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Abstract5

In this paper a hierarchy of macroscopic plasma models is derived6

for the numerical study of plasma thrusters. This derivation outlines7

the multi-scale nature of the problem and the difficulty for numerical8

methods to address efficiently this challenge. A specific focus is made on9

quasi-neutral models built on the anisotropic equations of the particles10

transport. A numerical method is proposed for this class of problems of-11

fering an accuracy unrelated to the anisotropy strength without resorting12

to the approximation of equipotential magnetic field lines.13

Keywords Anisotropic equation, Plasma Physics, Asymptotic-Preserving schemes.14

1 Introduction15

The simulation of plasma propulsion devices [6, 38] represents a significant chal-16

lenge for the design of efficient numerical methods. This is due to the multi-17

∗Corresponding author
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scale nature of plasma physics [15] in general and specifically in the context of1

this application. We consider in this paper low temperature magnetized plas-2

mas typical of those of ion sources for space propulsion (e.g. Hall thrusters3

also called Stationary plasma thrusters, gridded ion thrusters, cusp-field plasma4

thrusters etc... [6],[38]). The plasma evolution may be described by kinetic5

models for both the electrons and the ions for the most refined descriptions6

[14, 9, 29, 5, 7, 26]. Hybrid models [3] rely on a coarser representation of the7

electrons, this species being described by a fluid model. Finally the ions may8

also be described by a fluid model [23, 22, 36]. This latter class of models9

will be specifically investigated in the present work. Though they offer a quite10

coarse plasma description, they give access to reach enough physics and with11

an incomparable computational efficiency compared to kinetic descriptions.12

The multi-scale nature of the problem exceeds the only questions of the ki-13

netic or macroscopic modellings of the plasma. Generally it also encompasses14

the quasi-neutrality of the plasma and the small scales attached to the electron15

inertia. The question related to the quasi-neutrality has received a lot of at-16

tention including the treatment of local breakdowns [12, 13, 18, 16, 11, 1, 2].17

Quasi-neutral models filter out the small scales related to charge separations,18

namely the Debye length and the plasma period. In regions of large plasma19

densities, these two scales are small compared to that of the device operation.20

It is therefore interesting to filter out these scales from the equations to derive21

an efficient simulation tool. In the context, of magnetically confined plasmas,22

this class of models introduces an specific difficulty. Due to the intense magneti-23

sation of the plasma, the equations are severely anisotropic which represents a24

major difficulty for numerical methods to produce accurate approximations of25

the electric field. This issue is identified as the main bottleneck for the derivation26

of numerical methods based on quasi-neutral models ([30, Sec. III]).27

The present work is first dedicated to the derivation of a hierarchy of macro-28

scopic (fluid) models for strongly magnetized plasmas. This study is conducted29

in order to clarify the different assumptions embedded in the models used in30

the context of these plasmas and, more specifically, in the context of electric31

propulsion: plasmas are cold, partially ionized, the ions being non magnetized.32

This work is restricted to two dimensional geometries containing the magnetic33

field lines (i.e. there is no magnetic field component perpendicular to the two34

dimensional simulation domain), the aim being the capture of steady states. In35

particular, the physics developing in the E×B direction [35] is out of the scope36

of the present investigations. A derivation of these models, by means of the37

asymptotic analysis, is therefore proposed together with an emphasis of how38

these models relate to each other.39

In a second part, a more specific attention is paid to the numerical approxi-40

mation of anisotropic problems providing the electric potential in quasi-neutral41

models. The difficulty here stems from two different aspects of the problem.42

The first one is related to the loss of precision of numerical approximations43

with coordinates and meshes misaligned to the anisotropy (magnetic field) di-44

rection [23]. This is analyzed in [41] and explained by an amplification of the45

discretization error by the large heterogeneity of the parallel and perpendicular46
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transport coefficients. Furthermore, the condition number of the system matrix1

stemming from the discretization of the anisotropic problem may increase with2

the anisotropy strength, depending on the boundary conditions imposed at the3

magnetic field line ends. Different workarounds are proposed to circumvent this4

difficulty. The limit problem, obtained by assuming an infinite anisotropy, is5

proposed to compute the electric field approximation in [23]. This amounts to6

considering the magnetic field lines as equipotential for the electric potential.7

Field aligned approaches come naturally into play to address the loss of pre-8

cision originating from the mesh misalignment. This is the path followed for9

instance in [33, 32] (in the framework of electric propulsion, see also [39] for10

ionospheric plasma simulations). Nonetheless, these methods are difficult to11

extend to complex magnetic field geometries such as cusp-shaped field [25, 37]12

considered within this document. An original numerical method, free from this13

constraint, is proposed in [27, 8, 28]. It relies on an hyperbolic formulation14

of the anisotropic problem satisfied by the electric potential. The solution of15

the anisotropic problem is approximated by the steady state of a pseudo-time16

dependant system. The convergence time to this steady state is roughly pro-17

portional to the anisotropy strength: the number of pseudo-time iterations is18

observed to scale as ε−0.7 [27, 8].19

In recent studies, the derivation of efficient numerical methods for anisotropic20

problems has been addressed thanks to asymptotic-preserving schemes [17], ini-21

tially for field aligned coordinates, this requirements being unnecessary in sub-22

sequent developments [16, 19, 20, 40]. These numerical methods are designed to23

capture the limit regime when ε→ 0. This avoids the blow-up of the condition24

number of the system matrix and preserve the accuracy of the approximation25

for increasing anisotropy strength. This class of numerical methods is imple-26

mented in the context of magnetically confined plasmas in a range of parameters27

representative of electric propulsion. A new augmented Micro-Macro method is28

introduced within this document with the aim to correct the loss of symmetry29

of the so-called inflow Micro-Macro method [19].30

The paper is organized in three sections. The first section is devoted to the31

derivation of the model hierarchy. It is designed to represent the evolution of32

an isothermal low temperature plasma confined by an intense magnetic field.33

The models considered within this hierarchy are fluid models originating from a34

bi-fluid plasma representation, coupled to Poisson equation providing the elec-35

trostatic potential. Different reduced models are then introduced by letting36

asymptotic parameters vanish, to recover the quasi-neutrality assumption, the37

massless approximation of the electron and eventually the infinite anisotropy38

regime. In the second section, the difficulty stemming from the discretization39

of anisotropic problem is addressed. The set of equations considered for the40

simulation of magnetically confined plasma is specified including the geometry41

of the cusp-shaped magnetic field together with a set of boundary conditions42

representing the inter-electrode chamber into which the plasma is confined. The43

loss of precision of numerical methods is outlined and a new augmented Micro-44

Macro method is introduced to address this issue. Numerical investigations are45

proposed within the third section. A analytic framework is proposed in order to46
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assess the effectiveness of the augmented Micro-Macro method. The advantage1

of this test case comes from the fact that an exact solution can be manufactured2

