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Paper 01
Proposition of a generic decision framework forprescriptive maintenance
Pedro D Longhitano, Khaoula Tidriri, Christophe Bérenguer, BenjaminEchard.

Abstract: The digitalization of the economy in the past decades has made dataavailability grow and become more important. From the maintenance point of view,clients are more demanding, wanting systems that will not have breakdowns whilereducing exploitation costs. This challenging scenario has pushed companies in thedirection of more intelligent maintenance solutions that involve choosing the bestcourse of action in terms of system availability. Nowadays, these solutions areusually called prescriptive maintenance. This term is vaguely defined and its use isoften unjustified. In this article we will discuss what really characterizesprescriptive maintenance, review some of the work published with this term andpropose a generic framework to guide the development of such solutions. In theend, we will illustrate the use of the generic framework in a practical case.

1 Introduction
In the competitive and technological scenario of contemporaneous industry, theimportance of efficient maintenance solutions has become a key factor of success.[1] has estimated that, in industrial firms, maintenance cost varies from 15% to40% and even in simpler systems, such as industrial vehicles, this source of expenseis far from neglectable. The National Road Committee (CNR) of France estimatedthat the maintenance costs of a long-haul truck accounted on average for 8.2% ofthe total expenses. For trucks in particular, not only this cost cannot be overseenbut the importance of effective maintenance is crucial in the transportation business.Internal reports conducted with Volvo trucks clients suggest that when a truckundergoes a breakdown, all the annual revenue generated by this vehicle iscompromised.

Since maintenance is so important in all sort of different domains, it is onlynatural that it has been the center of interest of several researchers. In recent years,academic works on new maintenance solutions have been published and terms suchas condition-based maintenance (CM) [2], predictive maintenance (PdM) [3] andmore recently prescriptive maintenance (PsM) [4] have gained some popularity.
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One of the main issues of employing the term prescriptive maintenance is thatthere is no clear definition for it. The boundaries between predictive and prescriptivemaintenance are not well defined, and we have to be careful when employing thoseterms to avoid confusion. A rigorous definition of prescriptive maintenance isimportant to guide and frame future work on the area and to develop the necessarytools to design and implement solutions that really achieve reliability maximizationand cost minimization in industrial applications.

In this paper, after a discussion on the use of the term prescriptive maintenance, amodeling framework that highlights the differences between predictive andprescriptive maintenance will be presented. This framework will help to guide thedevelopment of generic decision-making algorithms for up-time maximization andavoid the unjustified use of jargon.Therefore, this document is organized according to the following structure: Section2 will highlight the vagueness of the definition of prescriptive maintenance, brieflyreviewing some of the work published using this term. A generic framework ofPsM will be detailed in section 3 - hopefully its use will avoid ambiguity and guidefuture work in the area. Finally, through section 4, a practical example of PsMapplied to the automotive domain will be given.
2. Prescriptive maintenance
2.1 Prescriptive Maintenance in the Literature
In recent years, a few authors have employed the term prescriptive maintenance intheir works [4-6]. It appears that, even if these works focus on discussingconceptually PsM, they do not always present a formal definition of the term, butbase their definition on the broad idea of choosing the correct course of action fora system. This general understanding of PsM seems to be an extension of theconcept of prescriptive analytics, which focus on prescribing the best decisions inorder to take advantage of the predicted future utilizing large amounts of data [7].
Hence, one can think of prescriptive maintenance as the use of prescriptive analyticsto maintenance. According to this definition, a PsM solution should use failurepredictions or, data-driven degradation models, to quantitatively give the bestcourse of action in terms of up-time maximization. Some of the works publishedon PsM do not fit this definition perfectly.For example, the authors in [5] developed a prescriptive maintenance solutionbuilt on a threshold-based rule, meaning that an action will be taken on the systemonly when a quality indicator overpasses a threshold. The second issue is that PsMshould quantitatively assesses what is the best action to take. To that end, it iscrucial to have an objective measure of the impact of different actions. However,in [5], actions are chosen based on previous engineering knowledge, working asthumb rules.
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The main problem when using this rudimentary notion of PsM as the simpleapplication of prescriptive analytics to maintenance is that it does not help todistinguish between PsM, PdM and CM. For example, [4] uses the term prescriptivemaintenance to provide a solution that chooses the best maintenance and inspectionschedule for a system subjected to degradation. Similar problems were addressedby different authors before [8], without using the term prescriptive maintenance. Infact, a big part of research conducted on PdM could be classified as decision-making and therefore as an application of prescriptive analytics, which makes thisnotion insufficient to make the distinction between PdM and PsM .
2.2 Defining Prescriptive Maintenance

