remind that the given CDF is the same
as Probability of Improvement criterion (PT). Hence, the CDF constituting to
zero for any reference value can be said as being too greedy for improvement,
where there can be a limit set for the CDF value to be considered with com-
promise on greed. For the objective minf(x), the limit could be set in terms
of ju(z) — e6(x) where we seek for P[f(z) < f(z1)] > P[f(z) < (z) — eo ()],
with € being the parameter to be defined. A higher value of € means higher
the greed to seek improvement, but the balance to set the limit could be oth-
erwise seen as the acceptable risk that can be considered for exploration. The
higher risk with considering a high value of € for fi(x) — 5 (z) may reap higher
benefits but this could be otherwise since there is an equal probability for

f(z) > ji(x) + e6(z). Hence, this requires a right balance for the choice of €
with acceptable risk for exploration.

For MOO, the most feasible improvement that we can look for is based on
empirical NDS/pareto-optimal solutions & := {p1,pa, ..., Pz} of the sampled
arguments in the objective space, where p; is an argument in the NDS. With
f(z) constituting the objective space, there can be multiple NDS that satisfy
the condition f(p;) < fi(z) — ed(x), where we choose the p; which gives the
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minimum value for E}/( ; The choice of the minimum value of E}/( : for a

function to be minimised intrinsically avoids the Case 2 unless it is impossible
when no suitable reference value exists. This avoids the choice of the reference
value which can be too pessimistic for improvement. In overall, this provides
a balance between greed and being pessimistic for improvement, defined by e.
The above definitions could be expressed as follows

EV (x|ZP,e) = min ( EV |z
LBV (@126 = min ( BV (f(p0)la) -

Ps = {f(p) < i) — ed(x),Vpi € &}

where the discrete optimization of min ( EV  (f(pi)|z)) can be implic-
Pi€EPs minf(x)

itly satisfied when defining NDS with EV (2], €) as one of the objectives

min f(x)
in the MOO to be defined. Alternatively, from the nature of proportional-
ity for EV(f(pi)|z) o f(pi), shown in Figure 7, the most suitable refer-

ence value f(p;*) to achieve m?g ( E}/( )(f(p1)|:1:)) can be simply given as
pi€ minf(x
f(pi*) = mz;} f(pi). In short, we define the Eq. (28) as EV criterion for the
pPi€Ps

i

following discussions.

The given definitions allow to define a EV criterion in the context of MOO
for a GP meta-model. Hence, the infill points for MOBO can be obtained from
the NDS achieved through the MOO of EV criteria, where each objective in
the MOOQ is a EV criterion defined for a computationally expensive function to
be optimized. The MOO can be achieved through algorithms like NSGA. The
independent definition of improvement for functions to be optimized through
EV in a MOO allows to work with only univariate Gaussian distributions and
hence, large number of EV criteria could be optimized with ease.

Once NDS are obtained for optimization of EV criteria in MOO, the prob-
lem leads to choosing the infill points among the NDS. This can be dealt with
clustering in the objective space through K-means of the NDS and a point
can be sampled from each cluster (Jeong et al, 2006), to achieve better di-
versification also the possibility for parallelization. Considering simplicity, we
chose the most uncertain point in each cluster given by the uncertainty of the
GP models, where this can achieve exploration. Hence, this strategy tries to
reduce uncertainty in the parts of the GP meta-models involved in a MOO,
which are presumed to define NDS in the objective space rather than to seek
for improvement through any specific metric. But care should be taken, since
the adjacent points between two adjacent clusters can have the same measure
of uncertainty and hence can lead to samples for parallelization from the same
part of the design space.

We here give a further possibility to choose the infill points especially with
the EV criterion. Since we define EV in the coordinates of the objective space
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itself, there is also possibility to seek for Hyper-volume improvement (HVI).
This is computationally inexpensive since only the hypervolume calculation
of the NDS obtained through the optimization of the infill points taking into
account the empirical NDS of the sampled points in the objective space need
to be evaluated.

6 Results and discussions

All the results presented in the following discussion were obtained for the ob-
jectives defined in section 4. The GP meta-model was defined for the compu-
tationally expensive objective function Cs where we used a linear polynomial
trend function to define the prior mean and the covariance function was defined
by Matern 5/2 kernel considering anisotropic spatial correlation. Hence, in the
context of MOBO, the infill points were determined primarily for the evalu-
ation of the function Cy. Even though in our case, the GP model for MOBO
was defined only for one of the objectives, it can be extended for MOBO with
multiple GPs.