(analytically) providing a reference exact solution against which the numerical3

approximation can be compared. This procedure permits the validation of the4

augmented Micro-Macro method implemented on the complete model for the5

simulation of the plasma confinement by a cusp-shaped magnetic field. The6

loss of symmetry of the numerical approximation carried out thanks to the in-7

flow Micro-Macro method is outlined thanks to these numerical experiments, in8

contrast the approximations provided by the augmented Micro-Macro method9

respect the expected symmetry properties.10

2 A hierarchy of fluid models for plasma propul-11

sion.12

2.1 Bi-fluid isothermal plasma modelling coupled to the13

Poisson equation14

The purpose here is to derive a model problem relevant for the simulation of15

the plasma of ion sources for space propulsion (termed as ”plasma thrusters” in16

the following) in a simplified, but representative, context. This derivation is or-17

ganized in a hierarchy of models outlining the multi-scale nature of the problem18

and hereby the difficulty to derive efficient numerical methods for these mod-19

els. This hierarchy is constructed by letting dimensionless parameters vanish,20

deriving by this means reduced models.21

The starting point is a set of equations for both the ions and the electrons
coupled to Maxwell’s equations to account for the computation of the electro-
magnetic field. The properties of the neutral gas are assumed to be known in
this simplified problem. Let (mα, nα, uα, Tα) be the mass, density, mean veloc-
ity and temperature of the species α, with α = i, e for the ions or the electrons.
Assuming that both the electron and ion temperatures are constant and con-
sidering mono charged ions, the plasma evolution may be described thanks to
the following sets of equations

∂nα
∂t

+∇ · (nαuα) = S , (1a)

mα

(
∂nαuα
∂t

+∇ · (nαuα ⊗ uα)

)
+∇(nαkBTα) = qαnα (E + uα ×B)

−mαnαναuα ,

(1b)

s qα being the charge of the particle, qe = −e and qi = e with e the elementary22

charge, kB the Boltzmann constant, the tensor product of two vectors u and v23

is denoted u⊗ v.24

Different collision processes are accounted for: να is the collision frequency of25

the specie α against the neutrals, the neutral being at rest and, S is the plasma26

density created or destroyed by ionisation or recombination. Note that the27

ion-electron collisions are discarded in both the electronic and ionic equations.28
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The changes in the electromagnetic field are driven by Maxwell’s equation1

however in an electrostatic approximation, the magnetic field induced by the2

particle motion being assumed negligible compared to the external one. In the3

end, the charged particles are coupled by the Poisson equation4

−∆φ =
e

ε0
(ni − ne) , (2)

ε0 being the vacuum permittivity. The electric field is deduced from the elec-5

trostatic potential φ thanks to6

E = −∇φ . (3)

The set of equations (1–3) define the basis of the hierarchy of (isothermal)7

models aimed at representing the operation of plasma thrusters.8

2.2 The dimensionless bi-fluid-Poisson system9

This hierarchy of models is derived thanks to the introduction of asymptotic10

parameters, introduced in the equations by working with non dimensional quan-11

tities. First, some physical quantities are introduced. The cyclotron frequency12

ωc,α the mobility µα, the Hall parameter Hα for the species α defined as13

ωc,α =
e|B|
mα

, µα =
e

mανα
, Hα = µα‖B‖ , (4a)

and finally the (electronic) Debye length14

λ2D =
ε0kBTe
e2ne

. (4b)

Let x̄, t̄ be the typical length and time scales, these parameters are chosen to15

capture the flow of the plasma, the electron and ion mean velocity being assumed16

comparable and denoted ū. This entails to the following scaling relation17

ū =
x̄

t̄
. (5a)

The plasma is assumed to be close to quasi-neutrality, with comparable electron18

and ion densities n̄i = n̄e = n̄. The typical temperature of the species α is19

denoted T̄α while ν̄α is the typical collision frequency (against neutrals). The20

simple scaling relation proposed in [24, 4] for the collision frequencies is resumed21

for this analysis, with22

ν̄e =

√
Te
Ti

mi

me
ν̄i . (5b)

The electromagnetic field scales are denoted Ē, B̄ for the electric and magnetic23

components, with φ̄ = x̄Ē. Finally, the typical scale of the ionization term is24

defined by S̄ = n̄/t̄.25
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Non dimensional variables are used to write the equations, with for instance
ni = n̄n′i, the primed quantities being dimensionless. The system (1–2) is recast
into

∂n′i
∂t′

+∇′ · (n′iu′i) = S′ , (6a)

M2
i

(
∂n′iu

′
i

∂t′
+∇′ · (n′iu′i ⊗ u′i)

)
+ θ−1∇′(n′iT ′i ) = η (n′iE

′)

+ H̄iM2
i κi (n′iu

′
i ×B′)− θ−1/2M2

i κi (ν′in
′
iu
′
i) ,

(6b)

for the ions, together with

∂n′e
∂t′

+∇′ · (n′eu′e) = S′ , (7a)

1

κe

(
∂n′eu

′
e

∂t′
+∇′ · (n′eu′e ⊗ u′e)

)
+

1

M2
e κe
∇(n′eT

′
e) = − η

M2
e κe

(n′eE
′)

− H̄e (n′eu
′
e ×B′)− ν′en′eu′e ,

(7b)

for the electrons, coupled to the Poisson equation

−ηλ2∆φ′ = n′i − n′e , (8a)

E′ = −∇′φ′ . (8b)

The system (6-8) is written thanks to the dimensionless parameters defined in1

Table 1. Note that, the electric energy being measured with respect to the elec-

Table 1: Definition of the dimensionless parameters.

m2 =
me

mi
electron to ion mass ratio;

λ =
λD
x̄

scaled Debye length;

θ2 =
T̄e
T̄i

electron to ion temperature ratio;

κα = ν̄αt̄ number of collisions against neutral during a typical time;

H̄α = µ̄αB̄ =
ω̄c,α
ν̄α

Hall parameter;

Ωc,α = ωc,αt̄ number of cyclotron rotations during a typical time;

M2
α =

mαū
2

kBT̄α
squared Mach number for species α;

η =
ex̄Ē

kBT̄e
electric energy related to the electronic internal energy.

2

tron internal energy by means fo the parameter η definition, scales attached to3

the electrons (temperature) are introduced into the dimensionless ionic equa-4

tions (parameters θ and η).5

6



2.3 Derivation of reduced models1

2.3.1 A review of models for magnetized low temperature plasmas2

The regimes investigated herein share some properties. First, the electric energy
magnitude is assumed to match that of the electronic internal energy, yielding
η = 1. Second, the temperature of the electron is larger than the ionic temper-
ature with θ > 1. This allows to neglect the pressure in the ionic flux equation.
The ionic internal and kinetic energies are assumed to have comparable scales,
while the collisions of ions against neutral are unimportant in explaining the evo-
lution of this species. Finally, the ions are non magnetized. These assumptions
give rise to the following scaling relations

η = 1, θ > 1, M2
i ∼ 1 , (9a)

κi . 1 , H̄i . 1 . (9b)

Note that, the relations (9b) yield ωcit̄ < 1 or equivalently, the scale of the
velocity being defined by Eq. (5a), ū/(x̄ωci) > 1. The typical ionic Larmor
radius exceeds the typical length scale, hence the demagnetization of the ions.
The equations governing the evolution of this species may be reduced to

∂ni
∂t

+∇ · (niui) = S , (10a)

∂niui
∂t

+∇ · (niui ⊗ ui) = niE , (10b)

while the electronic macroscopic properties obey the system

∂ne
∂t

+∇ · (neue) = S , (11a)

1

κe

(
∂neue
∂t

+∇ · (neue ⊗ ue)
)

= − 1

M2
e κe

(
∇(neTe) + neE

)
− H̄e (neue ×B)− νeneue ,

(11b)

coupled to Poisson equation

−λ2∆φ = ni − ne , (12a)

E = −∇φ . (12b)