An attempt of differentiating PsM from PdM is given in [9]. According to theauthor, a crucial difference lies in the fact that PsM takes into account all thefunctionalities of the system, by extending the notion of maintenance to the onesupported by the Prognostics and Health Management (PHM) community. Thus,the objective of PsM is to provide the best course of action to minimize the overallcost of systems exploitation. These actions may include use moderecommendations, tasks management, parameters reconfiguration, etc.
Many research works are increasingly interested in developing one or many ofthese actions in addition to maintenance scheduling. In [10] for example, the authorsfocused on finding the best moment to perform maintenance while managing spareparts. Another example is given in [11] where a dynamic method was developedto jointly schedule missions and maintenance operations while taking into accountthe system’s deterioration, in order to minimize the maintenance costs.
It is worth noticing that most of the previous actions will have an impact on thesystem’s usage and on the degradation process, which should in turn affect thechoice of the next actions to be applied. Therefore, PsM should take this notion intoaccount by following a closed-loop structure, meaning that algorithms should berobust, deal with uncertainty and assess the effect of the decisions chosen on thesystem to adapt them as often as required.
In the next section, a PsM framework that relies on the concept of closed-loopdecision process will be proposed.
3 A generic framework for prescriptive maintenance
One key aspect of PsM is the notion of closed loop, as represented in Fig. 2. Dueto the randomness of degradation processes, the outcome of previously chosenactions must always be monitored. As the system evolves through time, actionsmay be chosen considering previous unexpected behavior, as well as new inputs.



4

Fig. 2. Example of PsM algorithm
To arrive at such structure, which characterizes PsM, a generic framework isproposed. It is composed of three main steps: system modeling, action modelingand optimization.
3.1 System modeling
To quantitatively decide between different actions, it is necessary to understandhow the system behaves and how it fails. Actions may affect the remaining usefullife (RUL) of a system and quantifying this effect is crucial for choosing how toexploit it. Since the PsM solution may prescribe changes in usage conditions andenvironment, it is crucial to model the degradation process of the system in a waythat all different operational conditions are considered. To this aim, data availabilityis not enough. It is also important to ensure that the variables which have the biggestimpact on the degradation process were identified and monitored, and that thedegradation model took them into account.In the following sections, three classes of techniques, which are the most commonin the literature for modeling the behavior of the system in terms of RUL, arepresented.
3.1.1 Degradation ModelingDegradation models are usually developed based on degradation data combinedwith the understanding of the physics of the process. These models can bedeterministic or stochastic, with the latter usually presenting more flexibility androbustness.In the literature, several stochastic degradation models have been used. ForPsM, models with covariates may be used to handle applications where severaldifferent factors affect the degradation. As an example, one can cite the variancegamma process combined with Markov chains [12].It is important to highlight that in some simple cases, where the possible actionsto be applied affect only one variable, or where the degradation process is well
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defined by only one stress factor, classical models such as the gamma [13] and thewiener processes [14] can be used.
3.1.2 Reliability DistributionsIn several real-world applications, the degradation process may be too complex tomodel, or there may not be enough data available to infer the parameters ofdegradation models. In these cases, other approaches, such as reliabilitydistributions, may be used to directly estimate a failure probability in given usageconditions. In this case, the failure time of a system is modeled as a random variablewith known distribution.It is worth noting that most of the classical distributions, such as Weibull, Gammaand Exponential, do not account for covariables and hence they do not account forthe possible effect of the chosen actions and for different usage conditions.Therefore, they may not be suitable for PsM applications. Some examples ofreliability distributions that are relevant for PsM applications can be found in [15].Moreover, it is important to highlight that, although reliability distributions canbe useful for system modeling, they provide less insight on the system thandegradation models. Indeed, the latter can always be used to derive distributions ofthe time to failure, but the opposite is not always true. Therefore, degradationmodels should be used whenever it is possible because they contain moreinformation on the system.
3.1.3 Black Box Data Driven ApproachesData driven approaches are an alternative to the model-based approaches discussedbefore. Black Box Data-driven approaches can infer patterns from data withoutprior hypothesis on the degradation process nature or on the failure time distributionand incorporate the effect of several different covariables.Data-driven algorithms can be used to predict the failure time, estimate a failureprobability, or classify systems in different categories according to the severity oftheir usage. Examples of data-driven approaches for prognostics can be found in[16]. However, it is important to highlight, that the accuracy of such models dependon data availability and quality, and an understanding of different failure modesand stress factors can be necessary to employ them satisfactorily.
3.2 Action Modeling
Once the system is modeled, the following step is to list and model all the actionsthat can be applied to it. It is important to keep in mind that each system is uniqueand that different classes of actions may apply in each case. In the following,different examples of actions are presented.
3.2.1 – Classical Maintenance DecisionsPsM solutions must account for the classical maintenance decisions that are usuallyfound in PdM and CM literature. The vast majority of literature on decision-making