We present a brief description on the characteristics of the Pareto-front
obtained for MOBO through an EV criterion. The discontinuities appear in
the Pareto-front of Figure 8 due to local definition of improvement, since the
optimization is defined with multiple reference values where the discontinu-
ities occur, but with in the same optimization setting to define NDS through
NSGA-2. This means that the individuals in a given generation of NSGA-2
are defined with their respective reference values to seek improvement, but
the non-dominated sorting and niching are defined on the objective space as
a whole —which is less computationally expensive given the simultaneous def-
inition of improvement with several reference values. For EI criterion, the
complexity of the algorithm can be given as O(.4"), where .4 is the number
of evaluations of E'T for an iteration in NSGA-2, while for EV, the complexity
increases by O(A .4 ), with .# being the number of pareto-optimal solutions
in the set &. In our case this is outweighed by the complexity in constraint
evaluations and iterations for finding children that satisfy the constraints to
support the population size.

The optimization for the infill points through NSGA-2 was defined with
the following parameters:

Population size: 200

No. of generations: 50

— Crossover definition: Simulated Binary crossover (SBX)
SBX distribution index: 8

— Crossover probability: 0.9

Mutation definition: Polynomial Mutation

Polynomial Mutation index: 20

— Mutation probability: 0.2
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Fig. 8: Optimization for infill points with FEV  criterion and
—Area(XF(¢,m)). The colored points represent the population, with
each color representing a generation obtained through NSGA-2. The black
squared points are the NDS (P )) in the objective space and the vertical
lines correspond to the NDS which are used as reference values for the EV
criterion. (We here remind that the coordinates for the objective space and
with EV are the same)

Mutation probability was restricted due to more probability for failure with
constraints in defining X24(¢, ). This is balanced with increase in the pop-
ulation size and the number of generations for convergence.

In general, with E'V criterion, the initial generation starts with largely
individuals whose eligibility for reference value will be far from the Utopian
value —where the eligibility depends on the parameter e in (28)— and through
the progression of the generations will reach the individuals which will be el-
igible for improvement regarding the Utopian value. This is shown in Figure
10 for the E'V criterion with € = 1, along with comparison for ETI criterion in
Figure 9 with Utopian value as reference, where a same GP model was used
for both the cases.
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The colored points represent the population with each color representing a
generation obtained through NSGA-2.The red highlight at the iteration 50 is
to be compared with the iteration 50 from figure 10.
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When comparing Figure 9 and Figure 10, the optimization of EI with
Utopian value as reference has some correspondance to the optimization of
EV with Utopian value as one of the reference values, which can be seen at
the Tteration 50 for both the cases. This is quite expected since the improve-
ment related to the Utopian value is the same for both the criteria atleast in
the region where some probability for improvement exists given through the
parameter € for the EV criterion. In the region where improvement was not
possible to be defined for the EV given an Utopian value, the resolution for ET
was very poor, which happens as Area(XI??(¢,n)) increases. But for the EV,
for a larger Area(XF24(¢, 7)), the optimization was defined with a reference
value more probable. The above comparison shows the limitation of defining
improvement based on a single reference value where we chose Utopian value
to define the EI criterion, and hence justifies the definition of improvement
with EV criterion in our application. The limitation of a single reference value
can also be shown through Nadir value which we did not expose here, but a
theoretical justification to this limitation was given in 5.2.

Though in the above case there was a possibility to define some improve-
ment linked with the Utopian value for the ET criterion, but it cannot be in
general. This is possible when the Utopian value may correspond to the ex-
tremum of the function, where the FI with Utopian value as reference can fail
to define improvement completely since there can be no possibility to define
improvement related to a given extremum. But the E'V criterion can adapt to
define improvement with respect to the next possible reference value.

Though we have not provided results to show the effect of the parameter
€, it is also possible to infer through (28) that the discontinuities in the NDS
will become stronger with increase in the value of € and converges to the case
similar to EI with Utopian value as reference, except in different coordinates.
The opposite is true with decrease in € where the EV converges to EI with
Nadir value as reference.