Note that, for conciseness, the primes are omitted to identify the dimensionless3

quantities in Eqs. (10–12) and thereafter.4

The hierarchy of fluid models is illustrated on Fig. 1. The bi-fluid Euler-5

Poisson model stands at the root of this hierarchy. This model is mainly used for6

the simulation of the plasma in regions of low density, predominantly in sheaths7

created in the vicinity of walls (see for instance [1, 2] for one dimensional non8

magnetized low temperature plasma simulations). One stream emerging from9

the root of this hierarchy is specific to quasi-neutral plasma descriptions. These10

models describe the evolution of the plasma with large densities on scales where11
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Euler Poisson

Quasi-neutral
Euler Poisson

Quasi-neutral
Drift-Diffusion

Drift-Diffusion
Poisson

Field-
aligned

Boltzmann
relation

κe → 0λ→ 0

κe → 0 λ→ 0

1

H̄e
→ 0

Figure 1: Hierarchy of (isothermal) fluid models.

the ions and the electrons may not be distinguished. The second stream is ded-1

icated to plasma descriptions on the ionic time scale. These models follow the2

plasma bulk evolution associated to the massive ions, the fast scales attached3

to the electron being filtered out from the equations. Both streams are merging4

into a model embedding both the quasi-neutrality and the drift approxima-5

tion for the electrons. Reduced models derived on these two assumptions are6

the most widely used for the simulation on large scales in the context of low7

temperature plasmas [36, 22, 1, 33, 32]. The last reduction is related to the8

so-called Boltzmann relation for the electrons, used very often throughout in9

plasma physics, in particular for low-pressure (low-collisional), non-magnetized10

plasmas or plasma sheaths. In the present framework, it is specific to the large11

magnetization of the electrons. It relies on the assumption that the electron12

collision frequency is small compared to cyclotron frequency. This leads to a13

force balance along the magnetic field lines in which the drift term, originating14

from the collisions with neutral, has vanished. This accounts for a departure15
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from the drift regime to the so-called Boltzmann relation in the direction of the1

magnetic field. This model is implemented in [23] for the simulation of plasma2

thrusters.3

This hierarchy of fluid models is derived owing m� 1, the smallness of this
parameter together with Eqs. (9) yields the following scaling relations

1

κe
=

m

θ

1

κi
� 1 ,

1

M2
e κe

=
θ

m

1

M2
i κi
� 1 ,

1

H̄e
=

1

mθ

1

H̄i
� 1 , (13)

from which originates the reduced models previously mentioned and formally4

derived in the next sections.5

2.3.2 Drift-diffusion regime for the electrons6

This regime amounts to letting M2
e → 0 but with finite values for both (M2

e κe)
and He. The low Mach regime of the electrons entails the assumption that
collisions with neutrals are frequent (1/κe → 0). This regime prevails in the
plasma bulk, where the mean velocity of the electrons roughly matches that of
the ions. The low electron to ion mass ratio is therefore at the origin of the
low Mach regime for the electrons (assuming M2

i ∼ 1). Nonetheless, this is not
representative of the dynamics developing in the entire domain. In particular,
a different regime characterizes electrostatic sheaths, where the particles are
accelerated by the local electric field created by the space charge, or in the
acceleration region of Hall thrusters. In these regions, the flow may become
supersonic [10] invalidating the low Mach regime [1, 2]. This scaling is therefore
well-grounded in the core of the plasma where the evolution of the electron may
be driven by the following system

∂ne
∂t

+∇ · (neue) = S , (14a)

νeneue + H̄e (neue ×B) = − 1

M2
e κe

(
∇(neTe) + neE

)
, (14b)

The electronic velocity is provided by a mobility law, where due the magne-7

tization of the plasma, the mobility is not a scalar but a tensor denoted MB8

9

ue = − 1

M2
e κe

MB

(
1

ne
∇(neTe) + E

)
, MB =

1

νe
(Id +HeB)

−1
, (15a)

where He = νeH̄e, Id is the identity matrix and B the matrix verifying ∀v ∈ R3
10

Bv = v × b , b =
B

‖B‖
. (15b)

Simple algebra provides the following expression of the mobility matrix11

MB =
1

νe

1

1 +H2
e

(
Id−HeB +H2

eb⊗ b
)
,

=
1

νe

(
1

1 +H2
e

(
(Id− b⊗ b)−HeB

)
+ (b⊗ b)

) (15c)

9



Note that b⊗b, (resp. Id−b⊗b) is the projector onto the direction aligned with1

the magnetic field (resp. onto the directions perpendicular to the magnetic2

field). For large values of the magnetic field He � 1, the mobility tensor is3

therefore anisotropic. The aligned mobility (with respect to the magnetic field)4

µ‖ = ν−1e (µ‖ = µe in physical units) is large compared to the Pedersen mobility5

µP = µ‖/(1 +H2
e) ∼ µ‖/H2

e along the directions perpendicular to the magnetic6

field. The third coefficient appearing in the mobility matrix is the Hall mobility7

µH = µ‖He/(1 +H2
e) ∼ µ‖/He. It is also characteristic of the dynamic in the8

perpendicular directions, it is indeed at the origin of the so called E ×B drift.9

With these notations, the mobility matrix may be recast into10

MB = µP (Id− b⊗ b)− µHB + µ‖ (b⊗ b) . (16)

In the drift regime, the electronic density is the solution of a diffusion equa-11

tion. It is obtained by inserting the mobility law provided by Eqs. (15) into12

Eq. (14a) yielding13

∂ne
∂t
− 1

M2
e κe
∇ ·
(

MB∇(neTe)
)

=
1

M2
e κe
∇ ·
(
MBneE

)
+ S . (17)

The electronic system reduces to Eq. (17), the ionic properties being computed14

thanks to Eqs. (10). The electric field may be computed thanks to Eqs. (12),15

however a more elaborated equation may be derived. In this aim, integrating16

Eq. (17) over a (dimensionless) typical time Ξ, the following estimate can be17

proposed18

ne(t+ Ξ) ≈ ne(t) +
Ξ

M2
e κe

(
MB (∇(neTe)− ne∇φ)

)
+ ΞS , (18)

providing, thanks to Eqs. (12), the following elliptic equation satisfied by the19

electric protential20

−∇ ·
(

(λ2 +
Ξ

M2
e κe

neMB)∇φ
)

= ñi − ñe (19a)

where21

ñe = ne(t) +
Ξ

M2
e κe

(MB∇(neTe)) + ΞS ,

ñi = ni(t) + Ξ∇ · (niui) + ΞS

(19b)

In Eq. (19), the isotropic contribution stemming from Poisson equation is car-22

ried by the squared dimensionless Debye length λ2. The anisotropy tensor,23

proportional the (M2
e κe)

−1, originates from the particle current divergence.24

2.3.3 Quasi-neutral limit25

The plasma may be assumed quasi-neutral when the Debye length is small com-26

pared to the typical length. This regime prevails essentially in regions of large27

plasma densities. It amounts to the following limit λ→ 0. In the quasi-neutral28

10



limit, Poisson equation (8) degenerates into the balance of the electronic and1

ionic densities ne = ni = n. Two conclusions may be drawn from this property.2

First, Poisson equation is not well suited for the computation of the electric field3

in the quasi-neutral regime. Second, since the ionic and electronic densities are4

equal, one of the equations (10a) and (14a) is redundant. Classically, Eq. (10a)5

is used to compute the evolution of the plasma density, while the electric field is6

carried out thanks to the continuity equation. This latter equation provides the7

evolution of the charge density ρ = ni − ne, it is an outcome of both Eqs. (10a)8

and (14a), writing9

∂ρ

∂t
+∇ · J = 0 , (20)