6
for maintenance focuses on choosing the maintenance date, assessing how to makethis decision under different circumstances, i.e. perfect and imperfect maintenanceoperations [17], perfect and imperfect information [18], etc.Alongside maintenance date decision, one can find several articles interested indefining inspection intervals, such as [8].Therefore, it appears that classical maintenance decision is the core of everyintelligent maintenance policy. A PsM must take it into account and go beyond,exploiting other dimensions of the decision-making process.
3.2.2- Task managementSystems can be composed of more than one subsystem (e.g a fleet ofvehicles). Some subsystems are more prone to failure than others and, therefore,the decision regarding which subsystem to use to perform a task must be madetaking the different degradation levels into account. Similarly, different tasks maypresent different levels of severity, which makes the order in which they areperformed impact the evolution of the RUL as well.One example of task management considering degradation information can befound in [11], where the mission plan of a fleet of trucks is decided based on theseverity of each displacement and the current health state of each vehicle.
3.2.3 – Parameters ReconfigurationPsM relies on the fact that the actions applied on a system can affect its degradationprocess. The same actions could be used to, at some extent, control the degradationprocess directly. One example is the action related to parameter reconfiguration.Indeed, controlling the RUL of a system could be achieved by modifying, in asuitable way, the parameters of the system.Two aspects should be considered when modeling this type of action: (i) theimpact of the parameter reconfiguration on the degradation model (e.g., limitingthe power of a machine via software change can postpone maintenance operations)and (ii) the impact of the parameter reconfiguration on the system performance(e.g., reducing the power of the machine will reduce productivity and the softwarechange has a financial cost). On this topic, one can cite the article [19] where a windturbine RUL is controlled based on its torque.
3.2.4 – Full Exploitation DecisionsAs PsM considers a holistic vision of the system, it also addresses actions that donot impact the degradation process or the maintenance strategy but are ratheraffected by it. Indeed, not all decisions will result in an acceleration or a decelerationof the degradation process. One example is given in [20] where deteriorationinformation is used to decide the inventory level, providing insight on the best sparepart management strategy.
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3.3 Optimization
Once every relevant aspect of the system is modeled, an optimization layer isnecessary to prescribe the best course of action.
3.3.1 Cost functionTo choose the best actions to apply, a metric has to be established so that actionsand their expected outcomes can be quantitatively compared. The chosen actionsare the ones that minimize this metric, generally referred to as the cost function.The cost function has to capture the systems exploitation trade-offs. The examplegiven previously in Section 3.2.3 illustrates this trade-off. If reducing machinepower can postpone maintenance operations but will reduce productivity, the costfunction has to be defined such that it is possible to compare those outcomes. Thesolution will then decide when and how to reduce machine power to minimizeexploitation cost.The cost function must also take into consideration other inputs such asoperational constraints, e.g, availability of spare parts, deadlines, workload, etc.The PsM solution should be built on a realistic cost function, that captures all thereality of system exploitation, considering trade-offs and constraints, in order toaccount for all the functionalities of the system.
3.3.2 Optimization TechniqueOnce the optimization criteria are chosen, different techniques can be employed inorder to find the best course of action. The choice must be made based on the neededreaction time of the PsM solution and the complexity of the space of actions.In cases where the choice of possible actions is limited, optimization methods thatare guaranteed to reach the cost function minimum, such as dynamic programming,can be employed [20]. Whenever the space of actions becomes bigger or thedynamic of the system requires fast adaptability, meta-heuristic methods should beused [11].

4 PsM application
In this section, a closed-loop PsM solution for the joint maintenance and missionsassignment of industrial vehicles is presented. The critical component chosen toillustrate the proposed framework is the brake-pad.The main hypothesis are: Missions are defined as the deliveries that a vehicle has to make from one pointto another. All the distances and durations from point to point are consideredto be known, and are stored respectively in matrices D and T. A decision epoch Pk arises when a new set of missions has to be accomplished.

For example, every day a fleet owner has to make deliveries and therefore,
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decisions will happen at the beginning of each day, before sending vehiclesfrom the headquarter. Only breakdowns related to the brake-pad are considered.

4.1 System modeling
Brake-pads failure is commonly caused by wear and tear with usage. The brake-pad must be replaced whenever its thickness falls under a critical threshold. Fig. 3shows the thickness evolution of a real brake-pad.

Fig. 3: Thickness Evolution

The brake-pad thickness evolution exhibits a mean trend close to be directlyproportional to the traveled distance. The thickness degradation phenomena can bemodeled with a Wiener process with a linear drift, as shown in the followingequation:
𝑌(𝑥) = 𝑌0 + 𝜆𝑥 +  𝜎𝐵𝐵 𝑥 + 𝜀 (1)where Y is the brake-pad thickness, 𝑌0 is the initial thickness, 𝜆 is the negativedrift, 𝑥 is the traveled distance, 𝐵(𝑥) is the standard Brownian motion, 𝜎𝐵 is itsvariance, and 𝜀 is the measurement noise considered to be white and Gaussian.Details on how to estimate those parameters from data can be found in [16].