We discussed the optimization to determine the infill points where the
choice of the infill points from the NDS is detailed in the section 5.2 and now
we show its consequence in the objective space for improvement in NDS of the
sampled arguments. The improvement of the NDS for the sampled arguments
in the objective space through the progression of iterations for MOBO with
the E'V criterion is shown in the Figure 11.
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The MOBO optimization (shown in Figure 11) was initiated with an initial
sample size of 50 which satisfy the constraints after Latin-Hypercube sampling
(LHS) and an addition of 48 infill points were added, with 3 points per iter-
ation for a total of 16 iterations. As it can be seen, the initial samples did
not cover any designs with larger Area(X?4(¢,n)), which is due to very few
designs in this region and hence, all the designs with larger Area(XF4(¢,n))
were purely obtained in the process of optimization. The improvement in the
NDS can also be seen where all the NDS in the final iteration were obtained
through the infill points. We also see some overlap of infill points but clustering
through K-means in the design space shows that the overlapping points mostly
correspond to completely different clusters, as seen in Figure 12, which also
indicates the multi-modality of the function Cs. The multi-modality maybe
also due to the redundancies in the design space as explained in section 4. The
overlapping can also be attributed to the choice of infill points from the NDS
obtained for the optimization of the infill points, where we did not choose any
metric for diversification but with the metric of uncertainity, as detailed in the
section 5.2.
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[I0KHz,13KHz] vs —Area(XF*(¢,n)). Clustering of the infill points,
with each color representing a cluster and black points representing the initial
samples
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The following measures of time are given in an approximate sense for a
general notion of the time involved in the given MOBO. We used a 10 physi-
cal cores (286_64) machine, equipped with 252G of ECC RAM. It took a total
of 53 hours to reach the given empirical Pareto-front, for which 36 hours were
spent on optimisation of the infill points, which was necessary given the design
space and the constraints involved. Each iteration of NSGA-2 took approxi-
mately 150 seconds, where most of the time was spent on constraint evaluation,
and hence 50 iterations in NSGA-2 took 2 hours to find the converged pareto-
front for MOO of the infill points. The evaluation of the stability criteria Cj
took around 22 minutes with parallelization, where the parallelization was ini-
tialized for 20 friction coefficients between 0 to 1. With the availability of 10
cores, the parallelization was achieved in two batches, with a minute taken
for each batch. This would have otherwise taken an additional 20 minutes to
evaluate (. Since the parallelization was defined for the evaluation of Cj, this
restricted the use of parallelization in MOBO, at least given the resources. Af-
ter analysis of the time involved in each step of the MOBO, we realized that it
would have been better to utilize parallelization for MOBO rather than eval-
uating Cj, since it would have cut time in our case to 47 hours, given that
three infill points were chosen for evaluation of Cy per iteration in MOBO.

We expose some of the shapes from the objective space in Figure 13.
It can be observed that, largely for a given Area(XI?(¢,n)) to achieve a
low value of C,(XF?(¢ 7)), the pad shapes prefer to align more radially
to the the disc than rather tangentially. It also seems that the pad shapes
prefer to achieve a shape with three vertices, even though the shapes are
defined with four vertices i.e., four curves of C° continuity between them,
where one of the vertices is smoothed out with some continuity or one of
the edges was defined to be very small to mimic a three vertices configu-
ration. The existence of very few solutions when Area(XF4(¢,m)) is larger
can be attributed to lack of design space where this explains the lack of im-
provement related to Cy(X?4(¢,7)) in this region. While, in the region of
the objective space for smaller Area(XFe4(¢,n)), there is more flexibility in
defining the pad designs X7%4(¢,n) and hence, better improvement in solu-
tions relative to Cy(XF24(¢,n)) were obtained. We also obtained an interest-
ing solution from this region with no instability as it can be observed, i.e.,
Co(XFo(€, ) | S(ACXFa(E,))) € [10K Hz, 13K Hz] =0 .

The proposed optimization leads to quite original shapes and the reader
should understand that these optimal solutions do not take into account the
possibility of producing mechanical parts, which is of course an important
design issue but is not the purpose of the paper. Thus, the chosen optimal
design has to deal with external constraints which should prevent some of the
proposed solutions to be considered.
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For a given initial sample, we provide a comparison in the objective space
for the infill points obtained with the E'V criterion against the same number of
infill points obtained through the ET criterion, given in the Figure 14, where
more NDS were found to be obtained through the EV criterion. The hyper-
volume comparison between the two cases corresponds to sample 1 in Figure
15, which was considered with infill points from 15 iterations.
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[I0KHz,13KHz] vs —Area(XFed(¢,n)). Comparison of infill points ob-
tained between EV and FEI criteria for an initial sample. Black points
represent the initial samples. Orange and green points represent infill points
obtained by EV and ET respectively, with red highlights for the NDS.