J = niui − neue being the particle current density. The quasi-neutral limit of10

the continuity equation (20) provides the constraint ∇ · J = 0. In this regime,11

the electric field is computed to ensure a divergence free current thanks to12

∇ · (nue) = S − ∂n

∂t
(21)

where n = ne = ni is the plasma density. The electric field is therefore computed13

thanks to equations governing the evolution of the particles properties rather14

than Maxwell’s equations [15], hence the anisotropy of the problem. In the15

combined quasi-neutral and drift approximation limit, the electric field equation16

is indeed derived from Eqs. (19) by letting λ→ 0 yielding17

−∇ ·
(

MB

(
−∇(nTe) + n∇φ

))
= S − ∂n

∂t
. (22)

In the standard regime, including the inertia of the electrons, the equation18

providing the electric potential is derived from Eqs. (11). We refer, for instance19

to [18] for such a derivation.20

2.3.4 Field aligned Boltzmann relation21

This last asymptotic consists in assuming an infinite anisotropy, letting 1/He →22

0. The mobility relation defined by Eqs. (15) leads to the following force balance23

24

b · ∇(nTe)− nb · ∇φ = 0 . (23)

To provide a finite electronic velocity along the magnetic field lines, a zero force25

balance is mandatory along this direction. Note that, owing to the homogeneous26

electronic temperature, this force derives from the potential ψ defined as27

ψ = −φ+ Te ln

(
n

n0

)
(24)

n0 being a reference of the density. Denoting F = ∇ψ the force field, the28

equilibrium stated by Eq. (23) amounts to a zero force regime along the magnetic29

field lines30

b · F = 0 . (25)
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To outline the characteristics of this regime in a simple framework, the mag-1

netic field is assumed constant and aligned with the z-coordinate. The force2

balance occurring along the magnetic field lines simplifies into3

∂φ

∂z
=
Te
ne

∂ne
∂z

. (26)

Classically, this differential equation is integrated to provide the so-called Boltz-4

mann relation5

ne(x, y, z) = n0(x, y) exp

(
φ(x, y, z)− φ0(x, y)

Te(x, y)

)
, (27)

where n0, φ0 and Te are independent of the aligned coordinate z. Combined6

with Poisson equation, it provides a non linear equation satisfied by the electric7

potential8

−λ∆φ = ni − n0 exp

(
φ

Te

)
. (28)

Note that this non linear equation is not degenerate in the quasi-neutral limit9

[18]. In the context of quasi-neutral plasma modelling, Eq. (27) is used to10

compute the electric potential thanks to the density with11

φ(x, y, z) = φ0(x, y) + Te(x, y) ln

(
n(x, y, z)

n0(x, y)

)
, (29)

In the literature [23, 38], this identity is sometimes referred to as the Morozov12

approximation [34]. This equation is coupled with the ionic system (10) to close13

the system providing the evolution of the plasma density.14

3 Numerical methods for quasi-neutral fluid mod-15

els of magnetically confined low temperature16

plasmas.17

3.1 Model and geometrical configuration18

The purpose here is to state the complete set of equations operated to illus-
trate the difficulty raised by quasi-neutral modelling of plasma thrusters. The
computations are restricted to two dimensional configurations, in a plane con-
taining both the electric and the magnetic field. The system defining the model
is specified in dimensional units. Let n be the plasma density, v the ionic mean
velocity and Γe the electronic density flux, these equations write

∂n

∂t
+∇ · (nv) = S , in (0,∞)× Ω , (30a)

∂

∂t
(nv) +∇ · (nv ⊗ v) =

e

mi
nE , in (0,∞)× Ω , (30b)

∇ · Γe = S − ∂n

∂t
in Ω , (30c)

12



with1

Γe = µe
(
n∇‖φ−∇‖(nkBTe)

)
+ µeε

(
n∇⊥φ−∇⊥(nkBTe)

)
, (30d)

the electrostatic field and potential satisfying the following identity E = −∇φ.2

Note that, owing to the geometrical configuration, the Hall components in the3

mobility law defined by Eq. (16) are dropped out of these equations, hence4

the definition of the electronic density flux as a function of the only parallel5

mobility µ‖ = µe = eme/νe, νe being the collision frequency against neutral,6

and the Perdersen mobility µP = µeε. The anisotropic parameter ε is related7

to the electronic Hall parameter He thanks to8

ε =
1

1 +H2
e

, He = µe‖B‖ =
ωc,e
νe

. (30e)

The source term in Eq. (30a) accounts for the ionization. The following9

expression will be considered in Sec. 4.210

S(x, y) = νn0exp
(
− (τy)2

)
, (30f)

where ν is the ionization frequency n0 the typical plasma density and τ > 011

parametrizes the distribution of the neutral density in the domain. The parallel12

and perpendicular gradients are defined for any smooth function ψ as13

∇‖ψ = b⊗ b∇ψ , ∇⊥ψ = (Id− b⊗ b)∇ψ , b =
B

‖B‖
. (30g)

The computational domain, denoted Ω × [0, T ], consists of Ω = [0, Lx] ×
[−Ly/2, Ly/2] where Lx and Ly are positive real numbers. The domain boundary
is split into two parts ∂Ωx = [0, Lx] × {−Ly/2, Ly/2} and ∂Ωy = {0, Lx} ×
[−Ly/2, Ly/2], the following boundary conditions supplementing the system (30)

∇n · n = 0 on (0, T )× ∂Ωy , (31a)

∇(nv)n · n = 0 on (0, T )× ∂Ωx , (31b)

v · n = 0 on (0, T )× ∂Ωy , (31c)

v · n = vB on (0, T )× ∂Ωx , (31d)

Γe · n = 0 on ∂Ωy , (31e)

Γe · n = Γβ(φ) on ∂Ωx . (31f)

The domain outward normal is denoted n, vB is the Bohm velocity14

v2B =
kBTe
mi

. (31g)

Specifying the boundary condition of the quasi-neutral model to account the15

physics that develops on the sheath edge is an intricate issue. We propose and16

investigate here the following path. On the one hand, the electrons are assumed17

to flow outside the domain along the magnetic field lines with the most probable18

13



velocity computed from the local Maxwellian distribution (
√
kBTe/2πme). On1

the other hand, when the magnetic field is parallel to the boundary, the electron2

flux is assumed to match that of the ions. Denoting β the angle measured3

between the magnetic field and n the outward normal on ∂Ωx, the following4

boundary condition is therefore considered5

Γβ(φ) = n

√
kBTe
2πme

cos2(β) + v2Bsin2(β) exp

(
− eφ

kBTe

)
. (31h)

The initial condition is prescribed thanks to6

n(t = 0) = n0 , v(t = 0) = v0 , on Ω . (32)

In this model, the electric potential is used to enforce the quasi-neutrality
constraint (30c). It yields the following non-linear anisotropic problem for φ

−∇ ·
(
µn∇‖ψ + µnε∇⊥ψ

)
= S − ∂n

∂t
in Ω, (33a)(

µn∇‖ψ + µnε∇⊥ψ
)
· n = 0 on ∂Ωy, (33b)(

µn∇‖ψ + µnε∇⊥ψ
)
· n = Γβ

(
−ψ+

kBTe
e

ln

(
n

n0

))
on ∂Ωx, (33c)

where7

ψ = −φ+
kBTe
e

ln

(
n

n0

)
. (33d)