4.2 Actions modeling
For this practical example, two types of actions are considered: classicalmaintenance and tasks management through missions scheduling.
4.2.1 Maintenance date decisionVehicles come regularly to workshops to perform maintenance operations, such asoil change. To avoid extra workshop visits, brake-pad should only be replaced at
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those visits. The two next scheduled dates of workshop visit twkp1, and twkp2 areknown for each vehicle i. The maintenance decision comes down to choosing toreplace the brake-pads at twkp1 or to postpone the change at least until twkp2.To decide the maintenance date, Monte-Carlo simulations are made based onequation 1 and the distribution of traveled distances, in order to compare the costrelated to the possibility of a failure between twkp1 and twkp2 and the cost related to
the expected amount of thickness wasted if a replacement occurs at twkp1. If the cost
associated to the failure probability is bigger than the one associated to the wastedthickness, the next workshop visit (twkp1) is chosen to replace the brake-pad.
4.2.2 Missions schedulingThe scheduler will receive the list of missions to be accomplished, alongside withthe last available degradation measurement. It will then proceed to find the bestschedule possible.

It is important to highlight that both maintenance date decision and missionscheduling affect each other. Indeed, the mission schedule will be followed by thefleet and new degradation measures will be collected. These measurements will beused as an input by the maintenance date decision maker which will decide if avehicle will replace its brake-pads in the next workshop visit. Replacement datesare then updated and used to change the scheduler cost function.
4.3 Optimization
The cost function used by the scheduler, which is responsible for finding the optimalmission schedule, is presented below:

𝐶 = 𝐶𝑑𝑖𝑠𝑡 + 𝐶𝑑𝑒𝑙𝑎𝑦 + 𝐶𝑑𝑒𝑔 + 𝐶𝑤𝑎𝑠𝑡𝑒 (2)
It integrates four costs. 𝐶𝑑𝑖𝑠𝑡 and 𝐶𝑑𝑒𝑙𝑎𝑦 capture the operational costs and are

proportional respectively to the total distance of a schedule and to the delays. 𝐶𝑑𝑒𝑔and 𝐶𝑤𝑎𝑠𝑡𝑒 are costs related to the brake-pad thickness. The first accounts for the
expected amount of thickness that will be consumed when following a missionschedule. It only considers vehicles that have not established a maintenance datefor the brakes. On the other hand, 𝐶𝑤𝑎𝑠𝑡𝑒 considers only vehicles that will replace
brakes in the next workshop visit and accounts for the cost related to the surplus ofthickness that may be wasted in that replacement.
This cost function was chosen so that the resulting schedule will reduce operationalcosts, minimize the brakes degradation and, at the same time, avoid wastingthickness.
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4.4 Results
To validate the proposed solution, a comparison between the proposed PsMalgorithm and a real client exploitation strategy, which focuses only on distanceand delay costs, is made. The simulations emulate the exploitation of a fleet ofvehicles that have to perform the same missions every week, scheduling missionsand brake-pad replacements in different ways. The results showed that operationalcosts were identical for both strategies, meaning that the PsM scheduler was ableto reduce distance and delay costs as well. On the other hand, maintenance costswere different, as can be shown in Fig. 4.

Fig. 4: Total Cost Comparison
The PsM algorithm performed better, postponing maintenance operations andavoiding waste while respecting operational constraints. This is due to the use ofdynamic scheduling that accounts for maintenance dates and often uses moredegraded vehicles to perform the least demanding missions.
5 Conclusion and future work
Maintenance is a key factor to ensure competitiveness and to minimize costs inmany industrial systems. In the literature, maintenance has gathered a lot ofattention from researchers who worked on maintenance solutions using conceptssuch as CM, PdM and more recently PsM. The term “prescriptive maintenance”has not been well defined in the literature. This lack of a robust definition representsan obstacle in the development of PsM solutions.In this article, a discussion on the use of the term PsM in the literature and itsdifferences regarding PdM was presented and key elements of a PsM structure werehighlighted. A framework with three steps was proposed to guide future PsMsolutions and avoid the unjustified use of the term prescriptive maintenance.
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To illustrate the proposed approach, a practical example of PsM applied to theautomotive domain was given, in which maintenance dates and missions areplanned for a fleet of vehicles, minimizing the overall exploitation cost.In future works, a deeper inquiry on the use of PsM in the literature can beconducted to improve the framework and applications involving more complexsystems and components will be developed.
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