36 Pradeep Mohanasundaram et al.

In order to show the effect of initial samples to the improvement achieved
through MOBO with ET and E'V criteria in the objective space, the optimiza-
tion was performed with 5 different initial samples for 15 iterations, with 3
infill points per iteration. The hypervolume improvement comparison is shown
in Figure 15 where E'V criterion outperforms for all initial samples. We here
remind that the infill points were chosen not with the goal of HV'I but to
reduce the uncertainty of the solutions from each cluster of the NDS obtained
for the optimization of infill points, but consequently, this shows better im-
provement with E'V criterion because of better resolution in defining the NDS.
Further, the overall variation of the dominated hypervolume for each criterion,
with comparison between the criteria are shown in Figure 16.
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Fig. 15: Comparison between EV and EI criteria for hypervolume improve-
ment of NDS linked with the NDS of the initial samples, shown for a five set
of initial samples.
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Fig. 16: The variation of the dominated hypervolume for the NDS with ini-
tializing samples, obtained for the same set of initial samples in Figure 15.

7 Conclusion

We proposed an efficient strategy to deal with the shape optimization of brake
systems through a simple disc-pad representation for squeal noise reduction.
The weak formulation of contact and friction specific for modelling friction in-
duced instabilities through CEA was defined, with isogeometric approach for
discretisation. This kind of study may be considered for braking systems as
found in automotive or aeronautic industry, but also for many other complex
structures including friction phenomena, such as clutch. Through CEA, the
stability criterion was defined as a black-box function to characterize the in-
stabilities independent of friction coefficient for the shape optimization, where
parallel computation and dynamic model reduction techniques were used to
reduce the computational cost of the stability criterion.

In parameterizing the computational domain for the disc-pad system with
NURBS, a multi-patch parameterization strategy was realized for the disc
domain to achieve local refinement at the contact interface. While, the param-
eterization of the pad shapes was achieved through the discrete Coon’s patch
method. Hence, the design space in shape optimization was constrained to the
pad shapes for which injective parametrization exists with the Coon’s patch
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method. This was found to provide satisfactory shapes which are less concep-
tual for a pad design at the reduced cost of more advanced parameterization
techniques which require expensive optimization, though we are interested in
such conceptual shapes for future works. The injective parameterization ob-
tained through the Coon’s patch method was also found to have a good quality
parameterization required for CEA, where it can be difficult to define a robust
meshing for even such shapes with the classical finite elements without severe
element distortion. Though we are aware that the meshing can be achieved
irrespective of the domain with the classical finite elements when robustness is
not questioned, which is simply not possible with the body-fitted NURBS pa-
rameterization. Nevertheless, provided an intial parameterization for a design
description, the sub-sequent analysis-suitable parameterization can be easily
achieved which is the underpinning of the Isogeometric approach, but defining
an injective initial parameterization can be cumbersome at least for a shape
optimization with arbitrary definition of shapes, or given a parameterization
scheme, the question also arises for the bounds of the design space where a
good quality parameterization exists.

Moving on to MOBO, the expensive stability criterion was approximated
through a GP meta-model and a MOO was defined for minimizing the in-
stability and maximizing the contact area. The NDS were obtained through
MOBO for a given number of iterations where a new criterion EV was defined
as an extension of the classical EI criterion for better resolution in MOO.
The infill points obtained at each iteration of the MOBO were observed to
provide consistent improvement in the NDS. Further, the hypervolume metric
of the NDS was found to be better with the E'V criterion compared to the
FE1 criterion for the considered MOOQO, where the comparison was made with
five random initializations. Some of the shapes from the NDS and the worst
performing shapes were shown for comparison, where some empirical observa-
tions were discussed. It was also clear from the optimization that the insta-
bilities at some narrow frequency range as much as 3 KHz can be reduced or
completely eliminated through shape optimization irrespective of the friction
coefficient. We are aware that real-life braking systems can involve more com-
plex non-linearities, with more complex domain rather than a simple disc-pad
representation which can effect the understanding of the dynamics. Neverthe-
less, the above frame work with CEA and the disc-pad system can be used
for preliminary understanding of the dynamics purely linked with shapes in a
design process, where CEA is already widely used in industries for squeal anal-
yses. The optimization framework of MOBO could also be extended with more
complex considerations for which the meta-heuristic approach is more generic
irrespective of the objective functions and the constraints present, where we
only tested for a bi-objective case with GP meta-modelisation for one of the
objectives.
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10 Annexe
10.1 Isogeometric formulation