The non linearity of the problem stems from the boundary condition (33c).
This problem is approximated by a sequence of linearised problems providing
the solution estimates (ψ(k))k≥0 thanks to

−∇ ·
(
µn∇‖ψ(k+1) + µnε∇⊥ψ(k+1)

)
= S − ∂n

∂t
in Ω, (34a)(

µn∇‖ψ(k+1) + µnε∇⊥ψ(k+1)
)
· n = 0 on ∂Ωy, (34b)(

µn∇‖ψ(k+1) + µnε∇⊥ψ(k+1)
)
· n =

− Γ′β

(
−ψ(k) +

kBTe
e

ln

(
n

n0

))(
ψ(k+1) − ψ(k)

) on ∂Ωx, (34c)

where Γ′β is the derivative of Γβ , obeying the relationship8

Γ′β(ϕ) = − e

kBTe
Γβ(ϕ) . (34d)

3.2 Handling numerically the anisotropy9

The difficulty raised by the anisotropic nature of the problem is analyzed in this
section. To support these investigations, the system (34) is simplified, assuming

14



µn = 1 and Γ′β ≡ 0, yielding the following toy problem

−∆⊥ψ −
1

ε
∆‖ψ = f , in Ω (35a)(

ε∇⊥ψ +∇‖ψ
)
· n = 0 , on ∂ΩN , (35b)

ψ = 0 on ∂ΩD (35c)

with

∂ΩN = {x ∈ ∂Ω, b(x) · n(x) 6= 0} , ∂ΩD = ∂Ω \ ∂ΩN , (35d)

∆‖ψ = ∇ · ∇‖ψ , ∆⊥ψ = ∇ · ∇⊥ψ . (35e)

Let, p be the precision order on the numerical schemes at hand to carry out
the approximation of the differential operators (with respect to the coordinates),
the following estimates hold true:

(∆h
‖Ψ

h)i,j = ∆‖ψ(xi, yj) +O‖(hp) , (∆h
⊥Ψh)i,j = ∆⊥ψ(xi, yj) +O⊥(hp) .

The discrete operators are denoted ∆h
‖ and ∆h

⊥, Ψh is the discrete approximation1

of the solution, the mesh being defined by the node positions (xi, yj) and the2

typical mesh size h. The truncation errors O‖(hp) and O⊥(hp) are functions of3

the mesh size and the derivatives of the solution and magnetic field with respect4

to x and y. This yields the following scheme:5

−(∆h
⊥Ψh)i,j −

1

ε
(∆h
‖Ψ

h)i,j = fhi,j −O⊥(hp)− 1

ε
O‖(hp) (36)

This unravels an amplification of the truncation error O‖(hp) issued from par-6

allel operator discretizarion by 1/ε. A deterioration of the numerical method7

precision with decreasing ε-values can therefore be anticipated, precisely a linear8

growth of the error with ε−1, eventually leading to ineffective computations for9

large anisotropies. We refer to Sec. 4.1 for numerical investigations illustrating10

this feature and to [41] for a thorough analysis of this issue.11

A workaround consists in working a ”rescaled” variable harnessed to cancel
this amplification of the truncation error, owing to the property ∇‖q = ε−1∇‖ψ.
The re-scaled variable may be computed thanks to ψ by substituting ε−1∇‖ψ
by ∇‖q in Eqs. (35). This provides

−∆‖q = f + ∆⊥ψ , in Ω

∇‖q · n = −∇⊥ψ · n , on ∂ΩN ,

This system is not well posed for q, since the solution of this problem can
be augmented by any function with no parallel gradient. Uniqueness may be
restored in this system by imposing the value of q on every field line. Let ∂Ω0

be the subset of Ω onto which the condition q = 0 is imposed to restore the
well posedness of the problem. The definition of ∂Ω0 is specific to the magnetic
field geometry and will be specified in the sequel. This condition is introduced

15



into the system by means of a Lagrange multiplier. This yields the following
set of equations to compute the re-scaled variable q together with the Lagrange
multiplier L defined on ∂Ω0 (L ≡ 0 on Ω/∂Ω0)

−∆‖q + L = f + ∆⊥ψ in Ω (38a)

∇‖q · n = −∇⊥ψ · n on ∂ΩN , (38b)

q = 0 on ∂Ω0 (38c)

This problem is coupled with

−∆‖ψ = −ε∆‖q in Ω (38d)

∇‖ψ · n = −ε∇‖q · n on ∂ΩN , (38e)

ψ = 0 on ∂ΩD , (38f)

to define a set of equations providing (ψ, q,L ) and referred to as the augmented1

Micro-Macro system. The merits of the re-scaled system defined by Eqs. (38)2

are outlined thanks to a discretization of Eq. (38d)3

−
(

∆h
‖Ψ

h
)
i,j

= −ε
(

∆h
‖Q

h
)
i,j

+O‖,ψ(hp) + εO‖,q(hp) , (39)

In this equation Qh is the numerical approximation of q, O‖,ψ(hp) and O‖,q(hp)4

are the truncation errors stemming from the discretization of ∆‖ψ and ∆‖q.5

For intense anisotropies, the contribution of Qh in this equation is masked by6

the truncation error: εO‖,q(hp)� O‖,ψ(hp). Eq. (39) accounts for the property7

−∆ψ = 0, satisfied by the solution in the limit ε→ 0, but with the precision of8

the numerical scheme O(hp). Finally, note that Eqs. (38a-38c) are independent9

of the anisotropy, therefore any discretization provides a numerical method free10

from an error amplification when ε→ 0.11

The augmented Micro-Macro method will be compared to the classical ”In-
flow” method which consists of the following set of equations

−∆⊥ψ −∆‖q = f in Ω (40a)

−∆‖ψ = −ε∆‖q in Ω (40b)

∇‖q · n = −∇⊥ψ · n on ∂ΩN\∂Ω0 , (40c)

∇‖ψ · n = −ε∇‖q · n on ∂ΩN , (40d)

ψ = 0 on ∂ΩD , (40e)

q = 0 on ∂Ω0 (40f)

where ∂Ω0 is a subset of ∂ΩN with12

∂Ω0 = {x ∈ ∂ΩN , b(x) · n(x) > 0} . (40g)

In the Inflow MM method, the boundary condition for q on one part of ∂ΩN is13

substituted by a zero condition yielding to Eqs. (40c) and (40f). No Lagrange14

multiplier is therefore used to impose the value of q on every field line in this15

method.16

16



A similar augmented Micro-Macro (a-MM) system is stated for the linearised
problem (34), yielding

−∇ ·
(
µnε∇‖q(k+1) + µnε∇⊥ψ(k+1)

)
+ L (k+1) = S − ∂n

∂t
in Ω, (41a)

−∇ ·
(
µnε∇‖q(k+1) − µn∇‖ψ(k+1)

)
= 0 in Ω, (41b)(

µnε∇‖q(k+1) + µnε∇⊥ψ(k+1)
)
· n = 0 on ∂Ωy, (41c)

q(k+1) = 0 on ∂Ωy, (41d)(
µnε∇‖q(k+1) + µnε∇⊥ψ(k+1)

)
· n =

− Γ′β

(
−ψ(k+1) +

kBTe
e

ln

(
n

n0

))(
ψ(k+1) − ψ(k)

) on ∂Ωx, (41e)

(
µnε∇‖q(k+1) − µn∇‖ψ(k+1)

)
· n = 0 on ∂Ωx, (41f)

q(k+1) = 0 on ∂Ω0 (41g)

4 Demonstrative calculations1

4.1 Validation of the augmented Micro-Macro method2

In this section, the capability of the elliptic problem solver to recover a precise3

approximation of the force field and potential (F and ψ), irrespective to the4

anisotropy strength, is examined. In this aim, a manufactured solution of the5

toy model defined by Eqs. (35) is therefore proposed. This simplified set-up6

enables to carry out analytically the computations, providing an exact reference7

solution to validate the numerical methods mobilized for the resolution of the8

anisotropic problem. The computational domain is Ω = [0, 1]2, the magnetic9

field is provided by the following equations10

Bx(x, y) = πℵζ(x2 − x) sin(ℵπy) , By(x, y) = ζ (2x− 1) cos(ℵπy) + π . (42a)

The manufactured solution for the potential, denoted ψm, is defined by means11

of two components ψ0 and ψ1 with12

ψm(x, y) = ψ0(x, y) + εψ1(x, y) ,

= sin
(
k
(
πx+ ζ(x2 − x) cos(ℵπy)

))
+ ε
(

cos(2πy) sin(πx)
)
.

(42b)

The curvature of the magnetic field is parametrized by ζ ∈ R, ζ ≥ 0. The13

second parameter, k ∈ N, provides a control of the perpendicular gradient of14

the solution in the limit ε → 0, the variations of the solution perpendicular to15

the magnetic field being reduced to that of ψ0 for large anisotropy strengths.16

The set-up associated to the manufactured solution is illustrated on the plots17

of Fig. 2. The auxiliary variable is set to zero along an horizontal line inter-18

secting any field line, at the bottom (y = 0 or the top y = 1) of the compu-19

tational domain. This amounts to the definition ∂Ω0 = {(x, y) ∈]0, 1[×{0}}.20

17



(a) ζ = 1, k = 1, ε = 10−1.

(b) ζ = 1, k = 4, ε = 10−6.

(c) ζ = 3, k = 4, ε = 10−6.

Figure 2: Manufactured solution defined by Eqs. (42): Magnetic field lines and
potential values (ψ) in a color scale (left); force field (F) lines and magnitude
‖F‖2 in a color scale (right) for ℵ = 3.
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The precision of the numerical method is not experienced to depend signifi-1

cantly on the choice of ∂Ω0. The plots of Fig. 3a and 3b are related to the
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Figure 3: Manufactured solu-
tion: Relative error norms for
the potential Ψh and force field
Fh carried out by either a fi-
nite difference (FD) or the aug-
mented Micro-Macro (a-MM)
scheme as functions of the mesh
size (ℵ = 3).

2

accuracy of Ψh the potential numerical approximation. The precision of the3

augmented Micro-Macro method (a-MM) is observed to be effective and hardly4

altered by ε-values. The same conclusions may be drawn from the approxima-5
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tion of the force field F = ∇ψ plotted on Fig. 3c. Finally, the property to1

recover the orthogonality of the magnetic and force fields is investigated thanks2

to Fig. 3d. The deviation from the orthogonality is proportional to ε (precisely3

εb · ∇ψ1 = b · ∇ψm). This is what the numerical approximation reproduces as4

long as the precision of the discretization is sufficient. Indeed, the plots of Fig. 3c5

confirm the estimate ‖Fh −∇ψm‖2 = O(hp), h denoting the typical mesh size6

and p the approximation order (p = 2 for these computations). It follows that7

‖b · Fh‖2 = O(ε) + O(hp). This estimate is in line with the plateau observed8

on the plots of Fig. 3d related to computations carried out with refined meshes9

and moderate anisotropy strengths (ε ≥ 10−3). These plateaus account for10

an orthogonality default dominating the approximation error (O(ε) ≥ O(hp)).11

Conversely, for ε < 10−4, the numerical method is not precise enough, the12

deviation from the orthogonality is hidden by the discretization error.13

The picture is very different for approximations computed thanks to a dis-14

cretization of the anisotropic problem using finite differences (FD), as displayed15

on Fig. 3e. The amplification of the truncation error by ε−1 is clearly illustrated16

on these error plots: the same convergence rate is observed for ε = 10−1 and17

ε = 10−2 (eventually for ε = 10−3 − 10−4 and refined meshes), however, the er-18

ror value is increased by one order of magnitude when ε is decreased by 10. The19

precision of this method obeys the following estimate ‖Ψh−ψm‖2 = O(hp ·ε−1),20

in line with Eq. (36). This prevents the computation of an effective numerical21

approximation for intense anisotropy.22

4.2 Plasma confinement in a cusp-shaped magnetic field23

4.2.1 Assessment of the numerical model to reproduce the physics24

of plasma thruster25

The purpose here is to provide representative simulations of the physics involved
in plasma thruster operating. Simulating the whole device is far beyond the
scope of the present work, the model at hand is too coarse for such an ambitious
goal. However, we aim to produce meaningful simulations of plasma confinement
and prove that the numerical method developed within this paper is efficient to
carry out simulations with parameters (anisotropies) representative of plasma
thrusters. Specifically, the plasma confinement by a cusp-shaped magnetic field
[37, 25] is investigated. This is quite challenging for numerical methods. In
part due to the singularity of the magnetic field, or more precisely that of the
normalized magnetic field, the magnetic field vanishing locally (in space). More
importantly, due to the significant curvature of the magnetic field lines. Finally,
this is also due to the concentration of magnetic field lines in punctual regions of
the simulation domain. The specific application targeted here is indeed related

20



to a cusp shaped magnetic field [31] B = (Bx, By) defined as

Bx(x, y) = −√γ sin

(
2πx

Lx

)(
exp (−πy−)− exp (−πy+)

)
, (43a)

By(x, y) =
√
γ cos

(
2πx

Lx

)(
exp (−πy−) + exp (−πy+)

)
, (43b)

y− =
Ly − 2y

Ly
, y+ =

Ly + 2y

Ly
(43c)

and plotted on Fig. 4a. The magnitude of the magnetic field is parameter-1

ized by γ > 0. The model defined by Eqs. (30-33) is discretized thanks to2

the methods detailed in Appendix A. Note that these discretizations are quite3

standard, the difficulty being addressed algebraically, thanks to the introduc-4

tion of the re-scaled variable into the linearized system (41). The numerical5

investigations are performed on a square domain with Lx = Ly = 0.1 m.6

A plasma of Argon is considered, with a typical density n0 = 1018 m−3 and7

an ionic mass mi = 6.69 10−26 kg, the electronic temperature and mobility8

being set to Te = 11604 K (1 eV), µe = 104 T−1. The magnetic field am-9

plitude is B0 = 10−1 T yielding a typical Hall parameter He = 103, at the10

plasma edge, this value being much weaker in the center. The initial data con-11

sists of n(x, y, t = 0) = n0 = 1018 m−3, v(x, y, t = 0) = 2vBy/Ly m · s−1,12

vB =
√
kBTe/mi = 1.55 103 m · s−1 being the Bohm velocity. Note that, with13

this value of the Hall parameter, the ratio between the parallel and the perpen-14

dicular mobilities, is as large as 106 near the vessel walls, as depicted on the plot15

of Fig. 4b. The plasma creation in the inter-electrode chamber is accounted for16

by the source term in Eq. (30f) with ν = 1.55 103 s−1 and τ = 1.3 102 m−1. The17

ionization is predominant in the centre of the inter electrode region as illustrated18

on Fig. 4c.