The Isogeometric formulation is a class of finite element method with main
difference in the choice of the class of basis functions used for approximating
a continuum solution. In general terms, for finite element method, to solve a
governing differential equation D(f) = 0 in 2 — R, with f = 0 on 942, an
unknown function f is defined in a finite dimensional space @ : 2 — R? whose
bases are a set of functions ¢; : i € Z, to obtain an approximation for f as
[ =2 vice fivi. Further, & C @, where ® is a Hilbert space where the solu-
tion of the continuum problem belongs. The Hilbert space induced by inner
product is given through the L? norm, where for the function f € L?(2) is
defined by || f|13. = (f. f) = [, [?d2 < oc.

For second order differential equations, the solutions are sought in a weak
sense from the Sobolev space H!(§2) where the inner product forms a Hilbert
space for 2 as

HY(02) ={p € L*(2),0p € L*(2), 1 <1< d},

Hy50(82) = {p € H'(£2), =0 in 002}

The approximation of function f in the finite dimensional space @ as ffor
the governing equation ®(f) = 0 results in a residual ©(f) # 0. The best hope
for finding the best projection J?E @ is to define the residual as orthogonal to
each of the basis ¢;, which guarantees a minimum error in L? norm, defined
as follovzs

(D(f)spi) =0 Vp €D,

where the problem leads to finding the coefficients f; for all the bases ¢;
with set of equations obtained with the above inner product for all the bases
in the space @. While in classical finite element method, the space of @ is given
through polynomials like Lagrange, Hermite and Serendipity, the Isogeometric
method employs NURBS basis functions which are typically used for param-
eterizing geometries in Computer-Aided Design.

We start with a brief description of NURBS basis functions, on which the
Isogeometric framework is principally based on. We start with a definition
of B-spline functions with extension to B-spline curves, from which NURBS
curves are introduced with the definition of a weighing parameter. This is fol-
lowed by description of higher dimensional geometries through extension by
tensor product definition.

The B-spline basis functions can be defined by Cox de Boor’s formula as
follows,

Ni,O (5) — { 1 Ez < g < gi-l-l (29)

0 otherwise
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Nipr (6 + 528 N (30)
£z+p+1 §z+1

§-&

Nip (€) Sitp — &

where p is defined recursively for p > 0 to obtain a curve of degree p, which
starts with a piecewise constant at p = 0. The knot vector on which the bases
span with continuity C?~! between the knots are defined through an open
uniform knot vector as = = {&1,&a,- -+ ,&n4p+1}, Where it satisfies partition
of unity between the knots &, and 41, with n being the number of control
points. The knot vector need not be equidistant and the multiplicity of a knot
& by M in the knot vector decreases the continuity by CP~M across the knot
&;, which defines non-uniform B-splines. The multiplicity is usually defined at
the ends of a curve where the continuity requirement beyond C° is not desired,
where M = p. The continuity of C° means that the control point is clamped
to the curve, and with this at the end points, the curve can be seen as the
interpolation between the end points through B-spline basis functions. Hence,
through B-spline basis functions and a knot vector, a B-spline curve can be
defined through the coefficients of the basis functions which are the control
points P;, as follows

n

Xe(§) =D PiNip() (31)

i=1

where P; € R, with d being the dimension of the space. The definition of
a weighing parameter w; > 0 associated with its respective basis function V;,
normalized defines rational B-splines where it respects the partition of unity,
given as follows

X6 =3 vl 39
O= 2 ST wN® @
R; p

The parameter w; provides a new dimension for controlling the geometry,
through projective transformation, while the affine transformation is achieved
by P; . Hence, the combination of non-uniform knot vectors and rational basis
functions define NURBS.

The higher dimensional NURBS are a natural extension of its 1-dimensional
precursor through tensor product definition where the order of the tensor is
the same as the dimension of the geometry. For a 2-dimensional geometry, the
tensor product NURBS surface is defined as follows

Xo(&m) =YD Rip(©R; 4(n)Pi (33)
i=1 j=1

which is supported by a knot vector in all parametric directions. Similarly,
to define volume, the tensor product NURBS volume is defined as
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n

Xo&m Q) =33 > Bin(© R Bir(€) Pijin (34)

i=1 j=1k=1 Ri ()

l

which is supported by a knot vector in all parametric directions. For a more
detailed explanation of NURBS, the interested readers can refer to (Piegl and
Tiller, 1996).