(a) Field lines and amplitude
of B (Eqs. (43)) for γ = 1.

(b) Anisotropic parameter ε
(Eq. (30e)) for ‖He‖∞ = 103.

(c) Ionisation term S.

Figure 4: Set-up for plasma confinement by a cusp-shaped magnetic field.

19

The purpose here, is to capture the steady state of the system. The plasma20

characteristics remain unchanged when the loss of particles along the electrodes21

is matched by the ionisation in the inter-electrodes region. The computations22

are carried out on a mesh with 399× 399 nodes to avoid the singularity of the23

21



magnetic field in {Lx/4, 3Lx/4} × {0}. The steady state defines a regime very1

similar to the one investigated in the previous section: in the regions of large2

anisotropies (near the electrodes), the source term in Eq. (33a) is vanishing,3

therefore, the solution may develop parallel and perpendicular gradients with4

very disparate magnitudes. This is confirmed by the plot of ψ the solution of5

the anisotropic problem as displayed on Fig. 5. This variable is almost constant

(a) ‖He‖∞ = 3 · 102. (b) ‖He‖∞ = 103.

Figure 5: Solution of the anisotropic problem ψ (V ·m−1) in a color scale and
magnetic field lines carried out with different intensities of magnetic field.

6

along the magnetic field lines near the electrodes while the variations perpendic-7

ular to the magnetic field are large. The confinement of the plasma is manifest8

on the plot of the density obtained at the steady state (see Fig. 6). For small9

magnetization intensity (‖He‖∞ = 10, see Fig. 6a) the density created in the10

middle of the inter-electrode region is almost uniformly transported towards the11

electrodes as depicted by the plot of Fig 7a. With the increase of the magnetic12

field intensity, quasi-vacuum basins are formed along the electrodes, centred at13

x = {Lx/4, 3Lx/4} in between the cusps of the magnetic field, as depicted on the14

plots of Figs. 6b–6d. The regions that are not connected to the middle of the15

inter-electrode chamber by the magnetic field lines, where the ionization is the16

most effective, are drained from particles. The inflow of particles from the cen-17

ter of the chamber, where the ionization is the most effective, into these basins18

is attenuated by the magnetization: the density decreases below 106 m−3 for19

He = 103 while it remains larger to 1012 m−3 for He = 3 102. This is explained20

by the mitigation of the transport perpendicular to the magnetic field with the21

increase of the field intensity. The plots of the electronic flux (Fig. 7) show that22

the electrons are deflected in regions where the magnetic field lines are converg-23

ing. The ions are accelerated by the electric field (see Fig. 8) towards the same24

regions as displayed by the plots of Fig. 9.25

The confinement of the plasma may be assessed by the space integral of26

the particle number density over the computational domain at the steady state.27

This quantity is plotted on Fig. 10. Note that these computations are carried28
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(a) ‖He‖∞ = 10. (b) ‖He‖∞ = 102.

(c) ‖He‖∞ = 3 · 102 (log. scale). (d) ‖He‖∞ = 103 (log. scale).

Figure 6: Plasma density (in a logarithmic color scale for subplots (c) and (d))
and magnetic field lines carried out with different intensities of magnetic field.

(a) ‖He‖∞ = 10. (b) ‖He‖∞ = 102. (c) ‖He‖∞ = 103 (log. scale).

Figure 7: Electronic flux density Γe = nue (m−2 ·s−1) for different magnetisation
intensities.

out with the same source term but different values of the Hall parameter. The1

total number of particles is observed to increase with the Hall parameter which2

23



(a) ‖He‖∞ = 10. (b) ‖He‖∞ = 102. (c) ‖He‖∞ = 103 (log. scale).

Figure 8: Electric field magnitude (V ·m−1) in a color scale and associated field
lines for different magnetisation intensities.

(a) ‖He‖∞ = 10. (b) ‖He‖∞ = 102. (c) ‖He‖∞ = 103 (log. scale).

Figure 9: Ionic flux density Γi = nui (m−2 · s−1) for different magnetisation
intensities.

Figure 10: Number of confined particles in the inter-electrode chamber as a
function of the Hall parameter ‖He‖∞.

confirms the confinement of the plasma thanks to its magnetization. This con-1

finement is also observed on the density and flux profiles along the electrodes2

(Fig. 11). The particles are escaping the inter-electrode chamber along channels3

located in the regions of the magnetic field cusps. The width of these channels is4

narrowed with the increase of the magnetic field intensity. This is qualitatively5

in line with the observations reported in [25].6
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(a) Density profile as a function of x (m−3). (b) Γi · n as a function of x (m−2 · s−1).

Figure 11: Profile of the plasma density and ionic flux density along the elec-
trodes for different intensities of magnetic field.

4.2.2 Inflow versus Augmented Micro-Macro formulations1

In this section, the loss of symmetry of solutions carried out thanks to the2

classical Micro-Macro method is outlined and compared to the outputs of the3

augmented version introduced in this work. These two methods differ by the4

subset of nodes used to imposing a condition on the auxiliary variable in order to5

restore uniqueness of the problem. Classically this condition is set on the subset6

of the boundary onto which the magnetic field inflows the domain (b · n > 0).7

For the magnetic field geometry considered here, this amounts to prescribing8

this condition on nodes of the boundary materialized by the red dotted lines on9

the plots of Fig. (12a). The discrete problem is therefore non symmetric with10

respect to the localization of the nodes where q is set to 0. This is experienced to11

produce numerical approximations inconsistent with the problem symmetries.12

The symmetry breakdown accumulates over the iterations, providing the plots13

of Fig. 12c representing the profiles of the steady state electric potential on14

both electrodes. These curves are non symmetric, similarly to the distribution15

on each boundaries of the nodes selected to prescribe the inflow condition q = 0.16

The augmented Micro-Macro formulation operates nodes distributed on dif-17

ferent locations as plotted on Fig. 12b. The subset ∂Ω0 intersects every magnetic18

field lines, however with a symmetric distribution in the computational domain.19

The augmented formulation offers the possibility to restore the symmetry of20

the solution: the curves associated to both electrodes are perfectly matching as21

shown on Fig. 12d, the difference of the two profiles being comparable to the22

computer arithmetic precision.23

All the plots presented in Sec. 4.2.1 are related to computations carried out24

thanks to the augmented Micro-Macro method.25
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(a) Subset ∂Ω0 for the inflow method. (b) Subset ∂Ω0 for the augmented method.

(c) Electric potential profiles carried out with
the inflow method.

(d) Electric potential profiles carried out with
the augmented method.

Figure 12: Definition of the subset ∂Ω0 (red dotted lines) used to restore the
well-posedness of the problem for the inflow (a) and the augmented (b) Micro-
Macro (MM) methods; Profiles of the steady state electric potential along the
electrodes: blue plain line with circles for φ(x,−Ly/2) and red dashed dotted line
with pentagrams for φ(x, Ly/2), ‖He‖∞ = 3 · 102.

4.2.3 On the robustness of the numerical model1

The large depletion of the density inside the quasi-vacuum basins calls into ques-2

tion the relevance of the quasi-neutrality assumption embedded in the model.3

This question is investigated thanks to two diagnostics. The first one is the4

scaled Debye length obtained for He = 103 as displayed on Fig. 13a. The level-5

sets λ = 1 plotted on this figure dissociate the validity domain of the quasi-6

neutral assumption (λ . 1) from regions where the typical scale (the mesh size)7

is comparable or smaller to the local (physical) Debye length.8

The second diagnostic is the ratio of the magnitude of the two contributions9

carrying the electric field in the non quasi-neutral model presented in Sec. 2.3.2.10

Two distinct inputs are indeed involved in the equation satisfied by the electric11
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(a) Dimensionless Debye length λ. (b) Quasi-neutrality parameter γQN.

Figure 13: Breakdown of the quasi-neutrality assumption: (a) Dimensionless
Debye length in a logarithmic color scale, the level-set λ̄ = 1 is plotted in
a dashed white line; (b) Squared dimensionless Debye length related to the
product of the squared electronic Mach number and the number of collisions
per typical time γQN = λ2M2

e κe in a color logarithmic scale. The level-sets
γQN = 1, 103 and 106 are plotted in a dashed white, dashed-dotted red and
plain blue lines.

potential as defined by Eqs. (19). The first one originates from the classical1

isotropic Poisson operator. It is carried by the scaled Debye length in the di-2

mensionless framework introduced herein. The anisotropy is introduced into this3

equation by means of the electronic mobility tensor issued from the divergence4

of the electronic current. This second contribution is proportional to 1/(M2
e κe).5

The balance between these two contributions is evaluated by γQN = λ2M2
e κe.6

The value of this parameter is plotted on Fig. 13b. It is evaluated thanks to7

the local density, the time step and mesh size being used as typical values for8

the time and length scales. The regions delimited by the electrodes and the9

level-sets γQN = 1 materialize locations where the non quasi-neutral contribu-10

tion is dominant in Eq. (19a). In between this level-set and the one associated11

to γQN = ε−1 = 106, the non quasi-neutral (isotropic) contributions exceed12

the magnitude of the diagonal coefficient of the anisotropic tensor in Eq. (19a).13

In other words, non quasi-neutral corrections should significantly decrease the14

anisotropy of this equation in regions delimited by the electrodes and level-set15

γQN = ε−1 = 106, entailing possible changes of the electric field inside the quasi-16

vacuum basins. Contrariwise, in the channels where the particles are flowing17

outside the domain, the quasi-neutral assumption is valid, a feature that should18

be further consolidated for simulations carried out with larger plasma densities.19

These observations outline that the computations performed herein are quite20

demanding with respect to the anisotropy embedded into the system matrix21

providing the electric potential. Furthermore, this matrix exhibits a condition22

number deteriorating with the vanishing of the density. This is related to the23
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fact that the continuity equation used to carry out the electric potential is close1

to singularity because of the small plasma density values. The robustness of the2

model shall be pointed out and these difficulties are related to the (quasi-neutral)3

model supporting these investigations. These difficulties shall be overcome by4

supplementing the model with non quasi-neutral corrections which amounts5

to make a step backward in the model hierarchy represented on Fig 1 and6

implement the transition from the quasi-neutral drift diffusion model (as defined7

in Sec. 2.3.3) to the Drift-Diffusion-Poisson system (Sec. 2.3.2) in which the8

quasi-neutral assumption is revoked.9

5 Conclusions10

In this paper a hierarchy of fluid models is proposed for the simulation of low11

temperature plasmas confined by intense magnetic fields. The derivation of these12

models unravels the different assumptions embedded in the equations widely im-13

plemented for the simulation in the framework of electric propulsion. The issue14

related to the approximation of anisotropic problems present in quasi-neutral15

modelling of magnetically confined plasmas is addressed by means of asymptotic16

preserving methods. These methods provide numerical approximation with an17

accuracy unrelated to the anisotropy strength using coordinates and meshes18

misaligned with the magnetic direction. A new formulation of the so-called19

Micro-Macro method is proposed in order to restore the symmetry of the prob-20

lem that is lost in the existing (inflow Micro-Macro) method. The validation21

of the augmented method is conducted thanks to an analytic framework. The22

method is proved to be accurate regardless of the anisotropy strength. This23

method is implemented for the quasi-neutral simulation of a plasma confined24

by a cusp-shaped magnetic field, with parameters representative of the electric25

propulsion. Though the model remains quite coarse, the confinement of the26

plasma is accounted for by the numerical method proposed within this docu-27

ment. Nonetheless, a refined description of the ionization process is mandatory.28

It is indeed determinant for the plasma dynamics, and strongly related to the29

electronic temperature. The model shall therefore be upgraded with an elec-30

tronic energy equation, which remains a real challenge for numerical methods.31

The electronic dynamics is indeed stiff and strongly anisotropic. This perspec-32

tive outlines the tremendous importance of developing numerical methods pre-33

cise regardless of the anisotropy strength.34
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where ∆t is the time step, ∆x and ∆y are the space steps, Nx and Ny are
positive integers. We set

ψki,j = ψ(k∆t, i∆x, j∆y), qki,j = q(k∆t, i∆x, j∆y), nki,j = n(k∆t, i∆x, j∆y),

vkx,i,j = vx(k∆t, i∆x, j∆y), vky,i,j = vy(k∆t, i∆x, j∆y).

The spatial discretization of the electronic system (41) is carried out with
the ”asymmetric” finite difference scheme proposed in [21, 41]. For a given flux
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where the discrete flux
[
Fx,i+ 1

2 ,j
Fy,i,j+ 1

2

]T
associated to F are defined at the1

cell interfaces thanks to2 
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Thanks to that scheme, the approximation of system (41) writes3 
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where (i0, j0) ∈ I0, I0 being a subset of [[1, Nx]] × [[1, Ny]] discretizing ∂Ω0 and[
F k
x,i+ 1

2 ,j
F k
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2

]T
and
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2 ,j
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2

]T
are discrete fluxes associated

to
F k = µnkε∇‖q + µnkε∇⊥ψ and Gk = µnkε∇‖q − µnk∇‖ψ ,

defined accordingly to Eqs. (44).4

System (1) describing the evolution of the ions is discretized by means of a5

Rusanov scheme6 
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2

= nki,j+1v
k
y,i,j+1 + nki,jv

k
y,i,j + Λk

i,j+ 1
2

(nki,j+1 − nki,j),

Mk
x,i+ 1

2 ,j
= nki+1,jv

k
x,i+1,jv

k
x,i+1,j + nki,jv

k
x,i,jv

k
x,i,j+

Λki+ 1
2 ,j

(nki+1,jv
k
x,i+1,j − nki,jvkx,i,j),

Lkx,i+ 1
2 ,j

= nki+1,jv
k
y,i+1,jv

k
x,i+1,j + nki,jv

k
y,i,jv

k
x,i,j+

Λki+ 1
2 ,j

(nki+1,jv
k
y,i+1,j − nki,jvky,i,j),

the fluxes Mk
y,i,j+ 1

2

and Lk
y,i,j+ 1

2

being defined similarly, and

Λki+ 1
2 ,j

=
∆t

2∆x
(2 + |vkx,i+1,j |+ |vkx,i,j |) , Λki,j+ 1

2
=

∆t

2∆y
(2 + |vky,i,j+1|+ |vky,i,j |) .

The numerical viscosity of the scheme is lower bounded by a positive value,2

arbitrarily set to 1, to ensure the stability of the scheme in regions where the3

plasma may be at rest. The value of this threshold has not been experienced to4

be significant in the simulation outputs.5

The approximation of the electric field E = −∇φ is defined as

Ekx,i+1/2,j = −φi+1,j − φi,j
∆x

and Eky,i,j+1/2 = −φi,j+1 − φi,j
∆y

.
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